当前位置:文档之家› 调节效应重要理论及操作务实

调节效应重要理论及操作务实

调节效应重要理论及操作务实
调节效应重要理论及操作务实

调节效应重要理论及操作务实

一、调节效应回归方程:

调节效应是交互效应的一种,是有因果指向的交互效应,而单纯的交互效应可以互为因果关系;调节变量一般不受自变量和因变量影响,但是可以影响自变量和因变量;调节变量一般不能作为中介变量,在特殊情况下,调节变量也可以作为中介变量,例如认知归因方式既可以作为挫折性应激(X)和应对方式(Y)的调节变量也可以作为中介变量。常见的调节变量有性别、年龄、收入水平、文化程度、社会地位等。在统计回归分析中,检验变量的调节效应意味着检验调节变量和自变量的交互效应是否显著。以最简单的回归方程为例,调节效应检验回归方程包括2个如下:

y=a+bx+cm+e 1)

y=a+bx+cm+c’mx+e 2)

在上述方程中,m为调节变量,mx为调节效应,调节效应是否显著即是分析C’是否显著达到统计学意义上的临界比率.05水平)。

二、检验调节效应的方法有三种:

1.在层次回归分析中(Hierarchical regression),检验2个回归方程的复相关系数R12和R22是否有显著区别,若R12和R22显著不同,则说明mx交互作用显著,即表明m的调节效应显著;

2.或看层次回归方程中的c’系数(调节变量偏相关系数),若c’(spss输出为标准化?值)显著,则说明调节效应显著;

3.多元方差分析,看交互作用水平是否显著;

4.在分组回归情况下,调节效应看各组回归方程的R2。

注:上述四种方法主要用于显变量调节效应检验,且和x与m的变量类型相关,具体要根据下述几种类型采用不同的方式检验

三、显变量调节效应分析的几种类型

根据调节效应回归方程中自变量和调节变量的几种不同类型组合,分析调节效应的方法和操作也有区别如下:

1.分类自变量(x)+分类调节变量(m)

如果自变量和调节变量都是分类变量的话,实际上就是多元方差分析中的交互作用显著性分析,如x有两种水平,m有三种水平,则可以做2×3交互作用方差分析,在spss里面

可以很容易实现,这我就不多讲了,具体操作看spss操作工具书就可以了。

2.分类自变量(x)+连续调节变量(m)

这种类型调节效应分析需要对分类自变量进行伪变量转换,将自变量和调节变量中心化(计算变量离均差)然后做层次回归分析。分类自变量转换为伪变量的方法:假设自变量X 有n种分类,则可以转换为n-1个伪变量,例如自变量为年收入水平,假设按人均年收入水平分为8千以下、8000~2万、2万~5万、5万~10万、10万以上四种类型,则可以转换为3个伪变量如下:

x1 x2 x3

10万以上 1 0 0

5万到10万 0 1 0

2万到5万 0 0 1

8千以下 0 0 0

上述转换在spss中可以建立3个伪变量x1、x2、x3,变量数据中心化后标准回归方程表示为:

y=b1x1+b2x2+b3x3+cm+e 3)

y=b1x1+b2x2+b3x3+cm+c1mx1+c2mx2+c3mx3+e 4)

x1=1表示10万以上;x2=1表示5万到10万;x3=1表示2万到5万;8千以下=0。此时8千以下的回归方程表示为:y=cm +e(在x1、x2、x3上的伪变量值为0);之所以单独列出这个方程,是为了方便大家根据回归方程画交互作用图,即求出c值就可以根据方程画出8千以下变量的调节效应图。

检验方法为分析R2显著性或调节系数C’显著性。

注:在这4种分类自变量的调节效应分析中,采用R12和R22显著性检验时,是对4种类型自变量在调节变量作用下的调节效应的整体检验,总体显著的效果可能会掩盖某种类型自变量与调节变量的交互作用不显著的情况,此时,我们就要逐一审查各个交互项的偏相关系数。对方程4)而言,如果检查调节变量的偏相关系数,则有可能会出现一些调节变量偏相关系数不显著的情况,例如,c1显著、c2和c3不显著或c1和c2显著,c3不显著的情况等,此时可根据交互项的偏相关系数来发现到底是那种类型的自变量与调节变量的交互作用不显著。

3.连续自变量(x)+分类调节变量(m)

这种类型的调节效应需要采用分组回归分析,所谓分组回归分析既是根据调节变量的分类

水平,建立分组回归方程进行分析,回归方程为y=a+bx+e。当然也可以采用将调节变量转换为伪变量以后进行层次回归分析,层次回归具体步骤同上,见三、2,需要注意的是,分类的调节变量转换为伪变量进行层次回归分析后,调节效应是看方程的决定系数R2显著性整体效果,这和不同分类水平的自变量下调节变量的调节效应识别有区别。

我们这里主要讲下如何进行调节效应分组回归分析,调节效应的分组回归分析可以在SPSS中完成,当然也可以通过SEM分析软件如AMOS来实现,我们首先来看看如何通过SPSS 来实现分组回归来实现调节效应分析的。

SPSS中对分组回归的操作主要分两步进行,第一步是对样本数据按调节变量的类别进行分割,第二步则是回归分析。具体步骤见下图:

第一步:对样本数据按调节变量的类别进行分割:

注:选取的gender为调节变量,分别为女=0,男=1,当然在实际研究中可能有更多的分类,大家完全可以用1、2、3、4…….等来编号。这个窗口选取的两个命令是比较多组(compare groups和按分组变量对数据文件排序(sort the file by grouping variables)

第二步:选择回归命令并设置自变量和因变量

这个窗口里面选取了自变量comp和因变量pictcomp,然后再点击statistics在弹出窗口中设置输出参数项如下图,勾取estimates\model fit\Rsquared change:

第三步:看输出结果,分析调节效应,见表格数据:

表格1

表格1显示了因变量是pictcomp,回归方法采用强行进入法(enter),共有两组回归方程,

一组是女性(0),另一组是男性(1)。

表格2

表格2是回归模型的总体情况,男行和女性的两组回归方程具有显著效应(p<.001),表明性别这一变量具有显著的调节效应。从表格数据可以看出,女性组的回归方程解释了因变量11.2%的方差变异,男性组的回归方程解释了因变量22.9%的方差变异,(注:此模型的数据是虚拟的,只是方便大家理解,无实际意义,实际研究中回归方程的自变量很少会只有一个的情况)。

表格3

此表格给出了自变量的标准化回归系数Beta值,在女性组中,标准化Beta为.349;在男性组中Beta值为.489,且都达到显著性水平p<.001,说明自变量comp对因变量有显著的预测作用。

上述对分类调节变量操作和解释主要是基于SPSS来实现的, AMOS软件也有同样功能,下面以同样回归方程变量为例谈下如何在AMOS中实现多组回归分析(multiple group analyze):

第一步:模型设置好后,点击analyze\manage groups:

第二步:在弹出的窗口输入女,如下:

第三步:设置好第一组名称后,点击new,急速输入第二组名称:

第三步:设置好两个组后,关闭组别设置窗口,回到主界面,点击File\data files,如下图:

第四步:在弹出窗口中可以看到如下两组名称:

第五步:然后点击女组数据,再点击file name,打开数据文件,然后点击grouping variable,这时系统会弹出你的spss数据文件中的变量,在其中选择你的分类变量,按分组变量的值设置好女性组的数据;男组数据重复这个过程,见下图:

设置好分组以后,点击ok,回到主界面,进行模型比较设置(温忠麟关于在AMOS中进行分组比较的策略,采用如下做法:先将两组的结构方程回归系数限制为相等 ,得到一个χ2值和相应的自由度。然后去掉这个限制 ,重新估计模型 ,又得到一个χ2值和相应的自由度。前面的χ2减去后面的χ2得到一个新的χ2,其自由度就是两个模型的自由度之差。如果χ2检验结果是统计显著的 ,则调节效应显著)。

第六步:设置限制模型和无限制模型。点击analyze\manage models,首先设置无限制模型(无任何限制,不需要改动);然后点击下面的new,设置结构方程回归系数限制相等模型,

如下图:

注:上图限制模型中,W表示所有回归系数,可在Plugin\name parameter中进行设置。第七步:两个模型设置好后,进行分析设置,点击view\ananlysis

Properties,在output中选中前面三项和临界比率检验一项,回到主界面,点击左侧绘图工具栏中的运算图标,即可得到输出结果,操作如下:

输出结果如下图:

图1:女性组无限制模型标准化路径图

图2 男性组无限制模型标准化路径图

图3 女性组限制模型标准化路径图

图4 男性组限制模型标准化路径图

从上述分组比较的标准化路径图来看,限制模型和无限制模型在一些拟合指标上并无显著变化,且两者的卡方与自由度之比都小于2,这提示我们可能性别的调节效应并不显著,为了进一步检验,我们结合文本输出结果来判断是否无限制模型和限制模型的区别不显著,具体分析见如下表格与结果分析:

Assuming model 无限制模型(所有参数自由估计) to be correct:

上表是分组回归分析无限制模型和限制模型的比较,从表中可知,对模型所有结构方程系数限制为相等后,卡方值改变量CMIN/df=8.545/8的临界比率P>.05,卡方值改变量不显著,因此可以从卡方值判断,性别对于两个潜变量的调节效应不显著。

CMIN and CMIN/DF:

上表检验了限制模型和自由估计模型的卡方值及其卡方与自由度自比,两者的P都大于.05,且卡方与自由度之比都小于2,说明模型都拟合良好,这进一步说明无限制模型和限制模型无显著区别。

Baseline Comparisons

上表是基线比较结果,NFI、RFI、IFI、TLI、CFI指标在限制模型和无限制模型中并无明显改变。

RMSEA

上表的RMSEA指标在限制模型和无限制模型中为相等<.05,说明限制模型和无限制模型都有良好的模型拟合。

结论:从上述标准化路径图和表格输出结果来看,限制模型和无限制模型的区别不显著,意味着性别对两个潜变量的调节效应不明显。

4.连续自变量(X)+连续调节变量(M)

这种类型相对来说操作比较简单,只需要把所有变量中心化之后就可以进行层次回归分析,标准化回归方程为:

Y=bx+cm+e 1)

Y=b1x+cm+c1mx+e 2)

对上述方程的检验同层次回归分析。

操作系统复习题概念

1、操作系统是管理系统资源、控制程序执行,改善人机界面,提供各种服务,合理组织计算机工作流程和为用户使用计算机提供良好运行环境的一种系统软件。配置操作系统的主要目标:方便用户使用;扩大机器功能;管理系统资源;提高系统效率;构筑开放环境。 2、系统调用是一种中介角色,把用户和硬件隔离开来,应用程序只有通过系统调用才能请求系统服务并使用系统资源。系统调用是应用程序获得操作系统服务的唯一途径。系统调用可分为:进程管理、文件操作、设备管理、贮存管理、进程通信、信息维护六类。 3、系统调用的实现原理:⑴编写系统调用处理程序⑵设计一张系统调用入口地址表,每个入口地址都指向一个系统调用的处理程序,有的系统还包含系统调用自带参数的个数⑶陷入处理机制,需开辟现场保护,以保存发生系统调用时的处理器现场。 4、系统调用与过程调用的主要区别:⑴调用形式不同⑵被调用代码的位置不同⑶提供方式不同⑷调用的实现不同 5、系统调用的作用:(1)内盒可以基于权限和规则对资源访问进行裁决,保证系统的安全性(2)系统调用对资源进行抽象,提供一致性接口,避免用户使用资源时发生错误且提高编程效率 5、用户态转向核心态:程序请求操作系统服务,执行系统调用;在程序运行时产生中断或异常事件

6、中断的概念:指在程序执行过程中,遇到急需处理的事件时,暂时中止现行程序在CPU上的运行,转而执行相应的事件处理程序,待处理完成后再返回断点或调度其他程序执行。 进程线程区别联系: 进程:是一个可并发执行的具有独立功能的程序关于某个数据集合的一次执行过程,也是操作系统进行资源分配和保护的基本单位。 线程:是操作系统进程中能够独立执行的实体,也是处理器调度和分派的基本单位。是进程的组成部分,每个进程内允许包含多个并发执行的实体引入进程的原因:一是刻画系统的动态性,发挥系统的并发性,提高资源利用率。 二是解决共享性,正确描述程序的执行状态。 8、进程最基本的状态有三种:运行态:进程占有处理器正在运行。就绪态:进程具备运行条件,等待系统分配处理器以便运行。等待态:又称为阻zǔ塞sè态或睡眠态,指进程不具备运行条件,正在等待某个事件的完成。进程状态转换的具体原因:运行态→等待态等待使用资源或某事件发生,如等待外设传输、等待人工干预。等待态→就绪态资源得到满足或某事件已经发生,如外设传输结束;人工干预完成。运行态→就绪态运行时间片到,或出现有更高优先权进程。就绪态→运行态 CPU空闲时被调度选中一个就绪进程执行。 9、进程控制块(PCB)的概念和组成:每个进程有且仅有一个进程控制块(PCB),或称进程描述符,它是进程存在的唯一标识,是操作系统用来记录和刻画进程状态及有关信息的数据结构,是进程动态特征的一种汇

第2课操作系统的基本概念及发展

第2课操作系统的基本概念及发展 一、教学目标 1.知识与技能 (1)认识计算机操作系统在计算机中的地位和作用 (2)了解计算机操作系统的发展 (3)掌握Windows操作系统的发展及特点 (4)讨论分析操作系统在计算机中的重要性和主要功能 2.过程与方法 (1)以任务为驱动,让学生们学习所涉及到的知识,了解操作系统的重要性及发展历程。(2)在问题情境下,学会思考和解决问题,会根据自己的需要设计计算机软件的配置方案。3.情感、态度价值观 (1)培养学生的自我探究能力和思考能力 (2)培养学生之间的协作合作关系,增强学生合作精神。 (3)培养科学、严谨的学习态度。培养学生发现问题、分析问题和解决问题的能力 二、教学重点 认识计算机操作系统的作用和Windows操作系统的发展及特点。 三、教学难点 Windows操作系统的特点。 四、教学策略 本节是第三章操作系统中的第二课,对于初一的学生来说内容比较枯燥和严谨,也缺乏兴趣。建议以任务驱动法让学生自己去上网或查阅教材来学习,老师做总结,加深学生印象。 ①通过任务驱动法,让学生自己去上网查找,通过直观的文字或图片信息,加深他们对操作系统的概念理解以及操作系统的发展历程。 案例:通过以下几个问题引出今天的内容,让学生们思考并通过上网查找答案来完成这节课的内容。 1.小明的计算机因为中了病毒系统文件被删除,不能正常启动了,我们怎么帮助他呢?2.新买的计算机能直接用吗? 3.操作系统是属于硬件系统还是软件系统? 4.苹果牌的笔记本电脑大家试着操作一下看用得惯吗? 5.比尔?盖茨的生平简介。 6.目前有哪些主流的操作系统? ②分组协作法、自主探究法 老师布置任务,小组间同学互相商量并总结。 1.尝试着让学生使用DOS,总结和WINDOWS操作系统有什么不同? 2.让学生总结Windows操作系统的发展历程 3.计算机除了DOS和Windows操作系统外还有那些操作系统呢? 五、教学资源 网络、极域电子教室系统、课件 六、教学内容或活动

压电效应及其应用

压电效应及其应用 电介质在电场中可以极化,某些电介质,当沿着一定方向对它施力而使其变形时,在它的端面上产生符号相反的电荷。这种没有电场作用,只是由于形变而产生的极化电荷现象称为压电效应。能产生压电效应的晶体,称为压电晶体, 常见的压电晶体有石英晶体()、压电陶瓷、钛 2SiO 酸钡()、锆钛酸铅等。 3a B TiO 压电晶体具有以下功能: (1)压电效应:当外力加于晶体上时,晶体发生 形变,导致在受力的两个晶面上出现等量异号的电 荷。压力产生的极化电荷与拉力产生的极化电荷的方向相反,如图7-64所示。极化电荷的多少与外力引起的形变程度有关。压电效应产生的原因是,在外力作用的方向上,由于晶体发生形变造成晶格间距的变化,使得晶粒的正负电荷中心发生分离,从而产生极化现象。 (2)电致伸缩效应:压电晶体在电场力的作用下发生形变的现象,叫做电致伸缩效应。它是压电效应的逆效应。其产生的原因是,压电晶体中的晶格在电场力的作用下产生较强的内应力而导致变形。压电晶体在交变电场的作用下,其内应力和形变都会发生周期性变化,从而产生机械振动。 (3)热电效应:某些压电晶体通过温度的变化可以改变极化状态,从而在某些相对应的表面上产生极化电荷,这种现象叫做热释电效应。反之,这种晶体在外电场作用下,其温度会发生显著变化,这种现象叫做电生热效应。热释电效应的发生源于晶体的各向异性,是由于晶体在不同方向上的线膨胀系数不同而引起的。 由于压电晶体具有以上的特殊功能,因而在现代科技中有着广泛的应用,诸如压电晶体振荡器、压电电声换能器、压电变压器、压电传感器等。现举例说明如下: 压电晶体振荡器压电晶体振荡器是将机械振动变为同频率的电振荡的器件,由夹在两个电极之间的压电晶片构成。由于压电晶片的机械振动 有一个确定的固有频率,所以它对频率非常敏感。石英 晶体振荡器是目前应用最多的一种压电晶体振荡器,由 于它制造容易、性能稳定、精度高、体积小。因此广泛 应用于军事通讯和精密电子设备、小型电子计算机、微 处理机以及石英钟表内作为时间或频率的标准。有恒温 控制的石英晶体振荡器,频率稳定度可达量级,可 1310?作为原子频率标准而用于原子钟内。 石英晶体振荡器由信号源和石英晶体组成,如图7-65所示。 其中石英晶片是将石英晶

霍尔效应原理及其应用与发展

霍尔效应原理及其应用发展 虞金花(08009203) (东南大学自动化学院,南京,211189) 摘要:霍尔效应是一种发现、研究和应用都很早的物理现象。本文通过介绍霍尔效应的原理,讨论它在当今社会各方面的作用,以及对霍尔效应应用的发展做出猜测及其剖析,使读者更好的了解霍尔效应的发展过程及其未来展望。 关键词:霍尔效应;原理;应用;发展 Hall Effect and its Application Development Yu Jin Hua (Department of Automation Southeast University, Nanjing, 211189) Abstract: Hall Effect is a kind of discovery, research and application of the early physical phenomena. This paper introduces the principle of Hall Effect, and discusses the roles it plays in today’s society. Besides, it also makes guesses and analysis about the Hall Effect’s development to let readers have a better understanding of the future of Hall Effect. key words: Hall Effect; principle; develop 霍尔效应是霍尔(Edwim Herbert Hall,德国物理学家)于1879年在他的导师罗兰的指导下发现的这一效应。霍尔效应在当今科学技术的许多领域都有着广泛的应用,如测量技术、电子技术、自动化技术等。近年来,由于新型半导体材料和低维物理学的发展使得人们对霍尔效应的研究取得了许 多突破性进展。 冯·克利青发现了量子霍尔效应,为此,冯·克利青获得1985年度诺贝尔物理学奖。美籍华裔物理学家崔琦、美籍德裔物理学家施特默(H.L.Stormer)和美国物理学家劳克林(R.B.bugh—lin)因在发现分 在脚注位置注明作者的个人学术信息.包括作者的姓名,出生年,性别,籍贯。学历或学位,院系专业。Email 地址等. 数效应方面所作出的杰出贡献而荣获1998年度诺贝尔物理学奖。这一领域因两次授予诺贝尔奖而引起了人们广泛的兴趣,而崔琦也成为第六位获得诺贝尔奖的华裔科学家。 1霍尔效应的原理 1.1经典霍尔效应 1.1.1经典霍尔效应 1897 年,霍尔(E.H.Hall)正在马里兰的Johns opkins 大学读研究生。当时还没有发现电子,也没有人知道金属导电的机理。他注意到著名的英国物理学家麦克斯韦和瑞典物理学家埃德隆关于一 个问题的分歧,于是在导师罗兰(H.A.Rowland)教

操作系统概念课后习题答案

1.1在多道程序和分时环境中,多个用户同时共享一个系统,返种情冴导致多种安全问题。a. 列出此类的问题b.在一个分时机器中,能否确保像在与用机器上一样的安全度?并解释乀。 Answer:a.窃叏戒者复制某用户癿程序戒数据;没有合理癿预算来使用资源(CPU,存,磁盘空闱,外围设备)b.应该丌行,因为人类设计癿仸何保护机制都会丌可避兊癿被另外癿人所破译,而丏径自信癿认为程序本身癿实现是正确癿是一件困难癿亊。 1.2资源的利用问题在各种各样的操作系统中出现。试例丼在下列的环境中哪种资源必须被严栺的管理。(a)大型电脑戒迷你电脑系统(b)不服务器相联的工作站(c)手持电脑 Answer: (a)大型电脑戒迷你电脑系统:存呾CPU资源,外存,网络带宽(b)不服务器相联癿工作站:存呾CPU资源(c)手持电脑:功率消耗,存资源 1.3在什举情冴下一个用户使用一个分时系统比使用一台个人计算机戒单用户工作站更好? Answer:当另外使用分时系统癿用户较少时,仸务十分巨大,硬件速度径快,分时系统有意丿。充分利用该系统可以对用户癿问题产生影响。比起个人电脑,问题可以被更快癿解决。迓有一种可能収生癿情冴是在同一时闱有许多另外癿用户在同一时闱使用资源。当作业足够小,丏能在个人计算机上合理癿运行时,以及

当个人计算机癿性能能够充分癿运行程序来达到用户癿满意时,个人计算机是最好癿,。 1.4在下面丼出的三个功能中,哪个功能在下列两种环境下,(a)手持装置(b)实

时系统需要操作系统的支持?(a)批处理程序(b)虚拟存储器(c)分时 Answer:对二实时系统来说,操作系统需要以一种公平癿方式支持虚拟存储器呾分时系统。对二手持系统,操作系统需要提供虚拟存储器,但是丌需要提供分时系统。批处理程序在两种环境中都是非必需癿。 1.5描述对称多处理(SMP)和非对称多处理乀间的区别。多处理系统的三个优点和一个缺点? Answer:SMP意味着所以处理器都对等,而丏I/O可以在仸何处理器上运行。非对称多处理有一个主处理器控制系统,不剩下癿处理器是随从关系。主处理器为从处理器安排工作,而丏I/O也叧在主处理器上运行。多处理器系统能比单处理器系统节省资金,返是因为他们能共享外设,大容量存储呾电源供给。它们可以更快速癿运行程序呾增加可靠性。多处理器系统能比单处理器系统在软、硬件上也更复杂(增加计算量、觃模经济、增加可靠性) 1.6集群系统不多道程序系统的区别是什举?两台机器属二一个集群来协作提供一个高可靠性的服务器的要什举? Answer:集群系统是由多个计算机耦合成单一系统幵分布二整个集群来完成计算仸务。另一方面,多道程序系统可以被看做是一个有多个CPU组成癿单一癿物理实体。集群系统癿耦合度比多道程序系统癿要低。集群系统通过消息迕行通信,而多道程序系统是通过共享癿存储空闱。为了两台处理器提供较高癿可靠性服务,两台机器上癿状态必项被复制,幵丏要持续癿更新。当一台处理器出现敀障时,另一台处理器能够接管敀障处理癿功能。

霍尔效应的原理及应用

学号:1003618095河南大学民生学院毕业论文 (2014届) 年级2010级 专业班级电子信息科学与技术 学生姓名范博 指导教师姓名翟俊梅 指导教师职称副教授 论文完成时间2014-04-22 河南大学民生学院教务部 二○一三年印制

目录 目录 摘要 (1) 一霍尔效应 (2) 1.1经典霍尔效应 (2) 1.2经典霍尔效应误差 (3) 二量子霍尔定律 (3) 三霍尔元件 (6) 3.1霍尔器件 (6) 3.2霍尔元件 (7) 3.3霍尔元件的特点 (8) 四霍尔效应的应用 (8) (1)工程技术中的应用 (9) (2)日常生活中的应用 (10) (3)科学技术中的应用 (11) 五结语 (11) 六参考文献 (12)

霍尔效应的原理及应用 范博 (河南大学民生学院,河南开封,475004) 摘要 霍尔效应是电磁效应,这种现象是美国的物理学家霍尔于1879年在校读研期间将载流子的导体放入磁场中的做受力作用实验的时候发现的。实验中电流垂直在导体的外磁场并通过导体时,导体垂直磁场与电流两个方向的端面之间就会产生出一种电势差,产生的这种现象就是霍尔效应。在实在验中产生的电势差被名为霍尔电势差。 Principle and Application of Hall effect Abstract:Hall effect is a kind of electromagnetic effect,This phenomenon is caused by the American physicist A-H-Hall in 1879 when the carriers do during graduate conductors in a magnetic field by the force of the experimental findings.When the current is perpendicular to the external magnetic field and through the conductor, the conductor is perpendicular to the magnetic field and electric current produces electric potential difference between the two direction of end face, this phenomenon is called the hall effect. The electric potential difference caused by experiment have been called hall electric potential difference.

霍尔效应实验仪原理及其应用

一、实验名称: 霍尔效应原理及其应用 二、实验目的: 1、了解霍尔效应产生原理; 2、测量霍尔元件的H s V I -、H m V I -曲线,了解霍尔电压H V 与霍尔元件工作电流s I 、直 螺线管的励磁电流 m I 间的关系; 3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度B 及分布; 4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号) 四、实验原理: 1、霍尔效应现象及物理解释 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力 B f 作用而引起的偏转。 当带电 粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。 半导体样品,若在x方向通以电流s I ,在z方向加磁场B ,则在y方向即样品A、A′电 极两侧就开始聚积异号电荷而产生相应的电场H E ,电场的指向取决于样品的导电类型。显然, 当载流子所受的横向电场力 E B f f <时电荷不断聚积,电场不断加强,直到 E B f f =样品两侧电 荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) H V 。

设 H E 为霍尔电场,v 是载流子在电流方向上的平均漂移速度; 样品的宽度为b ,厚度为d , 载流子浓度为n ,则有: s I nevbd = (1-1) 因为 E H f eE =,B f evB =,又根据E B f f =,则 1s s H H H I B I B V E b R ne d d =?= ?= (1-2) 其中 1/()H R ne =称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出H V 、B 以及知道s I 和d ,可按下式计算3 (/)H R m c : H H s V d R I B = (1-3) B I U K S H H /= (1—4) H K 为霍尔元件灵敏度。根据RH 可进一步确定以下参数。 (1)由 H V 的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1所示的 s I 和B 的方向(即测量中的+ s I ,+B ),若测得的 H V <0(即A′的电位低于A的电位), 则样品属N型,反之为P型。 (2)由 H V 求载流子浓度n ,即 1/() H n K ed =。应该指出,这个关系式是假定所有载流 子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入3/8π的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。 (3)结合电导率的测量,求载流子的迁移率μ。电导率σ与载流子浓度n 以及迁移率μ之间有如下关系:

《操作系统》(二学期)A卷及答案

操作系统考试题型:选择题、填空题、判断题、简答题、综合题 重点内容: 第一章概述 操作系统基本概念、特征 操作系统发展、多道程序设计概念 操作系统基本类型及特点 操作系统主要功能 处理机工作模式 操作系统的用户接口 系统调用的步骤,常用的系统调用 常见的几种操作系统体系结构 第二章进程与线程 并发与并行的概念、进程的基本概念、特征、状态及其转换、实现、进程与程序的区别与联系、进程创建 线程的基本概念、引入线程的原因、线程的用户空间实现与核心空间实现的特点,进程与线程的区别与联系 原语的概念、进程控制原语 临界资源、临界区、互斥的概念 常见的进程间通信方式 进程间信号量通信方式 调度的层次,进程调度的时机、调度方式,常用的调度算法及评价指标(先进先出,轮转算法,短作业优先算法,响应比高优先算法,优先级调度算法、多队列轮转算法) 第三章死锁 资源,可抢占与不可抢占资源 死锁概念、死锁产生的原因及必要条件 死锁的四种解决策略 鸵鸟算法 死锁检测和死锁恢复 死锁避免、安全状态定义、单个和多个资源的银行家算法, 死锁预防 第四章存储管理 简单存储管理方式——单一分区、多分区存储管理 空闲物理内存管理方式:位图及链表方式 分区内存管理中常用内存分配算法(FFA,BFA,WFA); 虚拟存储的概念,覆盖及交换技术;

分页存储管理方式的原理、包括地址映射过程、及常用的页面置换策略及算法;(OPT,LRU,NRU,FIFO) 分页系统中页表存在的问题及解决办法(多级,转置) 分页系统中全局与局部策略、页的大小、负载等问题 缺页处理过程 第五章文件系统 文件的逻辑结构、文件存取访问方式 引入目录的原因 文件的物理结构及特征 目录的实现 文件的共享及实现 文件磁盘空间管理 文件系统的可靠性的保证 文件系统的性能 文件的安全访问控制 第六章设备管理 操作系统角度的I/O设备分类 I/O设备组成、控制器功能 I/O设备的两种编址方式、常用的数据传送控制方式; I/O软件分层结构 设备无关软件层的具体功能; 设备驱动程序功能;缓冲的引入、种类及工作原理; 中断处理程序处理步骤 SPOOLING工作原理及主要功能特点; 磁盘硬件原理、磁盘编址、常用的磁盘臂调度算法(FIFO,SJF,SCAN) 安全 文件的保护机制:存取控制表及权限表

第二章操作系统的基本原理

第二章操作系统的基本原理 一、本章需要熟练掌握的内容 1、计算机四大系统资源的管理机制:处理器、存储器、外围设备和文件四大资源的管理。 注重对基本概念的理解: 2、进程 (1)、进程是指一个可并发执行的程序(或程序段)在给定的工作空间和数据集合上的一次执行过程。它是操作系统进行资源分配和调度的一个独立或基本单位。 (2)、进程是动态的,它由操作系统创建并独立地执行,在执行过程中可能因某个条件不足而被暂时“阻塞”,当条件满足时又被“唤醒”并继续执行,直到任务完成而“撤销”。因此,进程有生命期,并在不同的状态之间动态地转换。 (3)、进程的并发特征是指一个进程能和其它进程并行执行,但各进程在逻辑上又相对独立,同时各进程的执行速度是不可预知的、异步的。因此,系统必须为进程提供同步机构,以确保进程能协调操作和共享资源。 (4)、一个进程至少要对应一个或多个程序。不同的进程可以调用同一个程序,但该程序必须在不同的数据集合上执行。 (5)、程序和进程的关系在于:程序是指令的有序集合,是静态的。程序的执行过程才是进程。 3、线程:在现代操作系统中,为了进一步提高进程的并发性,引入了线程(Thread)的概念。简单地说,一个进程可以包含多个线程,此时线程成为处理器调度的基本单位。 4、页式存储: 页式存储基本原理是预先把内存物理空间分成大小相等的存储“块”,比如每块为1k字节,并编上号码,同时把要运行程序的逻辑地址空间分成与“块”大小相同的“页”,也编上号码。

当把程序调入内存时,恰好把程序的某一“页”装入内存某一“块”,而且可以见缝插针地将若干连续的页装入分散的不连续的块中。由于页和块大小相等,所以除了最后一页可能小于块之外,其余都很合适,这样每一个内存碎片的大小不会超过一“块”的大小。 页式虚拟存储就是把内存和外存作为一个整体连续起来划分成块。在一个进程运行前,不必将其所有页装入内存,而只需先装入当前要运行的若干页。 在运行过程中。一旦发现所需要的程序页不在内存时,便请求系统分配存储块,然后将所需页从外存调入,并在页表中登录新调入的页号与对应的块号。这一调度过程在操作系统控制下自动实现的,用户无须干预。 5、虚拟存储: 当所运行进程需要较大的内存空间,而内存空间又有限时,存储管理提供虚拟存储的功能,将内存和大容量外存有机地结合起来,建立虚拟内存(VM:Virtual Memory),从而大大地扩展程序可运行空间。 虚拟存储的概念可从两个角度来理解。从逻辑存储空间角度看,程序的大小不定,经过编译连接后的目标程序地址多是从零地址开始的一维连续或二维段页式地址。这是一种虚拟地址或逻辑地址,它们都不是程序运行时的真正物理地址。我们把程序逻辑地址的全体所对应的存储器称为虚拟存储器,简称虚存。虚存地址空间大小有可能会超过实际物理内存空间。 从程序设计者角度看,虚拟存储器就是把内存和外存作为一个整体连续起来划分,当内存空间不足时,参与当前运行的部分程序可以暂存在外存中,一旦需要及时调入内存,而已经在内存中的部分程序目前可能不再使用,可以保存到外存。这样程序设计者不必忧虑内存是否够用,因为有巨大容量的外存可供使用。虚拟存储管理的工作就是及时恰当地调入调出当前程序,为进程提供“透明”的存储空间。 6、段式存储管理: 段式存储把其地址空间在逻辑上划分成若干个段(segment),如代码段、数据段、共享段等,这时用户程序的逻辑地址空间可以看成二维空间,其中一维是段号,另一维是段内从0开始的地址。利用连续可变分区或可重定位分区管理方式,为每一个段分配一个连续分区,而各段之间可以不连续。“段”成为程序的逻辑单位,它是由程序设计人员规定的,其长度随程序的不同而不同。

压电陶瓷及其应用

压电陶瓷及其应用 一. 概述 压电陶瓷是一种具有压电效应的多晶体,由于它的生产工艺与陶瓷的生产工艺相似(原料粉碎、成型、高温烧结)因而得名。 某些各向异性的晶体,在机械力作用下,产生形变,使带电粒子发生相对位移,从而在晶体表面出现正负束缚电荷,这种现象称为压电效应。晶体的这种性质称为压电性。压电性是J·居里和P·居里兄弟于1880年发现的。几个月后他们又用实验验证了逆压电效应、即给晶体施加电压时,晶体会产生几何形变。 1940年以前,只知道有两类铁电体(在某温度范围内不仅具有自发极化,而且自发极化强度的发向能因外场强作用而重新取向的晶体):一类是罗息盐和某些关系密切的酒石酸盐;一类是磷酸二氢钾盐和它的同品型物。前者在常温下有压电性,技术上有使用价值,但有易溶解的缺点;后者要在低温(低于—14 C)下才有压电性,工程使用价值不大。 1942-1945年间发现钛酸钡(BaTiO)具有异常高的介电常数,不久又发现它具有压电性,BaTi O压电陶瓷的发现是压电材料的一个飞跃。这以前只有压电单晶材料,此后出现了压电多晶材料——压电陶瓷,并获得广泛应用。1947年美国用BaTiO陶瓷制造留声机用拾音器,日本比美国晚用两年。BaTiO存在压电性比罗息盐弱和压电性随温度变化比石英晶体大的缺点。 1954年美国B·贾菲等人发现了压电PbZrO-PbTiO(PZT)固溶体系统,这是一个划时代大事,使在BaTiO时代不能制作的器件成为可能。此后又研制出PLZT透明压电陶瓷,使压电陶瓷的应用扩展到光学领域。

迄今,压电陶瓷的应用,上至宇宙开发,下至家庭生活极其广泛。 我国对压电陶瓷的研究始于五十年代末期,比国外晚10年左右,目前在压电陶瓷的试制、工业生产等方面都已有相当雄厚力量,有不少材料已达到或接近国际水平。 二. 压电陶瓷压电性的物理机制 压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释,晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象、因此压电性与极化,形变等有密切关系。 1. 极化的微观机理 极化状态是电场对电介质的荷电质点产生相对位移的作用力与电荷间互相吸引力的暂时平衡统一的状态。极化机理主要有三种。 (1)电子位移极化——电介质的原子或离子在电场力作用下,带正电原子核与壳层电子的负电荷中心出现不重合。 (2)离子位移极化——电介质正、负离子在电场力作用下发生相对位移,从而产生电偶极矩。 (3)取向极化——组成电介质的有极分子,有一定的本征(固有)电矩,由于热运动,取向无序,总电矩为零,当外加电场时,电偶极矩沿电场方向排列,出现宏观电偶极矩。 对于各向异性晶体,极化强度与电场存在有如下关系 m,n=1,2,3 式中为极化率,或用电位移写成:

霍尔效应及其应用

实验七、霍尔效应 1879年,霍尔在研究截流导体在磁场中的受力情况时,发现了一种现象:给处于匀强磁场中的板状金属导体,通以垂直于磁场方向的电流时,肝在金属板的上下两表面间产生一个横向电势差,这一现象称为霍尔效应。霍尔效应不只是在金属导体中产生,在半导体或导体中同样也能产生,且半导体中的霍尔效应更加显著。 霍尔效应是研究半导体材料性能的重要理论根据,利用半导体材料制成的霍尔元件,又称为霍尔传感器。 一、实验目的 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的VH-IS和VH-IM曲线。 3.确定试样的导电类型,载流了的浓度以及迁移率。 二、实验仪器 霍尔效应仪;霍尔效应测试仪、fx-3600p 计算器。 三、实验原理 霍尔效应从本质上 讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。 假定有如图所示的金属块中,通以水平向右的沿X轴正方向的电流I,外加沿Z轴正方向的磁感应强度为B的磁场。由于金属中形成电流的是电子,电子的定向移动方向与电流方向相反,即沿X轴负方向。此时电子在磁场中受洛仑兹力f H ,方向向下,则电子向金属块的下沿聚集,相应正电荷则在上板。这样形成由上向下的电场E H ,使后来的电子在受到向下洛仑兹力f H 的同时,还受到向上的电场力f E ,最终两个力平衡,上下板的电荷达到稳定状态。这时上下板之间的电压称之为霍尔电压,这种效应叫霍尔效应。 霍尔电压的计算公式的推导:设电子的电量为e ,单位体积中的自由移动的电荷数—即载流了浓度为n ,霍尔片的厚度为d,高度为b ,则由f H =qVB,f e =qE,I=neSv=nebdv;f e =f H.最后推出: B I K ned B I b E U S H S H H == = (1) 其中U H 为霍尔电压(A !、A 之间的电压),它与I S B 的积成正比。比例系数K H =1/ned 称为霍尔灵敏度,它反映材料的霍尔效应强弱的重要参数,表示该元

操作系统概念习题集锦

1 引论 小结 1.计算机系统由硬件和软件组成。硬件是计算机系统的物质基础,操作系统是硬件之上的第一层软件,是支撑其他所有软件运行的基础。 2.多道程序设计是指在存中同时存放多道程序,这些程序在管理程序的控制下交替运行,共享处理机及系统中的其他资源。在单处理机系统中多道程序运行的特点是:·多道:计算机存中同时存放多道相互独立的程序。 ·宏观上并行:同时进入系统的多道程序都处于运行过程中,即它们先后开始了各自的运行,但都未运行完毕。 ·微观上串行:存中的多道程序轮流占有CPU,交替执行。 3.操作系统是一组控制和管理计算机硬件和软件资源,合理地组织计算机工作流程,以及方便用户的程序的集合。 4.操作系统有三种基本类型,即批处理操作系统、分时操作系统及实时操作系统。 ·批处理操作系统能对一批作业自动进行处理,在批处理系统中引入多道程序设计技术就形成了多道批处理系统。多道批处理系统的主要特征是用户脱机使用计算机、成批处理及多道程序运行。 ·在分时操作系统中,处理机的运行时间被分成很短的时间片,系统按时间片轮流把处理机分配给各联机作业使用,若某个作业在分配给它的时间片不能完成其计算,则该作业暂时停止运行,把处理机让给另一个作业使用,等待下一轮时再继续其运行。分时系统的特征是同时性、交互性、独立性和及时性。 ·实时系统能及时响应外部事件的请求,在规定的时间完成对该事件的处理,并控制所有实时设备和实时任务协调一致地工作。实时系统的主要特征是响应及时和可靠性高。 5.操作系统的特征是并发性、共享性、虚拟性及不确定性。 ·并发是指两个或多个事件在同一时间间隔发生。 ·共享是指系统中的资源供多个用户共同使用。 ·虚拟是指把一个物理实体变为若干个逻辑实体。 ·不确定性是指系统中各种事件发生的时间及顺序是不可预测的。 6.操作系统的主要功能包括处理机管理、存储器管理、设备管理和文件管理。处理机管理的主要功能包括:进程控制、进程同步、进程通信及调度。存储器管理的主要功能包括:存分配、存保护、地址映射及存扩充。设备管理的主要功能包括:设备分配、设备驱动及设备独立性。文件管理的主要功能包括:文件存储空间的管理、目录管理、文件操作管理及文件保护。 7.操作系统提供两种类型的用户接口:命令接口提供一组操作命令供用户直接或间接控制作业的运行;程序接口提供一组系统调用供用户在程序中请求操作系统服务。 习题1 (1)什么是操作系统?从资源管理的角度看,操作系统应具有哪些功能? (2)操作系统有哪几种基本类型?它们各有何特点?

压电效应及应用

压电效应应用及现状 [编辑本段] 一、原理: 压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。如果压力是一种高频震动,则产生的就是高频电流。而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。 压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。 二、应用: 压电材料的应用领域可以粗略分为两大类:即振动能和超声振动能-电能换能器应用,包括电声换能器,水声换能器和超声换能器等,以及其它传感器和驱动器应用。 1、换能器 换能器是将机械振动转变为电信号或在电场驱动下产生机械振动的器件 压电聚合物电声器件利用了聚合物的横向压电效应,而换能器设计则利用了聚合物压电双晶片或压电单晶片在外电场驱动下的弯曲振动,利用上述原理可生产电声器件如麦克风、立体声耳机和高频扬声器。目前对压电聚合物电声器件的研究主要集中在利用压电聚合物的特点,研制运用其它现行技术难以实现的、而且具有特殊电声功能的器件,如抗噪声电话、宽带超声信号发射系统等。 压电聚合物水声换能器研究初期均瞄准军事应用,如用于水下探测的大面积传感器阵列和监视系统等,随后应用领域逐渐拓展到地球物理探测、声波测试设备等方面。为满足特定要求而开发的各种原型水声器件,采用了不同类型和形状的压电聚合物材料,如薄片、薄板、叠片、圆筒和同轴线等,以充分发挥压电聚合物高弹性、低密度、易于制备为大和小不同截面的元件、而且声阻抗与水数量级相同等特点,最后一个特点使得由压电聚合物制备的水听器可以放置在被测声场中,感知声场内的声压,且不致由于其自身存在使被测声场受到扰动。而聚合物的高弹性则可减小水听器件内的瞬态振荡,从而进一步增强压电聚合物水听器的性能。 压电聚合物换能器在生物医学传感器领域,尤其是超声成像中,获得了最为成功的应用、PVDF薄膜优异的柔韧性和成型性,使其易于应用到许多传感器产品中。 2、压电驱动器 压电驱动器利用逆压电效应,将电能转变为机械能或机械运动,聚合物驱动器主要以聚合物双晶片作为基础,包括利用横向效应和纵向效应两种方式,基于聚合物双晶片开展的驱动器应用研究包括显示器件控制、微位移产生系统等。要使这些创造性设想获得实际应用,还需要进行大量研究。电子束辐照P (VDF-TrFE)共聚合物使该材料具备了产生大伸缩应变的能力,从而为研制新型聚合物驱动器创造了有利条件。在潜在国防应用前景的推动下,利用辐照改性共聚物制备全高分子材料水声发射装置的研究,在美国军方的大力支持下正在系统地进行之中。除此之外,利用辐照改性共聚物的优异特性,研究开发其在医学超声、减振降噪等领域应用,还需要进行大量的探索。

霍尔效应的应用实验报告

一、名称:霍尔效应的应用 二、目的: 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H —Is,V H —I M 曲线,了解霍尔电势差V H 与霍尔元件工作 电流Is,磁场应强度B及励磁电流IM之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 三、器材: 1、实验仪: (1)电磁铁。 (2)样品和样品架。 (3)Is和I M 换向开关及V H 、V ó 切换开关。 2、测试仪: (1)两组恒流源。 (2)直流数字电压表。 四、原理: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电

流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图15-1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样 A-A / 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)()(N 0)(型型?>?

操作系统复习笔记

第一章 1.软件的层次:硬件(裸机)→OS(操作系统)→实用程序→应用程序。 2.虚拟机的概念:通过软件扩充计算机的功能,使功能更加强大,使用更加方便。 3.操作系统的功能: (1)操作系统作为用户与计算机接口。 ①操作系统不但本身具有优良的的图形用户界面,而且与用户界面生成环境一体化,可为用户开发的应用程序自动生成图形用户界面。 ②操作系统与软件开发环境一体化,可按用户要求建立、生成、运行和维护应用程序。 ③与数据库系统一体化。 ④与通讯功能网络管理一体化。 (2)操作系统作为资源管理者。(①处理器管理②存储器管理③输入输出设备管理④信息管理) 4.操作系统的特性:(1)并行性(2)共享性 5.操作系统的分类: (1)多道批处理操作系统 (2)分时操作系统 (3)实时操作系统 (4)Windows NT 课后习题 1.6什么是操作系统,它的主要作用和功能是什么? 答:操作系统的含义:用以控制和管理系统资源,方便用户使用计算机的程序的集合。 操作系统的主要作用:(1)管理系统资源;(2)使用户能安全方便地共享系统资源,操作系统并对资源的使用进行合理调度;(3)提供输入输出的便利,简化用户的输入输出工作;(4)规定用户的接口,以及发现并处理各种错误的发生。操作系统的主要功能是为用户方便地使用计算机提供更友好的接口和服务。 1.7什么是多道程序设计技术,引入多道程序设计技术的起因和目的是什么?答:(1)所谓多道程序设计是指“把一个以上的作业存放在主存中,并且同时处于运行状态。这些作业共享处理器时间和外部设备等其他资源”。 (2)由于通道技术的出现,CPU可以把直接控制输入输出的工作转给通道。起因:为使CPU在等待一个作业的数据传输过程中,能运行其他作业,我们在主存中同时存放多道作业。当一个在CPU上运行的作业要求传输数据时,CPU就转去执行其他作业的程序。 目的:引入多道程序设计技术的根本目的是提高CPU利用率 1.10 为何要引入分时系统,分时系统具有什么特性? 答:为了能够提供用户和程序之间有交互作用的系统,所以才要引入分时系统。分时系统具有以下特征:多路性;交互性;独占性。 第二章操作系统的运行环境 课后习题 2.3 什么叫特权指令?为什么要把指令分为特权指令和非特权指令? 答:特权指令是指在指令系统中那些只能由操作系统使用的指令,这些特权指令

霍尔效应的原理及其应用

霍尔效应的原理及其应用 蒲紫微1320012 13级生物医学工程 【摘要】从霍尔效应的发现开始,系统阐述了霍尔效应的原理、可测量的物理量,并介绍了目前霍尔效应在实际中的应用,同时介绍了霍尔效应的新进展。 【关键词】霍尔效应;实际应用;测量;新进展 霍尔效应已有100多年的发展史,在此期间,对霍尔效应的研究,科学家们从没有停止过。霍尔效应是霍普斯金大学研究生霍尔1879年发现的,它属于电磁效应的一种,但又区别于传统的电磁效应。当电流通过导体且外加磁场方向与电流方向垂直时,在与磁场和电流均垂直的方向上便会产生一附加电场,于是,导体的两端便会产生电势差,这一现象就是霍尔效应,这个电势差一般也被称作霍尔电势差。[1] 1 霍尔效应原理 一个由半导体材料制成的霍尔元件薄片,设其长、宽、厚分别为l,b,d。将其放在如图1所示的垂直磁场中,沿3,4两个侧面方向通以电流,大小为I。由于洛伦兹力Fm的作用使电子运动轨迹发生偏转,造成电子在霍尔元件薄片的1侧聚集过量的负电荷,2侧聚集过量的正电荷。因此在薄片内部产生了由2侧指向1侧的电场E H,同时电子还受到与洛伦兹力反向的电场力F H的作用。当两力大小相等时,电子的累积和聚集便达到动态平衡。这时,在霍尔元件薄片1,2两侧之间将会产生稳定的电压U H。 如果半导体中电流I是均匀且稳定的,可以推导出:U H=R H?IB/ d =K H?IB 式中:R H为霍尔系数,K H称为霍尔元件灵敏度。它表示霍尔元件在单位磁感应强度作用和单位工作电流控制下,霍尔电极开路时,产生霍尔电势的大小,其单位为(伏特/安培·特斯拉). K H不仅与霍尔元件的材料电学性质有关,也与其几何尺寸有关.对于一个确定的霍尔元件,K H是一个常数。[2]-[3] 2测量误差及消除方法 2.1不等位电势和热能流引起的不等位电势 通过霍尔效应测量物理量,主要是通过测量霍尔电势差所达到。在霍尔效应产生的同时,会产生系统误差,其主要来源为伴随霍尔效应产生的各种其他效应,它们对测量的准确度影响很大。因此,系统误差的处理成了霍尔效应测量中的一个重要问题。热能流实质是载流子的热扩散运动。这种扩散运动是定向的,故热能流是一种热扩散电流。因此有热能流通过霍尔元件时与电流一样,也会产生不等位电势。通过霍尔片的电流方向的改变时,测得电压值会发生变化。电流在某个方向测得电压总比其反向时的电压大。这是因为测出的不等位电势实质上是电流和热能流引起的两种不等位电势的迭加。随着电流方向的改变,所测得的不等位电势的值会不同,并且总是电流在某个方向时测得的电压大于其反向时测得的电压。 2.2系统误差的处理方法[4] 2.2.1直流测量中系统误差的处理 在直流测量中,要消除各种伴随效应带来的系统误差,则根据各种效应所产生的电势的方向特点,分别改变电流和磁场的方

操作系统的概念和功能

操作系统的概念和功能 计算机是一个高速运转的复杂系统:它有CPU、内存储器、外存储器、各种各样的输入输出设备,通常称为硬件资源;它可能有多个用户同时运行他们各自的程序,共享着大量数据,通常称为软件资源。如果没有一个对这些资源进行统一管理的软件,计算机不可能协调一致、高效率地完成用户交给它的任务。 从资源管理的角度,操作系统是为了合理、方便地利用计算机系统,而对其硬件资源和软件资源进行管理的软件。它是系统软件中最基本的一种软件,也是每个使用计算机的人员必须学会使用的一种软件。 4.3.1 操作系统功能 操作系统五大管理功能,即作业管理、存储管理、信息管理、设备管理和处理机管理。这些管理工作是由一套规模庞大复杂的程序来完成的。 作业管理解决的是允许谁来使用计算机和怎样使用计算机的问题。在操作系统中,把用户请求计算机完成一项完整的工作任务称为一个作业。当有多个用户同时要求使用计算机时,允许哪些作业进入,不允许哪些进入,对于已经进入的作业应当怎样安排它的执行顺序,这些都是作业管理的任务。 存储管理解决的是内存的分配、保护和扩充的问题。计算机要运行程序就必须要有一定的内存空间。当多个程序都在运行时,如何分配内存空间才能最大限度地利用有限的内存空间为多个程序服务;当内存不够用时,如何利用外存将暂时用不到的程序和数据“滚出”到外存上去,而将急需使用的程序和数据“滚入”到内存中来,这些都是存储管理所要解决的问题。 信息管理解决的是如何管理好存储在磁盘、磁带等外存上的数据。由于计算机处理的信息量很大而内存十分有限,绝大部分数据都是保存在外存上。如果要用户自己去管理就要了解如何将数据存放到外存的物理细节,编写大量程序。在多个用户使用同一台计算机的情况下既要保证各个用户的信息在外存上存放的位置不会发生冲突,又要防止对外存空间占而不用;既要保证任一用户的信息不会被其他用户窃取、破坏,又要允许在一定条件下多个用户共享,这些都是要靠信息管理解决的。信息管理有时也称为文件管理,是因为在操作系统中通常是以“文件”作为管理的单位。操作系统中的文件概念与日常生活中的文件不同,在操作系统中,文件是存储在外存上的信息的集合,它可以是源程序、目标程序、一组命令、图形、图像或其它数据。 设备管理主要是对计算机系统中的输入输出等各种设备的分配、回收、调度和控制,以及输入输出等操作。 处理机管理主要解决的是如何将CPU分配给各个程序,使各个程序都能够得到合理的运行安排。 从资源管理的角度来看,可以把操作系统看作是控制和管理计算机资源的一组程序;从用户的角度看,操作系统是用户和计算机之间的界面。用户看到的是操作系统向用户提供的一组操作命令,用户可以通过这些命令来使用和操作计算机。因而学会正确使用这些命令就成为学会使用计算机的第一步。 4.3.2 操作系统基本类型 计算机上使用的操作系统种类很多,但其基本类型可以划分为三类,即批处理操作系统、分时操作系统和实时操作系统。 批处理操作系统的设计目标是为了最大限度地发挥计算机资源的效率;在这种操作系统环境下,用户要把程序、数据和作业说明一次提交给系统操作员,输入计算机,在处理过程中与外部不再交互。分时操作系统的设计目标是使多个用户可以通过各自的终端互不干扰地同时使用同一台计算机交互进行操作,就好像他自己独占了该台计算机一样。实时操作系统则要

相关主题
文本预览
相关文档 最新文档