当前位置:文档之家› NMDA受体的生理功能及研究进展综述

NMDA受体的生理功能及研究进展综述

NMDA受体的生理功能及研究进展综述
NMDA受体的生理功能及研究进展综述

NMDA受体的生理功能及研究进展

摘要N-甲基-D-天氡氨酸(NMDA)受体是一类离子型谷氨酸受体的一种亚型,是由多亚基构成的异聚体,主要分布在中枢系统中。近年来的证据表明,组成NMDA受体的亚单位有着复杂的生理学和药理学特性,参与神经系统的多种重要生理功能。NMDA受体的异常会导致一些认知功能的缺失,这为治疗性药物开发提供了靶点。

关键词NMDA受体受体学习记忆功能

现代神经科学的研究资料已经证明,谷氨酸(L-glutamicacid,GLU)是中枢神经系统(central nervous system,CNS)中介导快速兴奋性突触反应的重要神经递质。在大脑中分布最广,CNS内存在着与谷氨酸结合并发挥生理效应的两类受体,即离子型谷氨酸受体(ionotropic glutamate receptors,iGluRs)及代谢型谷氨酸受体。离子型受体由NMDA受体与非NMDA受体组成。

NMDA受体是一种分布在突触后膜上的离子通道蛋白,该受体是一种异聚体,由亚基NR1、NR2、NR3组成,每个受体至少由2~3个NR1亚基和2~3个NR2亚基组成。其中NR1亚基有8种剪接变体,NR2亚基分为NR2A、NR2B、NR2C、NR2D4个亚型,NR3有NR3A亚型等。NR1是NMDA受体的基本单位,NR2辅助NMDA受体形成多元化结构,NMDA受体依赖NR2亚单位不同亚型表达不同的受体功能[1]。

NMDA受体是一种具有许多不同变构调控位点并对Ca2+高度通透的配体门控离子通道,NMDA受体显示有许多与其他配体门控离子通道不同的特性:受体控制单价离子和对钙有高度渗透性的阳离子通道;同时结合谷氨酸和甘氨酸需要辅激动剂以刺激NMDA受体;在静息膜电位,NMDA通道被细胞外镁所阻断,而只有同时去极化和结合激动剂下开放。当谷氨酸等神经递质使受体激活,其受体蛋白构象改变,离子通道开放,阳离子如K+、Na+、Ca2+可进出细胞,使细胞膜去极化和神经元兴奋。NMDA受体可调节神经元的存活,树突、轴突结构发育及突触可塑性,可影响神经元回路的形成及学习、记忆过程。

一、NMDA受体在学习、记忆中的作用

学习和记忆的神经生物学基础是突触可塑性,单突触传入通路上给予短串强直刺激,使突触后细胞兴奋,突触后电位出现长达数天乃至数周的振幅增大,这

种现象称之为LTP,NMDA受体在LTP的形成过程起重要的调控作用[2]。

1、NMDA受体促进学习记忆

当递质与NMDA受体结合后,通道打开,Ca2+内流,胞内Ca2+浓度升高,继而触发一系列生化反应:以G蛋白为中介,活化磷酸脂酶C,催化磷脂酰肌醇水解为三磷酸肌醇(IP3)和二乙酰甘油(DAG);以IP3和DAG作为第二信使,引起细胞内继发效应,IP3刺激内质网释放出Ca2+,从而使Ca2+水平进一步升高;DAG则在Ca2+的存在下,激活蛋白激酶C(PKC),PKC不仅可以加强Ca2+依赖性谷氨酸的释放,提高突触后膜对递质的敏感性,而且能增强Ca2+通过电压依赖性通道进一步内流入细胞;PKC使蛋白质磷酸化,并修饰核转录因子,转录因子的修饰促使早期诱导基因的表达,进而影响核内相关靶基因的启动和转录,导致突触后神经元产生LTP生理效应,促进学习与记忆。

2、NMDA受体抑制学习记忆

NMDA受体另一方面也引起学习记忆障碍。主要机制是NMDA受体介导的兴奋毒性作用,兴奋性氨基酸和抑制性氨基酸,当两者比例失衡,兴奋性氨基酸增高时,导致神经元损伤以及神经功能损害,其机理主要有二种:由NMDA受体过度兴奋介导的神经细胞迟发性损伤,可推迟数日发生,主要与Ca2+超载有关,这种迟发性损伤是Glu兴奋性毒性损伤的主要途径,与海马区细胞迟发性神经元坏死密切相关;Glu超常释放造成海马区内病理性的LTP并造成了以后的信息传递障碍形成学习记忆障碍。细胞周围Glu的积聚促进NMDA受体通道开放,导致大量Ca2+内流,Ca2+超载导致神经元坏死。

二、NMDA受体与癫痫

癫痫是慢性反复发作性短暂脑功能失调综合征,以脑神经元异常放电引起的痫性发作为特征。癫痫的发生和脑内兴奋性、抑制性神经递质失衡有关。癫痫的主要机制为脑内兴奋性氨基酸活性升高。在癫痫发作中,NMDA受体含量增多,表达升高,且其各个亚型之间相互作用,构形发生变化,使突触后膜支架蛋白磷酸化,发生级联发应,使NMDA受体配体离子通道持续开放,神经元持续放电,并向周围神经元放散扩布。长期癫痫反复发作,导致苔藓纤维发芽,神经元缺失等形态学和电生理改变[3]。

在很多研究中,外源性的NMDA注入动物模型的脑内可诱发癫痫,免疫组

化显示NMDA受体增加,膜片钳技术测试癫痫发挥作用后NMDA介导的突触后膜的电流增加。在另外一些研究中发现NMDA受体在癫痫发生后亚基发生改变。

因此,使用NMDA受体拮抗剂可以改善癫痫病人的症状。目前研究表明NR2B亚型拮抗剂具有不良反应少和耐受性好等优点。在病理状态下,胞外多胺浓度增加会增强NR2B亚型的活动,相比生理状态下NR2B亚型拮抗剂对受体的影响较大。还有研究表明NR2B亚型拮抗剂与NMDA受体某一特殊亚型呈化学计量性优先结合。在人脑皮质发育不良患者中NR2B的特异性表达,可作为诊断和治疗癫痫发放的指标,对皮质发育不良导致的药物难治性癫痫患者,NR2B 选择性抑制剂可作为首选。

三、NMDA受体在麻醉镇痛中的作用

疼痛的产生是因为阈上伤害性刺激导致传导A纤维和慢传导C纤维的激活,该伤害性信号被传至脊髓后角并转换至次级神经元,再通过前侧束到达丘脑上结构(丘脑边缘系统大脑皮质)。脊髓水平伤害性信号传入导致兴奋性神经递质(包括谷氨酸等)的释放,神经递质与后角细胞的受体相结合,致细胞钙升高,从而激活细胞中快速早期基因(如Cofrs基因等)表达,进而蛋白质合成增加(如受体蛋白增加),神经化学敏感性提高(即中枢致敏),强烈、持续的疼痛刺激还可激活NMDA受体成为中枢致敏进一步增强的主要原因。

已有动物形态学研究证明,末鞘神经组织内无髓鞘和有髓鞘神经轴索上存在NMDA受体,同时谷氨酸浓度增加暗示与来自慢组织的慢性疼痛发痛机制有关,与末鞘存在NMDAR相一致,局部注射谷氨酸或NMDA可导致动物感受伤害行为,而可以通过末鞘给予NMDAR拮抗剂所减弱。如对末鞘给予一种非竞争性NMDAR拮抗剂MK-801(5-甲基二氢二苯并环庚烯亚胺马来酸)。

进一步的研究发现,NR2B是参与疼痛产生的调节亚基。在成年大鼠脊髓中NMDA受体的调节亚基主要为NR2C,NR2B的分布很少,而慢性疼痛大鼠的脊髓背角神经细胞NR2B表达明显增多,这说明脊髓背角的NR2B参与病理性疼痛的发生,其本身并不参与一些生理功能如学习记忆。NR2B亚单位分布相对集中,选择NR2B性拮抗剂有望成为更安全有效、副作用低的一类新型药物[4-5]。

四、NMDA受体对精神性疾病的作用

研究表明,NMDA受体功能的低下是人类认知功能障碍的重要原因之一,并与精神分裂症的发病密切相关。使用非选择性的NMDA受体拮抗剂(PCP或氯胺酮)可以干预记忆的形成,并产生类似精神分裂症的某些症状。在转基因小鼠上,减少NMDA受体的表达或损害NMDA受体功能将产生类似于精神分裂症的某些症状。最近对连锁基因的遗传学分析及尸体解剖分析结果表明,人类精神病的发病机制与NMDA受体的表达与功能紊乱有关。

增强NMDA受体的功能将有益于改善认知障碍。但是,直接激活NMDA 受体的谷氨酸结合位点会引发其兴奋毒性,而激活NMDA受体的甘氨酸结合位点是一个可行的方法,在临床使用过程中发现,该策略的确可以缓解某些临床症状。目前认为有两个潜在的有效途径可以增强NMDA受体活动:第一,阻止NR2亚单位N末端的关闭,可以通过替代锌离子来维持N末端间隙处于开放状态;第二,稳定通道的开放状态,减慢通道的失活,或通过作用于激动剂结合区的二聚体界面阻断脱敏状态的产生[6-7]。

由于NMDA受体具有复杂的分子结构、存在多个配体结合位点、其组成的多种亚单位形成了多种亚型受体等特点,致使NMDA受体具有调制突触传递、触发突触可塑性以及参与学习与记忆等重要的生理功能,并在精神分裂症、情绪障碍、药物成瘾等疾病的发生中发挥着重要作用。深入探讨不同亚单位的特性以及各配体结合位点的功能特征,寻找到既能增强NMDA受体的功能,又不产生兴奋性神经毒性的物质,是研制与开发新型抗精神病药物的新途径。

五、NMDA受体在神经疾病中的作用

1、NMDA受体与阿尔茨海默氏症(AD)

近年来,有学者认为细胞凋亡过度可能是AD神经退行性病变的原因。因此,探讨细胞凋亡与AD的关系,对AD的防治具有重要指导作用。β2淀粉样蛋白是老年斑产生的主要物质基础,对神经元具有细胞毒性作用。研究发现,β2淀粉样蛋白可刺激NO产出增加,通过活化NMDA受体通道激发Ca2+内流而造成神经细胞凋亡,这可能是AD的发病机制之一。实验表明,β2淀粉样蛋白能诱导神经元氧自由基的增加,提示AD或许是通过氧自由基诱导神经元调亡。

2、NMDA受体与帕金森氏症(PD)

帕金森氏症是发生于中年以上的黑质和黑质纹状体通路变性的疾病,其病变

主要是由于黑质纹状体多巴胺(DA)能神经元变性以及残存神经元细胞DA生物合成能力下降,从而导致纹状体DA 缺乏引起的。兴奋性神经毒性作用可能参与PD的发病机制。兴奋性氨基酸(EAA)释放过多或灭活机制受损将对神经细胞产生过强的神经兴奋性毒性作用。丘脑底核(STN)将Glu能神经元的兴奋性投射到黑质,当黑质致密区(SNc)DA能神经元损伤后,Glu能神经元便会异常活跃,使Glu释放增加,持续的激活NMDA受体导致Ca2+大量内流,造成神经元内Ca2+超载,触发一系列Ca2+相关的级联反应,致使DA能神经元变性和(或)坏死。DA 分泌减少削弱了对STN的抑制,增强了兴奋性传出神经元的放电,进一步加重兴奋性毒性[8]。

3、NMDA受体与亨廷顿病

亨廷顿病是一种常染色体显性遗传的神经系统退行性疾病,能引起基底神经节严重病变,主要临床表现为慢性进行性舞蹈样不自主运动精神障碍及痴呆。亨廷顿病的病变神经元中表达变异的亨廷顿蛋白,使突触前膜谷氨酸大量释放,引起NMDA受体被过度激活,细胞表面NR1/NR2B数目增加。NMDA受体被过度激活后,其下游信号通路产生一系列的变化,包括细胞内钙离子浓度的升高线粒体功能障碍以及蛋白酶的活化等,这些变化最终都将导致纹状体神经元的凋亡,即NNMDA受体的兴奋毒性[9]。

4、NMDA受体与脑缺血

脑缺血疾病在临床上具有发病率高、致残率高、死亡率高的特点, 严重威胁着人类的健康。脑缺血的损伤机制十分复杂,现认为谷氨酸介导的兴奋性细胞毒性在脑缺血的病理生理机制中起重要作用。是脑缺血损伤的中心环节和脑组织损伤的启动者和执行者,其结果不仅诱导细胞凋亡,而且也可直接导致细胞坏死。

谷氨酸是中枢神经系统中最丰富最重要的氨基酸,既参与突触传递又维持神经细胞正常的生理功能。正常情况下,谷氨酸的释放、摄取和重吸收保持在动态平衡中,然而,当其过度释放或摄取障碍时,谷氨酸大量积聚,脑内浓度急剧升高,受体过度激活可导致广泛的脑组织病理性损害。NMDA受体1是一种特异性离子型受体,目前认为它是介导神经毒性最主要的受体。脑缺血时,随着细胞外谷氨酸浓度的大量增加,NMDA受体1也被迅速激活,从而参与诱导神经元兴奋毒性、激发神经元的退化及神经细胞死亡等过程[10-11]。理论上讲,如能拮抗

NMDA受体1活性,就能减少Ca2+的内流,从而有效地防止NMDA受体介导的神经元损伤。

六、总结

NMDA受体的多样性同生理功能密切相关。NMDA受体的异常会导致阿尔茨海默氏症、帕金森氏症、癫痫、脑缺血等疾病的发生。随着NMDA受体分子结构和生理功能研究的深入,必将为这些疾病的治疗提供广阔的前景。深入探讨不同亚单位的特性以及各配体结合位点的功能特征,寻找到能增强或抑制NMDA受体的功能,又不产生兴奋性神经毒性的物质,是研制与开发新型药物的新途径。

参考文献

[1] 柯珂,乔琰,王俊.NMDA受体概述及其在学习记忆中的作用[J].广西科学院学报,2011,27(1):49~54

[2] 唐敬龙,高维娟.谷氨酸NMDA受体与学习记忆的关系[J].中国老年学杂志,2009,29(18):2408~2409

[3] 来海欧,杨金升.NMDA受体与癫痫发病机制的研究现状[J].Journal of InternationalNeurology and Neurosurgery,2008,35(1):72~75

[4]汪健,孙磊,姚尚龙.N-甲基-D-天冬氨酸受体及其调控在麻醉镇痛中的研究进展[J].医学综述,2008,14(15):2354~2356

[5] 陆建华,于英妮,胡春奎,等.NMDA受体2B亚基在慢性疼痛中的作用研究进展[J].实用医学杂志,2010,26(19):3655~3657

[6] 郭春梅,司天梅.脑发育期NMDA受体功能低下与精神分裂症[J].中国神经精神疾病杂志,2008,34(4):252~253

[7] 卞士中,张健,刘伟丽,等.NMDA受体拮抗剂与精神分裂症动物模型[J].法医学杂志,2009,25(6):443~445

[8] 林奕斌,赵同军,展永.N-甲基-D-天氡氨酸受体的分子结构与生理功能[J].生命科学,2007,19(1):75~61

[9] 程瑶,王欣慧,王茂,等.NMDA受体与亨廷顿病的关系及相关药物的研发[J].药学进展,2011,35(3):97~102

[10] 黄晓磊,王树礼,夏作理.谷氨酸、NMDA受体1与缺血性脑损伤关系研究进展[J].中国微循环,2006,10(1):69~72

[11] 沈瑞乐,郭铁,滕军放.慢性脑缺血老龄大鼠海马NMDA受体亚单位NR2B表达的特征[J].中国实用神经疾病杂志,2008,11(3):24~26

文献综述的基本结构

文献综述写作结构加句型 一文献综述特征 1.一般字数控制在4000-6000字左右,大约8-15页; 2.以评述为主,不可罗列文献; 3.基本格式通常包括题目、作者、摘要、关键词、前言、正文、结语和参考文献等几个部分; 4.中文参考15-20篇,英文参考20篇左右,文献要新,50%-80%最好为3年内的文献。 5.如果文献综述是为开题报告作准备,整篇文章建议为漏斗状结构,即“有什么研究进展,问题是什么,怎么找方向”。 二按照文献综述的结构顺序分析常用句型 1 题目 1.1 如果文章为结果论文 标题格式 a) Effect of (因素) on(观测项目)in(研究对象)Progress b)(观测对象)in (研究对象) Progress c)无固定格式 1.2 如果文章为方法论文 标题格式 d) Methods for … Progress 2 摘要常用句型 归纳了…研究中的关键问题 指出了…及其…研究的主要进展 讨论了…的类型、影响因素、过程机理和描述方法 在此基础上,对…规律的研究前景进行了展望 3 关键词 略 4 前言 4.1 内容: 问题的历史、现状和发展动态,有关概念和定义, 选择这一专题的目的和动机、应用价值和实践意义。 4.2 常用句式 …是…的重要研究内容 过去研究主要集中在… (深度上)… (广度上)… (有争论的问题)… 鉴于…的工作将对今后…研究意义以及…的现实应用意义 作者就…的关键问题进行了系统的分析和综述 5 正文 5.1 综述材料来源广泛,因此段落结构格式非常重要,举例如下表; 第一句第二句第三句第四句第五句第六句 主题句陈述理论1 研究支持1 陈述理论2 研究支持2 略 主题句研究支持1 研究支持2 研究支持3 略例外情况 研究意义主题句研究支持1 说明理论1 略主题句 5.2 纵横结合式写法 写历史背景采用纵式写法,围绕某一专题,按时间先后顺序或专题本身发展层次,对其历史演变、目前状况、趋向预测作纵向描述;

nmda受体拮抗剂的种类有哪些

nmda受体拮抗剂的种类有哪些 NMBA受体拮抗剂,一般主要分为两类,一种主要是离子型受体,另外一种是代谢型受体。离子型受体,它会和离子通道偶联,形成受体通道的复合物,然后达到信号传递的作用,而对于代谢型受体来说,它能够和膜内g蛋白偶联,在被激活以后,起到信号传导的功效,产生比较缓慢的生理性反应。 ★nmda受体拮抗剂种类 ★1、离子型受体 (1) NMDA 受体(NRs):其与突触的可塑性和学习记忆密切相关。通过该受体本身、其共轭的离子通道及调节部位3 者形成的复合体而发挥功能,对Ca2+高度通透。每个NMDA 受体上

含有两个谷氨酸和两个甘氨酸结合识别位点,谷氨酸和甘氨酸均是受体的特异性激活剂。到目前为止已克隆出5个亚基,NMDAR1、NMDAR2(A-D)其中NMDAR1 可单独形成功能性纯寡聚体NMDAR,但NMDAR2 亚基却不具备该功能。有研究表明NMDAR可能是由NMDAR1 和NMDAR2 不同的亚基组成的一个异寡聚体。 (2) KA/AMPA 受体:它们也是受配基调控的离子通道,对Na+、K+有通透性,研究证明,一些受体亚型对Ca2+也有通透性。AMPA 家族包括4 个结构极为相似的亚基GLUR1-4,各亚基的氨基酸序列的同源性高达70%。由于氨基酸残基的疏水性分布,在靠近羧基端的部分构成4 个跨膜区。AMPA、L-谷氨酸及KA 均可激活这类离子通道,并有AMPA 的高亲和力结合位点。天然的AMPAR 是由这4 种亚基形成的四聚体。

★2、代谢型谷氨酸受体(mGLuRs) 这是通过G-蛋白偶联,调节细胞内第二信使的产生而导致代谢改变的谷氨酸受体,其可分为不同的8 个亚型mGLUR1-8,根据氨基酸序列的同源性及其药理学特征和信号转导机制的不同,可将其分为3 组,ⅠmGLUR1、mGLUR5; ⅡmGLUR2-3; Ⅲ mGLUR4、mGLUR6-8。Ⅰ组可被Quis 强烈活化并与磷脂酶C 途径(PLC)相偶联;Ⅱ、Ⅲ组均可与腺苷酸环化酶系统(AC)被动偶联。

石斑鱼饲养饲料营养技术知识

石斑鱼营养与饲料研究 海洋与渔业信息 石斑鱼种类较多,全世界约100多种,属暖水性中下层的肉食性鱼类,栖息于潮流缓慢、透明度不大的岩礁和珊瑚丛海区,为海水网箱养殖的主要品种之一。国内石斑鱼的养殖主要集中在广东、广西、福建、浙江和海南五省区的沿海。 目前,石斑鱼营养需求的研究较多,但配合饲料的开发利用仍然处于起步阶段。我国养殖石斑鱼主要是投喂冰鲜小杂鱼,也有个别饲料厂在尝试石斑鱼饲料的生产和推广,但基本上并不能在整个养殖过程全部使用配合饲料,这与养殖观念有关,更重要的是配合饲料本身存在着营养的全面性、诱食性、促生长及抗病防病能力等问题。本文综述了现有石斑鱼营养与饲料的研究资料,希望能为解决目前海水养殖石斑鱼人工配合饲料问题,减少饲料资源的浪费及其对海水养殖区域环境污染,促进海水养殖健康持续发展提供参考依据。 1石斑鱼肌肉氨基酸组成分析 肌肉必需氨基酸组成模式的研究在鱼类营养学和人工配合饲料设计上有着重要意义。张本等分析了花点石斑鱼E.maculatus、青石斑鱼(E.awoara)、鲑点石斑鱼E.fario、蜂巢石斑鱼E.merra、黑边石斑鱼E.fasci

atus和巨石斑鱼E.tauvina的肌肉中氨基酸组成。石斑鱼氨基酸总含量、必需氨基酸含量和鲜味氨基酸含量均较高。氨基酸组成与种间和分布海域间的差异不大,但存在月际及随体长的增长而变化的现象。天然与养殖石斑鱼氨基酸组成也有一定差异。石斑鱼必需氨基酸含量间的比值相对稳定,综合得出了石斑鱼的必需氨基酸的组成模式,并将此组成模式作为石斑鱼配合饲料氨基酸平衡的依据,应用于其所配制的配合饲料,进行E.maculatus的喂养实验,初步显示了一定的效果。陈学豪等报道了养殖的赤点石斑鱼肌肉中氨基酸总量为733.5mg/g,必需氨基酸总量为404.1mg/g,鲜味氨基酸含量为326.4mg/g,均低于野生鱼。 2蛋白质和氨基酸需求 庄建隆和刘擎华报道了投喂以白鱼粉为主要蛋白源制成的6组不同蛋白质的饲料,体重1.5g的E.salmonides以蛋白质含量最高(54.06%)组饲料的生长速度及饲料效率最好。虽然各组饲料间的生长率差异并不明显,但蛋白质含量过低或投喂量不足时,会引起互相残杀,从而导致存活率下降。网箱养殖的E.salmonides,其蛋白质最适需求量为40%~50%。 陈学豪等探讨了投喂不同蛋白质含量的配合饲料对赤点石斑鱼生长的影响,得出配合饲料中蛋白质含量为49.52%时增重率、体

青钱柳研究进展[文献综述]

毕业论文文献综述 生物工程 青钱柳研究进展 摘要:青钱柳系胡桃科青钱柳属,为中国特有的单种属乔木植物,是国家重点保护的濒危植物之一,研究发现其树叶具有许多生物活性。本文对青钱柳的生物学特性、资源分布、树种培育、有效成分、生物活性及产品开发等方面的研究进展进行了较为全面的介绍与分析。关键词:青钱柳;生物学特性;繁殖;有效成分;生物活性;价值;研究进展。 1. 生物学特性与资源分布 1.1 生物学特性 青钱柳(Cylocaya palirus)又名铜钱树、摇钱树,为胡桃科青钱柳属植物,该属仅有青钱柳一种,是集用材、绿化、茶饮保健、药用治疗于一身的珍稀树种。其树形象柳树,果实如古铜钱,约10个果实串生在一起,层层叠叠,颜色碧绿,故名“青钱柳”。叶为单数羽状复叶,小叶7~9 片,革质。花期3~4月,单性,雌雄同株,雄柔荑花序2~4条成1束集生在短总梗上,雌柔荑花序单独顶生。果序轴长25~30厘米,果实有革质水平圆盘状翅,顶端有4枚宿存花被片及花柱。10月果实由青转黄时采摘,去翅混砂贮藏。冬播或春播,种子外壳坚硬,播种前需用温水浸种2~3天,每斤种子2800粒左右,每亩播种约20斤【1】。 我国从1970年开始对青钱柳进行药用开发研究,结果表明,青钱柳具有明显的降血糖、降血压、减肥、抗肿瘤、抗衰老、抗过敏、清热解暑、提高人体免疫力、促进新陈代谢等多种功效,尤其对治疗糖尿病有显著疗效【2】。青钱柳叶含有丰富的矿质营养素,在水中可溶解10% 以上的元素有钾、镁、锌、锰、硒、镍、铜和锂,能有效地降低血糖和尿糖,可治疗糖尿病。 1.2 生长环境 青钱柳树大喜光,幼苗稍耐阴,喜生于温暖、湿润、肥沃、排水良好的酸性红壤或黄红壤。适生于湿度较大的环境,在土壤干旱瘠薄的地方生长不良。青钱柳根系发达,每年有大量的凋谢物,分解速率高,是良好的肥料树种,与常绿针叶树种混合造林后,可改善土壤结构,提高土壤肥力,并能充分发挥涵养水源的功能。青钱柳常与银鹊树、大叶楠、青冈、紫楠、浙江柿、香槐、柳杉等混生,组成常绿与落叶阔叶混交林群落【3】。

卡宾的最新研究进展【文献综述】

毕业论文文献综述 应用化学 卡宾的最新研究进展 1 前言 近年来,对于同性质催化剂研究的成功,大大推动了各种配位体结构在不同领域中的应用。其中一个惊人的成果便是对氮杂环卡宾(NHCs)的应用,因为此类卡宾有很强的σ-共价键。自从卡宾作为一种中间配体被发现后,在有机化学中就扮演着一个重要角色。1950年skell等人就开始了对卡宾的研究[1]。1964年Fischer等人将卡宾引入无机和有机化学中,金属卡宾在有机合成和大分子化学中得到了广泛的应用[2]。1968年ofele和wanzliek先后报道了N-杂环卡宾金属络合物I[3]和II[4](图1-1),但他们仅限于金属络合物的研究。1991年Arduengo第一次分离得到游离的N-杂环卡宾III[5](图1-1)以后,N-杂环卡宾引起了人们的广泛注意。近二十年来,N-杂环卡宾的金属络合物作为催化剂,已得到广泛应用。 图1-1 即使NHCs的结构可以粗略的被改变,但是任何的结构改变始终与其同系物含磷杂环卡宾相去甚远。我们现已知道很多种稳定的芳香族卡宾,但是它们不是勉强与金属配位体结合,就是使金属混合物更加易碎。在最近五年里,出现了各种各样的新型卡宾,例如含碳卡宾的络合物(非NHCs),它的特点是稳定性比σ-共价键更强。它们的合成路线,化学特点以及稳定性,电负性,协调性,和催化性能,常常人们的用来与氮杂环卡宾比较。本文主要运用比较的方法,介绍了几种新型卡宾:二磷杂环卡宾、胺磷杂环卡宾。并详细阐述了它们的制备方法,化学性质和结构特点。 2 二磷杂环卡宾 2.1 二磷杂环卡宾的发展史 二磷卡宾与NHC其中一个主要不同点便是NHC的两个N原子被P取代,成为一个含有双P原子的杂环卡宾(PHCs).[6]一些文献中有提到对PHCs的稳定性和合成的困难表示焦虑,但它们也认为PHCs

NMDA受体的生理功能及研究进展综述

NMDA受体的生理功能及研究进展 摘要N-甲基-D-天氡氨酸(NMDA)受体是一类离子型谷氨酸受体的一种亚型,是由多亚基构成的异聚体,主要分布在中枢系统中。近年来的证据表明,组成NMDA受体的亚单位有着复杂的生理学和药理学特性,参与神经系统的多种重要生理功能。NMDA受体的异常会导致一些认知功能的缺失,这为治疗性药物开发提供了靶点。 关键词NMDA受体受体学习记忆功能 现代神经科学的研究资料已经证明,谷氨酸(L-glutamicacid,GLU)是中枢神经系统(central nervous system,CNS)中介导快速兴奋性突触反应的重要神经递质。在大脑中分布最广,CNS内存在着与谷氨酸结合并发挥生理效应的两类受体,即离子型谷氨酸受体(ionotropic glutamate receptors,iGluRs)及代谢型谷氨酸受体。离子型受体由NMDA受体与非NMDA受体组成。 NMDA受体是一种分布在突触后膜上的离子通道蛋白,该受体是一种异聚体,由亚基NR1、NR2、NR3组成,每个受体至少由2~3个NR1亚基和2~3个NR2亚基组成。其中NR1亚基有8种剪接变体,NR2亚基分为NR2A、NR2B、NR2C、NR2D4个亚型,NR3有NR3A亚型等。NR1是NMDA受体的基本单位,NR2辅助NMDA受体形成多元化结构,NMDA受体依赖NR2亚单位不同亚型表达不同的受体功能[1]。 NMDA受体是一种具有许多不同变构调控位点并对Ca2+高度通透的配体门控离子通道,NMDA受体显示有许多与其他配体门控离子通道不同的特性:受体控制单价离子和对钙有高度渗透性的阳离子通道;同时结合谷氨酸和甘氨酸需要辅激动剂以刺激NMDA受体;在静息膜电位,NMDA通道被细胞外镁所阻断,而只有同时去极化和结合激动剂下开放。当谷氨酸等神经递质使受体激活,其受体蛋白构象改变,离子通道开放,阳离子如K+、Na+、Ca2+可进出细胞,使细胞膜去极化和神经元兴奋。NMDA受体可调节神经元的存活,树突、轴突结构发育及突触可塑性,可影响神经元回路的形成及学习、记忆过程。 一、NMDA受体在学习、记忆中的作用 学习和记忆的神经生物学基础是突触可塑性,单突触传入通路上给予短串强直刺激,使突触后细胞兴奋,突触后电位出现长达数天乃至数周的振幅增大,这

光唇鱼的综述

文献综述 (2015届本科)题目:光唇鱼的研究进展综述 学院:专业:班级:水产与生命学院水族科学与技术11级水族1班 学号:1118119 姓名:王乐乐 指导教师:孙大川 二O一五年五月

光唇鱼的研究进展综述 1.前言 光唇鱼,俗称“石斑鱼”,是山区重要的野生渔业资源,光唇鱼喜栖息于石砾底质、水清流急之河溪中,常以下颌发达之角质层铲食石块上的苔藓及藻类。每年6-8月在浅水急流中产卵。主要分布于上海、江苏、安徽、浙江、福建、台湾等地的溪流中。该鱼肉质细嫩,味道鲜美,深受大众喜爱。近年来,由于环境变化、人为滥捕等因素的影响,其野生资源不断减少,对保持自然水域生物资源多样性产生严重的负面影响。 近年来,为实现光唇鱼的人工保护与开发,各地纷纷开展人工繁养殖技术研究和人工增殖放流探索,也取得了一定成效。杭州市水产技术推广总站在调查杭州地区光唇鱼种群分布、自然生长特性、资源现状等条件的基础上,开展了亲鱼培育、流水诱导自然产卵、人工催产授精、人工孵化、苗种培育和池塘流水式养殖等技术研究,经多年实践努力,总结出一套适用于杭州山区溪涧开展光唇鱼人工繁养殖技术,制定了杭州市地方标准《光唇鱼池塘养殖技术规范[1]。 光唇鱼作为山区渔业的优质品种,人工养殖效益好,具有良好的发展前景,在修复与维护山区自然生态环境的同时,也为促进本地区光唇鱼的资源保护和合理开发,打造生态渔业起到积极作用。 光唇鱼是一种极具特色的养殖品种,即适合在库叉、溪流或河道放养,也适于在山塘及养鳗场等人工养殖,也可作为游钓、观赏鱼开发,是一种非常有开发前景的经济鱼类。据相关资料阁报道,目前光唇鱼属已知种和亚种共有21个。在系统分类方面,吴秀鸿等于1981年在武夷山自然保护区境内鉴定出光唇鱼的新种;赵俊等嘲通过形态学特征、解剖学及同工酶表型的分析的方法,研究了厚唇光唇鱼A.1abiatus和侧条光唇鱼A.p0rallens的差别,发现地理隔离是这两种光唇鱼形成的主要原因;其后赵俊等于1997年在湖南吉首采集得到鲤科鱼类1新种,并将其命名为吉首光唇鱼.ishouensis sp.nOV王莉等同利用线粒体ND4基因序列研究了光唇鱼的系统发育特征。唐安华等对云南光唇鱼的胚胎及胚后发育做了细致的研究。此外,张玉明等对光唇鱼的人工繁殖技术进行了研究。迄今为止,对光唇鱼详细的药物耐受性致死实验药物指标的实验鲜有报道[2]。 2.光唇鱼的品种及介绍

文献综述写作要点

文献综述写作要点 文献综述写作结构和句型 一文献综述特征 1.一般字数控制在4000-6000字左右,大约8-15页; 2.以评述为主,不可罗列文献; 3.基本格式通常包括题目、作者、摘要、关键词、前言、正文、结语和参考文献等几个部分; 4.中文参考15-20篇,英文参考20篇左右,文献要新,50%-80%最好为3年内的文献。 5.如果文献综述是为开题报告作准备,整篇文章建议为漏斗状结构,即“有什么研究进展,问题是什么,怎么找方向”。

二按照文献综述的结构顺序分析常用句型 1 题目 1.1 如果文章为结果论文 标题格式 a)Effect of oninProgress b)in Progress c)无固定格式 1.2 如果文章为方法论文 标题格式d)Methods for ? Progress 2 摘要常用句型 归纳了?研究中的关键问题 指出了?及其?研究的主要进展 讨论了?的类型、影响因素、过程机理和描述方法 在此基础上,对?规律的研究前景进行了展望 3 关键词 略 4 前言 4.1 内容:

问题的历史、现状和发展动态,有关概念和定义, 选择这一专题的目的和动机、应用价值和实践意义。 4.2 常用句式 ?是?的重要研究内容 过去研究主要集中在? ? ? ? 鉴于?的工作将对今后?研究意义以及?的现实应用意义 作者就?的关键问题进行了系统的分析和综述 5 正文 5.1 综述材料来源广泛,因此段落结构格式非常重要,举例如下表; 第一句第二句第三句第四句第五句第六句 主题句陈述理论1研究支持1 陈述理论2研究支持2 略 主题句研究支持1研究支持2 研

生理二细胞的基本功能

第二章细胞的基本功能 一、单选题 1.人体内O2、CO2和NH3进出细胞膜是通过: A. 单纯扩散 B. 主动转运 C. 易化扩散 D. 出胞作用 E. 入胞作用 2.大分子蛋白质进入细胞的方式是: A. 出胞作用 B. 主动转运 C. 易化扩散 D. 入胞作用 E. 单纯扩散 3.参与细胞膜易化扩散的膜蛋白质是: A. 泵蛋白 B. 通道蛋白 C. 受体蛋白 D. 糖蛋白 E. 免疫蛋白 4.关于载体介导扩散,下述哪项是错误的: A. 能产生竞争性抑制 B. 有高度的特异性 C.有饱和现象 D. 具有时开放、有时关闭的特点 E. 葡萄糖可通过这种方式进行膜转运 5.葡萄糖顺浓度梯度跨膜转运依赖于膜上的: A. 受体蛋白 B. 通道蛋白 C. 紧密连接 D. 载体蛋白 E. 脂质双分子层 6.Na+跨膜转运的方式是: A. 主动转运 B. 单纯扩散 C. 易化扩散 D. 易化扩散和主动转运 E. 单纯扩散和主动转运 7.单纯扩散、易化扩散和主动转运的共同点是: A.需膜蛋白质的帮助 B. 细胞本身都要消耗能量 C. 转运的物质都是大分子物质 D. 转运的物质都是离子或小分子物质 E. 均是从高浓度侧向低浓度转运 8.运动神经纤维末梢释放乙酰胆碱属于: A. 入胞作用 B. 主动转运 C. 易化扩散 D. 单纯扩散 E. 出胞作用 9.Na+由细胞内移到细胞外是: A. 出胞作用 B. 单纯扩散 C. 载体介导转运 D. 主动转运 E. 通道介导转运 10.下列哪项不是影响离子通过细胞膜的直接因素: A. 膜两侧的渗透压差 B. 膜对离子的通透性 C. 膜两侧的电位差 D. 膜上离子泵的活性 E. 膜两侧的浓度差 11.细胞内外正常的Na+和K+浓度差的形成和维持是由于: A. 膜上ATP的作用 B. 膜在兴奋时对Na+通透性增加 C. Na+和K+易化扩散的结果 D. 膜上Na+-K+泵的作用 E. 膜在安静时对K+通透性大 12.主动转运不同于被动转运的是: A. 经过通道蛋白作用 B. 顺浓度梯度和电位梯度转运 C. 需要消耗细胞能量 D. 转运脂溶性物质分子 E. 转运离子、小分子水溶性物质 13.细胞内外离子浓度差的维持: A. 不需耗能 B. 需要耗能 C. 需要通道蛋白质

石斑鱼繁殖生物学和人工繁殖技术研究现状_雷从改

第23卷第3期海南大学学报自然科学版Vol.23No.3 2005年9月NATURAL SCIENCE JOU RNAL OF HAINAN UNIVERSITY Sep.2005文章编号:1004-1729(2005)03-0288-05 石斑鱼繁殖生物学和人工繁殖技术研究现状 雷从改,尹绍武,陈国华 (海南大学海洋学院,海南海口570228) 摘要:就石斑鱼繁殖生物学特征以及人工繁育研究的现状进行了综述,并提出了当前人工繁 育研究中存在的问题. 关键词:石斑鱼;繁殖;人工育苗 中图分类号:S965.334文献标识码:A 石斑鱼(Epinephelus)属鲈形目(Perciformes)、鲈亚目(Percoidei)、鱼旨科(Serranidae).石斑鱼具有许多优良性状,如肉质鲜美、体色好、适合活体运输等,一些种类因生长速度快、对环境的适应能力相对强,适合人工养殖.随着石斑鱼自然资源减少,人工养殖石斑鱼越来越受到重视.近10多年来,我国南方沿海的石斑鱼养殖发展很快,苗种供应渐显不足,为了解决苗种不足的问题,许多学者竞相开展石斑鱼人工繁殖技术研究,因而石斑鱼的繁殖生物学研究也倍受关注. 1繁殖生物学研究 1.1雌雄区别和性转变石斑鱼与许多鱼旨科鱼类一样,属雌雄同体(Hermaphrodite)、雌性先熟(Protogyny)型,从发生性分化开始,先表现为雌性性别,长到一定大小即发生性转变,成为雄性.并且,不同种类发生性转变的年龄不同.福建沿海的赤点石斑鱼(E.akaara)初次性成熟年龄多数为3龄,体长231~295m m,体质量(体重)245~685g,个别为2龄(体长181~235mm);从雌性转变为雄性的性转变年龄一般为6龄(雄鱼占57.5%),体长340~400mm,体质量960~1700 g,个别为5龄(雄鱼只占7.2%),体长312~355m m[1~3].浙江北部沿海青石斑鱼(E.awoara)体长250~340mm时,雄鱼仅占总个体数的6%~23%,350m m时,雄鱼占50%左右,370mm 时,雄鱼占85%以上,420mm以上者几乎全是雄鱼[4].南海巨石斑鱼(E.tauvina)成熟雌鱼最小体长为450~540mm,而有成熟精巢的雄鱼最小体长是740mm;体质量11kg以上,体长660 ~720mm者性腺在转变之中,同时具有卵巢和精巢组织[5].香港的赤点石斑鱼体质量500g者为成熟雌鱼,1000g以上者为雄鱼[6].海南海水网箱养殖的点带石斑鱼E.malabaricus(Bloch& Schneider)3~4龄绝大多数为雌性,极少见到自然转性的雄鱼[7]. 雌雄性石斑鱼的识别,可从肛门、生殖孔和排尿孔的形态变化来区别.雌鱼腹部有3个孔,从前至后依次为肛门、生殖孔和排尿孔,雄鱼只有肛门和泌尿生殖孔2个孔.另外还可以从个体大小加以区别.南海巨石斑鱼成熟雌鱼最小体长为450~540mm,而有成熟精巢的雄鱼最小体长是740mm[5].鞍带石斑鱼在产卵前1个月,雄鱼的体侧背面转变成黑褐色,腹部发白,呈深 收稿日期:2005-01-05 基金项目:国家科技部农业科技成果转化资金项目(02EFN214601172)和海南省自然科学基金项目(80411) 作者简介:雷从改(1978-),女,河北石家庄人,海南大学海洋学院2003级硕士研究生.

circrna与癌症最全癌症相关circrna明星分子总结

circrna与癌症最全癌症相关circrna明星分子总结 BioWorld前不久推送过一篇LncRNA明星分子的总结,受到大家的热烈欢迎,LncRNA与癌症:最全LncRNA明星分子总结。 此次BioWorld做了与癌症相关的circRNA明星分子的总结。关于circRNA,点击右边查看:circRNA:环状RNA的前世今生以及临床研究思路。对circRNA的介绍很详尽。2017 年8月,丹麦奥胡斯大学的LS Kristensen等人在Oncogene 杂志发表题为:Circular RNAs in cancer: opportunities and challenges in the field 的综述文章(图1),总结分析了与癌症相关的circRNAs。图1circRNA的剪接模式 图2--circRNA的剪接模式circRNA在癌症中的潜在作用 a.miRNA海绵或诱捕物miRNAs是几乎所有人类癌症的发病机制中的重要参与者。因此,circRNAs作为miRNA的活性调节剂可能参与癌症。迄今为止只有少数circRNAs与单个miRNA的多个结合位点被发现。因此大多数circRNAs可能有除调节miRNA外的其他的功能。越来越多的circRNAs被证实在癌症中具有miRNA抑制功能。 b.影响剪接和转录外显子-内含子circRNAs已被证明与RNA聚合酶II通过U1 snRNP作用,增强其母基因的转录。许多基因的剪接和转录也可以通过正向剪接和反向剪接之间的竞争间接调控。这可

能是影响circRNA和典型线性剪接之间平衡的一大未知因素。c.蛋白支架对酶与底物结合基序的circRNAs可以作为支架促进共定位和反应动力学。d.蛋白海绵或诱捕物和RNA结合蛋白结合,从而调节它们的活性。e.翻译功能一些内源性circRNAs含有AUG位点和IRES,但目前对于circRNAs在体内进行翻译的证据有限。已经表明一些circRNAs在一定的条件下会在某些组织中翻译,但这种关联性尚未在癌症中显现。 图3--circRNA在癌症中的潜在作用 与癌症密切相关的circRNAs和他们可能的功能图4--与癌症相关的circRNAs

文献综述

文献综述是在确定了选题后,在对选题所涉及的研究领域的文献进行广泛阅读和理解的基础上,对该研究领域的研究现状(包括主要学术观点、前人研究成果和研究水平、争论焦点、存在的问题及可能的原因等)、新水平、新动态、新技术和新发现、发展前景等内容进行综合分析、归纳整理和评论,并提出自己的见解和研究思路而写成的一种不同于毕业论文的文体。它要求作者既要对所查阅资料的主要观点进行综合整理、陈述,还要根据自己的理解和认识,对综合整理后的文献进行比较专门的、全面的、深入的、系统的论述和相应的评价,而不仅仅是相关领域学术研究的“堆砌”。 检索和阅读文献是撰写综述的重要前提工作。一篇综述的质量如何,很大程度上取决于作者对本题相关的最新文献的掌握程度。如果没有做好文献检索和阅读工作,就去撰写综述,是决不会写出高水平的综述的。好的文献综述,不但可以为下一步的学位论文写作奠定一个坚实的理论基础和提供某种延伸的契机,而且能表明写本综述的作者对既有研究文献的归纳分析和梳理整合的综合能力,从而有助于提高对学位论文水平的总体评价。在《怎样做文献综述——六步走向成功》中,劳伦斯·马奇和布伦达·麦克伊沃提出了文献综述的六步模型,将文献综述的过程分为六步:选择主题、文献搜索、展开论证、文献研究、文献批评和综述撰写。文献综述根据研究的目的不同,可分为基本文献综述和高级文献综述两种。基本文献综述是对有关研究课题的现有知识进行总结和评价,以陈述现有知识的状况;高级文献综述则是在选择研究兴趣和主题之后,对相关文献进行回顾,确立研究论题,再提出进一步的研究,从而建立一个研究项目。高级文献综述是确立原创性研究问题的基础,也是对一个研究问题进行探索的基础。 编辑本段相关格式 文献综述的格式与一般研究性论文的格式有所不同。这是因为研究性的论文注重

细胞的基本功能--生理学

细胞的基本功能 二.填空题 33.人体和其它生物体的最基本的功能单位是。 34.机体的每个细胞都被一层薄膜所包被,称为。 35. 细胞膜主要有脂质、蛋白质和少量糖等组成;从重量上看:膜中与脂质在膜内的比例大约在4:1~1:4之间;功能活跃的膜,膜中比例较高。 36. 液态镶嵌模型的基本内容是:以液态的双分子层为基架,其中镶嵌着具有不同分子结构、因而也具有不同生理功能的。 37. 脂质双分子层在热力学上的和它的 ,使细胞膜可以承受相当大的张力和外形改变而不致破裂,而且即使膜结构有时发生一些较小的断裂,也可以自动融合而修复。 38. 体内靠进出细胞膜的物质较少,比较肯定的是氧和二氧化碳等气体分子;它们进出的量主要受该气体在膜两侧的影响。 39.根据参与的膜蛋白的不同,易化扩散可分为:由和由介导的易化扩散。 40.人体最重要的物质转运形式是;在其物质转运过程中,是电-化学梯度进行的。 41. 钠泵能分解使之释放能量,在消耗代谢能的情况下逆着浓度差把细胞内的移出膜外,同时把细胞外的移入膜内,因而形成和保持了不均衡离子分布。 42. 继发性主动转运可分为和两种形式;与其相应的转运体,称之为和。 43. G蛋白的共同特点是其中的亚单位同时具有结合或的能力和酶活性。 44. 膜学说认为生物电现象的各种表现,主要是由于细胞内外分布不均匀和在不同状态下,细胞膜对不同离子的不同。 45.静息电位是由形成的,峰电位的上升支是形成的。 46. 在刺激的以及不变的情况下,刚能引起细胞兴奋或产生动作电位的最小刺激强度,称为阈度;也就是能够使膜的静息电位去极化达到电位的外加刺激的强度。 47. 动作电位的幅度决定于细胞内外的浓度差,当用河豚毒阻断通道后,则动作电位不能产生。 48.神经髓鞘在进化过程中的出现,既增加了神经纤维的又减少了这一过程中的。 49.每个囊泡中储存的Ach量通常是相当恒定的, 释放时是通过作用,以为单位倾囊释放。50. 横管系统的作用是将肌细胞膜兴奋时出现的沿T管膜传入细胞内部; 纵管系统的作用是通过对的储存、释放和再聚集,触发肌节的收缩和舒张。每一条横管和两侧的终池构成,它是兴奋-收缩耦联的关键部位。 51.横桥在一定条件下,可以和细肌丝上的呈可逆性的结合;具有的作用,可以分解ATP而获能量,供横桥摆动。 52.站立时对抗重力的肌肉收缩是收缩,这种收缩因无位移,而没有做功;其作用是保持一定 的,维持人体的位置和姿势。 53. 若每次新的收缩都出现在前次收缩的舒张期过程中,称为收缩;若每次新的收缩都出现在前次收缩的收缩期过程中,称为收缩。肌肉发生复合收缩时,出现了收缩形式的复合,但引起收缩的 电位仍是独立存在的。 54. 肌肉收缩前已存在的负荷, 称为 ;其使肌肉在收缩前就处于某种被拉长的状态,使其具有一定的长度,称为。 55.根据兴奋传导的特征将平滑肌分为两大类,一类称为,其类似于骨骼肌细胞;另一类称 为,类似于心肌细胞。 56.无论哪种平滑肌,都可以产生两种形式的收缩:和;根据平滑肌的收缩形式,也可将平滑肌分为:和两大类。 57.G-蛋白通常由、和 3个亚单位组成,亚单位通常起催化作用。 58内分泌腺细胞把激素分泌到细胞外液中,属于形式的跨膜物质转运;血浆中脂蛋白颗粒、大分子营养物质等进入细胞的过程,属于形式的跨膜物质转运。 59.有机磷农药和新斯的明对有选择性的抑制作用,阻止已释放的的清除,引起中毒症状。

2021年环状RNA在心血管疾病中的研究进展(全文)

2021年环状RNA在心血管疾病中的研究进展(全文) 心血管疾病(CVD)在世界上是人类的主要杀手,也是导致我国居民死亡的主要非传染性疾病之一。我国目前有冠心病患者约1100万人,每年行冠状动脉(冠脉)介入的患者已超过50万例,而且冠心病的发病率和致死率正呈持续上升趋势,给我国经济和社会的持续发展带来沉重负担。冠心病的发生是环境和遗传因素共同作用的结果,是一系列基因异常表达导致的复杂病理生理过程。 血管发生病变是引起冠心病发生和死亡的主要原因,内皮功能障碍是引起血管疾病的关键因素,而增殖、迁移和平滑肌细胞的表型转换是血管疾病发生的进一步标志。炎症细胞通过释放分泌的生长因子和细胞因子,以及对损伤永久反应的细胞间的相互作用进而加重血管疾病的发生。在经典的基因表达模型(中心法则)中,由基因组所编码的基因脚本以RNA 分子的形式表达于每一个细胞中,每一个RNA分子由线性的化学"碱基"串联组成。人类基因组计划产生的大量数据显示,人体中具有编码蛋白质功能的基因仅占总基因组序列的1%,其余的序列转录产物均为不具有蛋白质编码功能的RNA,经典中心法则中对RNA的定义正逐渐被完善。近年来,非编码RNA(non-codingRNA,ncRNA)已成为分子生物学领域的研究热点。最近的研究发现,非编码RNA作为表观遗传学的重要内容,在基因表达调控、细胞生长发育、疾病发生发展中发挥了重要作用。

研究发现,非编码RNA与血脂异常、动脉粥样硬化、血栓形成、心力衰竭等心血管疾病关系密切,不仅可作为疾病的生物学标志,还有可能作为分子靶向药物用于疾病的治疗[1-3]。非编码RNA包括微小RNA (microRNA,miRNA),长度大于200nt的长链非编码RNA(long non -coding RNA,lncRNA),以及环状RNA(circular RNA,circRNA),一种通过反向剪接形成的环形lncRNA的特殊亚型[4]。科学家们在装满古怪RNA的匣子中看到最新的玩意:天然生成的环状RNA分子影响了基因表达。 环状RNA是一类广泛且多样地存在于哺乳动物细胞中,具有调控基因表达作用的内源性非编码RNA。目前研究表明,circRNA在心肌细胞的分化过程,起到十分关键的作用,并在许多心血管疾病中扮演重要的角色[5]。最近几年关于circRNA的研究有许多进展,本文从以下几方面对circRNA进行综述。 一、环状RNA的发现和特征 (一)环状RNA的发现 越来越多的研究发现,遗传因素和表观遗传学因素对心血管疾病的进展有着重要影响。目前,非编码RNA已成为研究心血管疾病及相关异常

文献综述概况.doc

文献综述概况 文献综述,是指就某一时间内,作者针对某一专题,对大量原始研究论文中的数据、资料和主要观点进行归纳整理、分析提炼而写成的论文。综述属三次文献,专题性强,涉及范围较小,具有一定的深度和时间性,能反映出这一专题的历史背景、研究现状和发展趋势,具有较高的情报学价值。 文献综述是在确定了选题后,在对选题所涉及的研究领域的文献进行广泛阅读和理解的基础上,对该研究领域的研究现状(包括主要学术观点、前人研究成果和研究水平、争论焦点、存在的问题及可能的原因等)、新水平、新动态、新技术和新发现、发展前景等内容进行综合分析、归纳整理和评论,并提出自己的见解和研究思路而写成的一种不同于毕业论文的文体。它要求作者既要对所查阅资料的主要观点进行综合整理、陈述,还要根据自己的理解和认识,对综合整理后的文献进行比较专门的、全面的、深入的、系统的论述和相应的评价,而不仅仅是相关领域学术研究的"堆砌"。 检索和阅读文献是撰写综述的重要前提工作。一篇综述的质量如何,很大程度上取决于作者对本题相关的最新文献的掌握程度。如果没有做好文献检索和阅读工作,就去撰写综述,是决不会写出高水平的综述的。 好的文献综述,不但可以为下一步的学位论文写作奠定一个坚实的理论基础和提供某种延伸的契机,而且能表明写作者对既有研究

文献的归纳分析和梳理整合的综合能力,从而有助于提高对学位论文水平的总体评价。 一般都包含以下四部分:即前言、主题、总结和参考文献。撰写文献综述时可按这四部分拟写提纲,再根据提纲进行撰写工作。 前言 前言要用简明扼要的文字说明写作的目的、必要性、有关概念的定义,综述的范围,阐述有关问题的现状和动态,以及目前对主要问题争论的焦点等。前言一般200-300字为宜,不宜超过500字。 正文 正文是综述的重点,写法上没有固定的格式,只要能较好地表达综合的内容,作者可创造性采用诸多形式。正文主要包括论据和论证两个部分,通过提出问题、分析问题和解决问题,比较不同学者对同一问题的看法及其理论依据,进一步阐明问题的来龙去脉和作者自己的见解。当然,作者也可从问题发生的历史背景、目前现状、发展方向等提出文献的不同观点。正文部分可根据内容的多少可分为若干个小标题分别论述。 小结 小结是对综述正文部分作扼要的总结,作者应对各种观点进行综合评价,提出自己的看法,指出存在的问题及今后发展的方向和展望。内容单纯的综述也可不写小结。 参考文献 参考文献是综述的重要组成部分。一般参考文献的多少可体现

NMDA受体

谷氨酸(Glu ) 和门冬氨酸(Asp)是内源EAA 的代表,上述EAA的生理和病理功能,主要是由它们调控的, C N S有其特异的受体,统称谷氨酸受体( Glu-R)。 通过放射配基结合研究发现,脑不同部位的 Glu-R 对于外源性配基和拮抗剂的亲和力不同,又将其分为5种亚型: N-甲基-D-门冬氨酸R(NMDA-R)、红藻氨酸R(KA-R)、使君子酸R(QA-R或称AMPA-R)、AP4-R和AePo-R,均是以其外源性特异激动剂命名的。 ACPD-R 不与离子通道耦联,而与G-蛋白相耦联,称代谢型EAA-R。 NMDA-受体/离子通道复合体(NMDA-R/lonophore Complex,简称NMDA-R)。NMDA-R与钙通道相耦联,主要分布于大脑皮层、海马和杏仁核,其次为中脑、丘脑和小脑。 NMDA-R至少有5个药理学上分别独立的受点:递质受点、甘氨酸受点、锌离子受点,分布于受体表面。位于离子通道内的镁离子受点和苯环哌啶(PCP)受点。 1.递质受点(TBS) 除NMDA外,Glu和Asp是內源性主要配基,选择性地与TBS结合,激活NMDA-R。Glu释放过多,过度激活NMDA-R,细胞内游离的钙离子过多,则可引起神经元退化或坏死,又起着兴奋性毒素的病理作用。Glu和Asp的主要生理和病理作用,主要是通过激活NMDA-R实现的。 2.PCP受点 PCP等非竞争性拮抗剂是与处于离子通道深部位的PCP受点结合,阻断与NMDA-R 耦联的钙通道,减少钙离子内流,从而减弱或对抗EAA引起的效应。 3.甘氨酸受点(GBS) 甘氨酸和同系物D-丙氨酸和D-丝氨酸选择性地与GBS结合。 脑内尚有另一种与NMDA-R相耦联的Gly-R,形成NMDA-R/GBS/离子通道复合体。故此Gly-R称为士的宁不敏感的Gly-R或GBS,它被激活时引起兴奋效应。NMDA-R要充分被激活和它介导的反应要充分呈现,必需有Gly参加。成年动物脑组织中GBS并不恒定地处于完全被激活状态,给动物注射Gly或D-丝氨酸,可以恒定地增强NMDA-R介导的兴奋效应。Gly增强NMDA-R调控的反应,是其直接增加与NMDA-R耦联的钙通道开放频率,不是通过增加电流幅度,也不需第二信使参加。 4.镁受点和锌受点 以电生理法检查神经元的但离子通道和放射受体结合实验证明镁离子和锌离子对NMDA-R调控的兴奋效应均有抑制。 在正常静止膜电位时,低频率突出活动引起的反应,仅有少部分是由NMDA-R介导的,只有膜处于更负电位时(-70mv),NMDA-R充分被激活并引起较长时间的反应(如突触高频反复放电等。)细胞外液的镁离子才发挥更显著的作用。 生理浓度的锌通过阻断NMDA-R,对其介导的效应起抑制作用,与镁离子一起调节着NMDA-R正常生理功能,超过生理浓度时,可呈兴奋作用,甚至引起惊厥和神经元坏死。

文献综述棉花渍害的研究进展

棉花渍害的研究进展 [摘要] 湿害已严重制约着的产量。本文对灌浆期小麦渍害的特征与渍害机理、灌浆期渍害对小麦小生长发育及经济性状的影响、小麦受渍临界指标探讨、小麦耐渍性鉴定等方面的研究进展进行了综述,提出一些防治渍害的措施,从而为生产上选用耐渍品种,适时采用预防和减轻渍害栽培技术措施提供理论依据。 [关键词] 小麦渍害研究进展 渍害,农业气象灾害之一。主要表现为在南方多雨地区麦类等作物在连续降雨或低洼,土壤水分过多,地下水位很高,土壤水饱和区侵及根系密集层,使根系长期缺氧,造成植株生长发育不良而减产。所谓小麦渍害,是指土壤地下水分过高对小麦正常生长发育所产生的危害。渍害是世界许多国家的重大灾害, 如日本和东南亚国家麦类湿害都相当严重, 我国也是受湿害严重的国家。根据联合国粮农组织(FAO)的报告和国际土壤学会绘制的世界土壤图估算, 世界上水分过多的土壤约占12%。长江中下游麦区是我国的主产麦区之一, 播种面积约占全国小麦总面积的15%左右, 小麦中后期降雨过多而造成的湿害是该麦区小麦高产、稳产的主要限制因子。一方面, 由于稻麦两熟耕作制大面积扩大推广, 前作水稻使土壤浸水时间长, 土壤粘重, 排水困难,透气性差而出现湿害;另一方面, 由于本地区常年麦季降雨量(500-800mm)的大部分集中于小麦生长的中后期, 大大超过了小麦正常需水量, 而造成湿害[1]。渍害越来越受人们的关注。数10年来,国内外学者已就小麦渍害的小麦渍害的特征与渍害机理、渍害对小麦小生长发育状况的影响、受渍临界指标探讨、耐渍性鉴定、耐渍的遗传改良等方面作了不少的研究。本文就这些方面对国内外研究的一些结果作一简要的回顾。一、小麦各生育期渍害的生理症状及其敏感期 受渍害的小麦根系长期处在水位叫高的缺氧环境中,根的吸收功能减弱,导致植株体内水分反而亏缺,严重脱水凋萎或死亡,所以,湿害又称为生理性旱害。 从苗期到扬花灌浆期都可受害。苗期受害种苗霉烂,成苗率低,植株叶尖发黄或呈淡褐色, 生长缓慢,根呈暗褐色, 次生根显著减少, 分蘖少而小, 严重时萎缩死亡拨节抽穗期受害上部三片功能叶分别短20%,30%和36%,有效穗数减少40%。拔节孕穗期遭受湿害, 根系发育不良, 根量少, 扎根浅, 活力减退,

NMDA受体与学习记忆的关系及其在全麻机制中的作用

NMDA受体与学习记忆的关系及其在全麻机制中的作用 李强综述薛庆生于布为审校 (上海交通大学医学院附属瑞金医院麻醉科上海 200025) 摘要:突触传递可塑性(synaptic plasticity)一直是神经科学研究的热点。突触传递长时程增强(long-term potentiation , LTP) 是神经元可塑性的反映,是学习和记忆的神经生物学基础, 反映了突触水平上的信息贮存过程,关于其形成机制的研究主要集中于N-甲基-D-天冬氨酸(NMDA)受体的特征及该受体被激活后的细胞内级联反应,NMDA受体通道开放是LTP触发的基础。而全麻药物能够通过作用于NMDAR影响LTP及学习、记忆的形成。 关键词:NMDAR;LTP;学习;记忆 1 前言 现代神经科学已证明,哺乳动物及人类中枢神经系统内重要的兴奋性神经递质之一谷氨酸,通过兴奋性氨基酸受体介导一系列高级神经活动。中枢神经系统内存在着与谷氨酸结合并发挥生理效应的两类受体,即离子型谷氨酸受体(ionotropic glutamate receptors,iGluRs)与代谢型谷氨酸受体。在iGluRs家族内,根据外源性激动剂的不同,又分为NMDA受体与非NMDA受体,其中后者包括AMPA受体、海人藻酸(kainic acid , KA)受体和L-AP4受体。NMDA受体与LTP、突触可塑性、学习记忆、神经系统生长发育的可塑性、缺血缺氧损伤、中枢神经系统疼痛传导、POCD及老年性痴呆等神经退行性疾病等都有密切关系[1]。NMDA受体上有多种配体结合的位点,包括谷氨酸结合位点、甘氨酸结合位点、离子通道的孔隙以及N末端的变构结合位点等,它们以亚型选择的方式调节着受体的活动。此外,由不同亚基组成的NMDA 受体亚型具有不同的生物学特性[2]。 2 NMDA受体的分子结构及分布 N-甲基-D-天冬氨酸(N-methyl-D-aspartate acid,NMDA)受体,是一种特殊的离子通道蛋白,具有独特的门控方式即电压化学门控方式,是学习记忆的关键物质[3]。其电压依赖性是由离子通道内部的Mg2+阻滞作用决定的。NMDA受体通道具有高钙电导性即对Ca2+高度通透,与非NMDA受体通道介导的兴奋性突触后电位(excitatory post synaptic potential,EPSP)相比, NMDA受体通道介导的EPSP出现较慢,时程较长。 一般认为,NMDA受体主要分布在神经细胞的突触后膜。在兴奋性

艾滋病的研究进展(文献综述)

艾滋病的治疗药物研究进展 摘要:艾滋病是一种难以治愈的传染性疾病,随着HIV病毒的传播,感染人数逐渐增多。艾滋病已经成为最严重的危害人类健康的全球性流行性疾病之一。本文收集了近期以来的一些文献进行整理,对治疗艾滋病的药物进行了综述。 关键词:艾滋病抑制剂 艾滋病即“获得性免疫缺陷综合症”, 1981年在临床诊断中被发现,我国1985年出现首例报道[1],1983年证实人类免疫缺陷病毒(Human immunodeficiency virus, HIV)是其病原体,人体感染此病毒后,使患者以CD4+T淋巴细胞减少,免疫机能缺陷[2],抵抗力降低,导致多种病原体侵袭而发生诸多机会性感染。抵抗力降低加上机会性感染,成为艾滋病患者死亡的主要原因[3,4]。AIDS传播速度惊人,死亡率极高,传播速率稳定[5],然而迄今为止,艾滋病仍是一种无法治愈的致命性传染性疾病。所以治愈艾滋病是世界医药工作者的一个重大课题。 随着人类对病毒及其感染过程的分子生物学研究以及药物研发技术的不断创新, 抗HIV的药物有了突飞猛进的发展。自齐多夫定(zidovudine,AZT)被美国FDA批准上市以来,迄今为止治疗艾滋病的药物已发展到31个品种[6]。 本文通针对艾滋病的治疗药物研究作一综述。 1. HIV 及其感染机制及危害 HIV 属于逆转录病毒科慢病毒属[7],参与HIV进入CD4 T淋巴细胞的主要病毒表面蛋白gp120和gp41 ,使病毒与宿主细胞膜接近,导致病毒包膜与细胞膜最终融合,病毒RNA进入细胞。HIV基因组为单股正链RNA 形成的二倍体,两条链的5' 端借氢键形成二聚体,包含了编码多种病毒蛋白的开放读码框区。其中pol 区编码HIV-1 复制过程中所必需的三种酶:整合酶、逆转录酶和蛋白酶,分别在病毒整合进入宿主细胞基因组、HIV RNA 转录成cDNA 和多聚蛋白的翻译后加工过程中起到关键作用,是目前药物主要作用靶点。HIV 又分为HIV-1 型和HIV-2 型。世界上大部分地区的艾滋病患者是被HIV-1 病毒所感染。[8,9] HIV感染后能激发机体产生特异性细胞免疫反应和对各种病毒抗原产生相应抗体。最终致使CD4+T淋巴细胞减少,还可造成其他免疫活性细胞和免疫组织的损伤。另外周淋巴组织(包括淋巴结和脾脏)是HIV不断复制的场所,所以淋巴组织受到不断破坏。HIV感染时,嗜神经性HIV毒株对大脑的感染所致中枢神经系统紊乱,HIV感染人体后还会破坏胃肠道系统,吸收不良、营养不良和腹泻等结果[10]。

相关主题
文本预览
相关文档 最新文档