AP1000整体介绍
- 格式:doc
- 大小:293.50 KB
- 文档页数:77
第三代核电站与AP1000一、世界核电站可划分为四代第一代核电站:自50年至60年代初苏联、美国等建造的第一批单机容量在300MWe左右的核电站,如美国的希平港核电站和英第安角1号核电站,法国的舒兹(Chooz)核电站,德国的奥珀利海母(Obrigheim)核电站,日本的美浜1号核电站等。
第一代核电厂属于原型堆核电厂,主要目的是为了通过试验示范形式来验证其核电在工程实施上的可行性。
第二代核电站:第二代核电厂主要是实现商业化、标准化、系列化、批量化,以提高经济性。
自60年代末至70年代世界上建造了大批单机容量在600-1400MWe的标准化和系列化核电站,以美国西屋公司为代表的Model 212(600MWe,两环路压水堆,堆芯有121合组件,采用12英尺燃料组件)、Model 312(1000MWe,3环路压水堆,堆芯有157盒组件,采用12英尺燃料组件,),Model 314 (1040MWe,3环路压水堆,堆芯有157盒组件,采用14英尺燃料组件),Model 412(1200MWe,4环路压水堆,堆芯有193盒组件,采用12英尺燃料组件,)、Model 414(1300MWe,4环路压水堆,堆芯有193盒组件,采用14英尺燃料组件)、System80(1050MWe,2环路压水堆)以及一大批沸水堆(BWR)均可划入第二代核电站范畴。
法国的CPY,P4,P4′′也属于Model 312,Model 414一类标准核电站。
日本、韩国也建造了一批Model 412、BWR、System80等标准核电站。
第二代核电站是目前世界正在运行的439座核电站(2007年9月统计数)主力机组,总装机容量为3.72亿千瓦。
还共有34台在建核电机组,总装机容量为0.278亿千瓦。
在三里岛核电站和切尔诺贝利核电站发生事故之后,各国对正在运行的核电站进行了不同程度的改进,在安全性和经济性都有了不同程度的提高。
第三代核电站:对于第三代核电站类型有各种不同看法。
AP1000堆内仪表系统介绍及特点分析本文介绍了AP1000堆内仪表系统的组成、结构、功能,并通过与国内M310机组及VVER机组堆内仪表系統的对比,分析了AP1000堆内仪表系统的特点。
标签:AP1000;堆内仪表;对比;特点1、引言AP1000核电站在传统成熟的压水堆核电技术上,采用非能动理念,建立非能动安全系统,执行预想事故情况下的核安全功能。
针对可能发生的严重事故,AP1000核电厂设计中设置了多种预防与缓解措施,并采用先进的数字化仪控系统和主控室设计,确保核电厂的安全。
2、AP1000堆内仪表系统AP1000堆内仪表系统包括:堆内仪表套管组件以及相关的信号处理和数据处理装置。
电厂运行期间,堆内仪表套管组件放置在燃料组件内,通过反应堆压力容器顶盖引出到安全壳。
自给能探测器和堆芯出口热电偶的信号通过电缆传送到不同的数据调试和处理工作站,并能在主控室显示处理后的数据和结果。
2.1 系统功能堆内仪表系统作为反应堆冷却剂系统的压力边界,用于在事故工况下将堆芯出口温度信号送到保护和安全监测系统用于指示和显示。
此外,堆内仪表系统还用于将在线中子通量信号提供给在线功率分布监测系统,将堆芯出口温度信号发送给多样化驱动系统用于指示和显示,并在电厂正常运行期间,发送给OPDMS 的信号用于生成堆芯功率分布图形和列表显示。
2.2 系统描述堆内仪表系统通过42根仪表导向管将热电偶信号传输到冷端分线箱,将自给能探测器(SPD)信号传输到信号处理机柜。
其中,38个热电偶温度信号送至PMS作为事故后监测,4个温度信号送至DAS用于其驱动信号,中子通量信号通过SPS机柜处理后,送至应用/数据联络服务器,经过实时数据网络传递至DDS 进行信号显示。
信号处理软件将堆芯探测器的信号传送给反应堆堆芯运行最佳评估分析系统。
BEACON用这些数据来计算三维堆功率分布,校核堆外核测仪表系统的反应堆超温?T和超功率?T停堆整定值,并提取合适的功率分布参数在主控室显示。
AP1000与EPR简介1.AP1000与EPR简介1.1AP1000西屋公司在已开发的非能动先进压水堆AP600的基础上开发了AP1000。
2002年3月,核管会已经完成AP1000设计的预认证审查(Pre-certification Review),AP600有关的试验和分析程序可以用于AP1000设计。
2004年12月获得了美国核管会授予的最终设计批准。
AP1000为单堆布置两环路机组,电功率1250MWe,设计寿命60年,主要安全系统采用非能动设计,布置在安全壳内,安全壳为双层结构,外层为预应力混凝土,内层为钢板结构。
AP1000主要的设计特点包括:(1)主回路系统和设备设计采用成熟电站设计AP1000堆芯采用西屋的加长型堆芯设计,这种堆芯设计已在比利时的Doel4号机组、Tihange3号机组等得到应用;燃料组件采用可靠性高的Performance+;采用增大的蒸汽发生器(D125型),和正在运行的西屋大型蒸汽发生器相似;稳压器容积有所增大;主泵采用成熟的屏蔽式电动泵;主管道简化设计,减少焊缝和支撑;压力容器与西屋标准的三环路压力容器相似,取消了堆芯区的环焊缝,堆芯测量仪表布置在上封头,可在线测量。
(2)简化的非能动设计提高安全性和经济性AP1000主要安全系统,如余热排出系统、安注系统、安全壳冷却系统等,均采用非能动设计,系统简单,不依赖交流电源,无需能动设备即可长期保持核电站安全,非能动式冷却显著提高安全壳的可靠性。
安全裕度大。
针对严重事故的设计可将损坏的堆芯保持在压力容器内,避免放射性释放。
在AP1000设计中,运用PRA分析找出设计中的薄弱环节并加以改进,提高安全水平。
AP1000考虑内部事件的堆芯熔化概率和放射性释放概率分别为5.1×10-7/堆年和5.9×10-8/堆年,远小于第二代的1×10-5/堆年和1×10-6/堆年的水平。
简化非能动设计大幅度减少了安全系统的设备和部件,与正在运行的电站设备相比,阀门、泵、安全级管道、电缆、抗震厂房容积分别减少了约50%,35%,80%,70%和45%。
一、AP1000的总体概况和技术特点1. 总体概况AP1000是西屋公司开发的一种双环路百万千瓦级的压水堆核电机组,其主要特点有:采用非能动的安全系统,安全相关系统和部件大幅减少、具有竞争力的发电成本、60年的设计寿命、数字化仪控室、容量因子高、易于建造(工厂制造和现场建造同步进行)等,其设计与性能特点满足用户要求文件(URD)的要求。
西屋公司在开发AP1000之前,已完成了AP600的开发工作,并于1998年9月获得美国核管会(NRC)的最终设计批准(FDA),1999年12月则获得NRC的设计许可证,该设计许可证的有效期为15年。
西屋公司投入了大量人力,通过大量的实体试验和众多听证与答辩来确保其设计的成熟性。
AP1000基本上保留了AP600核岛底座的尺寸,但也作了适当的设计改进以提升AP1000的先进性和竞争力:增加堆芯长度和燃料组件的数目;加大核蒸汽供应系统主要部件的尺寸;适当增加反应堆压力壳的高度;采用△125的蒸汽发生器;采用大型密封反应堆主泵(装备有变速调节器);采用大型的稳压器;增加安全壳的高度;增加某些非能动安全系统部件的容量;增加汽轮机岛的尺寸和容量等。
2. 主要技术特点反应堆采用西屋成熟的Model314技术,该技术已成功地用于比利时Doel-4、Tihange-3和美国South Texas Project电站上。
反应堆冷却系统为二环路设计,每个环路通过冷却剂管道联接有一台大容量蒸汽发生器和两台密封式的冷却剂泵,此外冷却系统上还联接有一台稳压器。
采用非能动的安全系统。
它采用双层安全壳,并保留了AP600的非能动安全系统的构架,系统设计简化,安全性大大提高。
仪控系统是基于Sizewell B的全数字技术而开发完成的,特别采用了经验证的数字化安全系统,采用了紧凑型的工作站式的控制室,采用了基于影像技术的人-机接口。
二、AP1000的安全性、经济性与成熟性1. AP1000的安全性AP1000采用失效概率低的非能动安全系统,大大提升了机组的安全性,其堆芯熔化概率(CDF)仅10-7/堆年量级,远低于URD的10-5/堆年的要求,其安全裕度与堆芯熔化概率较典型二代压水堆核电站以及AP600都有了长足的进步。
A P1000安全系统综述及其与E P R关键措施对比AP1000安全系统综述AP1000安全系统综述AP1000安全系统设计理念如下:•安全系统非能动化•降低维修要求•简化安全系统配置•减少安全支持系统•减少安全级设备及抗震厂房•提高可操作性本文不考虑传统安全系统,只对非能动安全系统作介绍。
一.AP1000非能动安全系统简介AP1000非能动安全系统的优点可概括如下:(1)极大地降低了人因失误发生的可能性非能动安全系统不需要操纵员的行动来缓解设计基准事故,减少了事故发生后,由于人为操作错误而导致事件升级的可能性。
AP1000在事故条件下允许操纵员的不干预时间高达72 h,而对于已经运行的第二代或二代+核电厂,此不干预时间仅为10^30 mina(2)大大地提高了系统运行的可靠性非能动安全系统利用自然力驱动,提高了系统运行的可靠性,而不需要采用泵、风机、柴油机、冷冻水机或其他能动机器,减少了因电源故障或者机械故障而引起的系统运行失效。
由于非能动安全系统只需少量的阀门连接,并能自动触发,同时这些阀门遵循“失效安全”的准则,在失去电源或接收到安全保护启动信号时开启。
(3)取消了安全级的交流应急电源非能动安全系统的启动和运行无需交流(AC)电源,AP1000的设计取消了安全级的应急柴油发电机组。
AP1000非能动安全系统子系统如下:•非能动堆芯冷却系统•非能动安全壳冷却系统•非能动主控制室应急可居留系统•非能动裂变产物去除系统•非能动氢复合子系统•非能动反应堆压力壳防熔穿系统二.非能动堆芯冷却系统AP1000的非能动堆芯冷却系统(PXS)由非能动堆芯余热排出系统和非能动安全注人系统两部分组成。
PXS的主要作用就是在假想的设计基准事件下提供应急堆芯冷却,为此,PXS具有以下功能:·应急堆芯余热排出·RCS应急补水和硼化·安全注入·安全壳内pH值控制PXS安全相关功能的设计基于以下考虑(设计基准):<1> 即使在发生设计基准事件同时伴随不太可能的最大极限单一故障事件时,PXS也有多重的部件来执行其安全相关的功能。
AP1000整体介绍AP1000的设计理念在传统成熟的压水堆核电技术的基础上,安全系统采用“非能动” 设计理念。
“非能动安全系统” 利用自然物理现象-重力、自然循环(蒸发、冷凝和密度差)以及气体蓄能驱动流体流动,带走堆芯余热和安全壳的热量,不需要外部能源。
非能动设计理念已有实际应用,技术是成熟的。
非能动设计理念的引入,使核电站的设计发生了根本的变化:● 系统配置简化,安全支持系统减少,安全级设备和抗震厂房大幅减少,安全等级和质保等级降低,应急动力电源和很多动力设备被取消,大宗材料需求明显降低;● 预防和缓解事故和严重事故的操作简化;● 安全性能显著提高;由于设计简化、系统简化、工艺布置简化、施工量减少、工期缩短、运行和维修简化等一系列效应,最终使AP1000在安全性能显著提高的同时,经济上也具有较强的竞争力。
AP1000总体概括及特点1. 总体概况AP1000是西屋公司开发的一种双环路1000 MW的压水堆核电机组,其主要特点有:采用非能动的安全系统,安全相关系统和部件大幅减少、具有竞争力的发电成本、60年的设计寿命、数字化仪空室、容量因子高、易于建造(工厂制造和现场建造同步进行)等,其设计与性能特点满足用户要求文件(URD)的要求。
西屋公司在开发AP1000之前,已完成了AP600的开发工作,并于1998年9月获得美国核管会(NRC)的最终设计批准(FDA),1999年12月则获得NRC的设计许可证,该设计许可证的有效期为15年。
西屋公司投入了大量人力,通过大量的实体试验和众多听证与答辩来确保其设计的成熟性。
AP1000基本上保留了AP600核岛底座的尺寸,但也作了适当的设计改进以提升AP1000的先进性和竞争力:增加堆芯长度和燃料组件的数目;加大核蒸汽供应系统主要部件的尺寸;适当增加反应堆压力壳的高度;采用△125的蒸汽发生器;采用大型密封反应堆主泵(装备有变速调节器);采用大型的稳压器;增加安全壳的高度;增加某些非能动安全系统部件的容量;增加汽轮机岛的尺寸和容量等。
2. 主要技术特点反应堆采用西屋成熟的Model314技术,该技术已成功地用于比利时Doel-4、Tihange-3和美国South Texas Project电站上。
反应堆冷却系统为二环路设计,每个环路通过冷却剂管道联接有一台大容量蒸汽发生器和两台密封式的冷却剂泵,此外冷却系统上还联接有一台稳压器。
采用非能动的安全系统。
它采用双层安全壳,并保留了AP600的非能动安全系统的构架,系统设计简化,安全性大大提高。
仪控系统是基于Sizewell B的全数字技术而开发完成的,特别采用了经验证的数字化安全系统,采用了紧凑型的工作站式的控制室,采用了基于影像技术的人-机接口。
AP1000的经济性AP1000 安全系统采用非能动的理念,安全系统配置简化、安全支持系统减少、安全级设备和抗震厂房减少、IE级应急柴油机系统和很多能动设备被取消,以及大宗材料需求明显降低。
AP1000的安全系统及其设备数量得到大量的减少,例如AP1000的安全级泵和阀门分别为6台(包括4台主泵)和599台,EPR则为88台和7000台。
再加上模块化设计和建造新技术的采用,由此派生出了设计简化、系统设置简化、工艺布置简化、施工量减少、工期缩短以及运行方便、维修简单等一系列效应。
从长远观点来看,AP1000不仅使安全性能得到显著提高,而且费用和长期的运行费用也得到明显降低,在经济上也具有较强的竞争力。
这种优势在批量建造若干台(譬如8至10台)后AP1000核电机组将会越来越明显。
AP1000主要设备简介从制造的角度看,除了AP1000特有的主泵和爆破阀等极少量的设备外,主要设备与目前国内制造的2.5代设备相近;关键的制造难点:◆AP1000的主泵是屏蔽泵,可以避免泄漏,具有很大的优点和吸引力,但与以往的轴封式主泵很不同。
加工精度高、配件均是非商品级的,国产化难度大。
◆主管道是锻件,不是以往的铸件,其中的主要接管和弯头与管子合成单件产品,这在我国还是第一次,尚无经验可谈。
目前有几家公司都在紧锣密鼓地在试制攻关。
◆爆破阀也是AP1000的一个特点,其中的驱动装置是由炸药爆炸切断原来密闭的管道封板,以满足应急打开要求。
◆重型锻件的结构、重量和质量有别于2.5代的大锻件,它必须满足60年寿命的要求。
这里包括反应堆压力容器的一体化顶盖、法兰接管段、蒸发器下封头,也包括蒸发器的管板等。
其中,反应堆压力容器的一体化上封头与一体化下法兰接管段由于需要350吨左右的钢锭,目前全世界只有日本制钢可供货,国产化难度大。
蒸发器下封头型线复杂,需要对3根主管道与两个人孔对接焊提供冲压的翻边,需要更大的锻造能力、工装与经验。
◆其他设备:包括堆内构件和控制棒驱动机构也有别于过去的设备,比如,堆内构件更多采用了焊接方式,需要一定的工艺试验和攻关;驱动机构与60年寿命相适应的材料、零件与加工工艺相适应;其他二三核级阀门国内制造供货的经验也少,即使第五套后也还需要进口。
AP1000主设备设计制造技术的转让情况西屋公司转让核岛工艺与系统设计,提供主要设备的技术规格书和指导图,以及核蒸汽关于系统的主设备基础设计,这部分由西屋公司转让。
其他设备,根据SNPTC与WEC商定,由西屋(分包方)联队提供设备的设计与制造技术。
主设备转让方反应堆压力容器Doosan(韩国斗山)蒸汽发生器Doosan(韩国斗山)堆内构件NCMD 西屋公司核部件制造厂控制棒驱动机构NCMD 西屋公司核部件制造厂燃料装卸料设备美国ParNuclear一体化安全壳顶盖Ansaldo意大利安莎多环形吊车美国ParNuclear电控爆破阀美国SPX.已经或即将进行技术转让谈判有如下各项:①反应堆压力容器②蒸汽发生器(南韩斗山)、③反应堆内件与④控制棒驱动机构(WEC下属的核电设备制造部NCMD)、⑤爆破阀(美国SPX公司)、⑥反应堆冷却剂泵(美国EMD公司)、⑦环吊与⑧装卸料机(美国WEC下属的NuPar 公司)、⑨安全壳一体化顶盖(意大利ANSALDO)等项。
除了上述9个项目外,国产化难度高的大锻件、主管道和关键核级阀门等不属转让范围。
不转让的部分还包括:1 RCP: 计算机程序-EMD称用于军事,较多的关键部件和材料属于第三方制造,诸如:石墨自润滑轴承,陶瓷密封端子、屏蔽套薄板HASTERLLOY材料、不锈钢铸造外壳以及外置冷却器等。
没有这些材料和部件,设备国产化和供货还受限制。
2 环吊:电控EX-SAM部套是选项,不在转让之列。
WEC与SNPTC和第三方机构一起签订一个对EX-SAM系统全部技术资料的保管协议。
当出现不可抗原因时,由第三方机构向SNPTC提供资料。
3 各类核级阀门:WEC认为在国内已有合资企业生产,只有当合资企业在中国境内不再生产相关产品时向中方进行技术转让。
目前或一个相当时间内一些关键阀门如稳压器安全阀等,还需从国外购进。
4 主管道:与其他大型铸锻件情况一样,由于WEC联合体没有制造能力和技术,其供货商明确不转让锻件制造技术。
WEC联合体对此表示无能为力,将主管道列为B类供货,即由中方采购范围,不属于技术转让范围。
解决办法可能是国内攻关,择优选择,来不及时,向国外采购。
5 其他低合金钢锻件:国内有几家紧锣密鼓的攻关,进行工艺评定与产品评定,可以解决绝大部分的大型锻件的供货,少量的特殊锻件来不及时,可能需要短期采购。
AP1000先进非能动核电技术介绍AP1000 是由美国西屋公司开发的先进的非能动的压水堆(Advanced Passive PWR)。
2002年3月,美国核管会已经完成AP1000设计的预认证审查(Pre-certification Review),AP600有关的试验和分析程序可以用于AP1000设计。
2004年12月获得了美国核管会授予的最终设计批准。
AP1000为单堆布置两环路机组,电功率1250MWe,设计寿命60年,主要安全系统采用非能动设计,布置在安全壳内,安全壳为双层结构,外层为预应力混凝土,内层为钢板结构。
AP1000主要的设计特点包括:(1)主回路系统和设备设计采用成熟电站设计AP1000堆芯采用西屋的加长型堆芯设计,这种堆芯设计已在比利时的Doel 4号机组、Tihange 3号机组等得到应用;燃料组件采用可靠性高的Performance+;采用增大的蒸汽发生器(D125型),和正在运行的西屋大型蒸汽发生器相似;稳压器容积有所增大;主泵采用成熟的屏蔽式电动泵;主管道简化设计,减少焊缝和支撑;压力容器与西屋标准的三环路压力容器相似,取消了堆芯区的环焊缝,堆芯测量仪表布置在上封头,可在线测量。
(2)简化的非能动设计提高安全性和经济性AP1000主要安全系统,如余热排出系统、安注系统、安全壳冷却系统等,均采用非能动设计,系统简单,不依赖交流电源,无需能动设备即可长期保持核电站安全,非能动式冷却显著提高安全壳的可靠性。
安全裕度大。
针对严重事故的设计可将损坏的堆芯保持在压力容器内,避免放射性释放。
在AP1000设计中,运用PRA分析找出设计中的薄弱环节并加以改进,提高安全水平。
AP1000考虑内部事件的堆芯熔化概率和放射性释放概率分别为 5.1×10-7/堆年和5.9×10-8/堆年,远小于第二代的1×10-5/堆年和1×10-6/堆年的水平。
简化非能动设计大幅度减少了安全系统的设备和部件,与正在运行的电站设备相比,阀门、泵、安全级管道、电缆、抗震厂房容积分别减少了约50%,35%,80%,70%和45%。
同时采用标准化设计,便于采购、运行、维护,提高经济性。
西屋公司以AP600的经济分析为基础,对AP1000作的经济分析表明,AP1000的发电成本小于3.6美分/kWh,具备和天然气发电竞争的能力。
(3)严重事故预防与缓解措施AP1000设计中考虑了以下几类严重事故:堆芯和混凝土相互反应;高压熔堆;氢气燃烧和爆炸;蒸汽爆炸;安全壳超压;安全壳旁路。
为防止堆芯熔融物熔穿压力容器和混凝土底板发生反应,AP1000采用了将堆芯熔融物保持在压力容器内设计(IVR)。
在发生堆芯熔化事故后,将水注入到压力容器外璧和其保温层之间,可靠地冷却掉到压力容器下封头的堆芯熔融物。
在AP600设计时已进行过IVR 的试验和分析,并通过核管会的审查。
对于AP1000,这些试验和分析结果仍然适用,但需作一些附加试验。
由于采用了IVR技术,可以保证压力容器不被熔穿,从而避免了堆芯熔融物和混凝土底板发生反应。
针对高压熔堆事故,AP1000主回路设置了4列可控的自动卸压系统(ADS),其中3列卸压管线通向安全壳内换料水储存箱,1列卸压管线通向安全壳大气。