当前位置:文档之家› 中南大学路基路面课程设计

中南大学路基路面课程设计

中南大学路基路面课程设计
中南大学路基路面课程设计

中南大学土木工程学院

《路基路面工程》课程设计

学院:土木工程学院

班级:

学号:

姓名:

指导老师:

时间:2013年7月

?目录

一、重力式挡土墙设计

第一部分设计任务书…………………………………………………

(一)设计内容和要求 (2)

(二)设计内容 (2)

(三)设计资料 (2)

第二部分设计计算书

1. 车辆换算荷载 (3)

2.主动土压力计算 (4)

3. 设计挡土墙截面 (8)

4. 绘制挡土墙纵横截面(附图1) (11)

二、衡重式挡土墙设计

第一部分设计任务书

(一)设计内容和要求 (12)

(二)设计内容…………………………………………………………12

(三)设计资料 (12)

第二部分设计计算书 (13)

1. 车辆荷载换算 (1)

2.上墙土压力计算 (13)

3.下墙土压力计算……………………………………………………

15

4. 墙身截面计算 (1)

5. 绘制挡土墙纵横截面图(附图2)………………………………21

一、重力式挡土墙

第一部分 设计任务书

(一)设计的目的要求

通过本次设计的基本训练,进一步加深对路基路面工程有关理论知识的理解,掌握重力式挡土墙设计的基本方法与步骤。

将设计任务书、设计说明书及全部设计计算图表编好目录,装订成册。 (二)设计内容 ①车辆荷载换算; ②土压力计算; ③挡土墙截面尺寸设计; ④挡土墙稳定性验算。 (三)设计资料 1.墙身构造

拟采用细粒水泥混凝土砌片石重力式路堤墙(如草图1),墙高H =?m ,墙顶宽1b =?m ,填土高度?m ,填土边坡1:1.5,墙背仰斜,1:0.25(α=—14°02′),基底倾斜1:5(0α=—11°18′),墙身等厚,分段长度10m ,0b =7.0 m 。

2.车辆荷载

计算荷载:汽车—20; 验算荷载:挂车—100。 3.土壤工程地质情况

墙后填土容重γ=18KN/m 3,内摩檫角?=35°,填土与墙背间的摩檫角

2

?

δ=

;粘性土地基,允许承载力[0σ]=250K pa,基底摩檫系数f =0.50。取荷载

组合I,抗滑稳定性系数[c K ]=1.3,抗倾覆稳定性系数[o K ]=1.5。

4.墙身材料

细粒水泥混凝土砌25号片石,砌体容重K γ=22KN/m 3; 砌体允许压应力[a σ]=600K Pa ,允许剪应力[τ]=100KP a,允许拉应力[l σ]=60KPa 。

第二部分 计算书正文

1. 车辆荷载换算

墙背后填土表面有车辆荷载作用,使土体产生附加的竖向应力,从而产生附加的侧向应力。土压力计算时,对于作用于墙背后填土表面的车辆荷载可以近似的按均布荷载来考虑,并将其换算为重度与墙后填土相同的均布土层。 (1)求不计车辆荷载作时的破裂棱体宽度B 0

计算图示如下

初步拟定16,2,3, 1.5H m a m b m b m ====,查《公路设计手册(路基)》,由表3—2

—1中第五类公式知

2

)()2(a H tg a H H ab A ++-=

α

?

则,0'2

236(622)tan(1402)

0.328(62)A ?-?+??-=

=+ 00'00'

35(1402)17.53828tan 0.794

φ?αδφ=++=+-+==

于是有

:

0.7940.785

tg tg θφ=-=-=00'()(62)0.7856tan(1402) 4.51.78B H a tg Htg b

m

θα=++-=+?+?--= (2)求纵向分布长度L

00(2)307.0(622)tan 3012.7710o L L H a tg m m

=++=++??=>

L 采用10m,其中,L 0取为7.0m (3)计算车辆荷载总重Q ∑

车轮中心距路基边缘0.5m,汽车20级,一辆车的总重力为300KN 。 在0""L B ?范围内布置车轮重Q ∑: 布置车轮的宽度0l

00B ==m

l =-路肩宽-(汽车外侧车轮中线距路肩边缘的距离-重车后轮着地宽度的一半)1.44-0.5-(0.5-0.3)0.74

3002150()Q KN ==∑半辆车重

(4)换算当量土层厚度 00150

0.4718 1.7810

Q h m B L γ∑=

==?? 2. 主动土压力计算

计算图示如下

(1)求破裂角θ

假设破裂面交于荷载内,查《公路设计手册(路基)》

0000'2()(22)()(2)

2320.47(30.5)6(62220.47)tan(1402)(62)(6220.47)

0.359

ab h b d H H a h tg A H a H a h α

++-++=

+++?+??+-?+?+??-=+?++?=

00()()0.794(cot 350.794)(0.7940.359)0.807

=3853'

tg tg ctg tg tg A θφ?φφθ=-+++=-+++=现验算破裂面是否交于荷载内:

堤顶破裂面至墙踵:()(62)0.807 6.46H a tg m θ+=+?= 荷载内缘至墙踵:0'tan 36tan(1402)0.55b H d m α-+=-?-+=

荷载外缘至墙踵:0'

0tan 36tan(1402)0.57.012b H d b m α-++=-?-++=

比较得知:5 6.6412<<,故结果与假设相符,所选公式正确。

(2)求主动土压力系数K和K 1

(1)中假设成立,即破裂面交于荷载内,则采用《公路设计手册(路基)》第二版表3-2-1采用第6类公式计算:

000'00'cos()

()

sin()

cos(3853'35)(0.807tan(1402))sin(3853'3828)0.158

K tg tg θ?θαθφ+=

+++=?+-+= 10'320.807

2.490.807tan(1402)

b atg h m tg tg θθα--?=

==++-

20'

0.5

0.900.807tan(1402)

d h m tg tg θα=

==++- 3126 2.490.90 2.61h H h h m =--=--=

031122221(1)222 2.4920.47 2.611(1) 1.596

6266h h h a

K H H H

=+

-+???=+?-+=?

(3)求主动土压力及作用点位置

按墙的每延米计算。

墙后土体主动土压力:22111

1860.158 1.59681.7022E H KK KN γ==????=

水平向分力:0'0'cos()81.70cos(14021730)81.55X E E KN αδ=+=?-+= 竖向分力:0'0'sin()81.70sin(14021730) 4.94Y E E KN αδ=+=?-+=

2103321

22

()(32)

3362(6 2.49)0.47 2.61(3 2.6126)

336 1.5962.11X a H h h h h H H Z H K m

-+-=+

?-+???-?=+??= 因基底倾斜,土压力对墙趾O的力臂为:

110.19 2.110.19 1.5 1.83X X Z Z b m =-=-?= 0'111 1.5 1.83tan(1402) 1.96Y X Z b Z tg m α=-=-?-=

(4)验算荷载:

①对于挂车——100取00.8h m =,0d =。于是:

0000'2()(22)()(2)

2320.8(30)6(62220.8)tan(1402)

(62)(6220.8)

0.367

ab h b d H H a h tg A H a H a h α

++-++=

+++?+??+-?+?+??-=

+?++?=

00.7940.812

395'

tg tg θφθ=-+=-+== 验算破裂面是否交于荷载内:

堤顶破裂面至墙踵:()(62)0.812 6.50H a tg m θ+=+?= 荷载内缘至墙踵:0'tan 36tan(1402)0 4.5b H d m α-+=-?-+=

荷载外缘至墙踵:0'0tan 36tan(1402)07.011.5b H d b m α-++=-?-++= 比较得知:4.5 6.511.5<<,故结果与假设相符,所选公式正确。 ②求主动土压力系数K 和K 1

0'00'0'0'cos()

()

sin()

cos(39535)(0.812tan(1402))sin(3953828)0.158

K tg tg θ?θαθφ+=

+++=?+-+= 10'

320.812

2.450.812tan(1402)b atg h m tg tg θθα--?=

==++- 20'0

00.812tan(1402)

d h tg tg θα=

==++-

3126 2.450 3.55h H h h m =--=--=

031122221(1)222 2.4520.8 3.551(1) 1.688

6266h h h a

K H H H

=+

-+???=+?-+=?

③求主动土压力及作用点位置 墙后土体主动土压力:

22111

1860.158 1.68886.4122

E H KK KN γ==????=

水平向分力:0'0'cos()86.41cos(14021730)86.25X E E KN αδ=+=?-+= 竖向分力:0'0'sin()86.41sin(14021730) 5.23Y E E KN αδ=+=?-+= 比较得知:验算荷载略大于设计荷载,故挡土墙截面设计按照验算荷载进行计算。

2103321

22

()(32)3362(6 2.45)0.8 3.55(3 3.5526)

336 1.6882.12X a H h h h h H H Z H K m

-+-=+

?-+???-?=+??= 因基底倾斜,土压力对墙趾O 的力臂为:

110.19 2.120.19 1.5 1.84X X Z Z b m =-=-?= 0'111 1.5 1.84tan(1402) 1.96Y X Z b Z tg m α=-=-?-=

3. 设计挡土墙截面

(1)计算墙身自重G 及其力臂G Z

22111(0.19)(1.560.19 1.5)22188.60K G b H b KN γ=-=?-??=

22

120.190.19 1.522 4.7022

K b G KN γ?==?=

故12188.60 4.70193.30G G G KN =+=+=

193.30 5.10198.40Y N G E KN =+=+=

()11110.190.252

1

[(60.19 1.5)0.25 1.5] 1.462

G Z H b b m =

-?+????=?-??+=

210.6510.651 1.50.98G Z b m ==?=

(2)抗滑稳定性验算

[]0'00'

tan [198.4084.26tan1118]0.5 2.41tan 84.26198.40tan1118

X c

X N E f K E N αα++??=

==--? [] 1.3c c K K >=,故抗滑移稳定性满足要求。

(3)抗倾覆稳定性验算

1122101198.4 1.46 4.700.98 5.23 1.96

1.9286.25 1.84

G G Y Y X X G Z G Z E Z K E Z ++?+?+?=

==?

00[] 1.5K K >=,故挡土墙抗倾覆稳定性满足要求。

(4)基底应力验算

为保证挡土墙基底应力不超过地基承载力,应进行基底应力验算。

1110.190.25 1.50.19 1.50.25 1.43B b b m =-?=-??=

11221112198.4 1.46 4.700.98 5.23 1.9686.25 1.84

198.4 4.70 5.23

0.70

G G Y Y X X N Y

G Z G Z E Z E Z Z G G E ++-=++?+?+?-?=

++=

偏心距:1 1.430.700.0222

N B e Z m =

-=-= 1,2

11150.486193.30 5.2360.02(1)(1)127.181.43 1.43

Y Kpa G E e Kpa B B σ?++?=±=?±=??

因此,1,20150.48[]250127.18Kpa

Kpa Kpa σσ?=<=??,地基承载力满足要求。

(5)截面应力验算

为了保证强身具有足够的强度,应根据经验选择1~2个控制断面进行验算,墙面、墙背相互平行,截面的最大应力出现在接近基底处。

① 强度计算 要求:/K K K j AR N αγ≥

如附图所示,选取一个截面进行验算:1-1截面

100()(0.9 1.4)1.0(0.9193.30 1.4 5.23)181.29j G G Q y N N G E KN

γγγγ=+=+=??+?=

其中,0γ——重要性系数,取1.0;

1G G Q 2k k k k 8

8

0220N KN N =KN N KN A A=m R R =600Kpa 0.021*********.990.021121121e b e b γαα????--? ? ?

????==????

+?+ ?

?????

k ——恒重引起的轴向力(),193.30;——主动土压力引起的轴向力();——挡土墙构件的计算截面积, 1.5;

——材料的极限抗压强度,;

——抗力安全系数,取2.31;——轴向力偏心影响系数

=5。

于是:

/0.995 1.5600/2.31387.66181.29K K K j AR kN N KN αγ=??=>=

则挡土墙强度满足要求。

② 稳定性计算 要求:N k k k

j k

AR ψαγ≤ 其中:

k k k k k A R 6=4101.5j N H B αγψψ=<、、、、意义同前;

——弯曲平面内的纵向翘曲系数,因,故认为此挡墙是矮墙,

取=1.0。

于是:

1.00.995 1.5600

==387.66KN N =181.29KN 2.31

k k k j k AR ψαγ???≥ 则挡土墙稳定性满足要求。 ③ 正截面受剪时验算 要求:1Q j j

j m k A R f N γ≤

+

其中:Q KN j ——正截面剪力();

2m =1.5m Kpa =100Kpa =0.42j j j j m m A A R R f f 2——受剪截面面积(),;

——砌体截面的抗剪极限强度(),;——摩擦系数,。

x Q =E =86.25KN j ;

于是:1 1.5100

0.42188.60144.15Q 86.252.31

j j k m j A R f N KN KN γ?+=

+?=≥= 则挡土墙抗剪强度满足要求。

4. 绘制挡土墙纵横断面图(1:100)。

重力式挡土墙纵横断面图见附图1。

二、衡重式挡土墙 第一部分 设计任务书

(一)设计的目的要求

通过本次设计的基本训练,进一步加深对路基路面工程有关理论知识的理解,掌握衡重式挡土墙设计的基本方法与步骤。

将设计任务书、设计说明书及全部设计计算图表编好目录,装订成册。 (二)设计内容

①车辆荷载换算;②土压力计算;

③挡土墙截面尺寸设计;④挡土墙稳定性验算。 (三)设计资料 1.墙身构造

拟采用细粒水泥混凝土砌片石衡重式路肩墙(如草图2),墙高H =?m ,上墙1H =?m,墙背俯斜1:0.35,墙顶宽1b =0.5 m ;衡重台宽1d =0.90 m;下墙

2H =?m ,墙背仰斜,1:0.25(α=-14°02′);墙面坡度1:0.05,墙身分段长

度12 m ,0b =5.5 m 。

2.土壤工程地质情况

墙后填土容重γ=18KN/m 3,内摩檫角?=34o ,上墙的假想墙背摩檫角

?δ=1,下墙墙背墙背摩檫角2

2?

δ=

;地基允许承载力[0σ]=800K pa,基底摩

檫系数f =0.60。取荷载组合I ,抗滑稳定性系数[c K ]=1.3,抗倾覆稳定性系数[0K ]=1.5。

3.墙身材料

细粒水泥混凝土砌25号片石,砌体容重γ=22KN/m 3; 砌体允许压应力[a σ]=800K Pa ,允许剪应力[τ]=160KPa ,允许拉应力[l σ]=80KPa 。

4.车辆荷载 计算荷载:汽车—20; 验算荷载:挂车—100。

第二部分 计算书正文

1. 车辆荷载换算

墙背后填土表面有车辆荷载作用,使土体产生附加的竖向应力,从而产生附加的侧向应力。土压力计算时,对于作用于墙背后填土表面的车辆荷载可以近似的按均布荷载来考虑,并将其换算为重度与墙后填土相同的均布土层。 (1)求纵向分布长度L

初步拟定墙高H =6m ,上墙高H1=2.4m,下墙高H 2=3.6m 。由于该挡土墙为路肩墙,故填土高度为零,即0a =。

00(2)307.06tan 3010.4612o L L H a tg m m =++=+?=<,取L=10.46m 。

其中,L 0取为7.0m (2)计算车辆荷载总重Q ∑

车辆荷载总重Q ∑按下述规定计算:

纵向:当取用挡土墙分段长度时,为分段长度内可能布置的车轮重力;当取一辆标准汽车的扩散长度时为一辆标准汽车重力。

横向:破裂棱体宽度B 0范围内可能布置车轮重力,车辆外侧车轮中心距路面(或硬路肩)、安全带边缘的距离为0.5m 。

按车带均摊的方法计算。汽车20级,一辆重车总重300KN 。由于此处Q ∑是整个路基宽度范围内的汽车作用力,故300Q KN =∑。 (3)换算当量土层厚度 00300

0.2918 5.510.46

Q h m b L γ∑=

==?? 2. 上墙土压力计算

(1) 计算破裂角i θ,判别是否出现第二破裂面

假想墙背倾角/

1α为,见下图:

则有 '

11111 2.40.350.9

tan 0.7252.4

H tg d H αα+?+=

==

则/013556'α=。

假设破裂面交于荷载内,查《公路设计手册(路基)》表3-2-2第一类公式知

03445452822

o

i i ?

αθ==-=-=

tan 0.532i θ=

验算破裂面的位置如下: 第一破裂面距墙顶內缘:

/110() 2.4(0.5320.725) 3.02 5.5i H tg tg m b m θα+=?+=<=

破裂面交于荷载内,与假设相符,而且不可能出现其他情况,故采用此类计算公式。因为0'0283556'i i αα=<=,所以会出现第二破裂面。 (2) 计算第二破裂面上的主动土压力E 1

查《公路设计手册(路基)》表3-2-2第一类公式知:

220000

(452)tan (45342)0.602cos(452)cos(45342)

o o tg K ??--===++ 011220.29

11 1.2422.4

h K H ?=+

=+= 2211111

18 2.40.602 1.24238.7622

E H KK KN γ==????=

0011cos()38.76cos(2834)18.20X i E E KN α?=+=?+=

0011sin()38.76sin(2834)34.22y i E E KN α?=+=?+= 对上墙O 1的力臂为

0111 2.40.29

0.883333 1.242

x h H Z m K =

+=+=? 3. 下墙土压力计算 (1)求破裂角2θ 假定破裂面交

于荷载外,采用表27-6中第五类公式计算。破裂角计算示意图如图:

则有:

220

tan tan 6502' 2.148

φ==

2201211

()(2.4 3.6)1822

A H H =+=?+=

2/0221210110211(2)()2211

3.6(3.62 2.4)(0.25) 2.40.532[5.50 2.4(0.7250.532)]0.29222.97i i B H H H tg H tg b d H tg tg h αθαθ??=++-+-+??=??+??-+??-+-?+?=- 1100

18.20

38.6cos()cos(3428)

x i E R KN ?θ=

==++ 01200000

0002sin()()()sin cos 2.9738.76sin(3428)2.148(2.148cot 34)(2.148)181818sin 34cos 6502'

0.450

2415'

i B R tg tg tg ctg tg A A ?θθφφ?φγ?φ

θ+=-++

--?+=-++-

???==

现验算破裂面位置如下: 破裂面顶端至墙顶内缘的距离为:

/2221160.45 3.60.25 2.40.725 3.54Htg H tg H tg m θαα-+=?-?+?=

比较0 5.5 3.54b m m =>,故分析与原假设不相符,即破裂面交于荷载内。

计算图示如下:

22tan 0.753

φ=

2tan 0.25A α=-=

2020.7530.744

3640'

tg tg θφθ=-+=-+==

现验算破裂面位置如下: 破裂面顶端至墙顶内缘的距离为:

/2221160.744 3.60.25 2.40.725 5.30Htg H tg H tg m θαα-+=?-?+?=

比较0 5.5 5.30b m m =>,故破裂面交于荷载内。 (2) 计算土压力2E

0022200

2cos()cos(3640'34)(tan tan )(0.7440.25)0.170sin()sin(3640'3658')

K θ?θαθφ++=+=?-=++ 10122()2(2.40.29)

11 2.4943.6

H h K H +?+=+

=+= 2

22211118 3.60.170 2.49449.4522

E H KK KN γ==????=

002222cos()49.45cos(1402'17)49.38x E E KN αδ=+=?-+=

002222sin()49.45sin(1402'17) 2.56y E E KN αδ=+=?-+=

10221 3.6 2.40.29

1.563333

2.494

x H h H Z m K ++=

+=+=? 4. 墙身截面计算

因上墙顶宽10.5b m =,则上墙底宽2 1.46b m =,下墙底宽 1.64B m =。 (1) 计算墙的重力及力臂

①上墙墙身自重1G

111211

()22 2.4(0.5 1.46)51.7422

K G H b b KN γ=+=???+=

对墙趾的力臂

22

1122121

121222(2)3()

0.50.5 1.46 1.46(20.5 1.46)0.05 2.4

0.05 3.63(0.5 1.46)

0.76G b b b b b b nH Z nH b b m

++++=+

++?++?+??=?+?+=

n 取0.05

②下墙墙身自重2G

()222111

22 3.6(1.460.9 1.64)116.9822K G H b d B KN γ=++=???++=

对墙趾的力臂

()()()()2

22121212

2

2122[]23[1.64 1.64(1.640.9)(1.460.9)][2(1.460.9) 1.64]0.05 3.6

3[1.64(1.460.9)]

1.11G B B b d b d b d B nH Z B b d m

+++++++????=

++????

+?++++?++??=

?++= ③第二破裂面与墙背之间的土楔重3G

()311211

18 2.4(0.90.46)29.3822G H d d KN γ=+=???+=

其中 ()/211 2.4(0.7250.532)0.46i d H tg tg m αα=-=?-= 对墙趾的力臂

()()()

22212121113

121112122230.460.90.460.9(20.460.9) 2.40.35

0.05(2.4 3.6)0.5 2.40.353(0.460.9)

1.99G d d d d d d H tg Z n H H b H tg d d m

αα++-+=++++

++?+-?+??=?+++?+

?+= ④土楔上荷载重4G

402180.290.46 2.40G h d KN γ==??=

对墙趾的力臂

()4121111

0.05(2.4 3.6)0.50.9 1.2522G Z n H H b d m =+++=?+++?=

(2) 抗滑稳定性验算

路基路面工程-中南大学网络教育学院网上作业模拟练习题

某砂类土挖方边坡, ,KPa,KN/m3,m,采用边坡1︰0.5。假定。 ①验算边坡的稳定性; ②当时,求允许边坡坡度; ③当时,求边坡允许最大高度。 解:据题意,砂类土挖方边坡适用于直线滑动面解析法稳定性系数计算公式求算。 ;; ;=63°26′。 ①求边坡最小稳定性系数 > 因此,该边坡稳定。 ②当=1.25时,求最大允许边坡坡度 经整理得: 解得:,取 因此:当=1.25时,求最大允许边坡坡度为1:0.41。 ③当=1.25时,求边坡允许最大高度

经整理得: 解得:, 由: 得: 因此:当=1.25时,边坡允许最大高度为。 某路堤填料,边坡1:1.5,砂类土,判断是否失稳。 解:据直线滑动面稳定性系数计算式 对于砂类土,取C=0, 则 取K=1.25, 则 因<, 该路堤边坡角的正切值小于填料摩擦系数的0.8倍,故该边坡不会滑动,因而是稳定的。 某路堤填料KPa,KN/m3,,m。试分析边坡稳定性。 解:设滑动圆弧通过坡脚,据已知条件适合用圆弧法的表解法解题。由题意知边坡斜度 ,查表4-2得:

,若,则边坡稳定; 若,则边坡不稳定。 可以先假定,利用表解法反求值或边坡高度值。 如本例中取,不变,取 所以: 同样,假定,改变坡率以减缓边坡,计算值,直到 什么是最佳含水量?为什么最佳含水量可以获得好的压实效果?怎样控制含水量? 使土体产生最大干密度时的含水量,称之为最佳含水量。最佳含水量能得到最好的压实效果,这是因为:当土中含水量较小时,主要为粘结水,形成包裹在土颗粒外围很薄的水膜,土颗粒间的摩阻力较大,因而土颗粒难以挤密,不容易压实。随着含水量逐渐增大,水在土颗粒间起着润滑作用,土体变得易于压实。若土中含水量进一步增大,土中空隙被自由水充盈,压实效果反而降低。因此,只有在最佳含水量条件下,才能获得最好的压实效果。实际工作中,当填料含水量小于最佳含水量时,可以在整型工序前12~24h 均匀洒水,闷料一夜后再行碾压;如果填料含水量小于最佳含水量,应翻拌晾晒或掺石灰,使含水量略大于(0.5%~1.0%)时进行碾压。 在重复荷载作用下,路基将产生什么样的变形结果?为什么? 路基在重复荷载作用下,将产生弹性变形和塑性变形。每一次荷载作用之后,回弹变形即行消失,而塑性变形不再消失,并随荷载作用次数的增加而累积逐渐加大,但随着荷载作用次数的增加,每一次产生的塑性变形逐渐减小。产生的变形结果有两种: ①土粒进一步靠拢,土体进一步逐渐密实而稳定; ②累积变形逐步发展成剪切破坏。 出现哪一种变形结果取决于三种因素: ①土的类别和所处的状态(含水量、密实度、结构状态)。 ②应力水平(亦称相对荷载)。相当于一次静载作用对的应力极限δ极重复作用的应力程度。

路基路面课程设计汇本

路基路面工程-----课程设计 某:赵文杰 学号:09182172 班级:土木91 日期:2012.6.20

一、工程概况 某地区拟新建一级公路,设计年限为15年。夏季近30年连续平均最高温度35℃,冬季最低气温-8℃,土质为红褐色粘性土,近十年冻结指数平均值为250℃?d。 交通年增长率前十年为8%,后5年为6%,路基平均填高2.0m ,地下水距地面1.2m 。交通量如下:小汽车2500辆/日,解放CA15 500辆/日,东风EQ140 500辆/日,黄河JN162 300辆/日。 沿途有碎石、砂石、石灰、粉煤灰、水泥供应。 二、路基路面设计 根据工程概况的特点,以及交通量的要求,新建道路设计为4车道的一级公路,采用沥青路面 1、轴载分析 我国沥青路面设计以双轮组单轴载100kN为标准轴载,表示为BZZ-100。标准轴载的计算参数按表3-1确定。 表3-1 标准轴载计算参数 ﹙1﹚当以设计弯沉值设计指标及沥青基层层底拉应力验算时,凡前、后轴轴载大于25kN的各级轴载 P的作用次数i n均换算成标准 i

轴载P 的当量作用次数N 。 35.4211 )( p p n C C N i i K i ∑== 式中:N — 以设计弯沉值和沥青层层底拉应力为指标时的标准轴载的当量次数; i n — 被换算车型的各级轴载换算次数(次/日); P — 标准轴载(kN ) ; i P — 各种被换算车型的轴载(kN ); C 1— 轮组系数,单轮组为6.4,双轮组为1.0,四轴组为0.38; C2— 轴数系数。 K — 被换算车型的轴载级别。 当轴间距离大于3m 时,按单独的一个轴载计算;当轴间距离小于3m 时,双轴或多轴的轴数系数按下面公式计算: ()11 1.21C m =+- 式中:m —轴数。 通过hpds 路面结构设计系统计算结果如下: 序号 车 型 名 称 前轴重(kN) 后轴重(kN) 后轴数 后轴轮组数 后轴距(m) 交通量 1 解放CA15 20.97 70.38 1 双轮组 500 2 东风EQ140 23.7 69.2 1 双轮组 500 3 黄河JN162 59.5 115 1 双轮组 300 则其设计年限内一个车道上的累计量轴次e N :

中南大学专升本《路基路面工程》2014年必做题及答案

作业练习一 一、单项选择题(在每小题列出的四个备选项中只有一个是符合题目要求的。) 1、按照强度构成原理划分下列路面结构层,其中只有_______为嵌锁型。() A.二灰土 B.级配碎石 C.填隙碎石 D.天然砂砾 2、基层顶面当量回弹模量是表征_________强度和刚度的力学指标。() A.基层 B.土基 C.垫层 D.综合A、B、C 3、对于土质地基,基础埋置深度应符合下列要求() A.无冲刷时,应在天然地面以下至少1m B.有冲刷时,应在天然地面以下至少1m C.对土质地基,如受冻胀影响时,应在冻结线以下不少于0.5m D.对碎石、砾石和砂类地基,基础埋深不宜少于1.5m 4、新建公路路基干湿类型的初步判断的方法采用()。 A.填方或挖方高度 B.含水量 C.路基临界高度 D.分界相对稠度 5、水泥混凝土路面现行设计规范采用()理论。 A.弹性层状体系 B.极限荷载 C.经验法 D.弹性地基板 6、某路基已知路床顶以下80cm的平均相对含水量为20%,此种粘性土的塑限为15%,液限为35%。已知稠度分界值为Wc1=1.1,Wc2=0.95,Wc3=0.80,则该路基处于()状态。 A.干燥 B.中湿 C.潮湿 D.过湿 7、我国公路自然区划的一级区划是按( )。 A.潮湿系数 B.地理位置、经济状况 C.各地方的自然特点、人口数量 D.水热平衡和地理位置 8、公路路基用土中,最好的填料为( )。 A.砂 B.石质土和砂质土 C.粉性土 D.粘性土 9、路基边沟、截水沟、取土坑或路基附近的积水,主要通过( )排除到路基以外的天然河沟中。 A.涵洞 B.跌水 C.排水沟 D.盲沟 10、护坡道的宽度一般不小于( )。 A.2.5m B.2m C.1.5m D.1m 11、在原有路面上铺筑水泥混凝土路面时,板下基础当量回弹模量可以通过( )确定。 A.查表法 B.承载板或弯沉检测

路基路面课程设计例题

路基路面课程设计例题

4.2.1 重力式挡土墙的设计 (1)设计资料: ① 车辆荷载,计算荷载为公路-Ⅱ级。 ② 填土内摩擦角:42°,填土容重:17.8kN/m 3,地基土容重:17.7kN/m 3,基底摩擦系数:0.43,地基容许承载力:[σ]=810kPa 。 ③ 墙身材料采用5号砂浆砌30号片石,砌体a γ=22kN/m 3,砌体容许压应力为[]600=a σkPa ,容许剪应力[τ]=100kPa ,容许拉应力[wl σ]=60 kPa 。 (2)挡土墙平面、立面布置 图4.1 挡土墙横断面布置及墙型示意图(尺寸单 位:m ) 路段为填方路段时,为保证路堤边坡稳定,少占地拆迁,应当设置路堤挡土墙,拟采用重力式挡土墙。 (3)挡土墙横断面布置,拟定断面尺寸 具体布置如上图所示。 (4)主动土压力计算 ①车辆荷载换算 当H ≤2m 时,q=20.0kPa;当H ≥10m 时,q=10.0kPa 此处挡土墙的高度H=10m ,故q=10.0 kPa 换算均布土层厚度:010 0.6m 17.8 q h γ = = = ②主动土压力计算(假设破裂面交于荷载中部) 破裂角θ:

由14α=-?,42φ=?,42212 2 φ δ? = = =? 得:42142149ψφαδ=++=?-?+?=? 0011 (2)()(31020.6)(310)92.322A a H h a H =+++=?++??+= 00011 ()(22)tan 2211 3 4.5(4.5 1.5)0.610(102320.6)tan(14)2231.8B ab b d h H H a h α= ++-++=??++?-??+?+?-?= 00tan tan (cot tan )tan 31.8tan 49(cot 42tan 49)tan 4992.30.68834.5B A θψφψψθ?? =-+++ ? ???? =-?+?+?+? ??? ==? 验核破裂面位置: 堤顶破裂面至墙踵:()tan (103)tan34.58.93m H a θ+=+?= 荷载内缘至墙踵:()tan 4.510tan14 1.58.49m b H d α+-+=+??+= 荷载外缘至墙踵:()0tan 4.510tan14 1.5715.49m b H d l α+-++=+??++= 由于破裂面至墙踵的距离大于荷载内缘至墙踵的距离并且小于荷载外缘至墙踵的距离抗滑稳定性验算,所以破裂面交于路基荷载中部的假设成立。并且直线形仰斜墙背,且墙背倾角α较小,不会出现第二破裂面。 主动土压力系数K 和K 1 [] cos()cos(34.542) (tan tan )tan 34.5tan(14)sin()sin(34.549) 0.10a K θ?θαθψ+?+?= +=??+-?+?+?= 1tan 4.53tan 34.5 5.57m tan tan tan 34.5tan(14) b a h θθα--?? = ==+?+-? 2 1.5 3.43m tan tan tan 3 4.5tan(14) d h θα= ==+?+-? 31210 5.57 3.431m h H h h =--=--=

路基施工教案

— 教师授课教案 2.掌握路堑的开挖方案与施工方法 3.了解路基压实的意义、机理、影响因素,掌握路基压实标准 旧知复习:1.路基施工准备工作:物质准备、组织准备、技术准备 2.路基边桩、边坡放样 重点难点:1.路基压实标准 2.压实质量控制与检查 教学过程:(包括主要教学环节、时间分配) 1、旧知复习5min; 2、填方路堤施工25min; 3、路堑开挖25min; 4、路基压实30min; 5、小结5min。 课后作业:P141 7,9 教学后记: 任课教师教研室主任:

第八章路基施工 §8.1填方路堤施工 一、一般规定 1.路堤基底的处理 (1)稳定斜坡上地基表层的处理 地面横坡缓于1:5时,清除草皮、腐殖土,直接在天然地面上填筑路堤;地面横坡为1:5~1:2.5时,原地面应挖台阶,台阶宽度不应小于2m。 (2)陡于1:2.5地段陡坡路堤,验算滑动稳定性 (3)受地下水影响,拦截引排 (4)地基表层碾压密实 (5)稻田、湖塘,视具体情况处理措施 (6)软土地基处理 2.填料选择 料源、经济性;填料性质 3.填土压实 4.路基拓宽要求 二、填筑方案与施工方法 (一)分层填筑 1.水平分层填筑 2.纵坡分层填筑 适用:推土机或铲运机从路堑取土填筑运距较短 的路堤。 (二)竖向填筑(横向填筑)法 适用:无法自下而上分层填土的陡坡、断岩或泥 沼地区。 (三)混合填筑 下层竖向填筑,上层水平填筑 三、不同土质填筑路堤的规定 1.不同土质混合填筑规定 (1)不同土质,水平分层、分层填筑、分层压实 (2)透水性较小的土填筑路堤下层,顶面做成2%-4%双向横坡,防水措施 (3)透水性较小的土填筑上层,不应覆盖在透水性较大的土所填筑的下层边坡上,以保证水分的蒸发和排除。 (4)潮湿或冻溶敏感性小的填料应填筑在路基上层,强度小的在下层 (5)相邻两段用不同土质填筑的路堤在交接处作成斜面 2.填石路堤的填筑方法 定义:粒径大于40(37.5)mm、含量超过70%的石料填筑路堤。

中南大学表面物理化学化学试题-答案

中南大学研究生考试试卷 2009— 2010学年二学期期末考试试题时间110分钟 表面物理化学化学课程32学时2.0学分考试形式:开卷 专业班级:姓名学号 卷面总分100分,占总评成绩 70 %,卷面得分 一、选择题(每小题2分,共20分) 1.液体表面最基本的特性是( A ) A.倾向于收缩 B.倾向于铺展 C.形成单分子吸附层 2.若将液体与毛细管壁间的接触角近似看作0°,则液体在毛细管中的液面可以看作( C ) A.凹型 B.凸型 C.球面 3.下列方程均为计算液a/液b界面张力γab的经验公式,其中Fowkes公式为( C ) A.γab =γa -γb B.γab =γa + γb -2(γaγb)1/2 C.γab =γa + γb -2(γa dγb d)1/2 4.吊片法测定液体表面张力时,要求尽可能采用表面粗糙的吊片材料,其目的是( A ) A.改善液体对吊片的润湿使θ接近于0° B. 改善液体对吊片的润湿使θ接近于90° C.改善液体对吊片的润湿使θ接近于180° 5.溶液中溶剂记为1、溶质记为2,则吸附量Γ2(1)的含义为( C ) A.单位面积表面相与含有相等总分子数的溶液相比较,溶质的过剩量 B.单位面积表面相与含有等量溶质的溶液相比较,溶剂的过剩量 C.单位面积表面相与含有等量溶剂的溶液相比较,溶质的过剩量 6.C12H25SO4Na(1)、C14H29SO4Na(2)、C16H33SO4Na(3)三种物质在水表面吸附达到饱和状态时,三种物质分子在表面所占面积a m存在下列关系( B ) A. a m,1> a m,2> a m,3 B. a m,1≈a m,2≈a m,3 C. a m,1< a m,2< a m,3 7.苯在水面上先迅速展开后又自动收缩成为小液滴漂浮在水面上,用于描述苯液滴形状的表化专业术语是( C ) A.二维液膜 B.多分子层 C.透镜 8.下列说法中不正确的是( C ) A.任何液面都存在表面张力 B.平面液体没有附加压力 C.弯曲液面的表面张力方向合力指向曲率中心 D.弯曲液面的附加压力指向曲率中心 9.运用过滤手段进行溶胶净化的目的是( B ) A.除掉反应过程中过量的副产物 B.除掉过量的电解质 C.除掉溶胶体系中的粗离子 10.对于胶体体系下列说法正确的是( B ) A.电解质引发胶体体系聚沉的主要原因是使扩散层变厚 B.低浓度的聚合物可以使胶体体系发生聚沉,而高浓度的聚合物却可以使胶体体系稳定 C.胶体体系属于热力学多相体系,由于界面自由能显著,所以无论采取何种措施都不可 能获得相对稳定的胶体溶液 二、填空题(每小题2分,共20分) 1.液-固润湿过程有_沾湿_ ,_ 浸湿_ , _铺展_ . 2.固体自溶液中吸附时,极性吸附剂易于从非极性溶液中吸附__极性_____物质,而非极 性吸附剂易于从极性溶液中吸附__非极性____物质。

高速公路路基路面课程设计

目录 一、设计题目: (2) 二、设计资料: (3) 1.设计任务书要求 (3) 2.气象资料 (3) 3.地质资料与筑路材料 (3) 4.交通资料 (4) 5.设计标准 (5) 三、路基设计 (5) 1.填土高度 (5) 2.横断面设计 (6) 3.一般路堤设计 (6) 4.陡坡路堤 (7) 5.路基压实标准 (7) 6.公路用地宽度 (8) 7.路基填料 (8) 四、路基路面排水设计 (9) 1.路基排水设计 (9) 2.路面排水设计 (10)

3.中央分隔带排水设计 (10) 五、沥青路面设计分析与计算 (11) 1.轴载分析 (12) 2.方案一 (13) 2.1当E0=30Mp时 (13) 2.2、当E0=60MPa 时 (18) 3.第二方案: (22) 3.1当E0=30MPa时 (22) 3.2当E0=60MPa时 (26) 六、水泥混凝土路面结构分析与计算 (30) 1.当EO=30MPa时 (31) 2.当EO=60MPa时 (35) 七、方案比较 (39) 八、参考书目 (41) 九、附图 (41) 一、设计题目: 某高速公路的路面结构计算与路基设计

二、设计资料: 1、设计任务书要求 河南某公路设计等级为高速公路,设计基准年为2010年,设计使用年限为15年,拟比选采用沥青路面结构或水泥混凝土路面,需进行路面结构设计。 2、气象资料 该公路处于Ⅱ5区,属于温暖带大陆性季风气候,气候温和,四季分明。年气温平均在14℃~14.5℃,一月份气温最低,月平均气温为-0.2℃~0.4℃,七月份气温27℃左右,历史最高气温为40.5℃,历史最低气温为-17℃,年平均降雨量为525.4毫米~658.4毫米,雨水多集中在6~9月份,约占全年降雨量50%以上。平均初霜日在11月上旬,终霜日在次年3月中下旬,年均无霜日为220天~266天。地面最大冻土深度位20厘米,夏季多东南风,冬季多西北风,年平均风速在3.0米/秒左右。 3、地质资料与筑路材料 路线位于平原微丘区,调查及勘探中发现,该地区属第四系上更新统(Q3al+pl),岩性为黄土状粘土,主要分布于低山丘陵区,坡地前和山前冲积、倾斜平原表层,具有大空隙,垂直裂隙发育,厚度变化大,承载能力低,该层具轻微湿陷性。应注意发生不均匀沉陷的可

我国沥青路面设计教案

教师授课教案 2.掌握我国沥青路面的设计过程。 旧知复习:1.石灰土、水泥土的强度形成原理 2.石灰、水泥稳定类粒料的混合料组成设计过程 重点难点:我国沥青路面设计方法 教学过程:(包括主要教学环节、时间分配) 1、旧知复习5min; 2、概述25min; 3、我国的沥青路面设计55min; 4、小结5min; 课后作业: 请结合路面结构设计计算与分析,讨论道路工程中应用半刚性基层材料的具体受力情况,并从结构与材料角度分析使用得失。 教学后记: 任课教师教研室主任:

第三章沥青路面设计 §3.1概述 一、沥青路面设计的内容 1.结构组合设计 2.材料组成设计 3.厚度设计验算 4.结构方案比选 5.路肩构造设计 6.排水系统设计 二、沥青路面结构设计的原则 (一)路基路面整体综合设计原则 (二)密切结合自然条件及实践基础原则 (三)满足交通与使用要求原则 (四)因地制宜、合理选材原则 (五)保护自然生态与沿线环境原则 (六)工厂及机械化施工、方便施工原则 (七)技术与经济性并重原则 (八)分期修建、方便养护原则 三、沥青路面结构设计方法种类 1.经验法:AASHTO法;CBR法。 依据调查或大型试验总结得到的设计方法,其特点是符合试验地的实际,但是不能结合不同地方的实际。 2.力学经验法(M-E):AI法;SHELL法;我国设计方法。 依据力学模型计算结构响应,结合实际进行参数的确定,其特点是理论联系实际,是目前设计方法发展的总趋势。 3.典型结构法:法国方法;中国八·五研究成果。 通过调查,总结得到的与交通量等参数有关的结构图,特点是减少了设计的随意性,具有结构使用性能明确,结构图统一。 4.优化设计法 通过目标函数优化,使其具有性能与费用的最优性,但尚不成熟。 四、沥青路面厚度设计的基本过程 ①确定交通量:如车型、轴重、轮胎压力、各车型通过数及横向分布; ②路面结构组合:确定材料品种及其它参数; ③参数修正: ④路面设计的指标与标准确定: ⑤运用基本关系式进行设计计算或验算

中南大学无机化学考研题库(含答案)

习题 1.完成并配平下列反应方程式。 (1)Cu2O+H2SO4(稀)→CuSO4+Cu+H2O (2)Cu2++2NaOH(浓)+2OH-→Na2[Cu(OH)4] (3)2Cu2++4I-→2CuI(s)+I2 (4)Cu+4CN-+H2O→Cu(CN)43-+OH-+1/2H2 (5)Cu2++ 4CN-→[Cu(CN)2]-+(CN)2 (6)CdCl2+KI(过量)→K2[CdI4] (7)2Cu2++4OH-+C6H12O6→Cu2O+2H2O+C6H12O7 (8)3CuS+ 8HNO3(浓)→3Cu(NO3)2 +2NO+ 3S↓+ 4H2O (9)Au+HNO3+4HCl→HAuCl4+NO2+2H2O (10)Zn2++NaOH(浓) +2H2O→ Na[Zn(OH)4]+H2↑ (11)2Hg2++Sn2++6Cl-→Hg2Cl2+SnCl4 (12)4Zn+10HNO3(极稀) →4Zn(NO3)2+NH4NO3+3H2O (13)AgBr+2Na2S2O3→Na3[Ag(S2O3)2]+ NaBr (14)2Ag(NH3)2++CH3CHO+3OH-→2Ag+HCOO-+4NH3+2H2O (15)Hg2Cl2+2NH3→HgNH2Cl↓+Hg↓+NH4Cl (16)3HgS+ 12HCl(浓)+2HNO3(浓) →3H2[HgCl4]+3S+2NO+4H2O (17)HAuCl4+FeSO4→ (18)4Au+O2+8CN-+2H2O→4[Au(CN)2]-+4OH- 2. 解释下列现象,并写出相关的反应方程式 (1)加热CuCl2·H2O得不到CuCl2。 因为CuCl2·H2O受热分解时,在失去HCl的同时,生成了碱式盐: CuCl2·H2O=Cu(OH)2·CuCl2·+2HCl+2H2O (2)焊接金属时,常用浓ZnCl2溶液处理金属的表面。 FeO+2H[ZnCl2(OH)]=Fe[ZnCl2(OH)]2+H2O (3)有空气存在时,铜能溶于氨水。 2Cu+8NH3+O2+2H2O=2[Cu(NH3)4]2++4OH- (4)从废的定影液中回收银常用Na2S作沉淀剂,为什么不用NaCl作沉淀剂。 (5)HgCl2溶液中逐滴加入KI溶液。 在HgCl2溶液中,逐滴加入KI溶液,先生成鲜红色沉淀,随着KI溶液的不断加入,鲜红色沉淀消失变为无色溶液。因为开始时生成HgI2鲜红色沉淀,后来KI过量又生成[HgI4]2-无色的配离子. (6)硫酸亚铜与水的作用。 Cu2SO4 =CuSO4+Cu (7)CuCl2加水稀释。 (8)往硝酸银溶液中滴加氰化钾时,首先形成白色沉淀,而后溶解,再加入NaCl时,无沉淀形成,但加入少许的Na2S时,析出黑色沉淀。

(完整版)路基路面工程技术复习题及答案

中南大学现代远程教育课程考试(专科)复习题及参考答案 《路基路面工程技术》 一名词解释 1路基 2路基临界高度 3 设计弯沉值 4路堤和路堑 5半刚性基层 6高级路面 二. 填空 1路基路面应具有、、、 和等基本性能。 2路基按其干湿状态不同,分为、、和四类。 为保证路基路面结构的稳定性,一般要求路基处于或状态。 3公路自然区划的原则是、和。 4路基防护与加固设施主要有、和_____________三类 5水泥混凝土板接缝按位置分为___________和___________,按其作用分为____________,_________和______________三种. 6路基横断面的典型形式有、、三类。 7路基边坡稳定性分析方法可分为和两类。 8按照挡土墙的设置位置,挡土墙可分为、, 和_________等类型。 9从路面结构的力学特性和设计方法的相似性出发,路面可划分为、和三类。 10水泥混凝土路面设计理论是 11表征土基强度的主要参数有___________、___________和____________。 12提高重力式挡墙抗倾覆稳定性的措施________、_______、_________等。 13路基为路面提供坚实、稳固的基础,要求具有一定的强度、 __________ 和__________ 。 14高温使沥青路面强度和 _________ 大大降低,低温会使路面 ________ 。 15路基的自重应力大小是随着深度而逐步 __________ ,汽车荷载在路 基内产生轮重的应力,其大小是随着深度而逐步 __________ 。 16作用在重力式挡土墙上的外力,按其各力作用的性质可分为 __________ 力、 __________ 力和特殊力。

路基路面工程课程设计

一、 二、 三、路基(挡土墙)设计 1.1 设计资料 某新建公路重力式路堤墙设计资料如下。 (1)墙身构造:墙高8m ,墙背仰斜角度)0214(25.0:1' ,墙身分段长度20m ,其余初始拟采用尺寸如图1-1所示。 图1-1 初始拟采用挡土墙尺寸图 (2)土质情况:墙背填土为砂性土,其重度3kN/m 517.=γ,内摩擦角 30=?;填土与墙背间的摩擦角 152/==?δ。地基为整体性较好的石灰岩,其容许承载力 kPa 485][=σ,基底摩擦系数5.0=f 。

(3)墙身材料:采用5号砂浆砌30号片石,砌体重度3a m /kN 23=γ,砌体容许压应力kPa 610][a =σ,容许剪应力kPa 66][a =τ,容许压应力kPa 610][al =σ。 1.2 劈裂棱体位置确定 1.2.1 荷载当量土柱高度的计算 墙高6m ,按墙高缺点附加荷载强度进行计算。按照线形内插法,计算附加荷载强度:2kN/m 15=q ,则: m 8605 1715 0..q h == = γ 1.2.2 破裂角()θ的计算 假设破裂面交于荷载范围内,则有: ' '583030150214 =++-=++=?δαψ 因为 90<ω,则有 ()()H a h H a A +++= 0022 1 ()()65086026502 1 +?++=... 72 26.= ()()α tan 222 121000h a H H h d b ab B ++-++= ()()'.......5830tan 8602502662 1 86025251515021 ??+?+?+?++??= 30 19.= 根据路堤挡土墙破裂面交于荷载内部时破裂角的计算公式:

最新沥青路面施工技术方案[1]讲课教案

一、编制依据和原则 1、编制依据 施工进度计划依据锦屏水电站对外交通专用公路金林乡、羊房沟段合同文件(合同编号:JPIC-200411、12)和设计补充通知、现行的与本工程相关的公路工程施工规范以及我公司的施工经验和专项工程施工能力编制。 2、编制原则 根据本合同工程(包括金林乡、羊房沟两个合同段,以下简称本合同段)的施工特点和施工技术总体规划,结合在以往类似工程中的施工经验,初拟施工总进度编制原则如下: 1、严格按照招标文件规定的合同控制工期,充分发挥在公路工程施工中的技术优势,科学合理安排施工程序及施工进度,确保合同总工期如期实现。 2、统筹安排、合理编制施工程序,组织好全线平行交叉作业和流水作业。 3、充分考虑现场各种施工干扰因素、突发因素对工期的影响,采用适中的施工强度指标安排进度计划,对施工中的不可预见因素皆有回旋余地。 二、路面工程进度计划 根据我公司的施工进度计划安排原则、施工程序,以及发包人对本工程的工期要求,结合我公司的机械化施工能力和施工水平,具体进度计划见:《施工进度计划横道图》。 1、施工进度安排 根据本标段工程特点,就各项目工程施工工期具体安排如下: 1、施工准备 从2005年11月25日开始着手组织路面工程的施工,并在30天完成本合同段所需的全部临建设施的建设安装,以确保本合同工程顺利施工。

2、路面基层 本分项工程包括水泥稳定土基层、级配碎石底基层施工,计划于2005年12月15开工,2006年3月15日完工。具体工程进度安排见“施工总进度计划横道图”。 3、路面铺筑 本分项工程按通知要求初拟于2005年12月25日开工,2006年3月31日完工。具体工程进度安排见“施工总进度计划横道图”。 8、其他附属工程 本分项工程初拟于2006年3月1日开工,2006年5月31日完工,具体工程进度安排见“施工总进度计划横道图”。

路基路面课程设计完整版

《路基路面工程》课程设计 学院:土木工程学院 专业:土木工程 班级:道路二班 姓名:黄叶松 指导教师:但汉成 二〇一五年九月

目录 一、重力式挡土墙设计 第一部分设计任务书 (3) (一)设计内容和要求 (3) (二)设计内容 (3) (三)设计资料 (3) 第二部分设计计算书 1. 车辆换算荷载 (4) 2. 主动土压力计算 (5) 3. 设计挡土墙截面 (9) 4. 绘制挡土墙纵横截面(附图1) (30) 二、沥青路面结构设计 1.设计资料 (12) 2. 轴载分析 (12) 3. 拟定路面结构方案 (16) 4. 各材料层参数 (16) 5. 设计指标确定 (17) 6. 确定设计层厚度 (18) 7. 底层弯拉应力验算 (21) 8. 防冻层厚度验算 (29) 9. 方案可行性判定 (29) 10. 绘制路面结构图 (31)

一、重力式挡土墙 第一部分 设计任务书 (一)设计的目的要求 通过本次设计的基本训练,进一步加深对路基路面工程有关理论知识的理解,掌握重力式挡土墙设计的基本方法与步骤。 将设计任务书、设计说明书及全部设计计算图表编好目录,装订成册。 (二)设计内容 ①车辆荷载换算; ②土压力计算; ③挡土墙截面尺寸设计; ④挡土墙稳定性验算。 (三)设计资料 1.墙身构造 拟采用细粒水泥混凝土砌片石重力式路堤墙(如草图1),墙高H =?m ,墙顶宽1b =?m ,填土高度2.4m ,填土边坡1:1.5,墙背仰斜,1:0.25(α=—14°02′),基底倾斜1:5(0α=—11°18′),墙身等厚,0b =7.0 m 。 2.车辆荷载 车辆荷载等级为公路—Ⅱ级,挡土墙荷载效应组合采用荷载组合Ⅰ、Ⅱ,路基宽度33.5m ,路肩宽度0.75m 。 3.土壤工程地质情况

路基路面工程授课教案

《路基路面工程》课程授课教案 课程编号:B03058 课程名称:路基路面工程/ 课程总学时/学分:64/4 (其中理论64学时,实验0学时,课程设计2周) 适用专业:土木工程(道路与桥梁工程方向) 一、课程地位 《路基路面工程》是土木工程专业路桥方向的一门必修的专业课。课程的主要特点是理论与实践并重,工程性较强,既要认真学习基本理论知识,又要注重工程实践。课程的目的是通过学习,使学生掌握路基路面工程的基本理论和基本知识,具有路基路面设计的基本能力。课程的任务,在于通过教学,培养学生灵活运用路基路面工程基本理论和基本知识,分析和解决路基路面工程实际问题的能力。 二、教材及主要参考资料 [1] 程培风等,路基路面工程,北京,科学出版社,2005年 [2] 万德臣,路基路面工程,北京,高等教育出版社,2005年 [3] 邓学均,路基路面工程,北京,人民交通出版社,2003年 [4] D30-2004,公路路基设计规范,北京,人民交通出版社,2004年 [5] 014-1997,公路沥青路面设计规范,北京,人民交通出版社,1997年 [6] D40-2002,公路水泥砼路面设计规范,北京,人民交通出版社,2002年 三、课时分配

四、考核方式与成绩核定办法 1. 考核方式:笔试 2. 成绩核定办法:期终考试占60﹪;平时成绩占20﹪;课程设计占20﹪; 五、授课方案 第一章绪论 1. 教学内容: (1)道路工程发展概况 介绍我国在公路自然区划、土的工程分类、路基强度与稳定性、高路堤修筑技术与支挡结构、软土地基稳定技术、岩石路基爆破技术、沥青路面结构、水泥混凝土 路面结构、柔性路面设计结构与方法、刚性路面设计结构与方法、半刚性路面结构、路面使用性能与表面特性及路面养护管理等方面取得的成绩。 (2)路基路面工程的特点 介绍路基路面工程的承载能力、稳定性、耐久性、表面平整度、表面抗滑性能等特点。 (3)影响路基路面稳定的因素

黑色路面施工整体解决方案

沥青混凝土路面工程施工方案 沥青混凝土路面施工中存在的工艺问题。结合现场施工,介绍沥青混合料转运车对改善沥青混合料温度和级配分布及路面施工质量的影响。根据沥青混凝土路面施工工艺及机械运行规律,提出了机群智能控制系统结构方案。 我国高速公路将仅次于美国,跃居世界第二位;2010年,“五纵七横”国道主干线将基本建成,到2020年,公路总里程将达到145万公里,其中高等级、次高级路面占公路总里程的50%以上。 在已通车的高速公路中,刚性和半刚性基层沥青路面约占80% 。与国外沥青路面相比较,我国沥青路面的整体质量不高,包括高速公路在内的绝大部分沥青路面在交付使用2~3年后就出现路面早期损坏,严重影响道路的使用率和通行率,同时带来巨大的经济损失。因此,提高沥青路面的施工质量,延长道路的使用寿命,已经成为我国公路行业发展的当务之急。 1、目前沥青路面施工中存在的问题 传统的沥青路面铺筑施工工艺是将沥青混合料设备生产的沥青混合料由自卸卡车运输到施工现场,并卸至沥青摊铺机的料斗中,经摊铺机进行摊铺后,由压路机对路面进行最终压实。国内外的施工实践证明,用这种传统工艺铺筑成形的路面早期破损现象比较严重,致使道路的维修费用大大增加,寿命缩短,使用率降低。造成路面早期损坏的主要原因有如下三个方面: (1)自卸车在装料、运输及卸料过程中导致沥青混合料出现三次材料离析和温度离析。 (2)因摊铺机料斗容量小、自卸卡车数量少等因素导致摊铺机停机待料,

摊铺工作不能连续进行,造成路面结合处粘接力及其他力学性能的差异。 (3)自卸车卸料时对摊铺机进行碰撞和顶推,造成的路面的横向接缝(即纵向波)。 影响沥青混凝土路面铺筑施工质量及施工成本的因素除施工工艺外,单机性能及机群协同性方面也有重要作用。在为沥青路面施工提供全新的控制与监测工具。整个控制系统由地面子系统(GSS)、定位子系统(PSS)和机载子系统(OBSS)组成[1]。 在国家863计划“机群智能化工程机械”重大专项经费支持下,以追求最终产品质量最优为目标,分别从“沥青路面施工工艺”、“单机智能化”和“机群监控与优化调度”三个方面,研究生产过程中各要素的约束机制及影响产品质量的工艺因素,寻求生产线中各环节的最优匹配与协调及单机最优状态调整的控制策略,旨在为施工企业和业主提供沥青路面施工的整体解决方案。 2、沥青混合料转运车及转运—摊铺工艺 为了提高沥青路面面层的施工质量,欧美国家提出了转运摊铺的施工工艺。三一重工股份有限公司在国内率先倡导这种工艺,并开发了国内第一台沥青混合料转运车LHZ25。 新工艺是在运料汽车与摊铺机之间增加转运车。转运车的二次搅拌使得在前面环节中造成的温度和级配离析的沥青混合料得到充分的拌合。同时,避免了运料汽车对摊铺机的碰撞。转运车的供料速度不受其它因素的干扰,保证摊铺机上的混合料数量始终是恒定的,拌和机和运料汽车在供料方面的不均衡通过转运车的料斗储存量得以调节,确保了摊铺机匀速稳定的摊铺,

中南大学有机化学考纲

中南大学硕士研究生“有机化学”考试大纲 本考试大纲由化学化工学院学院教授委员会于2011年7月7日通过。 I.考试性质 全国硕士研究生入学考试是为高等学校招收硕士研究生而设置的。有机化学属我校自行命题的考试。它的评价标准是高等学校优秀毕业生能达到的及格或及格以上水平,以保证被录取者具有较扎实的有机化学基础知识。 II.考查目标 有机化学是化学的重要分支,是许多学科专业的基础理论课程,它的内容丰富,有机化学考试在考查基本知识、基本理论的基础上,注重考查考生灵活运用这些基础知识分析和解决实际问题的能力。考生应能: 1.掌握各类有机化合物的命名法,有机化合物的各类异构现象,特别是立体异构。 2.掌握重要的有机化学反应:如取代、加成、氧化、还原、酯化、酰化、消除、缩合、脱羧、偶联、重排、周环化等反应,包括一些重要的人名反应。 3.掌握自由基取代、亲电取代、亲核取代、自由基加成、亲电加成、亲核加成反应机理和一些缩合、降解反应的机理。 4.能运用电子效应和空间效应,分析和理解结构与性质的关系。 5.熟悉各类化合物的制备,并能运用基本有机反应和理论,完成有机合成反应的设计、反应现象和机理的解释以及推断有机化合物的结构等。 6.熟悉基本杂环、常见糖类及氨基酸的结构和化学性质。 7.熟悉红外光谱、核磁共振谱的基本原理及其在测定有机化合物结构中的应用。8.熟悉有机化合物合成、分离纯化的基本原理、基本操作和基本方法。 Ⅲ.考试形式和试卷结构 1.试卷满分及考试时间 本试卷满分为150分,考试时间为180分钟 2.答题方式 答题方式为闭卷,笔试。 3.试卷内容结构 有机化学基本知识与基本理论约35% 基本有机反应约20% 有机合成约15% 有机反应机理约10% 推断有机化合物结构(含波谱分析)约10% 有机化学实验约10% Ⅳ.试卷题型结构 选择题、填空(如命名和完成有机反应)、问答题、有机合成、反应机理、推断结构、实验等 Ⅴ.考查内容

中南大学路基路面课程设计

中南大学土木工程学院 《路基路面工程》课程设计 学院:土木工程学院 班级: 学号: 姓名: 指导老师: 时间:2013年7月 ?目录 一、重力式挡土墙设计 第一部分设计任务书…………………………………………………

(一)设计内容和要求 (2) (二)设计内容 (2) (三)设计资料 (2) 第二部分设计计算书 1. 车辆换算荷载 (3) 2.主动土压力计算 (4) 3. 设计挡土墙截面 (8) 4. 绘制挡土墙纵横截面(附图1) (11) 二、衡重式挡土墙设计 第一部分设计任务书 (一)设计内容和要求 (12) (二)设计内容…………………………………………………………12 (三)设计资料 (12) 第二部分设计计算书 (13) 1. 车辆荷载换算 (1) 3 2.上墙土压力计算 (13) 3.下墙土压力计算…………………………………………………… 15 4. 墙身截面计算 (1)

5. 绘制挡土墙纵横截面图(附图2)………………………………21

一、重力式挡土墙 第一部分 设计任务书 (一)设计的目的要求 通过本次设计的基本训练,进一步加深对路基路面工程有关理论知识的理解,掌握重力式挡土墙设计的基本方法与步骤。 将设计任务书、设计说明书及全部设计计算图表编好目录,装订成册。 (二)设计内容 ①车辆荷载换算; ②土压力计算; ③挡土墙截面尺寸设计; ④挡土墙稳定性验算。 (三)设计资料 1.墙身构造 拟采用细粒水泥混凝土砌片石重力式路堤墙(如草图1),墙高H =?m ,墙顶宽1b =?m ,填土高度?m ,填土边坡1:1.5,墙背仰斜,1:0.25(α=—14°02′),基底倾斜1:5(0α=—11°18′),墙身等厚,分段长度10m ,0b =7.0 m 。 2.车辆荷载 计算荷载:汽车—20; 验算荷载:挂车—100。 3.土壤工程地质情况 墙后填土容重γ=18KN/m 3,内摩檫角?=35°,填土与墙背间的摩檫角 2 ? δ= ;粘性土地基,允许承载力[0σ]=250K pa,基底摩檫系数f =0.50。取荷载 组合I,抗滑稳定性系数[c K ]=1.3,抗倾覆稳定性系数[o K ]=1.5。 4.墙身材料 细粒水泥混凝土砌25号片石,砌体容重K γ=22KN/m 3; 砌体允许压应力[a σ]=600K Pa ,允许剪应力[τ]=100KP a,允许拉应力[l σ]=60KPa 。

土木工程路基路面课程设计

路基路面课程设计 目录 一、课程设计任务书 二、水泥路面工程设计 沥青路面设计 三、路基挡土墙设计

路基路面课程设计指导书 1.课程设计的目的 路基路面课程设计是对路基路面工程一个教学环节,通过路基路面课程设计使同学们能更加牢固地掌握本课程的基本理论、基本概念及计算方法,并通过设计环节把本课程相关的知识较完整地结合起来进行初步的应用,培养同学的分析、解决工程实际问题的能力。同时,通过课程设计,使同学对相关《设计规范》有所了解并初步应用。 2. 课程设计的内容 (1)重力式挡土墙设计:挡土墙土压力计算;挡土墙断面尺寸的确定; 挡土墙稳定性验算;挡土墙排水设计;绘制挡土墙平面、立面、断面图。(2)沥青混凝土路面设计:横断面尺寸的确定;路面结构层材料的选择; 路面结构层厚度的拟定及计算;路面结构层厚度的验算;分析各结构 层厚度变化时对层底弯拉应力的影响;绘制路面结构图。要求至少拟定 2个方案进行计算。 (3)水泥混凝土路面设计:横断面尺寸的确定;水泥混凝土路面结构层材料的选择;路面结构层厚度的拟定及层底拉应力的验算;确定水泥混凝土 路面板尺寸及板间连接形式;绘制水泥混凝土纵、横缝平面布置图和 水泥混凝土路面结构组合设计图。 3. 课程设计原始资料

(1)挡土墙设计资料 丹通高速公路(双向4车道)K28+156~ K28+260段拟修建重力式挡土墙,墙体采用浆砌片石,重度为22kN/m3。墙背填土为砂性土,重度为18kN/m3。地基为岩石地基,基底摩擦系数为0.5。结合地形确定挡土墙墙高(H)5m (K28+250),墙后填土高度(a)6m,边坡坡度1:1.5,墙后填土的内摩擦角为Φ=32o,墙背与填土摩擦角δ=Φ/2。 (1)新建水泥混凝土路面设计资料 1)交通量资料:据调查,起始年交通组成及数量见表;公路等级为一级公路,双向4车道;预计交通量增长率前5年为7%,之后5年为为6.5%,最后5年为4%;方向不均匀系数为0.5 2)自然地理条件:公路地处V3区,设计段土质为粘质土,填方路基 高3m,地下水位距路床3.5m。 润交通组成及其他资料 车型分类代表车型数量(辆/天) 小客车桑塔娜2000 2400 中客车江淮AL6600 330 大客车黄海DD680 460 轻型货车北京BJ130 530 中型货车东风EQ140 780 重型货车太脱拉111 900 铰接挂车东风SP9250 180 4.设计参考资料 (1)《公路沥青路面设计规范》 (2)《水泥混凝土路面设计规范》 (3)《公路路基设计规范》

路基路面教案(3章 一般路基设计)

第三章 一般路基设计 §3-1 路基设计的一般要求 路床:原路槽底面以下0-80cm 范围内的路基。行车荷载主要的应力作用区,其强度和稳定性要根据路基路面综合设计的原则确定。 路基设计的基本内容: 1、选择断面形式,确定路基宽与高 2 3、确定边坡形状与坡度 4、路基路面排水 5、坡面防护与加固 6、附属设施设计 一般路基特殊路基:超过规范规定的高填深挖路基;地质水文等条件特殊的路基。需进行单独设计和验算。 §3-2 路基的类型与构造 路基横断面的三种典型形式: 路堤:路基设计标高>天然地面标高,全部用岩土填筑 路堑:路基设计标高<天然地面标高,全部在天然地面开挖而成的路基 填挖结合路基:一侧开挖,另一侧填筑而成的路基 一、路堤 1、按填土高度 矮路堤:填土高度<1.0-1.5m p60图3-1 a ) 高路堤:填土高度>18m(土质)或20m(石质) 一般路堤:填土高度在1.5-18m 之间 b ) 2、条件和加固类型 浸水路堤 p60图3-1 c ) 护脚路堤 d ) 挖沟填筑路堤 e ) 3、矮路堤和一般路堤设计 ⑴ 平坦地区取土困难时选用。满足最小填土高度要求,不低于临界高度,处于干燥、中湿。设边沟 ⑵ 矮路堤<Za 时,路堤本身和天然地面都要稳定,压实度达标 ⑶ 保护填方坡脚不受流水侵害,在沟渠、坡脚间设护坡道,宽1~2m 或>4m ⑷ 自然横坡较陡时(一般陡于1:5),防止路堤沿山坡下滑,将天然地面挖成台阶或设置石砌护脚 4、高路堤和浸水路堤 ⑴ 填方量大,占地多;需个别设计 ⑵ 边坡采用上陡下缓的折线形或台阶形,如在边坡中部设护坡道 ⑶ 防止流水侵蚀、冲刷坡面,边坡要进行防护和加固

相关主题
文本预览
相关文档 最新文档