当前位置:文档之家› 化学法生产生物柴油与生物法生产生物柴油有何优缺点

化学法生产生物柴油与生物法生产生物柴油有何优缺点

化学法生产生物柴油与生物法生产生物柴油有何优缺点
化学法生产生物柴油与生物法生产生物柴油有何优缺点

化学法生产生物柴油与生物法生产生物柴油有何优缺点

随着石油日益枯竭和人们对环境的重视, 迫切需要寻找一种对环保的新的可再生能源以解决能源及环境问题, 在此背景下产生了生物柴油。生物柴油是指以动植物油脂等可再生的生物资源生产的可用于压燃式发动机的清洁替代燃油, 它是由一系列长链脂肪酸甲酯组成。到目前为止, 已有多种生产生物柴油的方法, 包括高温裂解法、酯交换法等化学法和用固定化酶法,全细胞催化剂法等生物技术法

1化学法生产生物柴油

化学法包括热烈解法、酯交换法等。

1.1 热裂解法

植物油热烈解是对植物油进行热裂解反应Schwab 和Pioch 分别在这一方面进行了探索,所得生物柴油的性能与普通柴油相接近。

1.2 酯交换法

酯交换法是目前生产生物柴油的主要方法。目前, 生物柴油主要是用化学法生产, 即用动物和植物油脂和甲醇或乙醇等低碳醇在酸或者碱性催化剂和高温( 230~ 250 ℃ ) 下进行转酯化反应, 生成相应的脂肪酸甲酯或乙酯, 再经洗涤干燥即得生物柴油。甲醇或乙醇在生产过程中可循环使用, 生产设备与一般制油设备相同, 生产过程中可产生10 % 左右的副产品甘油。目前生物柴油的主要问题是成本高, 据统计生物柴油制备成本的75 %是原料成本。因此, 用廉价原料及提高转化率从而降低成本是生物柴油能否实用化的关键。美国已开始通过基因工程方法研究高油含量的植物。日本采用工业废油和废煎炸油。欧州是在不适合种植粮食的土地上种植富油脂的农作物。但化学法合成生物柴油有以下缺点: 工艺复杂、醇必须过量, 后续工艺必须有相应的醇回收装置, 能耗高, 色泽深, 由于脂肪中不饱和脂肪酸在

高温下容易变质, 酯化产物难于回收, 成本高,生成过程有废碱液排放。

2生物法生产生物柴油

2.1 固定化脂肪酶

脂肪酶在水溶液中不稳定, 易失活, 因此常用固定化脂肪酶。将酶固定在合适的载体上, 催化结束后便能很容易地从反应混合物中分离出来, 简化了下游工艺。另外, 载体的支撑使酶稳定性及最佳温度提高, 增大了转化率, 缩短了反应时间。酶的高稳定性还能降低失活率, 使酶能被重复利用。。Du 等报道了载体的另一有利影响, 载体材料能影响酰基对酶的有效性, 如1, 3-氯代脂肪酶理论上转化率只能达到66% , 但在基质上却转化了90% 以上。固定化技

术可分为吸附、截留、封装和交叉链接。最常用的是基于范德华力或其他弱作用力的表面吸附技术, 此法简单, 成本低, 不含有毒化学物质,酶活性易保持且在酯交换后还能恢复。用于吸附脂肪酶的载体材料中丙烯酸树脂是最常用的,另外还有大孔树脂、硅胶、硅藻土等, 甚至还有纺织薄膜。用吸附法时所有植物油的转化率普遍高于90%。

酶的交叉链接是固定化的合适方法。通过多功能化学物质的反应可实现分子间的交叉链接, 如戊二醛、环己烷二异氰酸盐与酶分子,总量较小,但稳定性提高。Kumari 等报道了P-洋葱假单胞菌的交叉链接在紫藤木印迪卡油与乙醇酯交换上的应用, 收率为92%。交叉链接脂肪酶形成粒度只有10 um 的无基质聚合物,在非均匀反应系统中使用会加大产物分离的难度。将不同的固定化方法结合起来, 能够克服只使用一种方法带来的问题。Yadav 等将C-南极脂肪酶吸收进六角中孔二氧化硅中, 用海藻酸钙密封, 对氯苯甲醇和乙烯基乙酸盐进

行酯交换反应[。这种固定化杂化酶系统的转化率为68%, 活性消耗仅为4%, 且有极好的可重复利用性。该系统结合了蛋白质载体吸收及密封技术的优点, 因为它提供了稳定的类似笼子的保持架, 有助于酶限制和酶溶滤作用。

2.2 全细胞催化剂

酶催化的酯交换反应, 尤其当使用固定化脂肪酶时耗能少, 利于甘油的分离和生物催

化剂的回收; 但转化率低,分离、纯化及酶的固定化成本高。所以全细胞生物催化剂如丝状真菌、酵母菌和细菌就成为较好的替代品, 能有效利用成本, 至少能节约分离和纯化的成本。丝状真菌能合成胞内和胞外脂肪酶, 且菌体健壮, 是生产生物柴油较有潜能的一类菌。另外, 产脂肪酶的真菌能被固定在支持包上作为全细胞生物催化剂。华根霉能自发产胞内脂肪酶, 在初期细胞培养中可被固定在支持包上, 利于其从反应混合物中分离及再利用。真菌细胞壁部分降解及被膜束缚的脂肪酶的释放能增大酶活性。进行预处理后用乙醇作为酰基受体, 在庚烷中用冻干细胞作催化剂对乙基己酸盐进行酯化, 可得最大转化率93%。

R-米曲霉被广泛用作全细胞生物催化剂, 将R-米曲霉的菌丝体固定在用聚氨酯做的支持包上对豆油进行甲基分解, 研究不同培养条件下的反应活性。当使用橄榄油或十八烯酸并阶梯式地添加甲醇时可得最佳效果。R-米曲霉的细胞稳定, 用戊二醛交叉链接后能多次利用。固定化细胞有时会从载体上脱离, 因此反应混合物的流动性大。脂肪酶被固定在载体上降低了膜的束缚, 因此增大了细胞内脂肪酶的含量和活性。反应可通过重复的批次回收处理进行优化。

3 总语

目前生产生物柴油主要是依靠化学催化, 生物技术还难以实现商业化应用。主要原因是酶的制备成本较高、易失活、循环再利用的次数少等, 致使总成本过高。要增大循环利用, 可使用从常见有机体如酵母菌中提取的脂肪酶。应用固定化酶和细胞可简化催化剂的分离,可以用吸附法来固定酶。用密封和截留固定酶使催化剂更稳定, 但限制了酶的扩散。这些因素还有待进一步优化处理。用作碳源的基质及用于醇解反应的醇是主要的成本来源。应用全细胞催化剂可降低这些成本。此外, 可以将研究重点放在寻找合适的菌株或用基因工程获得重组菌株, 得到具有新的化学性质的全细胞催化剂。用代谢工程可大量生产脂肪酸和醇, 为反应提供足够的酰基受体。

值得注意的是用生物酶来催化酯交换反应能克服化学法生产的很多缺点。酶催化法对原料要求低, 游离脂肪酸可被脂肪酶直接酯化, 反应条件温和, 不受水和游离脂肪酸的影响, 乙醇/ 油比率较低, 产物易回收, 且无需从催化剂残留物中提取纯化; 不需对原种油进行预处理, 因为原种油中所含的游离脂肪酸可以完全转化成生物柴油; 副产物甘油与脂肪酸酰基酯不互溶, 因此易回收。

地沟油制备生物柴油的技术方法

同时使0号柴油的闪点提高,凝点和冷滤点降低,使储运过程更加安全,低温性能得到改善,有利于在更宽的温度范围内使用,可以满足使用要求。

地沟油酸催化法制备生物柴油是利用地沟油与甲醇或乙醇等低碳醇在酸性催化剂条件下进行酯交换反应,生成相应脂肪酸甲酯或乙酯。姚亚光等以酸作为催化剂,首先对地沟油进行除杂、脱胶、脱色、脱水的预处理,在酸催化条件下利用地沟油制备生物柴油,通过对地沟油与甲醇、乙醇酯化反应进行正交实验,实验确定了酸催化地沟油制备生物柴油的最佳反应条件为:甲醇温度为70 ℃,油醇摩尔比为1∶40,催化剂浓度为7%,反应时间为6小时,级差顺序依次是:油醇摩尔比、反应时间、催化剂浓度、温度;乙醇温度为80 ℃,油醇摩尔比为1∶30,催化剂浓度为5%,反应时间为6小时,级差顺序依次是:油醇摩尔比、温度、催化剂浓度、反应时间。通过该方法制备出性质优良的生物柴油。主要优点有:良好的可燃性(十六烷值)、蒸发性(馏程及馏出温度)、安全性(闪点),黏度和冷凝点温度,对发动机的腐蚀性(酸度和酸值),热值。该实验制备的生物柴油在很多方面具有普通柴油无法比拟的优越特性。 付严等以地沟油为原料,研究了地沟油和甲醇在三段式反应器中固定化脂肪酶上合成生物柴油。对地沟油的酸值、皂化值以及水含量进行了检测。考察了进料流速、溶剂、水含量对反应的影响。在40 ℃,正己烷作溶剂,添加水含量为地沟油质量的20%,每一段反应器中添加的甲醇与地沟油的摩尔比为1∶1时,生物柴油产率为94%。 陈英明等将地沟油通过过滤、脱胶、脱色、脱水等预处理后,与甲醇、正己烷、水等按一定比例通过搅拌器混合均匀,用蠕动泵输送到填充片状固定化酶的反应器顶部,滴入反应器内,恒温循环水浴。将三支反应器串联起来形成一个三级反应系统,每一级反应器进料的油醇摩尔比均为1∶1,每级反应的产物及时去除副产物甘油。将反应产物通过水洗、蒸馏等除去甲醇、水和正己烷,得到粗制生物柴油。以该方法制备的生物柴油,采用GC-2010型气相色谱仪和QP2010型色质联用仪对该生物柴油作定性分析,运用GC-MS方法确定生物柴油中脂肪酸甲酯、游离脂肪酸和甘油酯类的位置,由此确定GC色谱图中各种成分及其含量,并通过面积法和内标法测定生物柴油的转化率和产率,最终得到地沟油酶法制得的生物柴油转化率达到93.53%、产率为77.45%。 李为民等以地沟油为原料制备生物柴油,先通过预酯化把地沟油酸值降低到2±1 mg KOH/g,再进行酯交换制备生物柴油,通过正交试验得到地沟油预酯化反应的最佳条件是:浓硫酸用量为2%、甲醇用量为16%、反应 温度75 ℃、反应时间4 小时;地沟油酯交换反应的最优工艺条件是:甲醇20%、KOH用量1%、反应温度65 ℃、反应时间2 小时,且制备所得的生物柴油达到国家生物柴油标准要求。 张爱华等利用多元醇的预酯化技术对地沟油进行处理,以碱性离子液体1-甲基-3-丁基咪唑氢氧化物为催化剂制备生物柴油。考察了离子液体的用量、醇与油物质的量比、反应温度和反应时间对酯交换反应的影响。结果显示,以地沟油制备生物柴油的工艺条件为:醇与油物质的量比为8∶1、反应温度70 ℃、反应时间110 分钟、催化剂用量为原料油质量的3.0%。在此条件下,脂肪酸甲酯转化率为95.7%。实验考察了甘油加入量、反应温度、反应时间对预酯化反应的影响,同时考察了催化剂用量、醇油摩尔比、反应温度、反应时间对酯交换反应的影响。通过正交试验确定了地沟油预酯化—酯交换反应制备生物柴油的最佳反应条件。陈安等根据地沟油酸值高的特点,采用固酸、固碱两步非均相催化法开发生物柴油。此法避免了均相酸法耐酸设备价格高、反应时间长、酯化率低、有废水等缺点;克服了均相碱催化酯交换反应对高酸值地沟油易皂化、得率低、产生大量废水等弊病;同时,也弥补了两步均相法产生大量废水、影响环境的不足。通过试验确定了该方法的最佳实验条件为:反应时间2.5 小时,醇油摩尔比10∶1,固碱催化剂为油重的2.0%,助溶剂四氢呋喃为3%,反应温度71 ℃。此时酯化率在96%以上。 超临界酯交换反应即无催化的酯交换反应。当甲醇 地沟油超临界法生产生物柴油

生物柴油生产工艺

生物柴油的制备方法主要有 4 种: 直接混合法( 或稀释法) 、微乳化法、高温热裂解法和酯交换法。前两种方法属于物理方法, 虽简单易行, 能降低动植物油的黏度, 但十六烷值不高, 燃烧中积炭及润滑油污染等问题难以解决。高温裂解法过程简单,没有污染物产生, 缺点是在高温下进行, 需催化剂,裂解设备昂贵, 反应程度难控制, 且高温裂解法主要产品是生物汽油, 生物柴油产量不高。酯交换法又分为碱催化酯交换法、酸催化酯交换法、生物酶催化酯交换法和超临界酯交换法。酯交换法是目前研究最多并已工业化生产的方法但生物酶催化酯交换法目前存在着甲酯转化率不高, 仅有40%~60%, 短链醇( 甲醇、乙醇) 对脂肪酶毒性较大,酶寿命缩短; 生成的甘油对酯交换反应产生副作用,短期内要实现生物酶法生产生物柴油, 还是比较困难。超临界酯交换法由于设备成本较高, 反应压力、温度也高, 一程度上影响了该技术的工业化, 目前主要处于试验室研究阶段。 1 生物柴油生产工艺 目前, 国内采用的原料主要有地沟油、酸化油、混合脂肪酸、废弃的植物和动物油等, 根据不同的原料应采用不同的工艺组合来 生产生物柴油。因目前国内企业的日处理量不是很大( 大多为5~50t /d 不等) , 酯交换( 酯化) 工序一般采用反应釜间歇式的; 分离、水洗工序有采用罐组间歇式的, 也有采离心机进行连续分离、水洗的。 1 地沟油制取生物柴油 地沟油水分大、杂质含量多, 酸值较高, 酸值一般在20(KOH)

/(mg/g) 油左右。由地沟油制得的生物柴油颜色较深, 一般需经过脱色或蒸馏工序、添加剂调配工序处理。 碱法催化制备生物柴油工艺流程 氢氧化钠→甲醇粗甘油→脱溶→精制→甘油 ↓↑ 地沟油→过滤→干燥→酯交换→分离→脱溶→水洗→干燥→生物柴油 2酸化油制取生物柴油 酸化油的机械杂质含量较大( 如细白土颗粒) , 酸值一般在80~160(KOH) /(mg/g) 油间, 国内有一步酸催化法和先酸催化后碱催化两步法来制备生物柴油。因酸化油中含有一定量的悬浮细白土颗粒及胶杂, 在反应过程易被硫酸炭化, 在反应釜底部会有一定量的黑色废渣。在酯化反应过程国内有采用均相反应的, 也有采用非均相反应的, 各有利弊。均相反应( 反应体系温度60~65℃) 甲醇在体系内分布均匀, 接触面积大, 利于参与反应, 但生成的水没有带走, 阻碍反应进程; 非均相反应( 反应体系温度105~115℃) 甲醇以热蒸汽形式鼓入, 可以带走一部分生成的水, 有利于反应进程, 以及免去反应釜的搅拌装置, 但甲醇气体在油相的停留时间短、接触面积小, 不利于参与反应,需要更多的热能和甲醇循环量。由酸化油制得的生物柴油颜色也较深, 一般需经过脱色或蒸馏工序、添加剂调配工序处理。一步酸催化制备生物柴油工艺流程:

菜籽油制备生物柴油性能试验研究与分析

菜籽油制备生物柴油性能试验研究与分析 摘要:本文是对菜籽油制备的生物柴油的理化性能及燃烧性能进行测试研究。以菜籽油为原料,通过酯交换法制备生物柴油,与0#柴油部分理化性能指标的对比,通过对比各项指标都已达到国家指标,对三种掺混比例生物柴油混合燃料进行了发动机台架试验,结果表明:掺烧生物柴油的混合燃料时燃油消耗率、co排放略有升高,hc排放明显低于0#柴油。菜籽油制备的生物柴油可以满足替代石化柴油的要求。 关键词:菜籽油;生物柴油;柴油发动机;排放 abstract: in this paper the preparation of rapeseed oil is the physico-chemical properties of the biodiesel and combustion performance testing research. to rapeseed oil as raw material, through the ester exchange method for biological diesel, and 0 # diesel part of the performance indexes of physical and chemical contrast, through comparing various indicators have reached national indexes, the three kinds of the mixing proportion of biodiesel fuel mix the diesel engine test, the result shows that the content of the mixed fuel burn biodiesel fuel consumption, co emissions when a slightly increased, hc emissions significantly lower than 0 # diesel. the preparation of rapeseed oil biodiesel can meet

微生物酶在制浆造纸工业中的应用

微生物酶在制浆造纸工业中的应用 制浆造纸工业是我国的国民经济重要支柱产业之一,也是我国环境污染的主要行业之一。随着生物技术的发展,微生物酶在制浆造纸工业中的应用也受到学者的重视及关注。文章综述了微生物酶在制浆、纸浆漂白及造纸废水处理等各工艺中的应用并展望了其前景。 标签:微生物酶;造纸工业;降低污染 制浆造纸工业是国民经济的重要支柱产业之一,但也是我国污染环境的主要行业之一,而我国的纸品需求仍在以每年10%的速度递增,预计到2015年,纸产量达1亿吨以上,所以以微生物技术运用于造纸行业,减少能源和化学品的消耗,提高纸浆得率,降低造纸废液对生态环境和人类健康所造成的危害等问题的研究已逐渐成为学者们研究的热题。 1 微生物酶运用于制浆 在自然界中,有些微生物种群能选择性地分解木质素化合物,在传统化学或机械制浆前采用专一性微生物对造纸材料进行适当的预处理,用温和的酶解替代高温碱解,用生物转化代替化学转化,不但减少了化学试剂的用量,而且可以有效地降低机械消耗,节约能源。 1.1 漆酶在制浆中的应用 造纸厂的煮浆过程就是用化学药品溶出、脱除木素的过程,一般的化学制浆,不但成本高、能耗大,而且对环境污染也较为严重。而使用由白腐菌生产的漆酶将原料的木素降解成低分子木素,增加了木素的溶出和被抽提的能力,从而实现木素与纤维素、半纤维素的分离。用漆酶和介体HBT在蒸煮前对麦草进行预处理,可降低纸浆的Kappa值,提高纸浆的白度和强度[1]。Jujop的研究表明,在20~90%,pH值2-10条件下用漆酶进行预处理,可以对原料中的木素进行改性,磨浆能耗明显降低,每吨浆能耗1300kW·h降至850kW·h,节省动力约30%,且机械浆的物理性能得到改善,纸浆质量达到化学热磨机械浆的水平[2]。 1.2 纤维素酶在制浆中的应用 在机械制浆前加化学预处理,除去或改变一部分木素结构,可以改善纸浆的强度,但降低了纸浆的得率,损害了纸浆的光学特性,废水的排放量和污染负荷也相应增加,而经由木霉所产出的纤维素和半纤维素酶处理则结合了机械法制浆和化学机械法制浆的优点,克服其缺点,除了可以增加纸浆的强度性能之外,还能显著降低机械磨浆时的能量消耗[3]。 2 微生物酶用于纸浆漂白

阿托伐他汀酶法生产工艺

阿托伐他汀酶法生产工艺 本生物法制备阿托伐他汀原料药,为目前国内最新工艺,仅有两家运用,一家为生产,另一家处于中试阶段。可直接购买A6或A5开始,国内A6或A5已经规模生产,因此成本较自己再合成成本更低。三种酶在国内苏州汉酶有限公司有商品出售,酶代号为供应商代号,若进行战略合作,则全程技术服务可与之深谈。 ATS-6生产工序 一.配比 ATS-5 146.6kG 苯乙烯212.5L (在冷库存放)温度高会聚合 THF 173+104kg 二异丙胺381kg 乙酸叔丁酯406kg 甲基叔丁基醚170+920+1900kg 金属锂26kg 15%盐酸1900+(150-360)L 碳酸氢钠0.5kg 水450+260 ATS-7酶法工艺 一.配比

1.碳酸钠 50kg 2.纯化水 400+400+20L 3.三乙醇胺 8kg 4.15%盐酸适量 5.硅藻土 40kg 6.活性炭 60kg 7.乙酸乙酯 800+400+400+400L 8.饱和盐水 200+200 9.ATS-6 250-300kg(相对146kgATS-5) 10.酶YK 260*1/催化率*0.8 11.酶YM 260*1/催化率*0.9 12.酶YN 260*1/催化率*0.9 ATS-8制备工艺 一.配比 1.ATS-7 一整批(240-280) 2.甲苯 330+460+900L 3.丙烷 260kg 4.甲基磺酸 1.35-2.7L 5.碳酸氢钠 3.3kg 6.水 320+400+400 7.己烷 750L

ATS-8一精 一.配比 1.ATS-8粗品 4批约620-880kg 2.己烷 1400-1500L 3.乙醇 -1 160kg(套用母液加40-80kg) 4.活性炭 9kg 5.己烷乙醇混合液 20L(3:1) ATS-8二精 一.配比 1.AT S-8一精物一整批约600kg 2.己烷-1 1000-1100L 3.乙醇-1 60-120kg 4.乙醇-2 20kg 5.己烷-2 20L 套用母液总收率可以达到100%,按以上投料量月正常生产可以产出9t成品;二异丙胺,乙酸叔丁酯,甲基叔丁基醚可以上塔回收,乙酸乙酯,甲苯,己烷可以套用。 卢红生 2014年3月2日

生物柴油的常用原料

生物柴油 概念:生物柴油,又称脂肪酸甲酯,是植物柴油和动物柴油的总称,不含硫和芳烃,十六烷值高,且润滑性能好 常用原料:油菜籽油、大豆油、玉米油、棉籽油、花生油、葵花子油、棕榈油、椰子油、回收烹饪油及动物油等 主要成分:混和脂肪酸甲酯 合成:由甲醇等醇类物质与天然植物油或动物脂肪中主要成分甘油三酸酯发生酯交换反应 低温流动性参数:浊点(CloudPoint)、 冷滤点(Cold Filter Plugging Point):生物柴油可以使用的最低温度 倾点(PourPoint)、生物柴油刚刚可以流动的最低温度 冷凝点(Solidification Point): 影响因素:1.脂肪酸的组成与分布 生物柴油的主要成分是混合脂肪酸甲酯,不同的脂肪酸甲酯低温流动性能差别很大,主要受碳链长度、不饱和程度、支链程度以及不饱和脂肪酸甲酯的立体构型影响。脂肪酸甲酯的熔点随碳链的长度增加而增加,并随其不饱和程度的增加而降低,据报道碳链数都是18的硬脂酸甲酯和油酸甲酯熔点分别为39.1 和- 19.8 ℃,两者的熔点相差约59℃;含支链的分子越多,低温性能越好。此外,不饱和脂肪酸甲酯的立体构型也对其低温流动性能有很大影响,顺式油酸甲酯与反式油酸甲酯凝点、黏度等低温性能相差很大。由于不同脂肪酸甲酯低温流动性能不同

2.酯基结构 生物柴油中的酯基一般是甲基或乙基,相对于柴油有较高结晶温度 3.杂质的影响 这些杂质包括:合成原料中含有的高熔点甘油二酯、甘油单酯;生物柴油转化过程中反应不完全的甘油三酯、醇类、游离脂肪酸等以及生物柴油转化中产生的皂化物等。研究发现,尽管倾点不受影响,但浊点随甘油单酯、甘油二酯的增加而升高;浓度为0.1%饱和甘油单酯或甘油二酯能使浊点升高,不饱和的甘油单酯对浊点及倾点都没有影响。 改善方法: 1.加入流动改进剂法 2.调和柴油法 3.生物柴油的异构化 4.冬化处理 添加降凝剂 机理 1.成核理论 成核理论认为,由于降凝剂分子的熔点相对高于油品中蜡的结晶温度,它会在油品的浊点(CP )以前析出而起到晶核、活性中心或结晶中心的作用而成为蜡晶生长中心,使油品中小蜡晶增多,从而达到降低冷凝点(PP )或冷滤点(CFPP )的效

生物酶在造纸中的应用

生物酶在造纸中的应用文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

生物酶在造纸中的应用 制浆造纸工业是国民经济的重要支柱产业之一,但也是森林、能源、化学品等资源消耗和环境污染的大户。全球的造纸工业每年要砍伐数亿立方米的林木,而其中约半数变为废弃物又被排回了周围的大气和水流中,给人类生存的生态环境造成了巨大威胁和危害。减少能源和化学品消耗、提高纸浆得率、污水生物处理等都是克服上述困难的根本途径。而生物技术恰恰在这些方面都是可以大有作为的。 1、前言 近年来生物技术在纸浆造纸工业中取得了突飞猛进的发展,在制浆造纸工业中使用的生物酶主要有:纤维素酶、半纤维素酶、木聚糖酶、淀粉酶、脂肪酶等。这些酶在制浆、漂白、脱墨、树脂控制、改善纤维性能等方面发挥着重大的作用。 2、生物酶的应用 2.1 生物制浆 经过生物酶降解的原料,结合化学、机械制浆再进一步分离出纤维原料的过程叫生物制浆。不同的原料会用到不同的生物酶。如韧皮纤维会有果胶质,可选用果胶酶分解果胶质,释放出纤维素。而草浆和木浆均含有较多的木素,可以通过木素降解与化学制浆、机械制浆相结合的方式来制浆。生物制浆的基本生产工艺:木片→酶处理→化学或机械制浆生物化学浆和生物机械浆具有能耗低、环境压力轻、耗碱量大幅下降、强度性能好。 2.2 生物漂白

用于纸浆漂白的酶主要有半纤维素酶和木素降解酶,半纤维素酶包括木聚糖酶和聚露糖酶。木素降解酶主要有木素过氧化物酶、锰过氧化物酶和漆酶。生物漂白的目的主要是少用化学漂白剂来改善纸浆的性能和减少漂白的污染。聚木糖酶用于纸浆的漂白预处理能够提高纸浆的白度、降低漂剂用量和漂白段废水的污染负荷,对浆的粘度和成纸强度无不利影响。对于那些大量使用二氧化氯和双氧水的漂白工艺而言,能够显着降低生产成本。但是,从其助漂机理中我们可以看出,聚木糖酶在纸浆漂白中的作用只是助漂,而不能完全取代化学漂剂,也无法从根本上消除漂白污水的产生,还需要进一步开发能够直接降解浆中残余木素的酶。聚木糖酶辅助漂白的发展趋势是培育出具有高温和碱性环境下稳定且显示生物活性的酶,因为硫酸盐浆在蒸煮后的温度高达 95℃,pH 值为 12- 13 或更高,而且这种条件在脱木素的整个过程中基本不变。因而,为了能使酶在蒸煮或是氧脱木素并洗涤后直接加入到浆中而不需要降低浆的温度和 pH 值,这就需要木聚糖酶具有耐高温和碱性的能力,耐高温耐碱的聚木糖酶是很有应用前景的生物制剂。木素过氧化物酶预处理能增加残余木素中的紫丁香基结构单元、对羟苯基、甲氧基、酚羟基以及小分子质量木素的降解溶出,增强木素的反应活性,为双氧水漂白提供了有利条件,可强化漂剂与木素酚型结构单元和紫丁香基结构单元的反应,使得发色基团、助色基团减少,木素溶出量增加,溶出木素分子质量明显增大,纸浆白度提高,结晶度增加。木素过氧化物酶在过氧化氢存在且浓度为 0.1mol/L 左右的条件下才能氧化和降解木

化学法生产生物柴油与生物法生产生物柴油有何优缺点

化学法生产生物柴油与生物法生产生物柴油有何优缺点 随着石油日益枯竭和人们对环境的重视, 迫切需要寻找一种对环保的新的可再生能源以解决能源及环境问题, 在此背景下产生了生物柴油。生物柴油是指以动植物油脂等可再生的生物资源生产的可用于压燃式发动机的清洁替代燃油, 它是由一系列长链脂肪酸甲酯组成。到目前为止, 已有多种生产生物柴油的方法, 包括高温裂解法、酯交换法等化学法和用固定化酶法,全细胞催化剂法等生物技术法 1化学法生产生物柴油 化学法包括热烈解法、酯交换法等。 1.1 热裂解法 植物油热烈解是对植物油进行热裂解反应Schwab 和Pioch 分别在这一方面进行了探索,所得生物柴油的性能与普通柴油相接近。 1.2 酯交换法 酯交换法是目前生产生物柴油的主要方法。目前, 生物柴油主要是用化学法生产, 即用动物和植物油脂和甲醇或乙醇等低碳醇在酸或者碱性催化剂和高温( 230~ 250 ℃ ) 下进行转酯化反应, 生成相应的脂肪酸甲酯或乙酯, 再经洗涤干燥即得生物柴油。甲醇或乙醇在生产过程中可循环使用, 生产设备与一般制油设备相同, 生产过程中可产生10 % 左右的副产品甘油。目前生物柴油的主要问题是成本高, 据统计生物柴油制备成本的75 %是原料成本。因此, 用廉价原料及提高转化率从而降低成本是生物柴油能否实用化的关键。美国已开始通过基因工程方法研究高油含量的植物。日本采用工业废油和废煎炸油。欧州是在不适合种植粮食的土地上种植富油脂的农作物。但化学法合成生物柴油有以下缺点: 工艺复杂、醇必须过量, 后续工艺必须有相应的醇回收装置, 能耗高, 色泽深, 由于脂肪中不饱和脂肪酸在 高温下容易变质, 酯化产物难于回收, 成本高,生成过程有废碱液排放。 2生物法生产生物柴油 2.1 固定化脂肪酶 脂肪酶在水溶液中不稳定, 易失活, 因此常用固定化脂肪酶。将酶固定在合适的载体上, 催化结束后便能很容易地从反应混合物中分离出来, 简化了下游工艺。另外, 载体的支撑使酶稳定性及最佳温度提高, 增大了转化率, 缩短了反应时间。酶的高稳定性还能降低失活率, 使酶能被重复利用。。Du 等报道了载体的另一有利影响, 载体材料能影响酰基对酶的有效性, 如1, 3-氯代脂肪酶理论上转化率只能达到66% , 但在基质上却转化了90% 以上。固定化技 术可分为吸附、截留、封装和交叉链接。最常用的是基于范德华力或其他弱作用力的表面吸附技术, 此法简单, 成本低, 不含有毒化学物质,酶活性易保持且在酯交换后还能恢复。用于吸附脂肪酶的载体材料中丙烯酸树脂是最常用的,另外还有大孔树脂、硅胶、硅藻土等, 甚至还有纺织薄膜。用吸附法时所有植物油的转化率普遍高于90%。 酶的交叉链接是固定化的合适方法。通过多功能化学物质的反应可实现分子间的交叉链接, 如戊二醛、环己烷二异氰酸盐与酶分子,总量较小,但稳定性提高。Kumari 等报道了P-洋葱假单胞菌的交叉链接在紫藤木印迪卡油与乙醇酯交换上的应用, 收率为92%。交叉链接脂肪酶形成粒度只有10 um 的无基质聚合物,在非均匀反应系统中使用会加大产物分离的难度。将不同的固定化方法结合起来, 能够克服只使用一种方法带来的问题。Yadav 等将C-南极脂肪酶吸收进六角中孔二氧化硅中, 用海藻酸钙密封, 对氯苯甲醇和乙烯基乙酸盐进 行酯交换反应[。这种固定化杂化酶系统的转化率为68%, 活性消耗仅为4%, 且有极好的可重复利用性。该系统结合了蛋白质载体吸收及密封技术的优点, 因为它提供了稳定的类似笼子的保持架, 有助于酶限制和酶溶滤作用。 2.2 全细胞催化剂 酶催化的酯交换反应, 尤其当使用固定化脂肪酶时耗能少, 利于甘油的分离和生物催

酶法合成阿莫西林原理

酶法合成阿莫西林介绍 β-内酰胺抗生素经过多年的发展,己成为抗生素中的最主要类型之一。由于具有良好的抗菌效力,较低的毒副作用,在临床上广泛应用,其发展非常迅速。现全世界耗用量已过万吨,预计今后还会增长。其中,青霉素和头孢菌素为最重要的两大类β-内酰胺抗生素。酶法合成技术始于20世纪60年代末70年代初,经过30多年的发展,现在酶缩合反应技术、产品分离以及固定化酶技术等方面取得很大的发展,配套技术日益完善,具备了大规模工业化生产的条件。全球著名的β-内酰胺抗生素生产厂家如荷兰DSM公司已有酶法合成的商品头孢氨苄、阿莫西林等产品面世。由于酶法应用于β-内酰胺抗生素合成,不仅可减少反应步骤,而且还可减少废弃物的产生,有利于保护环境,降低生产成本,产品质量优异,所含杂质极少。因此,21世纪β-内酰胺抗生素的酶法合成将是发展的必然趋势。我国酶法合成研究起步并不晚,但至今仍未形成大规模工业化生产,与国外先进厂家差距较大。随着我国经济快速发展,人们对自身居住环境的要求,政府对环保的重视,政府和越来越多的企业加大“绿色化学制药”的研究开发,特别是加快工业化生产的推进进程。 酶法产品主要有三大特点: 一是产品含量稳定、变化小,可降低制剂在有效期内的检测风险,并且杂质低,降解速度慢,对制剂的安全性,尤其是特殊制剂的稳定性尤为重要。 二是酶法产品生产批量能够达到化学法产品的2~3倍,这既能够大幅度节省制剂生产商的检验成本,粗略估算原料检测成本能够节约人民币9元/kg;同时,也便于物流、仓储和生产管理。 三是酶法产品是通过生物酶一步到位生产而得,以纯净水为介质,不使用传统化学工艺中的特殊化工原料,有机溶剂的使用量大幅度减少90%,废水排放减少80%,品质更纯净。 1 青霉素酰化酶的发展 青霉素酰化酶是从微生物或其代谢产物中发现的一类具有特定活性的蛋白质。能够产生青霉素酰化酶的微生物广泛分布于细菌、放线菌、真菌和酵母中,如:醋酸杆菌、假单胞菌、粪产碱菌、黄单胞菌、产气单胞菌、大肠杆菌、芽孢杆菌、枝状杆菌、克氏梭菌( Kluyvera) 等,其中常用的有巴氏醋酸杆菌、粪产碱

生物柴油生产工艺

学院:化学与环境保护学院专业:化学工程与工艺 姓名:朱慧芳 学号:201031204011

新型藻类制生物柴油生产工艺 摘要:我国石油资源紧缺,研究开发生物柴油是当务之急。结合我国情况介绍了几种可用于生产生物柴油的原料,并针对不同的原料,提出了几种可供使用的生产工艺。用泔水油、地沟油和油厂下脚料等原料生产生物柴油工艺成熟、经济合算, 值得推广。为适应我国生物柴油的研究与生产,建议加快制定我国生物柴油的相关标准。 关键词:生物柴油;酯化;醇解;酯交换;脂肪酸;脂肪酸甲酯 一生物柴油概述 生物柴油 (Biodiesel),又称脂肪酸甲酯 (Fatty Acid Ester)是以植物果实、种子、植物导管乳汁或动物脂肪油、废弃的食用油等作原料,与醇类 (甲醇、乙醇) 经交酯化反应 (Transesterification reaction) 获得。生物柴油这一概念最早由德国工程师Dr. Rudolf Diesel (1858-1913) 于1895年提出,是指利用各类动植物油脂为原料,与甲醇或乙醇等醇类物质经过交脂化反应改性,使其最终变成可供内燃机使用的一种燃料。在1900年巴黎博览会上Dr.Rudolf Diesel展示了使用花生油作燃料的发动机。生物柴油具有一些明显优势,其含硫量低,可减少约30%的二氧化硫和硫化物的排放;生物柴油具有较好的润滑性能,可以降低喷油泵、发动机缸体和连杆的磨损,延长其使

用寿命;生物柴油具有良好的燃料性能,而且在运输、储存、使用等方面的安全性均好于普通柴油。此外生物柴油是一种可再生能源,也是一种降解性较高的能源。 二生产生物柴油背景技术市场分析 1生物柴油原料 由于各国的资源差异,生物柴油的原料差异较大,欧盟主要是菜籽油为主,美国主要是以大豆油为主。我国主要生物柴油主要以废弃油脂以及木本原料为主,并在价格合适的情况下考虑进口棕榈油。 2 生物柴油的优缺点 (1)生物柴油优势 与常规柴油相比,生物柴油下述具有无法比拟的性能。 1) 具有优良的环保特性。主要表现在由于生物柴油中硫含量低,使得二氧化硫和硫化物的排放低,可减少约30%(有催化剂时为70%);生物柴油中不含对环境会造成污染的芳香族烷烃,因而废气对人体损害低于柴油。检测表明,与普通柴油相比,使用生物柴油可降低90%的空气毒性,降低94%的患碍率;由于生物柴油含氧量高,使其燃烧时排烟少,一氧化碳的排放与柴油相比减少约10%(有催化剂时为95%);生物柴油的生物降解性高。 2) 具有较好的低温发动机启动性能。无添加剂冷滤点达-20℃。 3) 具有较好的润滑性能。使喷油泵、发动机缸体和连杆的磨损率低,使用寿命长。 4) 具有较好的安全性能。由于闪点高,生物柴油不属于危险品。因

生物柴油的制备

由菜籽油制备生物柴油的实验方案 化强0601 石磊丁佐纯 目录 一.文献综述 1.生物柴油简介 2.目前制备生物柴油的方法 3.本实验所采用的制备方法及各实验参数的选择及其理论依据 二.实验目的 三.实验原理 1.生物柴油的制备原理 2.碘值的测定原理 3.酸价的测定原理 四.实验用品 1.实验仪器 2.实验药品 五.实验步骤 1.生物柴油的制备 2.粗产物的处理 3.碘值的测定 4.酸价的测定 六.实验结束 七.本实验所参考的文献一览 ★★注:若实验中能够提供超声装置用来替代搅拌装置,一则可以大大缩短反应时间(从原来的1.5—2小时缩短为10分钟左右),又节约了能源同时提高了转化率。

一、文献综述 1、生物柴油简介 1.1目前燃料情况 能源和环境问题是全球性问题,日益紧缺的石油资源和不断恶化的地球环境使得各国政府都在积极寻求适合的替代能源。 我国在醇类代用燃料方面已经开展了大量的研究工作,但用粮食生产醇类代用燃料转化能耗高,配制汽油代用燃料不能直接在现有汽车中使用也是一个不容回避的现实问题。而大量研究资料表明,生物柴油在燃烧性能方面丝毫不逊于石化柴油,而且可以直接用于柴油机,被认为是石化柴油的替代品。 1.2什么是生物柴油 生物柴油即脂肪酸甲酯,由可再生的油脂原料经过合成而得到,是一种可以替代普通柴油使用的清洁的可再生能源。 1.3生物柴油的优点 1.3.1 能量高,具有持续的可再生性能。 1.3.2具有优良的环保特性: ①生物柴油中不含硫,其大量生产和使用将减少酸雨形成的环境灾害;生物柴油不含 苯及其他具有致癌性的芳香化合物。 ②其中氧含量高,燃烧时一氧化碳的排放量显著减少; ③生物柴油的可降解性明显高于矿物柴油; ④生物柴油燃烧所排放的CO2,远低于植物生长过程中所吸收的CO2 ,因此使用 生物柴油,会大大降低CO2的排放和温室气体积累。 1.3.3具有良好的替代性能:①生物柴油的性质与柴油十分接近,可被现有的柴油机和柴 油配送系统直接利用。②对发动机,油路无腐蚀、喷咀无结焦、燃烧室无积炭。具有较好的润滑性能,使喷油泵、发动机缸体和连杆磨损率降低。 1.3.4由于闪点高,不属危险品,储存、运输、使用较为安全。 总之,发展生物柴油具有调整农业结构、增加社会有效供给、改善生态环境、缓解能源危机、增加就业机会等多方面重要意义。 1.4 由菜籽油制生物柴油的有利之处 尽管许多木本油料都可以加工为生物柴油,但规模有限,其他油料作物扩大面积的潜力有限,而油菜具有适应范围广,化学组成与柴油相近等特点,是我国发展生物柴油最理想重要的原料来源。种油菜不与主要粮食争地,且增肥地力,较同期冬小麦早熟半月,有利于后荐作物增产。所以,油菜原料的增长空间是非常大的。据统计,在不影响粮食生产的情况下,我国有2670万hm2以上的耕地可用于发展能源油菜生产,年生产4000万t 生物柴油,相当于建造1.5个永不枯竭的绿色大庆,具有十分重要的战略意义。 2、目前制备生物柴油的方法 生物柴油的制备方法有物理法和化学法。物理法包括直接使用法、混合法和微乳液法;化学法包括高温热裂解法和酯交换法。 2.1 直接使用法 即直接使用植物油作燃料.由于植物油黏度高、含有酸性组分,在贮存和燃烧过程中发生氧化和聚合以至于发动机内沉积多、喷油嘴结焦、活塞环卡以及排放性能不理想等问题,后来便被石油柴油所取代。

固定化酶

1.2 脂肪酶的研究与应用 1.2.1 脂肪酶的研究概况 脂肪酶可以根据其来源分类,分为微生物脂肪酶、动物脂肪酶和植物脂肪酶。脂肪酶可以很容易地从微生物真菌(如南极洲假丝酵母)或细菌(如荧光假单胞菌)中通过发酵过程高产量地生产出来,其过程缺乏基本的净化步骤。一些脂肪酶表现出对底物的位置专一性,而另一些则不然。对不同来源的游离脂肪酶类型的比较研究表明,荧光P.脂肪酶具有最高的酶活性。通常,来自真菌来源的脂肪酶比来自细菌来源的脂肪酶表现出更好的甘油三酯酯交换活性。 作为一种多功能生物催化剂,脂肪酶具有其他酶蛋白无法比拟的优点[15]:1、在有机溶剂中具有良好的稳定性;2、催化过程不需要辅助因子,一般不发生副反应;3、可以催化水解,酯化,酯交换等众多反应[16];4、具有独特的化学选择性、区域选择性及立体选择性;5、底物谱广,可催化非天然底物进行反应。与动植物脂肪酶相比,微生物脂肪酶生产周期短,分离纯化相对简单,并可利用基因工程和蛋白质工程等技术实现酶的改造并构建生产工程菌[17],适合工业化生产与应用。1994年,丹麦Novozymes公司首次应用基因工程菌生产来源于Thermomyces lanuginosus的脂肪酶Lipolase,此后许多来源于微生物的脂肪酶也实现了商业化生产[18]。脂肪酶的应用领域日益扩大,被广泛运用于生物柴油、食品加工、面粉改良、造纸造酒、有机合成等化工领域[19]。 1.2.2 脂肪酶的结构及催化机制 脂肪酶是一类重要的水解酶,催化三酰甘油酯中酯键的裂解,具有广泛的生物技术应用价值。脂肪酶是在人体内正确分配和利用油脂所必需的酶。脂蛋白脂肪酶(LPL)在毛细血管中很活跃,它通过水解包装脂蛋白中的甘油三酯,在防止血脂异常方面起着至关重要的作用。30年前,有人提出了一种不活泼的LPL低聚物的存在。M., Tushar Ranjan (2020)指出天然油中高浓度的omega - 3脂肪酸(?-3 FAs)对于维持身体健康非常重要。脂肪酶是一种很有前途的富集催化剂,但脂肪酶的脂肪酸特异性较差。 在脂肪酶催化酯键水解的过程中,活性酶的构象和四面体跃迁态的稳定都是至关重要的。利用蛋白酶定点突变实验的x射线结构数据和结果已被用作预测可

一步酶法生产 7-ACA

一步酶法生产7-ACA的优点 7-氨基头孢烷酸(7-ACA)是生产头孢菌素类抗生素的重要母核,头孢菌素分子中由于都含有β-内酰胺结构。它能抑制肽转肽酶所催化的转肽反应,使线性高聚物不能交联成网状结构,抑制粘肽的台成,从而阻止细胞壁的形成,导致细胞的死亡。 目前7-ACA生产采用新型酶法工艺,国内已成功开发出新型酶法7-ACA生产技术,打破国外对一步酶法生产7-ACA 技术的垄断。而目前国内的生产厂家采用的双酶大多数是从国外进口的,成本与化学法不相上下。通过本项目技术的使用大大降低7-ACA的成本,从而获得成本优势。新型酶法较好解决了旧酶法技术生产7-ACA在质量、色泽上劣于化学法的问题,同时在生产上的使用批次也大幅度增加,从而也降低了生产成本。 7-ACA和头孢菌素的合成工艺主要有化学法和酶法两种。化学半合成技术主要包括酰氯法和混酐法,化学法合成存在着活化、缩合、保护和去保护的过程;合成过程长、步骤多反应条件苛刻产生大量的三废等弊端,而酶法合成工艺与化学法相比,由于具有许多优点,如:生产工艺简单,周期短;反应条件温和,pH接近中性;高度的区域和立体选择性以及无需保护和去保护过程,割除了化学合成中所需的毒害物质;劳动环境得到改善,减少了三废的排放。因此,用

酶法实现7-ACA及头孢菌素的半合成体现了绿色环保工艺的各种优势。

一步酶法和两步酶法制备7-ACA优势对比分析 对比项一步酶法(CPCA)两步酶法(DAO 与GAC)生物酶NRB—103 D—氨基酸氧化酶 GL—7ACA酰化酶 设备投资减少30% 较大 操作步骤4步6步 操作周期每批90min 每批150min 同等设备条件产量增大一倍较小 7-ACA转化率/% ≥95 ≥93 收率/% 46—50 44—45 7-ACA含量/% ≥98.5 ≥97 技术安全特性优优 技术环保特性优优 技术发展空间非常大有 优点高转化率,高纯度,高经济性,环境保 护。生产成本低, 减少有机溶媒用量,利于环保。 缺点转化率低,酶解路线长、氧化条件 控制难度大、设备条件高。 一步酶法工艺技术指标: 底物浓度:2.0-3.0% 转化率:不低于98% 得率:不低于95% 反应时间: 90 分钟 固定化头孢菌素酰化酶( immoblized CPC acylase) 酶活:80-100U/g 使用寿命:100 次

生物柴油工艺流程图CAD图

一、概述 1.1生物柴油概述生物柴油(Biodiesel) ,又称脂肪酸甲酯(Fatty Acid Ester) 是以植物果实、种子、植物导管乳汁或动物脂肪油、废弃的食用油等作原料,与醇类(甲醇、乙醇) 经交酯化反应(Transesterification reaction) 获得。生物柴油这一概念最早由德国工程师Dr.Rudolf Diesel (1858-1913) 于1895年提出,是指利用各类动植物油脂为原料,与甲醇或乙醇等醇类物质经过交脂化反应改性,使其最终变成可供内燃机使用的一种燃料。在1900年巴黎博览会上,Dr.Rudolf Diesel展示了使用花生油作燃料的发动机。生物柴油具有一些明显优势,其含硫量低,可减少约30%的二氧化硫和硫化物的排放;生物柴油具有较好的润滑性能,可以降低喷油泵、发动机缸体和连杆的磨损,延长其使用寿命;生物柴油具有良好的燃料性能,而且在运输、储存、使用等方面的安全性均好于普通柴油。此外,生物柴油是一种可再生能源,也是一种降解性较高的能源。1.2使用生物柴油可降低二氧化碳排放生物柴油的使用能减少温室气体二氧化碳的排放,可以这样来理解:燃烧生物柴油所产生的二氧化碳与其原料生长过程中吸收的二氧化碳基本平衡,所以不会增加大气中二氧化碳的含量.而燃烧矿物燃料所释放的二氧化碳需要几百万年才能再转变为石化能,故使用生物柴油能大大减少石化燃料的消耗,相当于降低了二氧化碳的排放。美国能源部研究得出的结论是:使用B20(生

物柴油和普通柴油按1:4混合)和B100(纯生物柴油)较之使用柴油,从燃料生命循环的角度考虑,能分别降低二氧化碳排放的15.6%和78.4%。 1.3生物柴油降低空气污染物的排放生物柴油由于本身含氧10%左右,十六烷值较高,且不含芳香烃和硫,所以它能够降低CO、HC、微粒、NOx和芳香烃等污染物的发动机排气管排放,尤其是微粒中PM10的排放,而它正是导致人类呼吸系统疾病根源的污染物。生物柴油具有许多优点:*原料来源广泛,可利用各种动、植物油作原料。*生物柴油作为柴油代用品使用时柴油机不需作任何改动或更换零件。*可得到经济价值较高的副产品甘油(Glycerine) 以供化工品、医药品等市场。*相对于石化柴油,生物柴油贮存、运输和使用都很安全(不腐蚀溶器,非易燃易爆) ;*可再生性(一年生的能源作物可连年种植收获,多年生的木本植物可一年种维持数十年的经济利用期,效益高;*可在自然状况下实现生物降解,减少对人类生存环境的污染。 生物柴油突出的环保性和可再生性,引起了世界发达国家尤其是资源贫乏国家的高度重视。德国已将生物柴油应用在奔驰、宝马、大众、奥迪等轿车上,全国现有900多家生物柴油加油站。美国、印度等其他发达国家和发展中国家也在积极发展生物柴油产业。目前,世界生物柴油年产量已超过350万吨,预计2010年可达3000万吨以上。1.4我国生物柴油发展的现状在生物柴油方面,我国的技术研究并不落后于欧美等发达国家,从各种公开的文献资料上,涉及生物柴油的文献80余篇,涉及技术研究的文献20余篇,内容包括了生物

生物柴油的生产与应用

生物柴油的生产与应用 摘要: 随着能源危机的加深和环境污染的加剧,寻找新能源来替代石化能源已 经迫在眉睫。而生物柴油是一种优质清洁柴油,可从各种生物质提炼,具有环境友好,可再生等优点,可以说是化石能源的良好替代品。本文简述了生物柴油的化学反应原理、、生产方法、优缺点,应用以及发展前景。 关键词:生物柴油生产方法优缺点应用及前景 前言:随着化石燃料的枯竭以及环境污染的日益严重,全球范围内的能源危机 使得寻求新的代替型能源已经是必然趋势,因此生物柴油具有巨大的发展潜力,将对保证石油安全、保证生态环境等方面有十分重大的作用。通过利用可再生资源生产生物柴油替代石化柴油,不仅是我国经济发展和能源需求的战略选择,而且对保障国家能源安全,减少温室气体排放,改善生态环境,实现社会、经济、环境的可持续发展均具有重大的意义。可以预料,生物柴油作为石化柴油的替代能源,在未来几十年内必将呈现出有增无减的发展趋势。 1生物柴油的介绍 1.1生物柴油的定义 生物柴油是指以动植物油或水解的脂肪酸为原料,在催化剂的作用下与低碳醇发生酯交换反应而形成的一种脂肪酸烷基酯,是一种优质成品柴油的代用品。 1.2生物柴油的优点 生物柴油的优点可以概括为[1] a生产原料来源广泛且可再生,大豆油、花生油、菜籽油、玉米油、棉籽油、乌桕油等植物油、猪油、牛油等动物油脂,以及餐饮废油等均可以作为生产生物柴油的原料b具有优良的环保特性。生物柴油具有生物可降解性,低排放,尾气中多环芳香族碳氢化合物、亚硝酸盐、硫化物、硫酸盐、一氧化碳以及烟尘颗粒的含量远低于石化柴油。c可以任何比例与石化柴油混溶,直接添加使用,无需对发动机作任何改进。d闪点高,具有较好的安全性能。生物柴油不属于危险品,在运输、储存、使用方面的优势显而易见。 2生产生物柴油的原理及方法 近年来,实验室研究的生物柴油生产技术非常多,而且针对各种不同的原料进行的工艺试验很多。从反应来讲,涉及物理法、化学催化、生物催化、超临界无催化剂的酯化/酯交换反应 2.1直接混合法[2] 直接混合法是将植物油与矿物柴油按一定的比例混合后作为发动机燃料使用。国外研究人员曾用50%植物油和50%的矿物柴油混合作燃料,结果表明曲轴箱变稠,喷油嘴积炭较厚。美国阿拉巴马州罕次准尔大学约翰逊环境与能源中心用1:2 的混合燃料(1/3 的豆油和2/3 的矿物柴油),结果表明:1/3 的脱胶豆油和2/3 的矿物柴油混合可代替柴油,他们对该混合燃料进行了900h的耐力试验,发现曲轴箱污染物不多,也未发生变硬和凝胶现象。但是植物油的黏度比柴油高11~13倍,加热到100℃才能接近柴油的黏度。因此柴油机发动时需燃用矿物柴油,正常行驶时候再切换为植物油,但这在运输时这是很难实现的。

酶法加工麦芽糊精生产工艺

酶法加工麦芽糊精生产工艺 中国食品添加剂和配料协会尤新 概述 麦芽糊精的生产工艺大致可分为3种:酸法工艺、酶法工艺、酸酶法工艺。目前,酸法工艺已基本被淘汰,国内外生产麦芽糊精均采用酶法工艺。酶法产品聚合度在1—6的产物的水解率比值均在2以上,产品透明度高,溶解性强,室温储存不变浑浊。 利用α-淀粉酶对于淀粉的催化水解具有高度的专一性,即只能按照一定的方式水解一定种类和一定部位的葡萄糖苷键,仅水解淀粉,不分解蛋白质、纤维素等。因此,麦芽糊精是以玉米、大米等粗粮直接投料(不是以精制淀粉为原料),经酶法控制部分水解、脱色提纯、真空浓缩、喷雾干燥而成。 为了便于叙述,在此以大米作原料为例,并按优级品质生产工艺说明。 麦芽糊精系列产品的生产按酶法工艺要求可分为6个工序:原料预处理、液化、过滤、浓缩、干燥、包装等。 1原料预处理工序 预处理包括计量投料、热水浸泡、淘洗杂质、粉碎磨浆4个内容,计量投料是为了保证投料准确,便于操作和管理。热水浸泡可使水分渗透到米的内部组织,促进米粒组织膨胀软化,便于淘洗和粉碎。淘洗是为了除去米糠和其他杂质,保障食品卫生和产品质量。粉碎磨浆是为了保证淀粉粒的细度和粉浆的流动性能,使淀粉易于糊化,并为酶能均匀地水解淀粉创造良好的条件。 大米预处理工序技术要求如下: 浸洗后的米,应该色白无米糠,无酸败味,米粒用两手指轻捏即成粉末状。 粉浆细度,60目以上粉粒应占80%以上,手感无粗粒,不允许在粉浆中混有米粒。 粉浆浓度控制在22—24°Bé,1t米磨成的粉浆相当于2.2m3左右。 粉浆不发酵,pH不低于5.2。 淘洗去杂

一般淘洗米采用机械淘洗,通常用压缩空气来翻动淘洗,在特制的洗米罐中进行。 淘洗操作时,将米按规定量送到洗米罐,放入清水,待水浸没米层后,通入压缩空气,利用空气冲击使米粒在水中翻动和相互摩擦,把附着于米粒上的米糠和杂质洗掉,悬浮物从溢流口溢出。当悬浮物基本溢净,可关闭进水阀和空气阀,放出米泔水。如此反复洗米2—3次,可使米粒洗净。 热水浸泡 热水浸泡的目的是为了加快吸收水分,促进米粒组织软化。米粒吸水程度和下列因素有关。 (1)与米粒吸水和浸米时间有关。一般说来,浸泡时间不能少于2h,否则米粒中心部分的水分浸入不足,这样就不利于米的粉碎和糊化。 (2)米粒吸水程度还决定于米的品质。非糯性米要相对延长浸泡时间。 (3)米粒吸水还和浸泡水温度有关。提高水温可加速米粒吸水,缩短浸泡时间。在冬季,浸泡水可利用生产中冷却水代替冷水,但水温不宜高于45℃,若再提高温度,会使米粒表面糊化,淀粉流失。 在浸泡过程中还要注意米粒发酵情况,虽浸泡2h不会很快受到微生物侵入而发酵。若在洗米时没有将米糠洗净,往往也会引起米粒发酵,如此将米磨成粉浆后,会造成液化中途pH下降,致使发生液化困难。凡发酵米粒必须要重新洗米才能粉碎。 米粒和粉浆发酵经常发生在夏秋高温季节,在此期间生产,更应重视环境卫生和设备清洗消毒工作,以减少微生物污染机会。 粉碎磨浆 将米粉碎磨成粉浆,要注意细度和浓度两个质量要求。 粉浆细度影响着液化程度和过滤速度。从糊化角度考虑,粒度细的粉浆溶解性好,容易糊化。从过滤性看,粉浆太细,则不利于过滤。根据工业化规模生产结果表明,粉浆细度以70目为宜,这样液化性和过滤性均好。 粉浆浓度关系到糊化液的流动性和蒸发量,粉浆浓度低,黏度小,流动性好,容易糊化,有利于加热和过滤。但降低液化浓度,增加了蒸发负荷,经济上不合算。高浓度粉浆则流动性差,且糊化困难。所以,粉浆最适宜浓度应在22—24°Bé。 砂盘磨工艺操作 开车:接通电源,先空载运转1—2min,检查有无异常振动和噪音,再调节上下磨盘间距到发出有轻微的摩擦声止。

相关主题
文本预览
相关文档 最新文档