当前位置:文档之家› 浅谈铁路信号机接地电阻测试

浅谈铁路信号机接地电阻测试

浅谈铁路信号机接地电阻测试
浅谈铁路信号机接地电阻测试

浅谈铁路信号机接地电阻测试

我们经常能在火车站,铁路边看到各种各样的信号灯闪烁,这些铁路信号机每天繁忙的工作着,给火车、动车、高铁指示方向,如同公路上的交通信号灯,保证了铁路运行的安全和畅通。这些铁路信号机在保证铁路正常运行中扮演着十分重要的角色,因此保证信号机的正常工作对铁路有重要意义。本期将探讨信号机防雷接地的接地电阻测试。

由于信号机大部分都在室外,防雷接地必不可少。目前测试接地电阻的仪器分为:接地摇表,数字式接地电阻测试仪,钳形接地电阻测试仪。其中接地摇表和数字式接地电阻测试仪在测试接地电阻时都需要借助辅助地桩进行测试。

许多铁路信号机所在地都为水泥地面,包括:路桥等,另外因为大部分高铁信号机所在铁路段两侧有围墙,采用辅助地桩方式测接地电阻的难度非常大,因此铁路信号机的接地电阻测试推荐采用钳形接地电阻测试仪。

HT测试仪器生产的T2000,采用一根测试线,一端接信号机接地端子(RA如下图),一端接钢轨的光滑面(RB如下图),可直接测出信号机的接地电阻值,同时免除了接地摇表、数字式接地电阻测试仪测接地电阻时打辅助地桩,收放测试线的麻烦。这大大提高了信号机接地电阻测试的效率。

HT工程师在现场将三类测试仪器作测试对比,接地摇表、数字式接地电阻测试仪、钳形接地电阻测试仪测出结果分别为:1.4Ω、1.8Ω、2.1Ω。测试结果均在误差范围内,而采用T2000进行信号机接地电阻测试,让您的测试更具可操作性,同时方便快捷并且可靠。欢迎各位同行交流铁路信号机测试方案。

浅谈高速铁路信号系统

浅谈高速铁路信号系统 发表时间:2018-06-20T15:28:32.577Z 来源:《建筑学研究前沿》2018年第2期作者:张广智 [导读] 高速铁路最重要的指导理念是动车组在经过特殊建造的专用线路上高速、高密度安全运行并得到最佳匹配。 通号工程局集团有限公司天津分公司天津市 300240 摘要:中国高速铁路自九十年代到如今,经过了十多年的科学研究和时间积累,依靠国内自身的技术力量,走过了学习、引进、创新、超越的一个不平凡的道路,形成了中国高速铁路技术体系,中国高铁是中国改革开放成果的一个成功典范。目前中国高速铁路营运里程两万五千多公里,占世界营运里程三分之二,“复兴号”动车组奔驰在祖国的大江南北,中国高铁为中国国民经济发展插上腾飞的翅膀。而高速铁路信号系统是高铁核心技术,被形象的比喻为高铁的眼睛。 关键词:高速铁路;信号 1.高速铁路与普速铁路的区别 高速铁路最重要的指导理念是动车组在经过特殊建造的专用线路上高速、高密度安全运行并得到最佳匹配。与普速铁路的主要区别有:1.列车运行速度大于200KM/h;2.列车晚点在1-2分钟;3.列车追踪间隔在3-5分钟;4.采用全封闭式、全立交;5.采用列车自动控制(ATC)系统,地面不设信号机,司机按车载信号显示行车,具有超速防护系统;6.车站进路不用值班员办理而是由调度中心的计算机统一控制;7.站间距离较大,区间建有无人值守的中继站;8.具有安全监控系统,监视轴温、线路、风、雨、地震灾害并进行报警。 2.保证高速列车运行安全的主要手段 火车是靠车轮在钢轨上运行的,停止时靠车轮踏面产生摩擦力使列车减速。考虑最不利条件下,也能安全停车并顾及旅客乘车舒适性,司机制动时的平均速度一般只有0.5-0.8m/s时,时速120KM/s.时,时速120km/h的列车制动距离约为800m,列车制动距离与列车制动初速的平方成正比。制动初速高,制动距离较长。 高速列车采用普通自动闭塞,红灯停、绿灯行,闭塞分区要达到6~8KM,才能保证安全。这样线路上的列车间隔加大,降低了通行能力。因此高速铁路闭塞分区设为1~2km,但是信号要分成若干速度等级,这样才能保证安全又满足行车密度的要求。 普速铁路地面信号机显示距离为1000m,时速120km/h的列车走过这段距离为30s,如果列车时速为320120km/h则只有11s。如果闭塞分区为1.5km,则高铁列车司机每十几秒就要辨认一次信号显示,既紧张又不安全。国外曾做过实验,当列车速度超过200120km/h时,司机辨识信号的错误率会大大增加,据此不可以使用地面信号机指挥列车运行。 司机靠地面信号驾驶列车需要经过识别信号、理解信号、按照信号要求操纵列车。司机从看信号到做出正确反应需要4~5s左右,任何环节出现错误,都会造成事故。据此高速铁路闭塞改为列车自动控制系统(ATC),其特点是:1.以车载信号显示为行车凭证;2.用速度命令代替色灯含义;3.信号直接控制列车制动。 3.高速铁路信号安全系统 高速铁路信号安全系统是完成行车控制、运营管理的综合自动化系统。这个系统主要由行车、指挥系统、列车运行自动控制系统、车站联锁系统等组成。 3.1综合调度系统:高速铁路有许多车站,线路上有许多列车要协调一致运行,必须实行统一的行车指挥,高速铁路的服务宗旨是:快速、舒适、安全、正点。要做到这八个字光靠总调度协调调度员、调度员向所属基层站、段下计划、下命令,再向各站、段值班人员实施,这套管理需要人数众多,环节也多。为了取得高效率,需要利用先进的通信网和计算机组成综合调度系统。全线所有列车位置、进路、信号及各种行车设备状态、列车及旅客售检票情况、接触网及供电设备状况显示在调度中心。 为了使各列车均能按运行图正点运行,调度中心的计算机自动排列进路,控制车站的信号设备,直接通过列控系统向列车发出速度命令。这一切都自动进行,只有在特殊情况下例如设备故障、天灾、人祸等,调度员才干预计算机计算机控制亲自下达命令。计算机系统在涉及安全或者不允许中断工作时多采用多系统设置。调度中心一般采用两套或者三套系统,并且供电和通信网也有冗余并形成闭环。保证高速列车的指挥一般不会中断,列车的正点率也会大大提高。 调度中心主要任务是:行车计划编制、行车调度、机车车辆调度、电力调度、客运调度及旅客服务、行车设备监视及维修管理、维修点及天窗点管理、安全监控和应急抢险指挥。 3.2列车运行自动控制系统(ATC):列车运行控制系统直接控制列车运行,主要由车载设备和地面设备组成。列车控制系统在车站设有控制中心,如果距离较大,则每15~20公里还要设置单独的控制中心。控制中心通过电缆与铁路上的轨道电路、信号机等设备相连。主要王城列车位置检测、形成速度信号并将此信号传递给列车。车载设备将按照速度信号控制列车制动。地面设备与车载设备一起才能完成列车运行控制功能。 3.3车载设备主要由天线、信号接收单元、制动控制单元、司机操作显示屏、速度传感器等组成。地面信号命令通过轨道电路向机车传送。机车头部的天线接收速度信号命令,经过信号接收机放大、滤波、解调后将此命令的数据送到司机显示器和制动控制单元。制动控制单元收到速度传感器传来的信号,测量出列车的实际速度,将超级速度与信号命令比较,如果判断列车需要制动则产生制动信号,直接控制列车制动系统,列车就会自动减速和停车。列控系统主要任务是:1.防止列车冒进信号;2.防止列车错误出发;3.防止列车超速通过道岔; 4.防止列车超过线路允许的最大速度; 5.监督列车通过临时限速区段;6在出入库无信号区段限制列车速度。为保证列车运行控制系统不间断的工作和加强设备维修和管理,列车运行控制系统中在地面和车上都安装有监视设备。地面监视系统可以检测信号机、轨道电路、地面控制中心的接收和发送设备等。检测结果可以在维修工区显示、储存,也可以通过通信网送往调度中心。 车上监视设备可以将列车运行过程中速度信号、制动装置动作以及列车实际速度和司机操作等状态保存下来。 3.4列控系统是高速铁路信号控制核心,目前国内普遍使用的高速铁路列控系统基于GSM-R无线传输方式的CTCS3级和ZPW-2000轨道电路与点式应答器构成的CTCS2级组成的冗余配置的列控系统,预留CTCS3级系统接口。CTCS2级系统与既有200km/h提速线列控系统兼容。同时作为CTCS3级系统备用系统,CTCS2级系统中的轨道电路、点式应答器等在CTCS3级系统中作为列车占用检查和列车定位对标的平台。CTCS2级列控系统由车站列控中心,ZPW2000轨道电路、点式应答器设备及车载列控设备等组成。CTCS3级列控系统在

浅谈未来铁路信号微机监测的发展方向 皇甫伟

浅谈未来铁路信号微机监测的发展方向皇甫伟 发表时间:2018-05-14T11:41:58.493Z 来源:《电力设备》2017年第36期作者:皇甫伟[导读] 摘要:自从2007年铁路第六次提速完成之后,我国铁路发展的迅猛之势可见一斑(中铁三局运输工程分公司准格尔铁路运输段山西省晋中市 030600)摘要:自从2007年铁路第六次提速完成之后,我国铁路发展的迅猛之势可见一斑。普通客运火车的速度、安全性以及车厢的配置都得了质的飞跃,同时国家对高速列车的建设也在紧锣密鼓的筹备当中,不仅仅是高铁走出国门,磁悬浮列车和火箭式列车也正在不断的进行着技术革新。但是整个铁路事业的发展只靠列车本身的完善是远远不够的,还需要实时路况信息采集和路况检测以及合理的列车调度系 统,然而,我们国家在铁路信息采集方面的设备比较落后且容易出现故障,这就给我国铁路的发展拖了后腿。本文从铁路信息基本建设出发,通过分析当前政策和现状,浅谈未来铁路信号微机检测的发展方向,为中国铁路的发展构建一个美好蓝图。关键词:铁路信号微机监测;智能分析诊断;发展方向前言 铁路的发展对我国的影响是十分巨大的,不仅仅表现在经济方面,对我国交通和民生都有着十分深远的影响。自08年以来,我国高铁开始不断进行出口,不仅为我国创造了财富,同时高铁作为一张国际名片,在国际铁路领域深深印上了中国的烙印。同时铁路方面的发展在一定程度上缓解了我国交通压力。另一方面,我国在普通客运火车上也做出了巨大的改进,极大增强了我国人们乘坐火车的舒适度,我国民众对铁道交通的改革和变化津津称道,赞不绝口。 1 铁路信号集中监测系统的发展和应用特点铁路运行控制系统包含计算机连锁,继电器,轨道电路,GSM-R等技术。我国铁路分类大致分为以下几种:第一即为国有干线铁路,铁路关于列控(列车运行控制)和通信是分开的,前者由电务段负责,主要分类有继电器车间,地面信号车间,车载设备车间即ATP车间等等。继电器生产厂家在铁道部出版的铁路设计与施工一书中提到主要生产厂商为沈阳信号厂和西安信号厂,这两家信号厂一直以来都是我国列车信号的巨头。关于列车运行就不得不说中国铁路运行控制系统CTCS了,它是铁科院以中国通号为主,卡斯柯为辅助在ETCS(欧洲铁路运行控制系统)为基础研究出来的。顾名思义在这个方面,负责工作基本上都是中国通号一手承包了,还有一些国内的比如和利时,交大微联等企业。国外的有卡斯柯,阿尔斯通等。而通信网络主要依靠通信段,但是铁路通信最早的负责组织则为中国铁路移动通信,就是大名鼎鼎的铁通,现在已经改制给了移动了。现在主要依靠通信段了,主要从事就是列车通信,主力技术就是GSM-R,即为全球通信系统。其次,地铁运行控制系统就是CBTC,包括ATP列车超速自动防护,ATC 列车自动控制,ATO列车自动运行这几个子系统。供应商主要有中国通号,国外供应商为上海电气自仪泰雷兹集团,上海电气集团占比51%,法国自仪泰雷兹(法国军工航空集团)占比49%,主要负责地铁通信运行,规模十分庞大。 2 现今铁路信号集中监测系统日常维护特点铁路信号集中监测系统日常维护是一个十分重要的工程,因为这个工程在一定程度上能够及时发现列车在运行过程中所遇到的突发状况,同时也能够保障列车自身性能安全。铁路信号集中监测系统工作流程大致分为以下几个阶段:(1)利用数据采集卡对列车本身和铁路状况进行实时监测获取数据。(2)通过数据转换系统将这些模拟数据转化为数字量,利用铁路综合调控系统对这些数据进行分析处理。(3)处理分析完毕之后,再将这些数据传输给列车数据显示系统,并通过显示器将这些数据显示出来,列车控制人员就可以根据这些数据对列车进行控制,保证列车安全平稳行驶。在传输过程中数据传输系统也会出现故障,在恶劣或者能见度比较低的天气环境中,数据采集系统在采集数据方面可能需要更多的时间,这就会造成数据处理系统的延迟,这时列车操作人员就需要手动调节采集时间,使其能够满足整个系统的要求。另外,如果我们的信号发射塔被闪电击中,信号发射塔就会失去所有功能,这个时候我们无法通过地面无线电系统对列车进行控制,这就是温州动车事故的罪魁祸首。当出现这种情况的时候,列车操作人员应该即刻采取备用通道,借助其他城市的信号塔与总机取得联系或者直接用卫星电话与控制台进行实时沟通,这是处理信号监测系统紧急故障最有效的方法。对于其他一些列车故障,列车自带的监测系统能够直接将其反映到自带的处理系统图像上,通过观测图像,就可以发现故障的部位,维修人员可以在列车运行过程中对其直接进行维修。对于列车的维护,在列车行驶一段时间之后,维修人员应该对整个列车进行全面的检测和故障排除,确保下次列车的行驶安全。 3 铁路信号集中监测系统的发展方向对于铁路信号集中监测系统的发展方向,我们国内专家在很早的时间里就做出了预测,专家预测的方向是我们国家的铁路监测系统会向着智能化方向发展。从铁路发展的进程中我们也能够感受到铁路确实是朝着这方面的发展的。比如:当今列车的班次完全是根据计算机技术来进行安排的,而且现在乘客在乘坐高铁的时候,铁道部门也推出了人脸识别技术,不必再使用火车票,另外我们国家已经召集了一部分擅长智能化技术方面的人才对我国铁路信号集中监测系统进行创新。更值得我们骄傲的是,铁路部门已经开始运用大数据技术,时刻观测我国国内人流量的去向,并根据这些数据合理的进行车次的增减和调度,为我国交通持续减压。 4 结束语铁路信号集中监测系统已经成为铁路控制系统最亟待发展和改进的一个环节了,随着我们国家新技术,新设备,新智慧的注入,我们有理由相信,铁路信号集中监测系统能够不断地接近智能化,达到智能化。当检测系统达到智能化之后,我国的铁路事业就会迈上一个新的发展高峰。参考文献: [1]尹春雷.关于铁路信号微机监测未来发展的探索[J].铁路通信信号工程技术,2009,6(5):45-46. [2]赵会兵.未来铁路信号微机监测的发展方向[J].科技创新与应用,2017(13):295-295. [3]卢立波.光纤铁路信号微机监测系统数据前端设计[D].石家庄铁道大学,2014:127-129. 作者简介:

关于铁路信号技术的发展探讨

关于铁路信号技术的发展探讨 摘要:我国铁路信号技术发展历史悠久,随着其技术的进步,铁路行业领域也迅速发展,极大程度上提高了列车运行的安全性和高效率性。本文简要解读铁路信号技术在我国的发展历史与前景,并对当前我国在城轨交通信号方面的技术应用与发展进行了探讨分析。 关键词:铁路信号技术;发展历史;城轨交通信号;数字信号;前景 DOI:10.16640/https://www.doczj.com/doc/3213706129.html,ki.37-1222/t.2018.09.025 铁路信号被称为“列车之眼”,这是因?樗?通过特定方式为铁路机组人员实时传递了有关列车运行方面的列车状态 和路况状态,为整个车组设备建立了一套完善且全面的信息系统,这大大提高了列车运行过程的安全性和有效性。而随着人类高科技技术的不断更迭,铁路信号技术也拥有了它今非昔比的巨大进步,值得深入研究探索。 1 铁路信号技术在我国的发展历史及前景探索 铁路信号技术在我国发展迅速,它在相当程度上也决定了我国铁路现代化发展转化的重要前进步伐,越来越成为铁路机组设备不可或缺的重要组成部分。在早期,我国铁路信号技术主要围绕联锁系统展开技术研究及运用,秉承闭塞、

列控系统技术理念,并经历了包括机械联锁、电机联锁、电气联锁和计算机联锁4个重要时期。这其中电气联锁时期还衍生了继电联锁和电锁器联锁两种设备,虽然技术类型丰富但依然还存在技术缺陷,例如在设备中严重缺乏人机对话交流环节,难以实现有效操作,且其联锁功能也不够完善,这导致许多操作无法有效实现。再一点就是它的造价极高,且占用了大量的人力物力,而所产生的经济效益回报却相对较低,无法满足行业发展需求。而后,为了迎合时代发展,实现技术革新,计算机联锁技术出现,它能够通过计算机网络来满足铁路车站之间的有效沟通联系,当前计算机联锁系统都通过控制微机作为技术内核,它是一种可靠性较高且功能性相当丰富的电子设备,能够为铁路网络提供全电子化、全信息化技术支持,对我国铁路信号闭塞系统的进化完善也有推力作用。 就围绕我国铁路信号的闭塞系统建立过程来看,它就经历了电话闭塞、路签闭塞、半自动闭塞和自动闭塞4个重要阶段。目前还出现了固定、准移动和移动闭塞3个新阶段。从最早的电话闭塞说起,它就通过各个车站之间工作人员的电话沟通来实现铁路信号传递。随后路签闭塞系统出现,它将路签作为主要依据来明确列车在单个车站区间内的行驶 过程,依然还属于人工操作为主的阶段。再后来所出现的半自动闭塞和自动闭塞则趋向于智能自动化,它不再过分依赖

浅析铁路信号集中监测接口故障处理

浅析铁路信号集中监测接口故障处理 尹德伟 摘要:分析了信号集中监测各种接口设备的测试的方法与发生故障时如何快速地排除故障点。 关键词:铁路信号集中监测;接口;故障;分析 Abstract:Analysis of all kinds of ports on the CSM computers and how to quickly eliminate points of failure ,are introduced. Key words:Railway Centralized Signalling Monitoring System (CSM);Port; Fault; Analysis 0前言 在现代化铁路中,随着铁路提速工程和高速铁路工程的建设,新型信号设备不断上道应用,工业计算机上的两个232串口已经无法满足现代化铁路中新型信号设备的接入,因此根据新兴型号设备的不同特性,信号集中监测系统扩充了诸多信息接入接口,如多串口卡接口,CAN卡接口,网卡接口。所有的模拟量和开关量都是通过这些接口,接入信号集中监测计算机,作为信号集中监测计算机的核心设备,莫过于插在计算机内部的各种接口,这些接口是整个信号集中监测的神经元,负责接收不同设备的传输来的模拟量和开关量信息,如果这些接口损坏,那就如人的大脑失去了神经元,会立即瘫痪,因此维护这些接口的正常运行是至关重要的。 1信号集中监测站机上COM口的测试与故障处理 2013年7月份青岛电务段青西地区雷击灾害严重,青西二场的信号集中监测的好多设备都受到雷击,从路由器、交换机到信号集中监测站机,以及各种采集机都受到不同程度的损坏,导致了站场图上没有开关量信息和部分模拟量信息。 青西二场站场图信息是通过CTC维护机通过COM1口传输到信号集中监测站机,遇到这种情况该如何判断?是采集机的故障还是信号集中监测站机的故障亦或是CTC维护机的故障呢?这时信号集中监测计算机上串口的好坏是处理此类故障的关键,那么如何判断COM口的好坏呢? 很简单,只需一块小小的短路冒就能解决。如图1

浅论铁路信号与铁路行车安全

浅论铁路信号设备与铁路行车安全 摘要: 铁路行车安全的水平直接关系到铁路和其他运输方式的竞争能力、铁路的声誉和经济效益,还影响到社会的稳定和发展。铁路信号担负着各种行车设备的控制和行车信息的传输,是铁路信息技术的重要组成部分,其主要的功能是保证行车安全和提高运输效率。 关键字:铁路信号设备、行车安全 (一)铁路行车安全定义 铁路行车安全是指在运输过程中,维护铁路正常运行秩序、保证旅客和铁路员工生命财产安全、保障运输设备和货物的完整性的全部生产活动的集合体。 铁路行车工作是涉及多部门、多环节、多因素的综合性很强的工作。行车过程受到路内、路外以及各种环境条件的影响,所处情况十分复杂,任何一个环节出了问题都可能威胁行车工作的安全。 (二)铁路信号设备 铁路信号设备是组织指挥列车运行,保证行车安全,提高运输效率,传递信息,改善行车人员劳动条件的关键设施。铁路信号设备是铁路主要技术之一。铁路信号的装备水平和技术标准是铁路现代化的重要标志。 铁路信号基础设备,包括信号继电器、信号机、轨道电路、转辙机等是构成铁路信号系统的基础,他们的质量和可靠性直接影响信号系统效能的发挥,可靠性能的提高,在铁路信号现代化的进程中,信号基础设备在不断的更新和改造。(三)因铁路信号设备故障导致的铁路行车事故 3.1“7.23”动车追尾事故 3.1概述 2011年7月23日20时30分05秒,甬温线浙江省温州市境内,由北京南站开往福州站的D301次列车与杭州站开往福州南站的D3115次列车发生动车组列车追尾事故,造成40人死亡、172人受伤,中断行车32小时35分,直接经济损失19371.65万元。 3.2事故原因 通号集团所属通号设计院在LKD2-T1型列控中心设备研发中管理混乱,通号集团作为甬温线通信信号集成总承包商履行职责不力,致使为甬温线温州南

基于单片机的铁路信号测试系统

基于单片机的铁路信号测试系统 【摘要】随着铁路信号的发展,为了更好的实现对铁路系统中微小电阻测量、补偿电容测试,建立基于单片机的电阻电容测试系统。系统主要由单片机、电阻测试模块、电容测试模块,电源模块、LCD显示模块、DC转换模块、串行口模块以及数据存储模块组成。该系统测量精度高,可靠性好,实用性良好。 【关键词】单片机;测试系统;电阻测量;电容测量 1.引言 基于单片机的铁路信号测试系统,是根据现场的实际使用需要而研制开发的,可以很精确的测试电阻和补偿电容,直接读出电阻阻值、电容容量。接地线电阻作为轨道电路的一个重要参数,为了保证通信、信号设备及人员安全,要求通信、信号设备的地线接地电阻必须达标,控制在一定范围内。补偿电容可以弥补电容不足,抵消钢轨感性,使钢轨阻抗尽可能呈阻性负载,以保证轨道电路的传输距离和机车信号系统的可靠性。 2.系统总体结构 基于单片机的铁路信号测试系统的软件流程图如图1所示,硬件框图如图2所示。系统的工作过程:启动测试系统,上电或复位,系统进行初始化,完成初始化后,选择工作模式,电阻测试或者电容测量。通过STC89C52单片机控制电阻模块和电容模块,测试的数据存储在SD卡中,通过RS232串口将数据传输到微机存储。 在硬件设计过程中,采用单片机STC89C52编程,实现对电阻、电容测试的控制,LCD显示;采用24位HX712A/D转换器芯片;RS232串行口通讯频率9600bit/s;电源采用线性稳压芯片ASM1117,供电电压3.3V、5V。 3.测试工作原理 采用STC89C52单片机,20引脚为接地端,40引脚为电源端,31引脚需要接到电位使单片机选用内部程序存储器,18、19引脚接上一个11.0592MHz的晶振为单片机提供时钟信号,第9引脚为复位引脚,单片机只有满足这些才能正常工作。利用P2口作为数据读写,片选信号端,功能切换。P3口采用第二功能,定时器/计数器外部计数脉冲输入,外部数据存储器写/读。采用HX712芯片完成测阻。在设计程序测量时,首先选择测试工作模式,在测量的同时,程序执行做出判断,不能超过设定的量程,然后跳转到测量程序,在范围内正常测试并且显示结果,按“确定”键后数据存储。测阻电路如图3所示。 4.系统软件设计

铁路信号集中监测系统采集功能测试大纲

附表1 采集功能测试大纲 一、系统布置 进行采集功能测试时,被测厂家提供的待抽测设备,应包含如下表所列功能的软、硬件设备: 表1 序号功能列表 1 外电网综合质量检测设备 2 电源屏监测设备 3 交流连续式轨道电路监测设备 4 25hz相敏轨道电路监测设备 5 高压不对称脉冲轨道电路监测设备 6 直流转辙机监测设备 7 交流转辙机监测设备 8 驼峰ZD7型直流快速道岔转辙机监测设备 9 道岔表示电压监测设备 10 电缆绝缘监测设备 11 电源对地漏泄电流监测设备 12 列车信号机点灯电路电流监测设备 13 站内电码化监测设备 14 集中式有绝缘移频自动闭塞监测设备 15 集中式无绝缘移频自动闭塞监测设备 16 半自动闭塞监测设备 17 环境状态的模拟量监测设备 18 防灾异物侵限监测设备 19 站(场)间联系电压监测设备 20 开关量监测设备

测试时,设备连接示意图如下: 图1 二、测试环境及待测设备说明 试验室环境提供709号文5.1(模拟量监测功能)中规定的各业务功能的模拟仿真信号源。提供待测厂家机柜以及组合的摆放位置。 待测厂家需要按照表1所列出的功能项提供软、硬件设备,并提供相应的设备撇脂清单。 三、测试流程: 测试流程如下; 1)设备准备阶段: 在进行采集功能测试时,被测厂家需根据表1描述的功能项准备车站采集硬件设备(含传感器、采集板卡、采集器及相应组合等)、车站机和相应的网络设备。被测厂家将采集板卡、站机和网络设备集成在一个欧标机柜内,采样所需传感器需集成在一个组合上。 2)设备安装、调试阶段: 被测厂家将准备好的欧标机柜和组合运送至试验室,并进行试验室环境中的

2019建筑物接地电阻的测试方法及要求

建筑物接地电阻的测试方法及要求 建筑物接地系统对于整个建筑的防雷保护和电气系统的正常运行有着重要和深远的意义。建筑物接地系统的接地电阻也是电气工程验收的一项重要内容,其测量记录是工程竣工归档资料之一。当防雷接地体地下部分工程完工后要及时对接地体的接地电阻值进行测量,单位工程竣工时还要进行复测,建筑物接地电阻的测试,一般是先由施工单位自行组织专业人员使用专用的测试仪器进行测量,由监理人员旁站,测试的数据填入专用的测试记录表格。 防雷接地系统的接地电阻测试必须使用专用的接地摇表(又称接地电阻摇表、接地电阻表、接地电阻测试仪,切不可用普通的兆欧表代替),目前有指针式和数字式两种。常见型号有ZC29B型指针式接地摇表(见图示1),DER2571数字接地电阻表(见图示2),民用建筑多采用ZC29B型指针式接地摇表。 见图示1 见图示2 为方便施工单位正确地使用接地摇表,现将接地电阻的测试方法及ZC29B型指针式接地摇表的使用和要求做一简单介绍。一、结构 ZC29型接地电阻测试仪由手摇发电机、电流互感器、滑线电阻及检流计等组成,附件有辅助探棒导线等。

二、使用说明 1、接地电阻测量时的接线方式(图示3): 图示3 (1) 在测量接地电阻时,E-E两个接线柱用镀铬铜板短接,并接在随仪表配来的5m长纯铜导线上,导线的另一端接在待测的接地体测试点上。 (2) P柱接随仪表配来的20m纯铜导线,导线的另一端接插针Pˊ。 (3) C柱接随仪表配来的40m纯铜导线,导线的另一端接插针Cˊ。 2、接地电阻测试仪设置要求 (1) 接地电阻测试仪应水平放置在离测试点1~3m处,检查检流计的指针是否在中心线上,否则应用零位调整器将其调整于中心线上。 (2) 每个接线头的接线柱都必须接触良好,连接牢固。 (3) 两个接地极插针应设置在离待测接地体左右分别为20m和40m的位置,其间距为20m 。且Eˊ、Pˊ、Cˊ应保持在一条直线上。

试分析铁路信号设备维护中微机监测的运用 田辉亮

试分析铁路信号设备维护中微机监测的运用田辉亮 发表时间:2018-04-18T14:50:32.223Z 来源:《电力设备》2017年第31期作者:田辉亮 [导读] 摘要:铁路信号系统直接影响着铁路的运行效率,确保了铁路系统的长期稳定运行。 (武汉铁路局襄阳电务段湖北武汉 443001) 摘要:铁路信号系统直接影响着铁路的运行效率,确保了铁路系统的长期稳定运行。为了确保铁路信号系统的长期稳定运行,需要定期的对铁路信号设备进行检查与维护,在这一过程中引入微机监测能够提高系统的检测效率,降低系统故障发生的概率,提高铁路信号系统运行的安全性与稳定性。 关键词:铁路信号;设备维护;微机监测 1微机监测在铁路信号设备维护中的重要性 在铁路信号系统中,需要定期的对相关的设备进行维护,以确保设备的性能稳定,在这一过程中微机监测起到了十分重要的作用,其能够对铁路信号的运行状态进行全面的监测与记录,确保重要信息数据的备份。并且在运行的过程中,能够保证电务设备的安全运行,全面的体现出铁路信号设备的数字化与智能化。微机监测能够实现对铁路信号系统的全天候检测,对于信号系统的信号质量进行有效的检测与控制,并且还能够定时对于系统的参数进行测试,并且对系统运行过程中的数据进行有效的查询与储存,并且还能够对系统中的参数进行有效的测试。在铁路信号系统运行的过程中,如果系统的电气性能超出了原先设定的界限,微机监测能够在第一时间检测到并且向系统发出警报,及时的发现设备中存在的问题,从而能够提前规避问题事故的发生。在铁路信号系统中应用微机监测能够有效地提高信号系统的稳定性,降低故障出现的概率,促进我国铁路事业的持续稳定发展。 2微机监测在维护铁路信号设备时具体运用 2.1准确记录设备状态并及时发现隐患 将微机监测系统运用到铁路信号系统中,可以增强对信号系统监督控制的有效性、科学性,并及时、准确的发现信号系统中的问题。通常来说,无论是哪一种系统或者设备在运行时都不可避免的会发生一些故障,铁路信号系统也是如此。微小的、简单的故障基本能够在较短时间内得到解决,恢复系统正常运行的稳定性,但是若发生较为复杂的系统故障,则需要比较长的时间进行故障原因的调查,查明故障原因和位置之后,在采取针对性的措施予以解决,恢复系统运行的稳定性。一般来说,发生特别大型、复杂的系统故障时,排查故障原因以及维修所耗费的时间会比较长,有时甚至会无法找到故障原因。而应用微机监测系统之后,便可以对信号系统的运行状态进行24小时监测,并对系统日常运行时数据进行监测,找出数据变化中的异常,进而找出造成系统故障的原因,并采用有效措施进行处理,最大限度的降低故障发生几率和故障产生的影响,为铁路信号系统运行的稳定性提供保障。 2.2防止发生道岔故障 道岔设施在铁路的信号系统中是非常重要的一部分,其运行情况直接影响着信号系统的稳定性,应用微机监测系统可以有效的监测并记录其运行时的电流变化,帮助维修工作人员找出系统中存在的问题,降低故障发生几率。不仅如此,利用微机监测还可以提高系统数据的准确性,方便维修工作人员进行系统数据的分析工作,并且为系统中的每一个道岔设备实行专门设置,保证系统中的道岔设备均具有准确的标准线,为系统的维修工作提供标准线的对比,以便及时、准确的找出系统道岔设备的故障。 2.3通过微机监测的报警预防功能,对信号设备故障进行有效预防 实行微机监测,能够有效监控信号设施中的电气性能,如果设施的电气性能超过原先预定的界限值的时候,会马上报警,发出警告。现在我国的微机监测中,故障出现时的报警机制主要是以分级管理进行的。 比如说,电气的特性超标时,就进行三级报警,工区是负责这一类故障的主要内容。当故障出现,对铁路设施的正常运作和列车的顺利运行造成影响时,就可以进行二级报警,报警形式则是通过网络信息传输,通报到每一个车间。当故障的出现,对整个列车的运行安全造成了严重影响时,就需要进行一级报警,同样也是通过网络的传输,将报警信息传达到每一个车间和班组里面。在进行微机监测的过程中,要有工作人员进行专门的巡查,对计算机屏幕上的数据信息进行实时的监控,如果屏幕上出现报警信息时,工作人员能够及时地进行处理,降低问题的伤害性,如果不能够解决该问题时,应及时向上级领导汇报情况,使问题得到快速解决。我国目前的轨道电路中,有些故障是慢慢产生的,可能在故障刚刚产生的时候,是一个很小的问题,对铁路信号设施的正常运行并没有造成影响,所以工作人员并没有进行马上的解决,但是随着时间的发展,这个故障越来越深入,故障的级别越来越高。所以负责对微机信息进行实时监测时,工作人员要对报警信息进行及时解决,不论问题多么渺小,都要立马扼杀,以避免故障随着时间进行生长,最后带来严重危害。 2.4预防铁路轨道的电路故障 众所周知,轨道电路系统是铁路信号的基础设备之一,由于轨道电路的运行环境较差,所以客观上使得其成为了最容易发生故障和受到外界影响和制约的设备之一。特别是在微机监测设备投入使用之前,轨道电路内经常发生各式各样的故障,这些故障的发生往往都在一瞬之间,这就使得维修人员无法对其发生时的电气变化特性进行有效地把控,进而直接影响了维修人员对故障位置判断的准确性。 但是自微机监测出现后,有效地解决了维修人员这方面的困扰。因为微机监测具有实时监控的功能,能够对铁路信号进行每时每刻的监控,并进行有效地记录。这样的检测数据能够很直观地反映出轨道电路电压值的变化情况,进而大大地降低了维修人员的工作强度,提升了维修人员处理问题的效率。这里借助25周相敏轨道电路为实例进行分析。 方法一,观察故障轨道铁路日曲线的数值高低,进行故障性质地区分。如果电压数值高于正常电压,维修人员则可以判断故障的原因为外部干扰原因;若曲线的高低变化较为缓慢的话,可能造成故障的原因为牵引电流的干扰;而若曲线的形状为锯齿状的话,造成故障的原因则多为瞬间的外界干扰。 方法二,通过对故障轨道区与相邻轨道段的曲线对比进行有效地故障原因分析。维修人员在使用微机监测铁路信号设备时,可以很快速地发现相邻轨道间的绝缘故障,进而直接对故障原因进行有效判断。此外,利用微机监测轨道电路曲线还能够判断不相邻的轨道区间的故障,这类故障比起相邻轨道的故障虽然要少很多,但是利用微机监测判断的话也很方便快捷。 方法三,通过观察区段曲线的异常与否了解列车的运行情况,进而判断故障原因,缩小故障范围。这就需要维修人员在监测的过程中注意曲线异常波动的轨道段,并结合列车的运行进行分析。通过分析得出曲线异常波动的原因,并缩小故障范围,解决故障问题。

铁总运【2014】227号(电子版)铁路信号集中监测系统维护管理办法剖析

中国铁路总公司 发文稿纸 题 中国铁路总公司关于印发《铁路信号集中监测系统维护管理 办法》的通知 附件 主送 各铁路局 抄送 ----------------------装 ---------------------订 --------------------- 线---------------------

现将《铁路信号集中监测系统维护管理办法》(技术规章编号:TG /XH 209-2014)印发给你们, 请认真贯彻执行。 2014年8月12日

TG /XH 209 -2014 铁路信号集中监测系统维护管理办法 第一章总则 第一条为规范铁路信号集中监测系统(以下简称集中监测)维护管理,提高集中监测维护管理质量,做好集中监测运用和设备维护管理工作,发挥集中监测在信号设备维护工作中的作用,特制定本办法。 第二条集中监测是监测信号设备状态、发现信号设备隐患、分析信号设备故障原因、加强信号设备结合部管理、辅助故障处理、指导现场维修、反映设备运用质量、提高电务部门维护水平和维护效率的重要信号设备。 第三条集中监测实行预防修、故障修和关键设备委托修的维修方式,保证设备正常运用。 第四条集中监测应采用安全隔离措施,不得影响被监测设备的正常工作。 第五条集中监测是信号设备维护、测试的专用系统,与非信号系统接口时,应经总公司运输局电务部批准。 第六条凡信号设备基建、大修、更新改造时,集中监测应同步设计、同步施工、同步开通。 第七条本办法适用于普速、高速铁路集中监测的维护管理。

第二章组织机构与职责 第八条集中监测管理工作实行总公司、铁路局、电务段三级管理。 第九条总公司运输局电务部是集中监测技术管理和设备管理的业务主管部门,负责制定技术政策、技术标准及规章制度,负责全路集中监测网络的规划。 第十条铁路局电务处是管内集中监测设备的技术主管部门,应设置专业技术主管人员。主要职责是: (一)贯彻执行总公司的技术政策、技术标准和规章制度,结合铁路局实际制定集中监测维护管理实施细则。 (二)负责指导管内集中监测的大修、更新改造工作。 (三)负责集中监测维护工作的管理,指导、监督、检查管内集中监测的维护管理工作。 (四)组织或有重点的参加基建、更新改造、大修集中监测工程的技术方案论证、审查、设备选型、施工交底和验收开通等工作。 (五)规划并审定集中监测网络拓扑结构,审批集中监测IP 地址实施方案,审核IP地址分配。 (六)按规定权限审批集中监测的采集电路、硬件和软件修改申请,审批通道需求及变更申请。

浅谈铁路信号测试系统

浅谈铁路信号测试系统 随着铁路技术的飞速发展,铁路信号系统越来越复杂,设备间和信号间的相关性越来越大,这使得实际中出现的故障呈现复杂化和多样化。为了更好的发现和诊断故障,保障铁路安全、高效运行,因此研究开发一种新型铁路信号测试系统是十分必要的。 标签:铁路信号测试系统安全 0 引言 铁路信号系统,通常是由多种机电设备组成的复杂控制系统,对铁路运行的安全、高效、快捷起着重要作用。为了更好的发现和诊断故障,保障铁路安全、高效运行,因此研究开发一种新型铁路信号测试系统是十分必要的。信号设备是铁路运输的耳目,对行车安全关系很大。它分为信号、联锁设备和闭塞设备三类。为了保证设备质量,铁路信号设备所命名用的器材和配件,必须符合部颁标准。当变更设备结构时,须经铁道部批准。 1 对各类信号设备安全的共同要求 各种信号均须符合下列各项要求:①除与机车车辆发生直接相互作用的设备如车辆减速器、限界检查器等以外,信号设备的任何部门不得侵入现行国标GB146-59规定的建筑接近限界(包括曲线部分的加宽)。②所有信号设备的安装,均须符合批准的安装标准图和设计图的要求。③信号设备的联锁关系,必须与批准的联锁图表一致,并满足《铁路技术管理规程》的要求。④各种基础或支持物不应有影响强度的裂纹,安装稳固,其倾斜限度不得超过10mm。信号机柱应垂直安装,其倾斜限度不应超过36mm。⑤各种信号设备的机械部分和电气特性,都应符合规定的技术标准。⑥对设有加锁、加封的信号设备,均应加锁、加封或装设计数器。⑦铁路信号设备及其电路,应保护在发生故障时导向安全,以免出现危及行车安全的后果。⑧凡与交流电源引入、架空线(包括架空线电缆接入)及轨道电路等外线连接的信号设备,必须设置外部防护设施(雷电防护、安全地线等)。⑨在交流电力牵引区段的防护要求:a为了保证人身安全,信号设备外缘距接触网带电部分的距离不得少于2m;b距接触网带电部分5m范围内的金属结构如信号机构、梯子、安全栅网以及继电器箱箱体、转辙握柄等均须接地。c同一设备接地时,严禁既接向牵引轨条或扼流变压器中点,又接向专用地线。 2 对各类信号设备的具体安全要求 2.1 对信号(装置或显示)的安全要求:①对信号的基本要求是显示明确,有足够的显示距离,当发生故障时能给出最大限制的显示,保证行车安全。②信号机(含表示器,下同)的显示方向,应使接近的列车或车列容易辩认信號显示,并不致被误认为邻线的信号机。信号机的显示,均应使其达到最远。曲线上的信号机,应使接近的列车能尽量不间断地看到它的显示。③各种信号机及表示器的显示距离,在

铁路信号系统的故障分析与实践应用

铁路信号系统的故障分析与实践应用 近年来,我国铁路运输事业快速发展,使得其安全问题也成为社会各界广泛关注的重点问题。铁路信号系统是保障铁路行车安全的基础系统,同时也是铁路系统中及其重要的组成部分。只有在充分保障信号系统长期、稳定运行的前提下,铁路运输才能同时保障安全性与效率。但是因为种种因素的影响,信号系统可能会出现各种故障,从而无法发挥其作用,对铁路运输效率及安全性造成严重影响,需要采取采取措施予以有效解决。对此,本文分析了铁路信号系统设备故障及原因,提出了故障的解决对策及提高安全性的对策,以供参考。 标签:铁路信号系统;故障分析;解决对策;安全性提高对策 1铁路信号系统设备故障及原因 1.1铁路轨道分路故障 铁路信号系统失效的一个主要因素就是轨道电路的分支问题。钢轨表面易被污染与锈蚀,会对电阻率造成干扰,不利于电路传送信号。车流量会带来一些影响,列车行驶中轮对轨会产生一定的摩擦,在这期间会带走钢轨表面的污染与锈蚀,消除污染和腐蚀的关键因素是铁路运营期间列车的速度和数量。轨道表面的电压也会在电路分流器中引起不良现象。这将影响轨道上电路信号的传输,导致轨道电路中的路由问题。 1.2电源出现故障 若遇到停电而且无备用电源,干电池里的连接线断开,蓄电池里没有连接引出线等情况会导致信号设备的电源输出端无电压。若遇到干电池里的端子不牢固、共享电源串电、蓄电池漏电、内电阻加大、交流电压降低、炭棒接触不好等情况会导致信号设备供电不足。若遇到端子半接触等情况会导致设备电源端的电压不稳定。 1.3接触出现故障 接触出现故障的主要原因在于端子松动、接点被氧化或者接触不良等。当接点被腐蚀、焊接线松动或虚焊会导致端子松动。当接点间存在灰尘、绝缘物等会引起绝缘现象,进而导致接点被氧化。当继电器,手柄,按钮和触点之间的距离相对较大,并且压力相对较小时,接触可能较差。 1.4铁路信号微机联锁失败 铁路信号微机联锁系统采用计算机网络控制技术。工作人员会接收到系统发出的断网提醒,从而做出正确的决策,使系统正常运行。存在许多类型的故障,其通常包括诸如上下计算机通信,信号,开关和轨道电路之类的故障。

铁路信号电源系统对地漏泄电流测试的实现方法与分析

铁路信号电源系统对地漏泄电流测试的实现方法与分析 发表时间:2013-07-03T15:47:59.000Z 来源:《中国科技教育·理论版》2013年第3期供稿作者:刘振宇 [导读] 该方法可用于早期发现信号电源系统对地绝缘不良,避免产生混电故障,保证铁路信号设备安全可靠运行。 刘振宇郑州市轨道交通有限公司运营分公司 450000 摘要本文主要介绍了对于铁路信号电源系统对地漏泄电流产生的原因及测试方法,用于早期发现信号电源系统对地绝缘不良,避免产生混电故障,保证铁路信号设备安全可靠运行。 关键词铁路信号电源屏漏流测试 一、电源对地漏泄电流产生原因 铁路信号设备为了满足控制电路故障导向安全要求,需要每路电源之间互相隔离。故铁路信号电源输出均隔离后并采用浮地设计以对地绝缘,避免通过大地将各路电源混电。 铁路信号设备电源均由电源屏设备提供,电源屏及其输出电缆在现场环境中,由于施工工艺或器件老化等原因,会造成电源输出对地绝缘不良,由于大地可视为一个良导体,这时如多路均绝缘不良,极易产生混电故障。 如KZ/KF电源主要用于动作各种继电器、点亮主副电源表示灯及为部分电铃供电;JZ/JF电源主要用于点亮控制台信号复示器、光带表示灯、道岔定反位表示灯等各种表示灯和复示器。如果KZ/KF电源和JZ/JF电源间因对地绝缘值降低造成混电,将会造成继电器误动、控制台表示灯乱显示、联锁关系失效等,给信号设备的正常运行造成不良后果。 由于电源的特性,同一电源单根接地并不能产生电流泄露,同回路中两根均接地就会产生电源回路,产生漏泄电流。 二、电源对地漏泄电流测试的实现方法 目前电源对地漏泄电流测试方法如下图所示,假定该电源输出“-”端绝缘不良,接地电阻RD为X兆欧,通过电缆切换,将“+”通过漏流盒接地,电源通过接地电阻RD、大地、漏流盒构成回路,回路中产生漏泄电流,回路中电流I+、I-相等,该电流即为电源对地漏流。 该电流的测试方法为在漏流盒中电阻取电压,间接测试电流的方式,即漏泄电流I=U1/1KΩ(直流测试)=U2/50Ω(交流测试)。 上图中,真实的漏流测试应为电流表直接将“+”接地,即漏流盒中电阻为0Ω,电流表直接串接接地测试,则漏泄电流I=I+=I- =U/RD 实际测试中漏流盒中电阻为1.05KΩ,则漏泄电流I'=U/(RD+1.05KΩ) 该测试方法中由于漏流盒中串接了1.05KΩ电阻,理论上会存在一定的误差,现在我们计算串接漏流盒对测试精度的影响。 (3)当电源对地绝缘良好,即接地电阻RD=∞时,漏流I=U/RD=U/∞=0,回路中串接漏流盒电阻1.05K远小于RD,测试漏流I'=U/(RD+1.05KΩ)=U/(∞+1.05KΩ)=U/∞=U/RD=I,对漏流测试无影响; (4)当电源对地绝缘不良,完全接地,即接地电阻为0Ω时,漏流=U/0=∞,回路中串接漏流盒时,测试漏流I'=U/(RD+1.05KΩ)=U/(0+1.05KΩ)=U/1.05KΩ。 此时当电源电压为220V时,漏流测试值I'=209mA远小于I=∞,但此时已远大于维护允许最大漏流值,必须进行问题处理,已达到该项测试目的。 但当电源电压为24V时,漏流测试值I'=22.85mA,亦可达到测试目的。 此时,串接1K电阻对测试定性无问题,但定量测试不准确。 (5)当电源对地绝缘不良,但并未完全接地,即存在一定量的接地电阻时,回路中实际漏流与测试漏流理论计算对比如下:

浅析铁路信号设备常见故障诊断方法

浅析铁路信号设备常见故障诊断方法 发表时间:2015-09-15T15:14:34.500Z 来源:《工程建设标准化》2015年5月总第198期供稿作者:邱日庆 [导读] 中国铁建电气化局奎北铁路维管段,新疆,克拉玛依铁路信号系统由大量、多种机电设备组成的复杂信号系统。 邱日庆 (中国铁建电气化局奎北铁路维管段,新疆,克拉玛依,834007) 【摘要】随着社会的发展以及人们出行的需要。铁路系统迎来了巨大发展,同时人们对铁路系统安全运行提出了更高的要求。而铁路建设中信号系统的建设则是保证列车运行的重要基础设施,往往其可靠性的高低直接决定了列车运行安全和运输效率的高低。本文介绍铁路系统中常见的信号设备故障类型以及信号检测技术,以供参考。 【关键词】铁路信号设备故障;故障类型;诊断技术;处理措施 1.铁路信号设备常见故障类型 铁路信号系统由大量、多种机电设备组成的复杂信号系统。因此其故障类型往往具有多样性、复杂性、模糊性、随机性和组合性等特点。由于故障现象和产生原因的复杂性和偶然性,所以诊断故障也具有非结构化或半结构化的特点。按性质来分信号故障类型可以分为如下两类:人为信号设备故障、非人为信号设备故障(信号设备质量问题自然出现故障)。 2.铁路信号设备故障诊断技术 信号设备故障因其多样性、复杂性和偶然性,为故障分析带来极大不便。因此当信号系统出现故障后,如何能快速、准确、及时的判断故障类型和部位,必将为快速排除故障,保证列车正常高效运行带来方便。因此信号故障诊断技术应运而生。故障诊断技术的目的是为了提高系统的可靠性和安全性。造成铁路信号系统故障的原因大致有设备失修故障、产品质量故障、维护不当造成的人为故障、自然灾害造成的设备故障等。铁路信号设备故障处理技术的诊断方法可分为:传统故障诊断技术(即现场故障诊断技术)、基于信号处理法、解析模型法和人工智能故障诊断法。 2.1 传统故障诊断技术 传统信号故障诊断技术指维修人员根据故障现象、设计图纸、设备说明书以及结合自己的经验,进行的现场分析处理和诊断设备故障。常用有逻辑推理法、优选法、比较法、断线法、校核法、试验分析法、观察检查法、调查研究法、逐项排除法、仪表测试法等。 2.2 解析模型法 所谓解析模型法以诊断对象精确,并已经建立在数学模型的基础之上的一种诊断故障方法,它的运用涉及到相关的数理统计和解析函数等数学方法,一旦系统中存在故障,那么系统的输入和输出方面就会相应有所改变,这些改变会相对应地反映在解析模型中,这里用到的是数学模型。所以说,通过对数学模型的观测,分析参数的变化可以有利判定出该系统是否存在故障和问题,这个方法对深入研究系统本质的动态性质大有帮助。 2.4 人工智能故障诊断法 人工智能故障诊断法是通过对专家系统的利用、模糊逻辑和人工神经网络的使用等来进行故障诊断和其他的传统技术相结合的一种诊断方法,是以诊断对象进行状态识别、状态预测和状态判断和推理,通过模拟专家决策的过程来解决那些要用到专家来解决的复杂性问题。 3.铁路信号设备故障因素分析 3.1 设备系统可靠性 铁路运输设备系统安全关系到国民经济生活中的各个层面,因此其对安全性可靠性要求极为严格。因此铁路信号产品的研制、生产、使用、验收过程中管理规范性引起广泛关注。信号系统可靠性是一个从信号系统研发到生产再到使用、维护的系统性工程。因此,其可靠性涉及到产品从研发到使用整个全寿命周期的各个阶段。因此如何制定信号系统运行标准由研发到生产再到使用和维护整个过程的可靠性标准和指标至关重要。 3.2 电气化条件对信号系统的影响 信号设备属于弱电系统而电气化铁路牵引供电系统属于强电系统。电气化铁路牵引供电系统具有电压高、牵引电流大等特点,且电力机车在牵引过程中设备整流和换相往往会产生大量谐波。当信号设备与这些设备共同使用时,如果处理不当牵引供电系统往往会对信号系统产生较强的干扰。这些干扰大致可分为感应式、辐射式、传导式,且不同信号设备对干扰的反应也不同。因此对于不同信号设备采取的抗干扰措施也不尽相同。 3.3 电缆电源对信号系统的影响 铁路信号系统属于一级负荷,往往采取双电源供电网络供电。信号电源一般由自动电力线路和贯通电力线路两路电源供电。两路电源互为冗余,故障时相互切换,以提高供电可靠性。 3.4 外部因素对信号系统的影响 铁路系统是一个跨度很长,环境复杂的系统。而列车的安全运行避免不了对外界环境的检测,尤其是对一些恶劣环境的检测如:强风、暴雨、大雪等等信号的检测。因此信号系统检测设备复杂且设备环境复杂条件恶劣。这些不利因素往往也会影响工作人员对信号系统的正常维护。因此外部环境对信号系统影响很大。对于这些环境恶劣、条件复杂地区信号设备一定要选用可靠的、智能的和具备一定容错能力的信号系统。 4.铁路信号设备故障的处理措施 (1)建立健全信号设备维护制度。信号维护人员应保持通讯畅通,以便运行人员随时联系。除此之外维护人员应每日将自己工作地点事先通知车站值班人员和电务段调度人员,以便出现故障时及时处理。 (2)信号设备故障维护制度。当遇到信号设备故障时应积极组织故障修复。对于一般故障,维护人员应在联系登记后,会同值班人员对信号故障设备进行试验,检查,修复,修复过程应查明原因、记录处理过程及结果。对于严重设备缺陷,当危及行车安全时,若不能及时排除故障应尽快联系值班人员登记停用设备,然后查出原因,尽快排除故障,恢复使用。如不能判明原因,应立即上报。听从上级指

相关主题
文本预览
相关文档 最新文档