当前位置:文档之家› 鸟的发声原理

鸟的发声原理

鸟的发声原理
鸟的发声原理

鸟的发声原理

下面是给大家带来的鸟的发声原理的相关知识,欢迎阅读!鸟的发声原理:一、鸟的结构鸟的羽毛羽毛分为正羽、绒羽和毛羽三种类型。

正羽的羽枝两侧密生羽小枝,羽小枝上生有钩或槽,前后相邻的羽小枝相互钩连,组成扁平而有弹性的羽片。

体表的正羽,形成一层防风外壳,并使鸟体呈流线型轮廓。

翼及尾上的正羽,对飞翔及平衡起决定作用。

绒羽的结构特点是羽轴纤弱,羽小枝的钩状突起不发达,因而不能构成坚实的羽片,有保温作用。

鸭绒就是鸭的绒羽。

毛羽很细,呈毛发状,杂生在正羽与绒羽之中,在拔去正羽和绒羽之后才能见到。

鸟类体羽的分区鸟的皮肤鸟类的皮肤无汗腺,唯一的皮脂腺是尾部的尾脂腺,其分泌的油质,经过喙的涂抹,擦在羽上,使羽片润泽不为水湿。

尾指腺的分泌物,还含有麦角固醇,这种物质在紫外线照射下,能转变为维生素D。

当鸟用喙涂擦羽毛时,维生素D可被皮肤吸收,有利于骨骼的生长。

鸟的骨骼鸟类适应于飞翔生活,其骨骼轻而坚固,骨片薄,长骨内中空,有气囊穿入。

许多骨片合在一起,以增加坚固性。

脊柱可分为颈椎、胸椎、腰椎、荐椎和尾椎五部分。

颈椎数目较多,椎体呈马鞍形,使颈部极为灵活(猫头鹰头部活动可达270°)。

最后几个胸椎、全部腰椎、荐椎和部分尾椎完全愈合在一起,称综荐骨,为腰部的坚强支柱。

肋骨上有钩状突,互相钩接,使胸廓更为坚固。

肩带由肩胛骨、乌喙骨和锁骨组成。

细而有弹性的锁骨呈“V字形,它能在鼓翼时阻碍左右乌喙骨的靠拢,也能增强肩带的弹性。

鸟的骨骼鸟类的整个体重落在后肢,后肢骨骼强大,和其他陆栖脊椎动物的后肢骨相比,鸟类跗骨延伸,起到增加弹性的作用。

鸟类通常具四趾。

在成鸟,腰带的髂骨、坐骨、耻骨三骨片以及综荐骨愈合成一个整体,增加了腰带的坚固性。

鸟的肌肉鸟类与飞翔有关的胸肌特别发达,约占身体质量的1/5,它能发出强大的动力,牵引翼的扇动。

而背部肌肉退化,这一点和鱼类正相反。

鸟的胸肌可分为大胸肌和小胸肌两种。

前者起于龙骨突,止于肱骨的腹面,收缩时,使翼下降;后者起于龙骨突,而以长的肌腱穿过由锁骨、乌喙骨和肩胛骨所构成的三骨孔,

止于肱骨近端的背面,收缩时使翼上举。

后肢的肌肉,集中在大腿的上部,而各以长的肌腱连到趾上。

这样,支配前肢和后肢运动的肌肉都集中于身体的中心部分,这对于飞翔时保持身体重心的稳定性有重要意义。

鸟的消化系统现代鸟类缺齿,咀嚼功能由砂囊代替。

雌鸽在生殖时期,嗉囊壁能分泌“鸽乳用来喂养雏鸽。

鸟类的消化腺(肝、胰)很发达,它们分别分泌胆汁和胰液并注入十二指肠,参与小肠内的消化作用。

家鸽无胆囊,而鸡、鸭等大多数鸟类都有胆囊。

鸟类的消化能力强,食量大而不经饿,这是与鸟类飞翔时能量消耗大有关的。

鸟的神经系统

在鸟类,纹状体是管理运动的高级部位,也和一些复杂的生活习性相关。

实验证明:切除家鸽的一部分纹状体后,家鸽正常的兴奋和抑制就被破坏,视觉受影响,求偶、营巢等习性丧失。

鸟类的大脑皮层并不发达,小脑很发达,这与鸟类飞翔运动的协调和平衡相关。

中脑在背部构成一对发达的视叶。

在鸟类的感觉器官中,最发达的是空中飞翔时起重要作用的视觉器官,而嗅觉器官不发达。

鸟眼依靠发达的睫状肌可以迅速地调节视力,由远视改变为近视。

因此,当鸟在树木中疾飞时,从未和树枝相碰;或由高空俯冲到地面觅食时,也能在一瞬间由“远视眼调整为“近视眼。

鸟眼的瞬膜发达,飞行时遮盖眼球,起保护作用。

鸟的排泄和生殖系统鸟类的肾脏十分大,可占体重的2%以上,在比例上甚至超过哺乳类的肾脏。

肾脏之所以发达,是与鸟类的新陈代谢相关的。

鸟类无膀胱,尿中水分较少,呈白色浓糊状,随粪排出而不单独排尿。

鸽与大多数鸟类一样,无外交接器(鸵鸟、鸭、鹅等有交接器)。

它们在交配时,雌雄鸽的泄殖腔孔相互接触,精液进入雌体而行体内受精。

卵成熟后,破卵巢壁而出,被吸入输卵管的喇叭口内,如遇有精子,则在此处受精。

卵无论受精与否,沿输卵管下行时,都被裹上蛋白,然后又加上卵壳膜,最后在子宫处加上石灰质的蛋壳。

鸽的受精卵,孵化期约16 d,鸡约21 d,鸭约28 d。

二、鸟的形态特征鸟是两足、恒温、卵生的脊椎动物,身披羽毛,前肢演化成翼,有喙无齿。

胸肌发达;直肠短,食量大消化快,即消化系统发达,有助于减轻体重,利于飞行;心脏有两心房和两心室,心搏次数快。

体温恒定。

呼吸器官除具肺外,还有由肺壁凸出而形成的气囊,用来帮助肺进行双重呼吸。

卵生,体温较高,通常为42℃。

鸟类的胸骨上有发达的龙骨突。

鸟的体型大小不一,既有很小的蜂鸟也有巨大的鸵鸟和鸸鹋(产于澳洲的一种体型大而不会飞的鸟)。

三、鸟的发声原理研究表明,和哺乳动物一样,鸟类是用嘴来发出声音的。

鸟类的发音器官我们称之为鸣管。

鸣管由气管上多个扩大的软骨环组成。

鸣管的分叉部分内外侧管壁都变薄,可以随着气流的振动而发出声音,叫作鸣膜。

鸣管分叉处的中间有一根鸣骨,顺着鸣骨有一叶状薄膜伸出,称为半月膜,这个结构随呼气、吸气而振动发声。

鸣骨的下方是气室,压力变化影响鸣膜的张力及鸣管的内径。

第二个支气管半环内侧有一个唇一样的皱襞,称为外唇,它在鸣肌控制下能调节流经鸣管的气流大小和压力,从而能够改变叫声的频率。

鸣肌可以控制鸣管的直径,改变鸣管的曲度,影响鸣膜的张力。

鸟的发声原理相关文章:1.鸟的发声器官是什么 2.发声的原理 3.

正确的唱歌发声原理和方法介绍4.猫的发声原理5.解我们的发声机制正确的唱歌发声原理和方法介绍6.海豚的发声原理7.青蛙的发声原理

人体发声原理

人体发声的原理 人类的声音是人的发音器官活动的结果,人的发音器官可分为三部分。 1、呼吸器官 肺产生语音的动力基地,由肺部呼出的气流是发声的动力。 气管输送气流的通道,由肺部呼出的气流通过气管、支气管到达喉头,作用于声带,经过一些发音器官的调节,才能发出不同的语音, 2、声源器官:喉头和声带 喉头由软骨组成,下通气管、上接咽腔。声带位于喉头中间,是两片富有弹性的薄膜。声带的前端、后端分别固定在软骨上。两片声带之间的空隙叫声门。肌肉收缩,使软骨活动起来,也同时带动声带活动,使声带放松或拉紧、使声门打开或关闭。从肺部呼出的气流通过声门使声带震动发出声音,声音的高低不同是控制声带的松紧造成的。 3、声音的制造厂:口腔、鼻腔 声带发出的声音只有经过共鸣器的调节,才能获得响亮的复杂的音色。口腔是语音的主要共鸣器,也是各种音色的主要制造厂。口腔中的发音器官包括:上下唇、上下齿、齿龈、上腭、小舌、舌头的等,舌头是口腔中最活跃的发音器官 鼻腔是一种共鸣器,与口腔相通,通过小舌和软腭与口腔隔开,关闭鼻腔通道,发口音,打开鼻腔通道,发鼻音。 气息控制 气息是指呼出吸入的气流,气息是发生的动力。气息的速度、流量、压力的情况同声音的高低,强弱、长短以及共鸣效果的如何都有直接关系,同语势的强弱和感情的表达也关系密切。 我们平时说话,不必考虑操作和控制气息,但在朗读,演讲等艺术语言里,气息是催发感情的重要手段,因此,要想使自己的声音运用自如、清晰响亮、音色圆润,优美动人,送的远,就必须学会控制气息,掌握呼吸和换气的技巧, 1、呼吸 (1)腹式呼吸 (2)胸式呼吸 (3)胸腹联合呼吸,吸气时,两肩放松,胸稍内含,腰部挺直,两助打开,横膈下降,小腹微收,开始吸气时,要让气往下沉,吸足吸满,使胸腔和太腹同时向外扩张鼓起,而小腹则应向后收缩,使胸腔的容积逐渐增大,从而吸入大量气息。气息控制的关键是控制呼气。如果呼气一开始,就立即使吸气肌肉群体放松,两肋迅速下塌,横膈膜迅速回弹到原位,气息很快就会被放出,气息就不能为用声提供很好的动力,就不能适应感情表达的需要。因此,正确运用胸腹联合呼吸法就要注意: 呼气开始阶段,吸气肌肉群体不要立即放松,也就是说两肋不要马上放松下塌,要继续保持张开状态。而后,随说话的进行,两肋再在缓缓地放松下塌。 训练:(1)意念抬重物 (2)闻花香 (3)数数儿 1—100 中间不换气 (4)“贯口”换气

直升机飞行原理(图解)

飞行原理(图解) 直升机能够垂直飞起来的基本道理简单,但飞行控制就不简单了。旋翼可以产生升力,但谁来产生前进的推力呢?单独安装另外的推进发动机当然可以,但这样增加重量和总体复杂性,能不能使旋翼同时担当升力和推进作用呢?升力-推进问题解决后,还有转向、俯仰、滚转控制问题。旋翼旋转产生升力的同时,对机身产生反扭力(初中物理:有作用力就一定有反作用力),所以直升机还有一个特有的反扭力控制问题。 直升机主旋翼反扭力的示意图 没有一定的反扭力措施,直升机就要打转转/ 尾桨是抵消反扭力的最常见的方法 直升机抵消反扭力的方案有很多,最常规的是采用尾桨。主旋翼顺时针转,对机身就产生逆

时针方向的反扭力,尾桨就必须或推或拉,产生顺时针方向的推力,以抵消主旋翼的反扭力。 抵消反扭力的主旋翼-尾桨布局,也称常规布局,因为这最常见/ 典型的贝尔407 的尾桨主旋翼当然也可以顺时针旋转,顺时针还是逆时针,两者之间没有优劣之分。有意思的是,美、英、德、意、日直升机的主旋翼都是逆时针旋转,法、俄、中、印、波兰直升机都是顺时针旋转,英、德、意、日的直升机工业都是从美国引进许可证开始的,和美国采用相同的习惯可以理解,中、印、波兰是从前苏联和法国引进许可证开始的,和法、俄的习惯相同也可以理解,但美国和俄罗斯为什么从一开始选定不同的方向,法国为什么不和选美国一样的方向,而和俄罗斯一致,可能只是一个历史的玩笑。

各国直升机主旋翼旋转方向的比较尾桨给直升机的设计带来了很多麻烦。尾桨要是太大了,会打到地上,所以尾桨尺寸受到限制,要提供足够的反扭力,就需要提高转速,这样,尾桨翼尖速度就大,尾桨的噪声就很大。极端情况下,尾桨翼尖速度甚至可以超过音速,形成音爆。尾桨需要安装在尾撑上,尾撑越长,尾桨的力矩越大,反扭力效果越好,但尾撑的重量也越大。为了把动力传递到尾桨,尾撑内需要安装一根长长的传动轴,这又增加了重量和机械复杂性。尾桨是直升机飞行安全的最大挑战,主旋翼失去动力,直升机还可以自旋着陆;但尾桨一旦失去动力,那直升机就要打转转,失去控制。在战斗中,直升机因为尾桨受损而坠毁的概率远远高于因为其他部位被击中的情况。即使不算战损情况,平时使用中,尾桨对地面人员的危险很大,一不小心,附近的人员和器材就会被打到。在居民区或林间空地悬停或起落时,尾桨很容易挂上建筑物、电线、树枝、飞舞物品。 尾桨可以是推式,也可以是拉式,一般认为以推式的效率为高。虽然不管推式还是拉式,气流总是要流经尾撑,但在尾桨加速气流前,低速气流流经尾撑的动能损失较小。尾桨的旋转方向可以顺着主旋翼,也就是说,对于逆时针旋转的主旋翼,尾桨向前转(或者说,从右

空气动力学与飞行原理基础执照考题

M8空气动力学基础及飞行原理 1、绝对温度的零度是(C) A、-273℉ B、-273K C、-273℃ D、32℉ 2、空气的组成为(C) A、78%氮,20%氢和2%其他气体 B、90%氧,6%氮和4%其他气体 C、78%氮,21%氧和1%其他气体 D、21%氮,78%氧和1%其他气体 3、流体的粘性系数与温度之间的关系是?(B) A、液体的粘性系数随温度的升高而增大。 B、气体的粘性系数随温度的升高而增大。 C、液体的粘性系数与温度无关。 D、气体的粘性系数随温度的升高而降低。 4、空气的物理性质主要包括(C) A、空气的粘性 B、空气的压缩性 C、空气的粘性和压缩性 D、空气的可朔性 5、下列不是影响空气粘性的因素是(A) A、空气的流动位置 B、气流的流速 C、空气的粘性系数 D、与空气的接触面积 6、气体的压力

、密度<ρ>、温度三者之间的变化关系是(D) A、ρ=PRT B、T=PRρ C、P=Rρ/ T D、P=RρT 7、在大气层内,大气密度(C) A、在同温层内随高度增加保持不变。 B、随高度增加而增加。 C、随高度增加而减小。 D、随高度增加可能增加,也可能减小。 8、在大气层内,大气压强(B) A、随高度增加而增加。 B、随高度增加而减小。 C、在同温层内随高度增加保持不变。 D、随高度增加可能增加,也可能减小。9、空气的密度(A) A、与压力成正比。 B、与压力成反比。 C、与压力无关。 D、与温度成正比。 10、影响空气粘性力的主要因素: (BC) A、空气清洁度 B、速度剃度 C、空气温度 D、相对湿度 11、对于空气密度如下说法正确的是(B) A、空气密度正比于压力和绝对温度 B、空气密度正比于压力,反比于绝对温度 C、空气密度反比于压力,正比于绝对温度 D、空气密度反比于压力和绝对温度 12、对于音速.如下说法正确的是: (C) A、只要空气密度大,音速就大 B、只要空气压力大,音速就大 C、只要空气温度高.音速就大 D、只要空气密度小.音速就大 13、假设其他条件不变,空气湿度大(B) A、空气密度大,起飞滑跑距离长 B、空气密度小,起飞滑跑距离长 C、空气密度大,起飞滑跑距离短 D、空气密度小,起飞滑跑距离短 14、一定体积的容器中,空气压力(D) A、与空气密度和空气温度乘积成正比 B、与空气密度和空气温度乘积成反比 C、与空气密度和空气绝对湿度乘积成反比 D、与空气密度和空气绝对温度乘积成正比 15、一定体积的容器中.空气压力(D) A、与空气密度和摄氏温度乘积成正比 B、与空气密度和华氏温度乘积成反比 C、与空气密度和空气摄氏温度乘积成反比 D、与空气密度和空气绝对温度乘积成正比 16、对于露点温度如下说法正确的是: (BC) A、温度升高,露点温度也升高 B、相对湿度达到100%时的温度是露点温度 C、露点温度下降,绝对湿度下降 D、露点温度下降,绝对湿度升高

朗诵的气息训练

朗诵的气息训练 运气发声是学习朗诵的基础练习。它主要有以下几方面内容:正确的呼吸控制、口腔控制、共鸣控制、声音弹性与色彩变化。在实践练习中,主要是指导学生①进行气息深(吸得深)、匀(呼得匀)、通(气通畅)、活(用灵活),稳定、持久、自如的基本功训练;②进行口腔控制打(打开牙关)、提(提起颧肌)、挺(挺起软腭)、放(放松下巴)和吐字归音字头(要叼住、弹出)、字腹(要拉开、立起)、字尾(要归音、到位)“枣核型”的基本功训练;③进行声音纯正朴实、明朗大方、圆润集中、刚柔井济、纵收自如、色彩丰富、感染力强、优美动听的基本功训练;④进行用气发声状态积极、松驰、集中的基本功训练。通过学习和训练,要使自己的用气发声状态达到:“气息下沉,喉部放松,不挤不僵,声音贯通;字音轻弹,如珠如流;气随情动,声随情走。” 要说到朗诵或歌唱用气发声,人们很喜欢用传统的说法“运用丹田之气”,好多同学可能会理解成“要把…丹田?的气从口腔中发出去”,其实这是一种误解,因为“丹田”是我国传统气功理论的一个概念,它指的是一种“意念”,并非有一个具体实在的“穴位”或部位。笔者的经验,如果朗诵者在用气时能把控制呼吸的着力点,意守在“丹田”的位置确能起着放松上半身的发声器官的效果,使声音持久而有韧性。 第一节气息控制训练 声音的发出是与呼吸、发声、共鸣、咬字四个环节紧密相连的。肺部呼出的气息通过气管,振动了喉头内的声带,发出微弱的声音。这种声波经过咽腔、口腔、鼻腔等腔体共鸣得到了扩大和美化,再经过口腔唇、齿、舌、牙、腭的协调动作,不同的声音就产生了,这就是朗诵发声的简单原理。 “气者音之帅也”。没有气息,声带就不能颤动发声。呼出的气息是人体发声的动力,声音的强弱、高低、长短、大小及共鸣状况,与呼出气息的速度、流量、压力大小都有直接关系。气流的变化关系到声音的响亮度、清晰度、音色的优美圆润、嗓音的持久性。也就是说,只有气息得到控制,才能控制声音。因此,在诸多发声控制训练中,气息控制训练是学习发声中最重要的根本一环。 朗诵用声的特点决定了对气息控制的要求——掌握胸腹联合呼吸法:一要有较持久的控制能力,二要保持较稳定的气息压力,三要呼气时间长,四要对气息的控制收纵自如,五要学会短时无声吸气;要能掌握“深、匀、通、活,稳定、持久、自如”的气息控制本领。在实际播音创作中,气息的作用不仅仅限于作发声的动力,它还是一种极重要的表达手段,气息是“情动于内”与“声发于外”的中间过渡环节,是情与声之间必经的桥梁。只有在“气随情动”的情况下,声音才能随情而变化。例如:气势汹汹、气息奄奄、气冲霄汉;有气无力、气急败坏、忍气吞声、气贯长虹、怒气冲天等等:这些成语涉及到情感的复杂变化,如果用一种声音形式,一种气息状态去表达,那是不行的!从这个意义上讲,气息控制是由情及声,由内及外的贯穿性技巧。要想使声音能自如地表情达意,必须学会气息的控制与运用

飞行原理复习题(选择答案) 2

第一章:飞机和大气的一般介绍 一、飞机的一般介绍 1. 翼型的中弧曲度越大表明 A:翼型的厚度越大 B:翼型的上下表面外凸程度差别越大 C:翼型外凸程度越大 D:翼型的弯度越大 2. 低速飞机翼型前缘 A:较尖 B:较圆钝 C:为楔形 D:以上都不对 3. 关于机翼的剖面形状(翼型),下面说法正确的是 A:上下翼面的弯度相同 B:机翼上表面的弯度大于下表面的弯度 C:机翼上表面的弯度小于下表面的弯度 D:机翼上下表面的弯度不可比较 二、1. 国际标准大气规定的标准海平面气温是 A:25℃ B:10℃ C:20℃ D:15℃ 2. 按照国际标准大气的规定,在高度低于11000米的高度上,高度每增加1000米,气温随季节变化 A:降低6.5℃ B:升高6.5℃ C:降低2℃ D:降低2℃ 3. 在3000米的高度上的实际气温为10℃,则该高度层上的气温比标准大气规定的温度 A:高12.5℃ B:低5℃ C:低25.5℃ D:高14.5℃

4. 在气温比标准大气温度低的天气飞行,飞机的真实高度与气压高度表指示的高度(基准相同)相比,飞机的真实高度 A:偏高 B:偏低 C:相等 D:不确定 第二章:飞机低速空气动力学 1. 空气流过一粗细不等的管子时,在管道变粗处,气流速度将 A:变大 B:变小 C:不变 D:不一定 2. 空气流过一粗细不等的管子时,在管道变细处,气流压强将 A:增大 B:减小 C:不变 D:不一定 3. 根据伯努利定律,同一管道中,气流速度减小的地方,压强将 A:增大 B:减小 C:不变 D:不一定 4. 飞机相对气流的方向 A:平行于机翼翼弦,与飞行速度反向 B:平行于飞机纵轴,与飞行速度反向 C:平行于飞行速度,与飞行速度反向 D:平行于地平线 5. 飞机下降时,相对气流 A:平行于飞行速度,方向向上 B:平行于飞行速度,方向向下 C:平行于飞机纵轴,方向向上 D:平行于地平线 6. 飞机的迎角是 A:飞机纵轴与水平面的夹角 B:飞机翼弦与水平面的夹角 C:飞机翼弦与相对气流的夹角 D:飞机纵轴与相对气流的夹角 7. 飞机的升力

鸟的飞行原理

鸟为什么会飞呢? 首先,鸟类的身体外面是轻而温暖的羽毛,羽毛不仅具有保温作用,而且使鸟类外型呈流线形,在空气中运动时受到的阻力最小,有利于飞翔。飞行时,两只翅膀不断上下扇动,鼓动气流,就会发生巨大的下压抵抗力,使鸟体快速向前飞行。 其次,鸟类的骨骼坚薄而轻,骨头是空心的,里面充有空气,解剖鸟的身体骨骼还可以看出,鸟的头骨是一个完整的骨片,身体各部位的骨椎也相互愈合在一起,肋骨上有钩状突起,互相钩接,形成强固的胸廓,鸟类骨骼的这此独特的结构,减轻了重量,加强了支 持飞翔的能力。 第三,鸟的胸部肌肉非常发达,还有一套独特的呼吸系统,与飞翔生活相适应。鸟类的肺实心而呈海绵状,还连有9个薄壁的气,在飞翔晨,鸟由鼻孔吸收空气后,一部分用来在肺里直接进行碳氧交换,另一部分是存入气,然后再经肺而排出,使鸟类在飞行时,一次吸气,肺部可以完成两次气体交换。这是鸟类特有的“双重呼吸”保证了鸟在飞行时的氧 气充足。 另外,在鸟类身体中,骨骼,消化,排泄,生殖等器官机能的构造,都趋向于减轻体重,增强飞翔能力,使鸟能克服地球吸引力而展翅高飞。 鸟类的翅膀是它们拥有飞行绝技的首要条件。在同样拥有翅膀的条件下,有的鸟能飞得很高,很快,很远;有的鸟却只能作盘旋,滑翔,甚至根本不能飞。由此可见,仅仅是 翅膀,学问就不少。 鸟类翅膀结构的复杂性,决不亚于鸟类本身的复杂性。如果鸟翅的羽毛构造,能巧妙地运用空气动力学原理,当它们作上下扇动或上下举压时,能推动空气,利用反作用原理向前飞行;羽毛构造合理,能有效的减少飞行时遇到的空气阻力,有的还能起到除震颤消噪音的作用。各种不同种类的鸟在各自翅膀上有较大的区别,这样一来,仅仅是翅膀的差异, 就造就了许多优秀与一般的“飞鸟”。 各种鸟类也因为世代生存环境的不同,而各自演化出独具的特色,如图中1—5。

歌唱发声咽喉机能及嗓音声学原理分析

歌唱发声咽喉机能及嗓音声学原理分析 歌唱发声咽喉机能及嗓音声学原理分析 内容简介: 歌唱发声咽喉机能及嗓音声学原理分析 著名歌手帕基埃罗蒂(G.Pahierotti)在他的回忆录中写道: 知道如何呼吸和良好发声的人,才知道如何美妙歌唱。在声乐教学中,如何帮助学生掌握正确的呼吸和发声方法是至关重要的。声乐教学是 论文格式论文范文毕业论文 歌唱发声咽喉机能及嗓音声学原理分析 著名歌手帕基埃罗蒂(G.Pahierotti)在他的回忆录中写道: 知道如何呼吸和良好发声的人,才知道如何美妙歌唱。在声乐教学中,如何帮助学生掌握正确的呼吸和发声方法是至关重要的。声乐教学是一门相对抽象的学科,在学习过程中,常常只能通过讲解和示范来实施教学活动,致使很多声乐学生不能理解歌唱的生理机制,从而形成错误的发声方法,教学目标难以实现。实践证明,歌唱发声的咽喉机能及嗓音的声学分析均属于嗓音医学范畴,具有严密的科学性和客观性。其意义在于通过大量的咽喉部X射线摄片、录音采样和声学分析数据,使声乐教学中的主体与客体双方均能相对形象地、客观地了解到歌唱发声时声带的功能状况及其器质性变化,对于更好地掌握科学的发声原理具有重要的指导意义。 一、嗓音与咽喉运动方式的关系分析发声是喉部功能属性客观体现的一种基本特征。运用喉肌电图、频闪喉镜检测、录音采样、声学

分析等技术手段,来客观地展示咽喉在发元音、清辅音和浊辅音时不同的喉肌表现,能够帮助学生更快地了解歌唱的声学原理,在歌唱时更加自如地控制咽部小肌肉群的活动,以求发出更加美妙的歌声。嗓音是由肺部呼出气流使声带振动而发出的声音,与咽喉的运动密切相关。咽喉是人类饮食、呼吸、发音的重要器官,上连口鼻,下通肺胃,是连接口腔和肺胃的通路,又为经脉循行的要冲。咽喉不单只是呼吸时气流出入的通道,它对吸入的空气还有温湿度的调节和清洁作用。同时,在大脑的调节下,声门作为空气出入肺部的必经之路,可根据人体生命活动需氧量的增减而发生宽窄变化,声门在人平稳呼吸时较小,运动或情绪激动时,声门扩张,以便增加肺部气体交换。发声时,先吸入空气,声带内收、拉紧,声门闭合,当气流自肺部呼出冲击声带时,使之振动而发出声音。经过咽腔和口腔改变形状,鼻腔与胸腔参与,产生共鸣,使声音清晰,和谐悦耳,并由软腭、口、舌、唇、齿等协同作用,形成各种语音。声调的高低取决于声带的长度、张力和呼出气流的力量。喉肌电图可作为研究发声功能的一种方法。它是通过发声时喉肌机能的检测来揭示发声时喉部肌肉运动轨迹的方法。检测过程如下: 采用配置有记忆系统、示波器和监听装置的肌电记录仪,其两个电极针附着于两侧环杓侧肌,请受检者分别发出元音、清辅音和浊辅音。元音发咿,清辅音发丝,浊辅音发日,观察波形和肌电图直接记录。通过检测发现: 受检者在发元音和浊辅音时,声带肌肉有明显的运动痕迹,而在发清辅音时声带肌肉不活动。频闪喉镜是声带振动检查的最好方法。检测用于观察发声时声带活动动态,借以研究发声生理及检查发声障

飞行原理

飞行原理 低速飞机翼型前缘较圆鈍 高速飞机翼型前缘较尖 平直机翼有极好的低速特性 椭圆机翼诱导阻力最小 梯形机翼矩形加椭圆优点,升阻比特性和低速特性 后掠翼、三角翼------ -------- ------ 高速特性 基本术语: 翼弦---翼型前沿到后沿的连线弦。 相对厚度(厚弦比)----翼型最大厚度与弦长的比值。 翼型的中弧曲度越大表明翼型的上下表面外凸程度差别越大。 翼展---机翼翼尖之间的距离。 展弦比---机翼翼展与平均弦长的比值。 飞机展弦比越大,诱导阻力越小。 后掠角---机翼1/4弦线与机身纵轴垂直线之间夹角。后掠角为了增大临界马赫数。 迎角---- 相对气流方向与翼弦夹角。 临界迎角---升力系数最大时对应的迎角。 有利迎角---升阻比最大时对应的迎角。

阻力 阻力=诱导阻力+废阻力 诱导阻力: 1.大展弦比机翼比小展弦比机翼诱导阻力小。 2.翼梢小翼可以减小飞机的诱导阻力。 3.诱导阻力与速度平方成反比。 废阻力: 废阻力=压差阻力+摩擦阻力+干扰阻力 1.摩擦阻力: 飞机表面积越大或表面越粗糙,摩擦阻力也越大。 2.压差阻力: 与迎风面积、机翼形状、迎角有关。 3.干扰阻力: 废阻力大小与速度的平方成正比。 总阻力是诱导阻力和废阻力之和。 在低速(起降)时诱导阻力占主要,在高速(巡航)时废阻力占主导。 诱导阻力=废阻力时,总阻力最小,升阻比最大。 放下起落架,升阻比减小。 增升装置----前缘缝翼+后缘襟翼 前缘缝翼:

位于机翼前缘,延缓机翼气流分离,提高最大升力系数和临界迎角。 在迎角较小时打开,会降低升力系数。 只有在接近临界迎角时打开,才能起到增升的作用。有的飞机装有“翼尖前缘缝翼”,其主要作用是在 大迎角下延缓翼尖部分的气流分离,提高副翼的效能,改善飞机横侧稳定性和操纵性。 后缘襟翼:简单襟翼+开缝襟翼+后退襟翼+后退开缝襟翼+前缘襟翼 1.简单襟翼—改变了翼型弯度—升阻比降低。 2.开缝襟翼—机翼弯度增大;最大升力系数增大 多,临界迎角降低不多。 3.后退襟翼—增大了机翼弯度和机翼面积,增升 效果好,临界迎角降低较少。 4.后退开缝襟翼(查格襟翼+富勒襟翼)—兼有 后退襟翼和开缝襟翼优点。 5.前缘襟翼—一方面减小前缘延缓气流分离;另 一方面增大了翼型弯度。使最大升力系数和临 界迎角得到提高。 增升装置通过三个方面达到增升目的: 一是增大翼型弯度,提高机翼上、下压强差,从而增大升力系数。

民航常识

民航常识 一、飞机在空中飞行为什么会发生颠簸呢? 飞机一般都是在万米以下的对流层中飞行,由于空气对流原因,飞机就会出现颠簸现象。一般来说主要是受以下几个因素影响:(1)受地形的影响:在山区,高原,沙漠地区飞行,地形使空气受到阻力,造成空气直运动。(2)受季节的影响:由于夏天雷雨较多,秋天的风较大、这两个季节颠簸会多些。 二、如何理解飞机正点? 飞机与火车不同,一个机场的跑道,一条航线,有多架次飞机列队起落,这要由航管部门安排起落顺序,一是安排地面跑道起飞顺序;二是安排空中同航线飞机安全间隔时间及高度,如同地面车辆要保持一定车距一样,根据上述两点原因,按照国际民航的有关规定及惯例,飞机关舱门后允许有正负15分钟的时间差。 三、为什么在客舱内不能吸烟? 飞机在飞行中,常会受到气流的影响,产生轻重不同的颠簸,吸烟时稍有不慎,很容易失火;另外,客舱容积小,旅客密度大,吸烟也会污染舱内空气影响其他旅客的身体健康,所以在客舱内禁止吸烟。 四、乘坐飞机为什么必须系好安全带? 因为飞机一般在飞行过程中,时速都在500公里以上,波音飞机可达900公里,即使在起飞或着陆时,时速也在200多公里,这时要遇紧急情况就会造成一定的后果,如果旅客系好安全带,与飞机同步运动,可以避免惯性力对旅客的危害,各位旅客,为了确保您的旅途安全,当您乘坐飞机时,请您不要忘了系好安全带。 五、万里无云的碧空天气为什么也会有颠簸呢? 这是因为太阳光的照射,使地面的空气受膨胀上升,冷空气下降补充,形成空气对流而引起的颠簸,中午飞行尤为明显。当飞机颠簸时,请您在座位上座好、系好安全带。 六、飞机为什么能起飞? 简单的说,飞机起飞主要是靠发动机的巨大拉力和推力,使飞机滑跑时产生很大的前进速度,然后使机翼产生足够的升力。飞机才能起飞。 七、飞行中乘客发生急病怎么办?

飞行原理复习资料

飞行原理复习资料 140001 放襟翼的主要目的是()。 A:增大升阻比 B:减小升阻比 C:增大最大升力系数 D:增大升力系数 140002 增升装置的主要作用是()。 A:增大最大升阻比 B:增大最大升力 C:增大阻力 D:增大临界迎角 140003 通常规定升力的方向是()。 A:垂直于地面向上 B:与翼弦方向垂直 C:与飞机纵轴垂直向上 D:与相对气流方向垂直 140004 前缘缝翼能延缓机翼的气流分离现象,主要原因是可以()。 A:减小机翼对相对气流的阻挡 B:增大临界迎角 C:减小阻力使升阻比增大 D:增大上表面附面层中空气动能 140005 在通常情况下,放下大角度简单襟翼能使升力系数和阻力系数增大、临界迎角减小、升阻比()。 A:增大 B:不变 C:难以确定其增减 D:减小 140006 有利迎角的()最大。 A:升力系数 B:性质角 C:升阻比 D:性质角的正切值 140007 在额定高度以下,螺旋桨拉力随飞行高度的增高将()。 A:增大 B:减小 C:难以确定 D:不变 140008 即使在发动机工作的情况下,如果()螺旋桨也会产生负拉力。 A:飞行速度过大且油门也较大时 B:飞行速度过大且油门较小时 C:飞行速度小且油门较大时 D:飞行速度过小且油门也较小时 140009 对于没有顺桨机构的飞机,一旦发生停车,应该()。 A:把变距杆推向最前 B:把变距杆拉向最后 C:立即关闭油门 D:增大飞机的迎角 140010 螺旋桨有效功率随飞行速度的变化规律是:在小于某一速度的范围内,随速度的增大而(),大于某一飞行速度的范围内,随飞行速度的增大而()。 A:增大,保持不变 B:增大;减小 C:减小,增大 D:减小,保持不变 140011 在额定高度以上,螺旋桨有效功率随飞行高度的增高将()。 A:减小 B:增大 C:难以确定 D:不变

飞行原理和飞行性能基础教材

VERSION 0.1

飞行原理和性能是航空的基础。我们将简单介绍飞机的基本构成及其主要系统的工作,然后引入许多飞行原理概念,研究飞行中四个力的基础——空气动力学原理,讨论飞机的稳定性和设计特点。最后介绍飞行性能、重量与平衡等有关知识。 第一节飞机结构 本节主要介绍飞机的主要组成部件及其功用、基本工作原理,最后介绍飞机的分类。 飞机的设计和形状虽然千差万别,但它们的主要部件却非常相似(图1—1)。 *飞机一般由五个部分组成:动力装置、机翼、尾翼和起落架, 它们都附着在机身上,所以机身也被看成是基本部件。 图1—1 一、机体 1.机身 机身是飞机的核心部件,它除了提供主要部件的安装点外,还包括驾驶舱、客舱、行李舱、仪表和其他重要设备。现代小型飞机的机身一般按结构类型分为构架式机身和半硬壳式机身。构架式机身所受的外力由钢管或铝管骨架承受;半硬壳式机身由铝合金蒙皮承受主要外力,其余外力由桁条、隔框及地板等构件承受。单发飞机的发动机通常安装于机身的前部。为了防止发动机失火时危及座舱内飞行员和乘客的安全,在发动机后部与座舱之间设置有耐高温不锈钢隔板,称为“防火墙”(图1—2)。

图1—2构架式和半硬壳式机身结构形式 2.机翼 机翼连接于机身两侧的中央翼接头处,横贯机身形成一个受力整体。飞行中空气流过机翼产生一种能使飞机飞起来的“升力”。现代飞机常采用一对机翼,称为单翼。机翼可以安装于机身的上部、中部或下部,分别称为上翼、中翼和下翼。民用机常采用下单翼或上单翼。许多上单翼飞机装有外部撑杆,称为“半悬臂式”;部分上单翼和大多数下单翼飞机无外部撑杆,称为“悬臂式”(图1—3)。 图1—3半悬臂式和悬臂式机翼 机翼的平面形状也多种多样,主要有平直翼和后掠翼,小型低速飞机常采用平直矩形翼或梯形翼。 机翼一般由铝合金制成,其主要构件包括翼梁、翼肋、蒙皮和桁条。一些飞机的机翼内都装设有燃油箱。在机翼两边后缘的外侧铰接有副翼,用来操纵飞机横滚;后缘内侧挂接襟翼,在起飞和着陆阶段使用(图1—4)。 *金属机翼由翼梁、翼肋、桁条和蒙皮等组成。翼梁承受大部分弯曲载荷, 蒙皮承受部分弯曲载荷和大部分扭转载荷,翼肋主要起维持翼型作用。 图1—4

鸟类飞行原理在航空航天技术中的运用

鸟类飞行原理在航空航天技术中的运用 一.引言 自古以来,人类就对天空中自由翱翔的鸟类羡慕不已,期盼有一天也能像鸟类一样插翅飞上蓝天。人类赞美、观察和模仿鸟类飞行的尝试已经有几千年了,早在欧洲文艺复兴时期就出现了达·芬奇,他通过观察和模仿鸟的飞行,画出了扑翼机的设计草图。后来人们又设计制作了各种扑翼机进行尝试,但都没有能够真正离开地面飞起来。由此人们认识到鸟的飞行比人们想象的简单扑翼飞行要复杂得多。在经历了多次失败以后,人类终于借助热气球、氢气球、氦气球、飞艇等航空器飞上了蓝天。但是直到螺旋桨飞机发明之后,人们才对鸟类的飞行原理有了进一步了解,所以直到105年前,才有莱特兄弟制造出世界上第一架载人动力飞机,实现了人类飞翔的梦想。飞机的发明,是人类征服蓝天的一次飞跃。鸟类主宰蓝天的地位,也被人类制造的飞机打破了。从此,广阔的天空中鸟儿与飞机共存。 二.生物原理 人类发明飞机应该说是从学习鸟类飞行开始的,飞机和鸟一样都是利用空气动力来产生升力和推进力,并尽量保持其外形的流线型,以减小飞行阻力。在超音速飞机的飞行速度面前,鸟类也变成了弱者。但是鸟终归是自然界的飞行能手,飞行本领独特而高效,如今仍然值得人类去研究和效仿。 不解剖鸟就不可能理解鸟的飞行。鸟的骨胳、羽毛、肌肉和内部组织, 都可以说是为了适应飞行而存在的。跟其他动物不同的是鸟的骨骼综合多用、轻而强壮。鸟类的骨骼坚薄而轻,骨头是空心的,里面充有空气,解剖鸟的身体骨骼还可以看出,鸟的头骨是一个完整的骨片,身体各部位的骨椎也相互愈合在一起,肋骨上有钩状突起,互相钩接,形成强固的胸廓,鸟类骨骼的这此独特的结构,减轻了重量,加强了支持飞翔的能力。鸟的胸部肌肉非常发达,还有一套独特的呼吸系统,与飞翔生活相适应,鸟类的肺实心而呈海绵状,还连有9个薄壁的气,在飞翔晨,鸟由鼻孔吸收空气后,一部分用来在肺里直接进行碳氧交换,另一部分是存入气,然后再经肺而排出,使鸟类在飞行时,一次吸气,肺部可以完成两次气体交换,这是鸟类特有的“双重呼吸”保证了鸟在飞行时的氧气充足。鸟类身体中,骨骼,消化,排泄,生殖等器官机能的构造,都趋向于减轻体重,增强飞翔能力,使鸟能克服地球吸引力而展翅高飞。 三.仿生技术的原理与特点 从鸟类的身上,人们发现要在空中飞行,需要考虑的不外乎空力的问题,要制造具有优越的空力的飞行器就必须考虑到重量、升力、阻力、推力四个基本要素: 1.重量是除去机体重量、燃料乘坐的人之外还包括货物的撘载量。

声乐基本发声原理学习心得(终)

声乐基本发声原理学习心得 学习声乐已经有一段时间了,从一开始的摸不到头绪,后来慢慢的喜欢上它,到现在终于有了一定的收获和理解,尤其是跟殷老师、董华老师、邹文琴先生学习后,对声乐的原理有了更深入的了解。现在把我这些年学习的一点点心得总结一下: 一、学习要有坚持的信念。刚开始接触声乐的时候,我的感觉就是浓雾一片,看啥都看不明白,因为有太多的专业术语,太多模糊的概念。很多次都有了放弃的想法,但是一种技能危机感促使我坚持了下来。坚持说到底就是一点一滴的积累。它短期内看不出效果,所以很容易被忽略。现在的人们都讲究高效、快捷,其实这是功利心在作怪,真正的学问是累计出来的。所以,应该保持一颗求学的心,慢下来,坚持把一件事做完,只有做完了你才能够看清楚自己干了些什么。 另外不能只学习声乐的技巧,还要学习乐理知识、音乐欣赏及其他各个方面的知识。有时候给人启发的不一定是抽象的术语和技巧,可能从其他跨界的知识中得到灵感。一块砖对盖房子是没有用,但是无数的砖块就能垒砌成一座大厦。我们不能只停留在某一个单一的声乐领域只研究一种唱法一种表现形式,要多方位的了解声乐的发展,即要学习最先进最前沿的知识,还要学习最经典最正统的知识。不断丰富自己对音乐的认识,对人生的思考,对情感的表达等等。总之,学习不能只是单一的,要多方面的。 二、学习要讲究方法。什么是最好的方法呢?管用的就是最好的。学习的接受能力是因人而异的,有的人接受的快,有的人就慢,但是只要是对自己有效的就是适合你的,不要过多的效仿别人的学习方法。我学习声乐的方法就是来回的体验、反复的录音,从中找出差异再加以改善(复杂的事情简单化,简单的事情重复化)。同时要了解人体器官的构造,这可以让声乐学习的抽象理论更直观化。很多教材上都提到了人体的一些器官名称(如:横膈膜、会厌、咽壁、真假声带等等),如果不了解它很容易产生迷惑,所以了解一些解剖学的知识是很有必要的。也很多老师教学喜欢用自己的术语,像:面罩、叹着唱、提笑肌、贴着咽壁等等,如果不明白他想表达的意思就很难搞懂。所以,我们对学习中的名词术语

民航飞行基本知识

民航飞行基本知识 一、什么叫GDS? GDS(Global Distribution System)即“全球分销系统”,是应用于民用航空运输及整个旅游业的大型计算机信息服务系统。通过GDS,遍及全球的旅游销售机构可以及时地从航空公司、旅馆、租车公司、旅游公司获取大量的与旅游相关的信息,从而为顾客提供快捷、便利、可靠的服务。 二、什么叫航空移动卫星服务/业务(AMSS)? AMSS为航空用户提供远距数据链和话音通信。参考ATC专题中的AMSS。 三、什么叫ATN(航空电信网)? ATN是全球范围内,用于航空的数字通信网络和协议。参考ATC 专题中的航空电信网。 四、什么叫新航行系统? 参考ATC专题中的新航行系统。 五、什么叫RNP? 飞机在一个确定的航路、空域或区域内运行时,所需的导航性能精度。参考ATC专题中的新航行系统。 六、什么叫雷达管制? 空中交通管制一般分为程序管制和雷达管制。目前我国大部分空中交通管制单位还使用落后的程序管制,广州区域现行的是介于两者

之间的雷达监控条件下的程序管制。雷达管制(RADAR CONTROL)是指直接使用雷达信息来提供空中交通管制服务。 程序管制和雷达管制最明显的区别在于两种管制手段允许的航空器之间最小水平间隔不同。在区域管制范围内,程序管制要求同航线同高度航空器之间最小水平间隔10分钟(对于大中型飞机来说,相当于150KM左右的距离),雷达监控条件下的程序管制间隔只需 75KM,而雷达管制间隔仅仅需要20KM。 允许的最小间隔越小,以为着单位空域的有效利用率越大,飞行架次容量越大,越有利于保持空中航路指挥顺畅,更有利于提高飞行安全率和航班正常率。 国外空中交通管制发达的国家已经全面实现了雷达管制,而中国民航目前只在北京、珠海进近管制等小范围、低空空域实施雷达管制。 七、什么是支线飞机? 支线飞机,是指座位数在50座110座左右,飞行距离在600公里1200公里的小型客机。 支线运输是指短距离、小城市之间的非主航线运行。国家有关部门现在正在制定鼓励发展支线航空的措施,包括减免小型机场建设费、调低相关费用、增加小型支线飞机的数量等。未来国内航线布局发展的重点将在沿海开放地区、西部交通不便地区,还有中部的一些旅游城市。除现有以乌鲁木齐、昆明、成都为中心的辐射式航线网外,还将逐步形成:杭州温州、赣州、宁波、义乌、金化、丽水、舟山、嵊泗;广州汕头、湛江、梅县、阳江、韶关、连县、罗定、茂名;武

飞行原理练习题

1. 翼型的中弧曲度越大表明 A:翼型的厚度越大 B:翼型的上下表面外凸程度差别越大 C:翼型外凸程度越大 D:翼型的弯度越大 你的答案: 正确答案: B 2. 低速飞机翼型前缘 A:较尖 B:较圆钝 C:为楔形 D:以上都不对 你的答案: 正确答案: B 3. 关于机翼的剖面形状(翼型),下面说法正确的是 A:上下翼面的弯度相同 B:机翼上表面的弯度大于下表面的弯度 C:机翼上表面的弯度小于下表面的弯度 D:机翼上下表面的弯度不可比较 你的答案: 正确答案: B 1. 国际标准大气规定的标准海平面气温是 A:25℃ B:10℃ C:20℃ D:15℃ 回答: 错误你的答案: 正确答案: D 2. 按照国际标准大气的规定,在高度低于11000米的高度上,高度每增加1000米,气温随季节变化 A:降低6.5℃ B:升高6.5℃ C:降低2℃ D:降低2℃ 回答: 错误你的答案: 正确答案: A 3. 在3000米的高度上的实际气温为10℃,则该高度层上的气温比标准大气规定的温度A:高12.5℃ B:低5℃ C:低25.5℃ D:高14.5℃

回答: 错误你的答案: 正确答案: D 4. 在气温比标准大气温度低的天气飞行,飞机的真实高度与气压高度表指示的高度(基准相同)相比,飞机的真实高度 A:偏高 B:偏低 C:相等 D:不确定 你的答案: 正确答案: B 1. 空气流过一粗细不等的管子时,在管道变粗处,气流速度将 A:变大 B:变小 C:不变 D:不一定 回答: 错误你的答案: 正确答案: B 提示: 2. 空气流过一粗细不等的管子时,在管道变细处,气流压强将 A:增大 B:减小 C:不变 D:不一定 回答: 错误你的答案: 正确答案: B 提示: 3. 根据伯努利定律,同一管道中,气流速度减小的地方,压强将 A:增大 B:减小 C:不变 D:不一定 回答: 错误你的答案: 正确答案: A 提示: 4. 飞机相对气流的方向 A:平行于机翼翼弦,与飞行速度反向 B:平行于飞机纵轴,与飞行速度反向

鸟的发声原理

鸟的发声原理 下面是给大家带来的鸟的发声原理的相关知识,欢迎阅读!鸟的发声原理:一、鸟的结构鸟的羽毛羽毛分为正羽、绒羽和毛羽三种类型。 正羽的羽枝两侧密生羽小枝,羽小枝上生有钩或槽,前后相邻的羽小枝相互钩连,组成扁平而有弹性的羽片。 体表的正羽,形成一层防风外壳,并使鸟体呈流线型轮廓。 翼及尾上的正羽,对飞翔及平衡起决定作用。 绒羽的结构特点是羽轴纤弱,羽小枝的钩状突起不发达,因而不能构成坚实的羽片,有保温作用。 鸭绒就是鸭的绒羽。 毛羽很细,呈毛发状,杂生在正羽与绒羽之中,在拔去正羽和绒羽之后才能见到。 鸟类体羽的分区鸟的皮肤鸟类的皮肤无汗腺,唯一的皮脂腺是尾部的尾脂腺,其分泌的油质,经过喙的涂抹,擦在羽上,使羽片润泽不为水湿。 尾指腺的分泌物,还含有麦角固醇,这种物质在紫外线照射下,能转变为维生素D。 当鸟用喙涂擦羽毛时,维生素D可被皮肤吸收,有利于骨骼的生长。 鸟的骨骼鸟类适应于飞翔生活,其骨骼轻而坚固,骨片薄,长骨内中空,有气囊穿入。

许多骨片合在一起,以增加坚固性。 脊柱可分为颈椎、胸椎、腰椎、荐椎和尾椎五部分。 颈椎数目较多,椎体呈马鞍形,使颈部极为灵活(猫头鹰头部活动可达270°)。 最后几个胸椎、全部腰椎、荐椎和部分尾椎完全愈合在一起,称综荐骨,为腰部的坚强支柱。 肋骨上有钩状突,互相钩接,使胸廓更为坚固。 肩带由肩胛骨、乌喙骨和锁骨组成。 细而有弹性的锁骨呈“V字形,它能在鼓翼时阻碍左右乌喙骨的靠拢,也能增强肩带的弹性。 鸟的骨骼鸟类的整个体重落在后肢,后肢骨骼强大,和其他陆栖脊椎动物的后肢骨相比,鸟类跗骨延伸,起到增加弹性的作用。 鸟类通常具四趾。 在成鸟,腰带的髂骨、坐骨、耻骨三骨片以及综荐骨愈合成一个整体,增加了腰带的坚固性。 鸟的肌肉鸟类与飞翔有关的胸肌特别发达,约占身体质量的1/5,它能发出强大的动力,牵引翼的扇动。 而背部肌肉退化,这一点和鱼类正相反。 鸟的胸肌可分为大胸肌和小胸肌两种。 前者起于龙骨突,止于肱骨的腹面,收缩时,使翼下降;后者起于龙骨突,而以长的肌腱穿过由锁骨、乌喙骨和肩胛骨所构成的三骨孔,

乐器的发音原理

乐器的发音原理 3.1能量来源 演奏乐器靠的不光是良好的音乐素养、熟练的技术和灵敏的反应,还需要充沛的 体力。就这个意义而言,乐器可以分为两种类型——肢体乐器和气息乐器。乐队的名称通常代表了这两大类乐器,例如“管弦乐队”和“吹打乐队”(我国民间乐队的形式),“管”和“吹”代表气息乐器,“弦”和“打”代表肢体乐器。 对于肢体乐器而言,臂力、腕力和手指力量是发音的基础,手的力量必须靠技能的训练来提高。气息乐器也一样,肺活量是基础,练习气息乐器除了提高音乐素养外,还起到锻炼身体的作用。 电声乐既不属于肢体乐器,也不属于气息乐器,它具有极其丰富的音色,遗憾的 是它的音色不是由演奏者获得的,无法体现演奏者的水平 3.2振源 振源的振动必须依靠外来的动力,这种动力有两大来源: (1) 机械力:这是肢体乐器的能量来源,依靠机械力振动的振源有琴弦、鼓皮和音板,它们发出的频率完全由振源本身的材料性质和形状决定。机械力在振源上的作用可以是连续的,例如弓弦乐器是以弓对琴弦的摩擦力作为能量来源的;也可以是瞬时的,例如钢琴琴弦的动力只取决于琴锤敲击琴弦的瞬间。 (2) 气流:这是气息乐器的能量来源,依靠气流振动的振源有人的声带、哨片(有簧类木管乐器)、气簧(依靠孔穴周围的空气振动,无簧类木管乐器)、唇簧(嘴唇的振动,铜管乐器)和金属簧(口琴和手风琴),它们发出的频率一般不太固定。关于簧片的具体分类,将在管乐器的特性这一章中介绍。 振源本身都具有固定的发音频率,称为固有频率,但是这种频率会受到外界的影响,特别是动力和共鸣腔的影响,例如琴弦在遭受重击时,频率会略高于它的固有频率,哨片的频率则完全可以受气流左右。频率的浮动程度从小到大依次为:琴弦、鼓皮、音板(木制和金属制的)、金属簧片、声带、哨片、气簧和唇簧。 琴弦是最典型的振源,它的材质对音色是有影响的。早期弦乐器的琴弦以羊肠线为主,羊肠弦发音清脆明亮,但融合性很差。十九世纪后,由于冶金工业的发展以及管弦

第3章飞行原理(精简版)

C001、飞机的迎角是 A.飞机纵轴与水平面的夹角 B.飞机翼弦与水平面的夹角 C.飞机翼弦与相对气流的夹角【答案】C(解析:-) C002、飞机下降时,其迎角A.大于零 B.小于零 C.等于零 【答案】A(解析:-) C003、飞机上升时,其迎角A.大于零 B.小于零

C.等于零 【答案】A(解析:-) C004、影响升力的因素 A.飞行器的尺寸或面积,飞行速度,空气密度 B.CL C.都是 【答案】C(解析:-) C005、载荷因子是 A飞机压力与阻力的比值 B.飞机升力与阻力的比值 C.飞机承受的载荷【除升力外】与重力的比值

【答案】C(解析:-) C006、失速的直接原因是 A.低速飞行 B.高速飞行 C.迎角过大 【答案】C(解析:p63) C007、当无人机的迎角为临界迎角时 A.飞行速度最大 B.升力系数最大 C.阻力最小 【答案】B(解析:-) C008、相同迎角,飞行速度增大一倍,

阻力增加约为原来的 A.一倍 B.二倍 C.四倍 【答案】C(解析:-) C009、通过改变迎角,无人机驾驶员可以控制飞机的 A.升力,空速,阻力 B.升力,空速,阻力,重量 C.升力,拉力,阻力 【答案】A(解析:-) C010、无人机驾驶员操作副翼时,飞行器将

A.横轴运动 B.纵轴运动 C.立轴运动 【答案】B(解析:-) C011、无人机飞行员操纵升降舵时,飞行器将绕 A.横轴运动 B.纵轴运动 C.立轴运动 【答案】A(解析:-) C012、无人机飞行员操纵方向舵时,飞行器将绕 A.横轴运动

B.纵轴运动 C.立轴运动 【答案】C(解析:p71) C013、舵面遥控状态时,平飞中向前稍推升降舵杆量,飞行器的迎角A.增大 B.减小 C.先减小后增大 【答案】B(解析:-) C014、舵面遥控状态时,平飞中向后稍拉升降舵杆量,飞行器的迎角A.增大 B. 减小

鸟类飞行特征

鸟类飞行的形态结构特征 鸟类的身体有与飞行相适应的各种形态结构: 1、(1)鸟的外形 外形与羽毛,鸟类的身体呈梭形,构成流线型的外廊,体表被覆着羽毛,它重量极轻而结构甚精,在受到损坏时易于修理和更换。鸟类骨骼轻而坚固,骨片薄,长骨内中空,有气囊穿入。许多骨片合在一起,以增加坚固性。鸟类的整个体重落在后肢,后肢骨骼强大,鸟类跗骨延伸,起到增加弹性的作用。 1、(2)鸟的翼 翼,鸟类的飞羽着生于前肢,形成能够伸缩与折叠的两翼,翼的前缘厚,后缘薄,穿过空气时阻力小并能产生升力。而后缘的飞羽则扩大了翼的表面积,产生了强大的浮力和飞行动力。 2、鸟的骨骼 骨骼和肌肉,鸟类的骨骼薄、空轻(骨腔大,且充满了空气)的特点,非常适于空中飞行。鸟类的各部脊椎适度愈合成块,支撑机体,使飞行时身体平稳,在胸骨上附着特别发达的胸肌,约占体重的1/5,胸肌能发出强大的动力,牵引翼的扇动。

3、消化系统 鸟口中无牙,也无牙床,减轻头骨的重量,达到合理的身体配重。鸟类飞行要消耗大量的能量。鸟类总把食物直接快速吞咽,再由消化系统的各部分继续消化。 4、呼吸系统 鸟类有特别的呼吸系统,表现在具有非常发达气囊和气管。气囊广布于内脏、骨腔和肌肉之间,这使鸟类在吸气及呼气过程中,肺内均有富含氧气的空气流过,在吸气和呼气时肺叶都能进行气体交换,是谓双重呼吸,从而提高鸟类的呼吸效率。鸟类的新陈代谢快,又没有散热的汗腺,气囊又兼有调节体温、降低鸟体的比重、减小飞翔内脏间及肌肉间的磨擦。鸟由鼻孔吸收空气后,一部分用来在肺里直接进行氧交换,另一部分是存入气囊,然后再经肺而排出,使鸟类在飞行时,一次吸气,肺部可以完成两次气体交换,这是鸟类特有的“双重呼吸” 5、血液循环 内脏特化,鸟类心脏的相对大小在所有脊椎动物中居首位,心脏容量大,心跳频率快,一般300-500次/分钟,血流速度快,有利于氧气、营养物质及代谢废物的交换与排出。肾脏相对体积大,能迅速地排出废物,保持水分,盐分平衡。鸟类没有膀胱,

相关主题
文本预览
相关文档 最新文档