当前位置:文档之家› 数值分析知识点

数值分析知识点

数值分析知识点
数值分析知识点

第一章绪论(1-4)

一、误差来源及分类

二、误差的基本概念

1.绝对误差及绝对误差限

2.相对误差及相对误差限

3.有效数字

三、数值计算的误差估计

1.函数值的误差估计

2.四则运算的误差估计

四、数值计算的误差分析原则

第二章插值(1.2.4-8)

一、插值问题的提法(定义)、插值条件、插值多项式的存在唯一性

二、拉格朗日插值

1.拉格朗日插值基函数的定义、性质

2.用拉格朗日基函数求拉格朗日多项式

3.拉格朗日插值余项(误差估计)

三、牛顿插值

1.插商的定义、性质

2.插商表的计算

3.学会用插商求牛顿插值多项式

四、等距节点的牛顿插值

1.差分定义、性质及计算(向前、向后和中心)

2.学会用差分求等距节点下的牛顿插值公式

五、学会求低次的hermite插值多项式

六、分段插值

1.分段线性插值

2.分段三次hermite插值

3.样条插值

第三章函数逼近与计算(1-6)

一、函数逼近与计算的提法(定义)、常用两种度量标准(一范数、二范数\平方逼近)

二、基本概念

连续函数空间、最佳一次逼近、最佳平方逼近、内积、内积空间、偏差与最小偏差、偏差点、交错点值、平方误差

三、学会用chebyshev定理求一次最佳一致逼近多项式,并估计误差(最大偏差)

四、学会在给定子空间上通过解方程组求最佳平方逼近,并估计误差(平方误差)

五、正交多项式(两种)定义、性质,并学会用chebyshev多项式性质求特殊函数的(降阶)最佳一次逼近多项式

六、函数按正交多项式展开求最佳平方逼近多项式,并估计误差

七、一般最小二乘法(多项式拟合)求线性拟合问题

第四章数值分析(1-4)

一、数值求积的基本思想及其机械求积公式

二、代数精度的定义并学会判别求积公式的代数精度

三、插值型求积公式、定义及其性质

四、newton-cotes公式定义、余项及其代数精度

五、学会用几种低阶newton-cotes公式及其逼近公式方程求积分近似值

六、学会用龙贝格算法求积分近似值

七、高斯公式定义及其代数精度,并学会用guass-chebyshev公式求积分近似值

第五章常微分方程数值解法

一、掌握显式的欧拉法,隐式欧拉法,梯形方法,中点欧拉法和改进欧拉法,包括这些方法,公式的推导,解题和局部截断误差(是几阶的方程)

二、掌握runge-kutta方法的基本思想,以及二阶、三阶、四阶、五阶R-K方法的格式和局部截断误差

第六章方程求跟(1-5)

一、学会用二分法求解问题

二、一般迭代法的基本思想

三、局部收敛性定义、定理并学会用该定理判别迭代法的局部收敛性

四、牛顿迭代法公式的推导,局部收敛性与收敛速度,牛顿法的应用与解题

五、牛顿法的变形

第七章解线性方程组的直接截法(1-6)

一、学会用顺序高斯消去法,列主元素或完全主元素法,求解线性方程

二、学会用矩阵三角分解法,平方根法(改进平方根法),追赶法求解问题

三、掌握向量和矩阵的定义,性质,计算,应用

四、矩阵的谱半径,条件数,定义,计算,应用

五、线性方程组的误差分析

第八章线性方程组的迭代法(1-4)

一、一般方程组的一般迭代法思想,迭代格式,收敛性,一般误差分析

二、学会用雅各比迭代法解题,学会判别其收敛性

三、学会guass-seidel迭代法解题,学会判别其收敛性

四、学会SOR迭代法解题,学会判别其收敛性

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); ( 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 ,1 ,进行两步后根的所在区间为 , 。 15、 、 16、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 ,用辛卜 生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 17、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 18、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿 插值多项式为 )1(716)(2-+=x x x x N 。 19、 求积公式 ?∑=≈b a k n k k x f A x x f )(d )(0 的代数精度以( 高斯型 )求积公式为最高,具 有( 12+n )次代数精度。

西南交通大学数值分析题库

考试目标及考试大纲 本题库的编纂目的旨在给出多套试题,每套试题的考查范围及难度配置均基于“水平测试”原则,按照教学大纲和教学内容的要求,通过对每套试题的解答,可以客观公正的评定出学生对本课程理论体系和应用方法等主要内容的掌握水平。通过它可以有效鉴别和分离不同层次的学习水平,从而可以对学生的学习成绩给出客观的综合评定结果。 本题库力求作到能够较为全面的覆盖教学内容,同时突显对重点概念、重点内容和重要方法的考查。考试内容包括以下部分: 绪论与误差:绝对误差与相对误差、有效数字、误差传播分析的全微分法、相对误差估计的条件数方法、数值运算的若干原则、数值稳定的算法、常用数值稳定技术。 非线性方程求解:方程的近似解之二分法、迭代法全局收敛性和局部收敛定理、迭代法误差的事前估计法和事后估计法、迭代过程的收敛速度、r 阶收敛定理、Aitken加速法、Ne w to n法与弦截法、牛顿局部收敛性、Ne w to n收敛的充分条件、单双点割线法(弦截法)、重根加速收敛法。 解线性方程组的直接法:高斯消元法极其充分条件、全主元消去法、列主元消去法、高斯-若当消元法、求逆阵、各种消元运算的数量级估计与比较、矩阵三角分解法、Doolittle 和Crout三角分解的充分条件、分解法的手工操作、平方根法、Cholesky分解、改进的平方根法(免去开方)、可追赶的充分条件及适用范围、计算复杂性比较、严格对角占优阵。 解线性方程组迭代法:向量和矩阵的范数、常用向量范数的计算、范数的等价性、矩阵的相容范数、诱导范数、常用范数的计算;方程组的性态和条件数、基于条件数误差估计与迭代精度改善方法;雅可比(Jacobi)迭代法、Gauss-Seidel迭代法、迭代收敛与谱半径的关系、谱判别法、基于范数的迭代判敛法和误差估计、迭代法误差的事前估计法和事后估计法;严格对角占优阵迭代收敛的有关结论;松弛法及其迭代判敛法。 插值法:插值问题和插值法概念、插值多项式的存在性和唯一性、插值余项定理;Lagrange插值多项式;差商的概念和性质、差商与导数之间的关系、差商表的计算、牛顿(Newton)插值多项式;差分、差分表、等距节点插值公式;Hermite插值及其插值基函数、误差估计、插值龙格(Runge)现象;分段线性插值、分段抛物插值、分段插值的余项及收敛性和稳定性;样条曲线与样条函数、三次样条插值函数的三转角法和三弯矩法。 曲线拟合和函数逼近:最小二乘法原理和多项式拟合、函数线性无关概念、法方程有唯一解的条件、一般最小二乘法问题、最小二乘拟合函数定理、可化为线性拟合问题的常见函数类;正交多项式曲线拟合、离散正交多项式的三项递推法。最佳一致逼近问题、最佳一致逼近多项式、切比雪夫多项式、切比雪夫最小偏差定理、切比雪夫多项式的应用(插值余项近似极小化、多项式降幂)。本段加黑斜体内容理论推导可以淡化,但概念需要理解。 数值积分与微分:求积公式代数精度、代数精度的简单判法、插值型求积公式、插值型求积公式的代数精度;牛顿一柯特斯(Newton-Cotes)公式、辛卜生(Simpson)公式、几种低价牛顿一柯特斯求积公式的余项;牛顿一柯特斯公式的和收敛性、复化梯形公式及其截断误差、复化Simpson公式及其截断误差、龙贝格(Romberg)求积法、外推加速法、高斯型求积公式、插值型求积公式的最高代数精度、高斯点的充分必要条件。正交多项式的构造方法、高斯公式权系数的建立、Gauss-Legendre公式的节点和系数。本段加黑斜体内容理论推导可以淡化,但概念需要理解。 常微分方程数值解:常微分方程初值问题数值解法之欧拉及其改进法、龙格—库塔法、阿当姆斯方法。

数值分析模拟试题

数值分析模拟试题 一、填空题(每小题3分,共30分) 1、已知近似值* 2.4560x =是由真值x 经四舍五入得到,则相对误差限为 。 2 、为减少舍入误差的影响,应将10改写成 。 3、设(1,1,2,3)T x =-,则12_______,_______,_______x x x ∞===。 4、设1123A -??=????,则1________,________F A A ==,A 的谱半径()A ρ=。 5、用Gauss-Seidel 迭代法解方程组1212423 x ax ax x +=??+=-?,其中a 为实数,则该方法收敛的充要 条件是a 满足 。 6、迭代法12213k k k x x x +=+收敛于*x =,此迭代格式是 阶收敛的。 7、设01(),(),,()n l x l x l x 是以01,, ,n x x x 为节点的Lagrange 插值基函数,则0()n i i l x ==∑。 8、设3()321f x x x =++,则差商[0,1,2,3]_____,[0,1,2,3,4]_____f f ==。 9、数值积分的辛普森公式为()b a f x dx ≈?。 10、数值积分公式0()()n b k k a k f x dx A f x =≈∑?中,0n k k A ==∑。 二、设函数2()(3)x x a x ?=+-,由迭代公式1()k k x x ?+=产生的序列为{}k x ,试讨论 ⑴当a 为何值时,序列{}k x 收敛; ⑵当a 取何值时,收敛速度最快,并指出迭代法收敛的阶。(12分) 三、设4()[0,2]f x C ∈,且(0)2,(1)1,(2)0,'(1)0f f f f ==-==,试求函数()f x 的三次 插值多项式()P x ,并求余项表达式。(14分) 四、用矩阵的直接三角分解法(即LU 分解)解方程组Ax b =,其中

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2) ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。

插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q (1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() ()x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又

数值分析习题与答案

第一章绪论 习题一 1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1. 2.4)有 已知x*的相对误差满足,而 ,故 即 2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得 有5位有效数字,其误差限,相对误差限 有2位有效数字, 有5位有效数字, 3.下列公式如何才比较准确? (1) (2)

解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。 (1) (2) 4.近似数x*=0.0310,是 3 位有数数字。 5.计算取,利用:式计算误差最小。 四个选项: 第二、三章插值与函数逼近 习题二、三 1. 给定的数值表 用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。线性插值时,用0.5及0.6两点,用Newton插值 误差限,因

,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 误差限 ,故 2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少? 解:用误差估计式(5.8), 令 因 得 3. 若,求和.

解:由均差与导数关系 于是 4. 若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有 而当P=n+1时 于是得 5. 求证. 解:解:只要按差分定义直接展开得 6. 已知的函数表

数值分析试题及答案

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110l x = B . ()00l x =0, ()111l x = C .() 00l x =1,()111 l x = D . () 00l x =1,()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 1231231 220223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A . 232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得 分 评卷人 二、填空题(每小题3分,共15分)

1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数()()() 33301213,88C C C ===,那么 () 33C = 4. 因为方程()420 x f x x =-+=在区间 []1,2上满足 ,所以()0f x =在区间 内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公式 . 填空题答案 1. 9和29 2. ()() 0101 f x f x x x -- 3. 1 8 4. ()()120 f f < 5. ()12 00.1 1.1,0,1,210.11k k y y k k y +???? ?=+? ?=+???? =??L 得 分 评卷人 三、计算题(每题15分,共60分) 1. 已知函数 21 1y x = +的一组数据: 求分 段线性插值函数,并计算 () 1.5f 的近似值. 计算题1.答案 1. 解 []0,1x ∈, ()1010.510.50110x x L x x --=?+?=---% []1,2x ∈,()210.50.20.30.81221x x L x x --=?+?=-+--%

2014-2015数值分析考试试题卷

太原科技大学硕士研究生 2014/2015学年第1学期《数值分析》课程试卷 一、填空题(每空4分,共32分) 1、设?????≤≤-++<≤+=2 1,1321 0,)(2 323x x bx x x x x x s 是以0,1,2为节点三次样条函数,则b=__-2___ 2、解线性方程组12312312388 92688 x x x x x x x x x -++=-?? -+=??-+-=? 的Jacobi 迭代格式(分量形式)为 ?? ???+--=++-=++=+++)(2)(1)1(3) (3)(1)1(2) (3)(2)1(1882/)96(88k k k k k k k k k x x x x x x x x x ,其相应的迭代矩阵为??????????-0812/102/9810。 3、方程03 =-a x 的牛顿法的迭代格式为__3 12 3k k k k x a x x x +-=-__________,其收敛的阶为 2 。 4、已知数x 的近似值0.937具有三位有效数字,则x 的相对误差限是310534.0-? 解:x 1≈0.937, 31102 1 )(-?≤ x ε 3 31111 10(x )2 (x )0.53410x 0.937 r εε--?=≤=? 5、用列主元高斯消去法解线性方程组 ??? ??=--=++=++2333220221 321321x x x x x x x x 作第1次消元后的第2,3个方程分别为? ? ?=+--=-5.35.125 .15.03232x x x x 6、设???? ??-=3211A ,则=∞)(A Cond __4____.

数值分析推荐书目

第一类:教材匹配阅读 ?数值分析复习与考试指导,李庆扬编,高等教育出版社; ?数值分析(第四版)导教·导学·导考,封建湖等编,西北工业大学出版社; ?数值分析,孙志忠编,东南大学出版社; ?数值分析简明教程(第二版),王能超编,高等教育出版社; ?数值分析全真试题解析,孙志忠编,东南大学出版社; ?数值分析学习辅导习题解析,李宏、徐长发编,华中科技大学出版社; 第二类:实验教材匹配阅读 ?数值分析及其MATLAB实验,姜健飞等编,科学出版社; ? MATLAB数值计算,Cleve B.Moler, 机械工业出版社; ?数值分析与实验,薛毅,北京工业出版社; ?高等应用数学问题的MATLAB求解(第二版),薛定宇,陈阳泉著,清华大学出版社; ? MATLAB数值分析与应用,宋叶志等编著,机械工业出版社; 第三类:扩展阅读 ?现代科学与工程计算,孟大志,刘伟编著,高等教育出版社; ?计算数学简明教程,何旭初等编,高等教育出版社; ?计算方法导论,徐萃薇编,高等教育出版社; ?计算方法(第二版),邓建中、刘之行编,西安交通大学出版社; ?数值分析学习辅导习题解析,李宏、徐长发编,华中科技大学出版社; ?计算方法,邓建中、葛仁杰、程正兴编,西安交通大学出版社; ?数值计算方法,孙淑英张圣丽编,山东大学出版社; ?数值分析,.M.奥特加著,张丽君等译,高等教育出版社; ?有限元方法及其理论基础,姜礼尚庞之垣著,人民教育出版社; < ?微分方程数值解法,李荣华、冯国忱编,高等教育出版社; ?偏微分方程数值解法,李荣华编,高等教育出版社; ?非线性方程组的数值解法,李庆扬、莫孜中、祁力群编,科学出版社; ?非线性方程组解法,王德人编,人民教育出版社; < ?数值分析基础,关治、陆金甫编,高等教育出版社; ?数值线性代数,徐树方、高立、张平文编,北京大学出版社; ?数值线性代数,曹志浩编著,复旦大学出版社;

数值分析整理版试题及答案

数值分析整理版试题及答案

例1、 已知函数表 x -1 1 2 ()f x -3 0 4 求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。 解: (1)k x -1 1 2 k y -3 0 4 插值基函数分别为 ()()()()()()()()()() 1200102121()1211126 x x x x x x l x x x x x x x ----= ==-------- ()()()()()()()() ()()021******* ()1211122x x x x x x l x x x x x x x --+-= ==-+---+- ()()()()()()()()()()0122021111 ()1121213 x x x x x x l x x x x x x x --+-= ==-+--+- 故所求二次拉格朗日插值多项式为 () ()()()()()()()()()()2 20 2()11131201241162314 121123537623k k k L x y l x x x x x x x x x x x x x ==?? =-? --+?-+-+?+-????=---++-=+-∑ (2)一阶均差、二阶均差分别为

[]()()[]()()[][][]010********* 011201202303 ,11204 ,412 3 4,,5 2,,126 f x f x f x x x x f x f x f x x x x f x x f x x f x x x x x ---===-----= = =----=== --- k x ()k f x 一阶 二阶 -1 -3 1 0 3/ 2 2 4 4 5/6 故所求Newton 二次插值多项式为 ()()[]()[]()() ()()()20010012012,,,35 311126537623P x f x f x x x x f x x x x x x x x x x x x =+-+--=-+ +++-=+- 例2、 设2 ()32f x x x =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{} span 1,x Φ=的最佳平方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有

华南理工大学数值分析试题-14年下-C

华南理工大学研究生课程考试 《数值分析》试卷C (2015年1月9日) 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在本试卷上; 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 本试卷共八大题,满分100分,考试时间为150分钟。 一、(12分)解答下列问题: 1)设近似值0x >,x 的相对误差为δ,试证明ln x 的绝对误差近似为δ。 2)利用秦九韶算法求多项式 542()681p x x x x x =-+-+ 在3x =时的值(须写出计算形式),并统计乘法次数。 (12分)解答下列问题: 1)设()235f x x =+,求[]0,1,2f 和[]0,1,2,3f 。 2)利用插值方法推导出恒等式: 33220,0[]j j i i x j i x i j =≠=-=-∑∏ 。

(1)设{}∞ =0)(k k x q 是区间[]1,0上带权1=ρ而最高次项系数为1的正交多项式族,其中1)(0=x q ,求1()q x 和2()q x 。 (2)求形如2y a bx =+的经验公式,使它与下列数据拟合: 四、(14分)对积分()10I f x dx = ?,试 (1)构造一个以012113,,424 x x x ===为节点的插值型求积公式; (2)指出所构造公式的代数精度; (3)用所得数值求积公式计算积分1 203x dx ?的精确值; (4)指出所得公式与一般的Newton-Cotes 型公式在形式上的重要区别。

(1)设?? ????=4321A ,计算1A 、()Cond A ∞和()A ρ。 (2)用列主元Gauss 消去法解方程组: 12312315410030.112x x x ????????????=????????????-?????? 六、(13分)对2阶线性方程组 11112212112222 a x a x b a x a x b +=??+=? (11220a a ≠ ) (1)证明求解此方程组的Jacobi 迭代与Gauss-Seidel 迭代同时收敛或同时发散; (2)当同时收敛时,试比较它们的收敛速度。

数值分析题库

一. 单项选择题(每小题2分,共10分) 1. 在下列四个数中,有一个数具有4位有效数字,且其绝对误差限为 5102 1 -?,则该数是( ) A 0.001523 B 0.15230 C 0.01523 D 1.52300 2. 设方阵A 可逆,且其n 个特征值满足:n λλλ>≥> (21) ,则1-A 的主特征值是( ) A 11λ B n λ1 C 1λ或n λ D 11λ或n λ1 3. 设有迭代公式 → →+→+=f x B x k k ) () 1(。若||B|| > 1,则该迭代公式( ) A 必收敛 B 必发散 C 可能收敛也可能发散 4. 常微分方程的数值方法,求出的结果是( ) A 解函数 B 近似解函数 C 解函数值 D 近似解函数值 5. 反幂法中构造向量序列时,要用到解线性方程组的( ) A 追赶法 B LU 分解法 C 雅可比迭代法 D 高斯—塞德尔迭代法 二. 填空题(每小题4分,共20分) 1. 设有方程组 ??? ??=+-=+-=+0 21324321 32132x x x x x x x x ,则可构造高斯—塞德尔迭代公式为 ?? ??? 2. 设?? ?? ??????----=111112101A ,则=∞A 3. 设1)0(,2'2 =+=y y x y ,则相应的显尤拉公式为=+1n y 4. 设 1)(+=ax x f ,2)(x x g =。若要使)(x f 与)(x g 在[0,1]上正交,则a = 5. 设 T x )1,2,2(--=→ ,若有平面旋转阵P ,使P → x 的第3个分量为0,则P = ???? ? ????? 三. 计算题(每小题10分,共50分) 1. 求 27的近似值。若要求相对误差小于0.1%,问近似值应取几位有效数字?

数值分析-华东交通大学研究生院

华东交通大学博士研究生初试科目考试大纲 科目代码:2006 科目名称:数值分析 一、考试要求 掌握数值分析领域的基本概念, 理论及其在工程中的应用。考试要求掌握线性方程组的数值解法,非线性方程数值解法,插值法,函数的最佳平方逼近和数值积分等基本内容。 二、考试内容 (一)误差的来源与分类,误差估计以及数值稳定性概念。 (二)函数的插值方法:拉格朗日插值,均差与牛顿插值,差分与等距节点插值,埃尔米特插值,分段插值和三次样条插值。 (三)函数逼近与快速傅里叶变换:函数逼近的基本概念,最佳平方逼近,曲线拟合的最小二乘法,有理逼近,三角多项式逼近与快速傅里叶变换。 (四)数值积分和数值微分:数值积分的基本思想,插值型的求积公式,牛顿-柯特斯公式,复合求积公式,龙贝格求积公式,高斯求积公式,数值微分的中点方法,插值型的求导公式和数值微分的外推算法。 (五)解线性方程组的直接方法:矩阵的特征值与谱半径,高斯消去法,矩阵三角分解法,向量和矩阵的范数。 (六)解线性方程组的迭代法:迭代法的基本概念,雅可比迭代法与高斯-塞德尔迭代法,超松弛迭代法和共轭梯度法。 (七)非线性方程与方程组的数值解法:二分法,不动点迭代法及其收敛性,牛顿法,弦截法与抛物线法,多变量方程的不动点迭代法和非线性方程组的牛顿迭代法。 (八)矩阵特征值计算:特征值性质与估计,幂法及反幂法,QR方法。 (九)常微分方程初值问题数值解法:欧拉法与后退欧拉法,梯形方法,龙格-库塔方法和线性多步法。 三、题型结构 满分100分。其中,简答(10分),分析计算题(70分),证明题(20分)。 四、参考书目 1. 李庆扬王能超易大义,数值分析(第5版),清华大学出版社2008。 2. 封建湖车刚明聂玉峰,数值分析原理,科学出版社2001。 3. 颜庆津,数值分析(第三版),北京航空航天大学,2006年。 1

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字. 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误 差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 ln(ln(x x =- 计算,求对数时误差有多大?

数值分析试卷及其答案1

1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知6 5.0102 1 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620*2102 1 ,6,0,10325413.0-?= -=-=?=ε绝对误差限n k k X 2分 2. 已知?? ???=0 01 A 220- ?????440求21,,A A A ∞ (6分) 解: {}, 88,4,1max 1==A 1分 {}, 66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=0 1 A A T 4 2 ???? ? -420?????0 01 2 20 - ???? ?440= ?????0 01 80 ???? ?3200 2分 {}32 32,8,1max )(max ==A A T λ

1分 24322==A 3. 设32)()(a x x f -= (6分) ① 写出f(x)=0解的迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (0,1……)产生的序列{}k x 收敛于 2 解: ①迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3 分 ②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-= a a x a x ?? 3分 4. 给定线性方程组,其中:?? ?=13A ?? ?2 2,?? ? ???-=13b 用迭代公式 )()()()1(k k k Ax b x x -+=+α(0,1……)求解,问取什么实数α ,可使 迭代收敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --???--=-=ααααα21231A I B 2分

数值分析习题集及答案Word版

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?

数值分析模拟试题

1、 方程组中,,则求解方程组的Jacobi 迭代与Gauss-Seidel 迭代均收敛的a 的范围是___________。 2、,则A 的LDL T 分解中,。 3、,则__________,_______________. 4、已 知,则用复合梯形公式计算求 得,用三点式求得____________. 5、,则_________ ,三点高斯求积公式______________. 6设* 2.40315x =是真值 2.40194x =的近似值,则* x 有________位有效数字。 7 3()1,[0,1,2,3]f x x x f =+-=设 则差商(均差)_____________,[0,1,2,3,4]f =________________。 8 求方程()x f x =根的牛顿迭代格式是__________________。 9.梯形求积公式和复化梯形公式都是插值型求积公式_____(对或错)。 10.牛顿—柯特斯求积公式的系数和()0n n k k C ==∑__________________。 11.用二次拉格朗日插值多项式2()sin0.34L x 计算的值。插值节点和相应的函数值是(0,0),(0.30,0.2955),(0.40,0.3894)。 12.用二分法求方程3()10[1.0,1.5]f x x x =--=在 区间内的一个根,误差限 210ε-=。 13.用列主元消去法解线性方程组 1231231 232346,3525,433032.x x x x x x x x x ++=??++=??++=? 14. 确定求积公式

012()()(0)()h h f x dx A f h A f A f h -≈-++? 。 中待定参数i A 的值(0,1,2)i =,使求积公式的代数精度尽量高;并指出此时求积公式的代数精度。 15、 试求使求积公式的代数精度 尽量高,并求其代数精度。 16.证明区间[a,b]上带权()x ρ的正交多项式(),1,2,n P x n = 的n 个根都是单根,且位于区间(a,b)内。 17.设()()[,],max ()n n a x b f x C a b M f x ≤≤∈=,若取 21cos ,1,2,,222k a b a b k x k n n +--=+= 作节点,证明Lagrange 插值余项有估计式21()max ()!2n n n a x b M b a R x n -≤≤-≤ 18用n=10的复化梯形公式计算时, (1)试用余项估计其误差 (2)用n=10的复化梯形公式计算出该积分的近似值。 19已知方程组AX =f,其中 (1)列出Jacobi 迭代法和Gauss-Seidel 迭代法的分量形式。 (2)求出Jacobi 迭代矩阵的谱半径,SOR 迭代法的最佳松弛参数 和SOR 法 的谱半径(可直接用现有结论) 20试确定常数A ,B ,C 和,使得数值积分公式 有尽可能高的代数精度。试问所得的数值积分公式代数精度是多少? 21证明方程=)(x f x 2-x -3=0在区间(2,3)内有且仅有一个根,并用迭代法求方程在区间(2,3)内的根,精确到小数点后4位。 22设f (1)=2,f (3)=4,f (4)=6,用拉格朗日插值法求f (x )的二次插值多项式P 2(x ),并求f (2)的近似值。

西南交通大学2018-2019数值分析Matlab上机实习题

数值分析2018-2019第1学期上机实习题 f x,隔根第1题.给出牛顿法求函数零点的程序。调用条件:输入函数表达式() a b,输出结果:零点的值x和精度e,试取函数 区间[,] ,用牛顿法计算附近的根,判断相应的收敛速度,并给出数学解释。 1.1程序代码: f=input('输入函数表达式:y=','s'); a=input('输入迭代初始值:a='); delta=input('输入截止误差:delta='); f=sym(f); f_=diff(f); %求导 f=inline(f); f_=inline(f_); c0=a; c=c0-f(c0)/f_(c0); n=1; while abs(c-c0)>delta c0=c; c=c0-f(c0)/f_(c0); n=n+1; end err=abs(c-c0); yc=f(c); disp(strcat('用牛顿法求得零点为',num2str(c))); disp(strcat('迭代次数为',num2str(n))); disp(strcat('精度为',num2str(err))); 1.2运行结果: run('H:\Adocument\matlab\1牛顿迭代法求零点\newtondiedai.m') 输入函数表达式:y=x^4-1.4*x^3-0.48*x^2+1.408*x-0.512 输入迭代初始值:a=1 输入截止误差:delta=0.0005 用牛顿法求得零点为0.80072 迭代次数为14 精度为0.00036062 牛顿迭代法通过一系列的迭代操作使得到的结果不断逼近方程的实根,给定一个初值,每经过一次牛顿迭代,曲线上一点的切线与x轴交点就会在区间[a,b]上逐步逼近于根。上述例子中,通过给定初值x=1,经过14次迭代后,得到根为0.80072,精度为0.00036062。

数值分析试题及答案

数值分析试题及答案 一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为的近似数具有()和()位有效数字. A.4和3 B.3和2 C.3和4 D.4和4 2. 已知求积公式,则=() A. B.C.D. 3. 通过点的拉格朗日插值基函数满足() A.=0,B.=0, C.=1,D.=1, 4. 设求方程的根的牛顿法收敛,则它具有()敛速。 A.超线性B.平方C.线性D.三次 5. 用列主元消元法解线性方程组作第一次消元后得到的第3个方程(). A.B. C.D. 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得分评卷 人 二、填空题(每小题3分,共15分) 1. 设, 则, . 2. 一阶均差 3. 已知时,科茨系数,那么 4. 因为方程在区间上满足,所以在区间内有根。 5. 取步长,用欧拉法解初值问题的计算公式.填空题答案

1. 9和 2. 3. 4. 5. 得分评卷 人 三、计算题(每题15分,共60分) 1. 已知函数的一组数据:求分段线性插值函数,并计算的近似值. 计算题1.答案 1. 解, , 所以分段线性插值函数为 2. 已知线性方程组 (1)写出雅可比迭代公式、高斯-塞德尔迭代公式; (2)对于初始值,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算(保留小数点后五位数字). 计算题2.答案 1.解原方程组同解变形为 雅可比迭代公式为 高斯-塞德尔迭代法公式 用雅可比迭代公式得 用高斯-塞德尔迭代公式得 3. 用牛顿法求方程在之间的近似根 (1)请指出为什么初值应取2? (2)请用牛顿法求出近似根,精确到0.0001. 计算题3.答案

相关主题
文本预览
相关文档 最新文档