当前位置:文档之家› 考点9 函数与方程、函数模型及其应用

考点9 函数与方程、函数模型及其应用

考点9 函数与方程、函数模型及其应用
考点9 函数与方程、函数模型及其应用

温馨提示:

此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word 文档返回原板块。

考点9 函数与方程、函数模型及其应用

一、选择题

1.(2013·四川高考理科·T10)设函数()f x =a R ∈,e 为自然对数的底数).若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是( )

A .[1,]e B.1[,-11]

e -, C.[1,1]e + D.1[-1,1]e e -+ 【解题指南】本题综合考查了函数的图象以及转化化归能力,本题中的f(f(y 0))=y 0是解题的突破口.

【解析】选A. 由于曲线sin y x =上存在00(,)x y 使得00(())f f y y =,可知[]00,1y ∈,并且由00(())f f y y =可得00()f y y =(推导过程可以用反证法证明),即

0y =,整理得0200y e a y y -=-,结合二者的图象以及[]00,1y ∈,可得a 的

取值范围是[1,]e ,故选A.

2. (2013·四川高考文科·T10)设函数()f x =a R ∈,e 为自然对数的底数)。若存在[0,1]b ∈使(())f f b b =成立,则a 的取值范围是( ) A.[1,]e B.[1,1]e + C.[,1]e e + D.[0,1]

【解题指南】根据题意,分析的关键是存在[0,1]b ∈使(())f f b b =成立,将这一条件进行转化为()f b b =,进行求解即可.

【解析】选A ,由题[]0,1b ∈,并且由(())f f b b =可得()f b b =(推导过程可以用反

证法证明)b =,整理得2b e a b b -=-,结合二者的图象以及[]0,1b ∈,可以分析a 的取值范围是[1,]e ,故选A.

3.(2013·天津高考理科·T7)函数f(x)=2x |log 0.5x|-1的零点个数为 ( )

A.1

B.2

C.3

D.4

【解题指南】利用数形结合的方法求解,图象交点的个数即为零点的个数. 【解析】选B.函数f(x)=2x |log 0.5x|-1的零点即2x |log 0.5x|-1=0的解,即0.51|log |()2

=x x 的

解,作出函数g(x)=|log 0.5x|和函数1()()2

=x h x 的图象,

由图象可知,两函数共有两个交点,故函数f(x)=2x |log 0.5x|-1有2个零点. 4. (2013·重庆高考理科·T6)

若a

A.(a,b)和(b,c)内

B.(-∞,a)和(a,b)内

C.(b,c)和(c,+∞)内

D.(-∞,a)和(c,+∞)内

【解题指南】直接根据零点存在定理求出函数零点所在的区间. 【解析】选A.因为a0,f(b)=(b-c)(b-a)<0,

f(c)=(c-a)(c-b)>0,所以f(a)f(b)<0,f(b)f(c)<0,即函数的两个零点分别位于区间(a,b)和(b,c)内.

5.(2013·江西高考文科·T10)如图.已知l 1⊥l 2,圆心在l 1上、半径为1m 的圆O 在t=0时与l 2相切于点A ,圆O 沿l 1以1m/s 的速度匀速向上移动,圆被直线l 2所截上方圆弧长记为x ,令y=cosx ,则y 与时间t (0≤t ≤1,单位:s )的函数y=f (t )的图像大致为

【解题指南】借助弧长与圆心角的关系,得出函数关系式,再选择图像. 【解析】选B.因为圆弧长为x ,半径为1,所以圆心角的弧度数为x ,由题意得

x

cos

1t 2

=-,根据二倍角公式得2cos x 2(1t)1=--,即2y 2(1t)1=--,化简得2y 2t 4t 1=-+,结合二次函数图像知B 正确.

二、填空题

6.(2013·江苏高考数学科·T11)已知f(x)是定义在R 上的奇函数.当x>0时,f(x)=x 2-4x,则不等式f(x)>x 的解集用区间表示为 .

【解题指南】画出x>0时,f(x)的图象,根据函数的奇偶性,画出整个定义R 上函数的图象;画出y=x 的图象,结合图象求解.

【解析】 因为f(x)是定义在R 上的奇函数,故图象关于原点对称.又当x>0时,f(x)=x 2-4x,故图象如图.

由图可得当x ∈(-5,0)∪(5,+∞)时不等式f(x)>x 成立.

【答案】(-5,0)∪(5,+∞)

7. (2013·湖北高考文科·T17)在平面直角坐标系中,若点(,)

P x y的坐标x,y 均为整数,则称点P为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S,其内部的格点数记为N,边界上

的格点数记为L. 例如图中△ABC是格点三角形,对应的1

S=,0

N=,4

L=

.

(Ⅰ)图中格点四边形DEFG对应的,,

S N L分别

是;

(Ⅱ)已知格点多边形的面积可表示为

S aN bL c

=++,其中a,b,c为常数.

若某格点多边形对应的71

N=,18

L=,

则S=(用数值作答).

【解题指南】(Ⅰ)理解新概念.(Ⅱ)可以再取长方形S=2,N=0,L=6,待定系数法求出a,b,c的值,再代入求值.

【解析】(I)由图可知:四边形DEFG对应的S=3,N=1,L=6

(II)分别将S=1,N=0,L=4;S=2,N=0,L=6;S=3,N=1,L=6代入,

由此得

041

163

062

a b c

a b c

a b c

?+?+=

?

?

?+?+=

?

??+?+=

?

,解得

1

1

2

1

a

b

c

=

?

??

=

?

?

=-

??

所以若某格点对应的N=71,L=18,则S=1

71118(1)79

2

?+?+-=. 【答案】3,1,6;79

8.(2013·上海高考理科·T14)对区间I 上有定义的函数()g x ,记

(){|(),}g I y y g x x I ==∈,已知定义域为[0,3]的函数()y f x =有反函数1()y f x -=,且11([0,1))[1,2),((2,4])[0,1)f f --==,若方程()0f x x -=有解0x ,则0_____x =

【解析】根据反函数定义知,当[0,1)x ∈时,()(2,4]f x ∈;[1,2)x ∈时,()[0,1)f x ∈,而()y f x =的定义域为[0,3],故当[2,3]x ∈时,()f x 的取值应在集合

(,0)[1,2](4,)-∞??+∞,故若00()f x x =,只有02x =.

【答案】2 三、解答题

9.(2013·上海高考理科·T20)甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求110x ≤≤),每小时可获得利润是3

100(51)x x

+-元.

(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围; (2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.

【解析】(1)生产该产品2小时的利润为 100

×2=200

由题意得,200

≥3000,解得x ≥3或x ≤-.

又因为1≤x ≤10,所以3≤x ≤10. (2)生产900千克该产品,所用时间是小时,

获得的利润为100·

=90000

,1≤x ≤10,

记f(x)=-++5,1≤x ≤10, 则f(x)=-3

++5,当且仅当x=6时,f(x)取到最大值f(6)=.

最大利润为90000×=457 500(元).

因此甲厂应以6千克/小时的速度生产,可获得最大利润457500元.

10.(2013·上海高考文科·T20)甲厂以x 千克/小时的速度匀速生产某种产品

(生产条件要求1≤x ≤10),每小时可获得的利润是100??

?

?

?-+x x 315元.

(1)求证:生产a 千克该产品所获得的利润为100a ??

?

?

?-

+231

5x x

元; (2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.

【解析】(1)生产a 千克该产品,所用的时间是小时, 所获得的利润为100

·.

所以,生产a 千克该产品所获得的利润为100a 元.

(2)生产900千克该产品,所用的时间是小时,获得的利润为90000

,1≤

x ≤10.

记f(x)=-++5,1≤x ≤10, 则f(x)=-3

++5,

当且仅当x=6时,f(x)取到最大值f(6)= .

获得最大利润90000×

=457500(元).

因此甲厂应以6千克/小时的速度生产,可获得最大利润457500元.

关闭Word 文档返回原板块。

高中数学:函数模型及其应用练习

高中数学:函数模型及其应用练习 1.已知正方形ABCD的边长为4,动点P从B点开始沿折线BCDA向A点运动.设点P 运动的路程为x,△ABP的面积为S,则函数S=f(x)的图象是(D) 解析:依题意知当0≤x≤4时,f(x)=2x;当4<x≤8时,f(x)=8;当8<x≤12时,f(x)=24-2x,观察四个选项知D项符合要求. 2.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是(B) x 1.99234 5.15 6.126 y 1.517 4.041 87.51218.01 A.y=2x-2 B.y=1 2(x 2-1) C.y=log2x D.y=log 1 2x 解析:由题中表可知函数在(0,+∞)上是增函数,且y的变化随x的增大而增大的越来越快,分析选项可知B符合,故选B. 3.我们定义函数y=[x]([x]表示不大于x的最大整数)为“下整函数”;定义y={x}({x}表示不小于x的最小整数)为“上整函数”;例如[4.3]=4,[5]=5;{4.3}=5,{5}=5.某停车场收费标准为每小时2元,即不超过1小时(包括1小时)收费2元,超过一小时,不超过2小时(包括2小时)收费4元,以此类推.若李刚停车时间为x小时,则李刚应付费为(单位:元)(C) A.2[x+1] B.2([x]+1) C.2{x} D.{2x} 解析:如x=1时,应付费2元,此时2[x+1]=4,2([x]+1)=4,排除A、B;当x=0.5时,付费为

2元,此时{2x }=1,排除D,故选C. 4.(福建质检)当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用一般的放射性探测器探测不到,则它经过的“半衰期”个数至少是( C ) A .8 B .9 C .10 D .11 解析:设死亡生物体内原有的碳14含量为1,则经过n (n ∈N *)个“半衰期”后的含量为? ???? 12n , 由? ?? ?? 12n <11 000得n ≥10.所以,若探测不到碳14含量,则至少经过了10个“半衰期”.故选C. 5.(贵州遵义模拟)某企业为节能减排,用9万元购进一台新设备用于生产,第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加3万元.该设备每年生产的收入均为21万元.设该设备使用了n (n ∈N *)年后,盈利总额达到最大值(盈利总额等于总收入减去总成本),则n 等于( B ) A .6 B .7 C .8 D .7或8 解析:盈利总额为21n -9-?????? 2n +12×n (n -1)×3=-32n 2+412n -9.因为其对应的函数的图 象的对称轴方程为n =41 6.所以当n =7时取最大值,即盈利总额达到最大值,故选B. 6.已知每生产100克饼干的原材料加工费为1.8元.某食品加工厂对饼干采用两种包装,包装费用、销售价格如下表所示: ①买小包装实惠;②买大包装实惠;③卖3小包比卖1大包盈利多;④卖1大包比卖3小包盈利多.

高中数学函数模型及其应用练习题(含答案)

高中数学函数模型及其应用练习题(含答案) 数学必修1(苏教版) 2.6 函数模型及其应用 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,于是商场经理决定每件衬衫降价15元,经理的决定正确吗? 基础巩固 1.某商场售出两台取暖器,第一台提价20%以后按960卖出,第二台降价20%以后按960元卖出,这两台取暖器卖出后,该商场() A.不赚不亏B.赚了80元 C.亏了80元D.赚了160元 解析:960+960-9601+20%-9601-20%=-80. 答案:C 2.用一根长12 m的铁丝折成一个矩形的铁框架,则能折成的框架的最大面积是__________. 解析:设矩形长为x m,则宽为12(12-2x) m,用面积公式可得S的最大值. 答案:9 m2 3.在x g a%的盐水中,加入y g b%的盐水,浓度变为c%,

则x与y的函数关系式为__________. 解析:溶液的浓度=溶质的质量溶液的质量=xa%+yb%x+y= c%,解得y=a-cc-bx=c-ab-cx. 答案:y=c-ab-cx 4.某服装个体户在进一批服装时,进价已按原价打了七五折,他打算对该服装定一新标价在价目卡上,并说明按该价的20%销售.这样仍可获得25%的纯利,求此个体户给这批服装定的新标价y与原标价x之间的函数关系式为________ 解析:由题意得20%y-0.75x=0.7x25%y=7516x. 答案:y=7516x 5.如果本金为a,每期利率为r,按复利计算,本利和为y,则存x期后,y与x之间的函数关系是________. 解析:1期后y=a+ar=a(1+r); 2期后y=a(1+r)+a(1+r)r=a(1+r)2;…归纳可得x期后y =a(1+r)x. 答案:y=a(1+r)x 6.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,n年后这批设备的价值为________万元. 解析:1年后价值为:a-ab%=a(1-b%),2年后价值为:a(1-b%)-a(1-b%)b%=a(1-b%)2, n年后价值为:a(1-b%)n.

2022届高考数学复习题:函数模型及其应用

2022届高考数学复习题:函数模型及其应用1.下列函数中随x的增大而增长速度最快的是() A.v= 1 100·e x B.v=100ln x C.v=x100D.v=100×2x 答案:A 2.用长度为24(单位:米)的材料围成一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为() A.3米B.4米 C.6米D.12米 解析:设隔墙的长为x(0<x<6)米,矩形的面积为y平方米,则y=x×24-4x 2 =2x(6-x)=-2(x-3)2+18,所以当x=3时,y取得最大值. 答案:A 3.某商场销售A型商品,已知该商品的进价是每件3元,且销售单价与日均销售量的关系如表所示: 请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为() A.4 B.5.5 C.8.5 D.10 解析:由题意可设定价为x元/件,利润为y元,则y=(x-3)[400-40(x-4)]=40(-x2+17x-42),故当x=8.5时,y有最大值,故选C. 答案:C 4.某种动物繁殖量y只与时间x年的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们将发展到() A.200只B.300只 C.400只D.500只 解析:∵繁殖数量y只与时间x年的关系为y=a log3(x+1),这种动物第2年

有100只, ∴100=a log3(2+1),∴a=100, ∴y=100log3(x+1), ∴当x=8时,y=100log3(8+1)=100×2=200.故选A. 答案:A 5.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y应为() A.x=15,y=12 B.x=12,y=15 C.x=14,y=10 D.x=10,y=14 解析:由三角形相似得24-y 24-8 = x 20, 得x=5 4(24-y),由0<x≤20得,8≤y<24, 所以S=xy=-5 4(y-12) 2+180, 所以当y=12时,S有最大值,此时x=15. 答案:A 6.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x之间关系的是() A.y=100x B.y=50x2-50x+100 C.y=50×2x D.y=100log2x+100 解析:根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得. 答案:C 7.某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内通话时间t(分钟)与电话费S(元)的函数关系如图所示,当通话150分钟时,这两种方式的电话费相差__________.

函数模型的应用实例 说课稿 教案 教学设计

函数模型的应用实例 课型:新授课 教学目标 能够利用给定的函数模型或建立确定性函数模型解决实际问题,进一步感受运用函数概念建立函数模型的过程和方法,对给定的函数模型进行简单的分析评价. 二、教学重点 重点:利用给定的函数模型或建立确定性质函数模型解决实际问题. 难点:将实际问题转化为数学模型,并对给定的函数模型进行简单的分析评价. 三、学法与教学用具 1.学法:自主学习和尝试,互动式讨论. 2.教学用具:多媒体 四、教学设想 (一)创设情景,揭示课题. 现实生活中有些实际问题所涉及的数学模型是确定的,但需我们利用问题中的数据及其蕴含的关系来建立.对于已给定数学模型的问题,我们要对所确定的数学模型进行分析评价,验证数学模型的与所提供的数据的吻合程度. (二)实例尝试,探求新知 例1.一辆汽车在某段路程中的行驶速度与时间的关系如图所示. 1)写出速度v关于时间t的函数解析式; 2)写出汽车行驶路程y关于时间t的函数关系式,并作图象; 3)求图中阴影部分的面积,并说明所求面积的实际含义; 4)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立汽车行驶这段路程时汽车里程表读数s与时间t的函数解析式,并作出相应的图象. 本例所涉及的数学模型是确定的,需要利用问题中的数据及其蕴含的关系建立数学模型,此例分段函数模型刻画实际问题. 教师要引导学生从条块图象的独立性思考问题,把握函数模型的特征. 注意培养学生的读图能力,让学生懂得图象是函数对应关系的一种重要表现形式. 例2.人口问题是当今世界各国普遍关注的问题,认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798,英国经济家马尔萨斯就提出了自然状态下的人口增长模型: 0rt y y e 其中t表示经过的时间, y表示t=0时的人口数,r表示人口的年均增长率.下表是1950~1959年我国的人口数据资料:(单位:万人) 年份1950 1951 1952 1953 1954 人数55196 56300 57482 58796 60266 年份1955 1956 1957 1958 1959

《函数模型及其应用》同步训练题

《函数模型及其应用》同步训练题 一、选择题 1、某厂日产手套总成本y(元)与手套日产量x(副)的关系式为y=5x+4 000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为( ) A.200副B.400副 C.600副D.800副 2、某厂原来月产量为a,一月份增产10%,二月份比一月份减产10%,设二月份产量为b,则( ) A.a=b B.a>b C.a

4、拟定从甲地到乙地通话m分钟的电话费f(m)=1.06·(0.50×[m]+1),其中m>0,[m]是大于或等于m的最小整数(如[3]=3,[3.7]=4,[5.1]=6),则从甲地到乙地通适时间为5.5分钟的通话费为( ) A.3.71 B.3.97 C.4.24 D.4.77 5、1992年底世界人口数达到54.8亿,若人口的年平均增长率为x%,设2010年底世界人口数为y(亿),那么y与x的函数解析式为( ) A.y=54.8(1+x%)18B.y=54.8(1+x%)19 C.y=54.8(x%)18 D.y=54.8(x%)19 6、今有一组实验数据如表所示: A.u=log2t B.u=2t-2 实用文档

实用文档 C .u =t 2-1 2 D .u =2t -2 7、若x ∈(0,1)则下列结论正确的是( ) A .2x >x 12 >lgx B .2x >lgx>x 12 C .x 12>2x >lgx D .lgx>x 1 2 >2x 8、某商店某种商品进货价为每件40元,当售价为50元时,一个月能卖出500件.通过市场调 查发现,若每件商品的单价每提高1元,则该商品一个月的销售量会减少10件.商店为使销售商品 的月利润最高,应将该商品每件定价为( ) A .70元 B .65元 C .60元 D .55元 9、向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系的图象如图所示,那 么水瓶的形状是( )

2019-2020年高中数学 第三章函数的应用§3.2.2函数模型的应用实例(Ⅲ)教案 新人教A版必修1

2019-2020年高中数学第三章函数的应用§3.2.2函数模型的应用实例 (Ⅲ)教案新人教A版必修1 一、教学目标 1、知识与技能能够收集图表数据信息,建立拟合函数解决实际问题。 2、过程与方法体验收集图表数据信息、拟合数据的过程与方法,体会函数拟合的思想方法。 3、情感、态度、价值观深入体会数学模型在现实生产、生活及各个领域中的广泛应用及其重要价值。 二、教学重点、难点: 重点:收集图表数据信息、拟合数据,建立函数模解决实际问题。 难点:对数据信息进行拟合,建立起函数模型,并进行模型修正。 三、学学与教学用具 1、学法:学生自查阅读教材,尝试实践,合作交流,共同探索。 2、教学用具:多媒体 四、教学设想 (一)创设情景,揭示课题 2003年5月8日,西安交通大学医学院紧急启动“建立非典流行趋势预测与控制策略数学模型”研究项目,马知恩教授率领一批专家昼夜攻关,于5月19日初步完成了第一批成果,并制成了要供决策部门参考的应用软件。 这一数学模型利用实际数据拟合参数,并对全国和北京、山西等地的疫情进行了计算仿真,结果指出,将患者及时隔离对于抗击非典至关重要、分析报告说,就全国而论,菲非典病人延迟隔离1天,就医人数将增加1000人左右,推迟两天约增加工能力100人左右;若外界输入1000人中包含一个病人和一个潜伏病人,将增加患病人数100人左右;若4月21日以后,政府示采取隔离措施,则高峰期病人人数将达60万人。 这项研究在充分考虑传染病控制中心每日工资发布的数据,建立了非典流行趋势预测动力学模型和优化控制模型,并对非典未来的流行趋势做了分析预测。 本例建立教学模型的过程,实际上就是对收集来的数据信息进行拟合,从而找到近似度比较高的拟合函数。 (二)尝试实践探求新知 例1.某地区不同身高的未成年男性的体重平均值发下表 (身高:cm;体重:kg) 1)根据表中提供的数据,建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重与身高ykg与身高xcm的函数模型的解析式。 2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm ,体重为78kg的在校男生的体重是事正常? 探索以下问题:

高一数学函数模型及其应用练习题2

函数模型及其应用测试题 一、选择题 1.某工厂的产值月平均增长率为P,则年平均增长率是() A.11 +-D.12 (1)1 P P +- (1)P +B.12 (1)P +C.11 (1)1 答案:D 2.某人2000年7月1日存入一年期款a元(年利率为r,且到期自动转存),则到2007年7月1日本利全部取出可得() A.7 a r +元 (1) (1) a r +元B.6 C.7 (1)(1)(1) +++++++ …元 a a r a r a r (1) a a r ++元D.26 答案:A 3.如图1所示,阴影部分的面积S是h的函数(0) ≤≤,则该函数的图象可 h H 能是() 答案:C 4.甲、乙两个经营小商品的商店,为了促销某一商品(两店的零售价相同),分别采取了以下措施:甲店把价格中的零头去掉,乙店打八折,结果一天时间两店都卖出了100件,且两店的销售额相同,那么这种商品的价格不可能是()A.4.1元B.2.5元C.3.75元D.1.25元 答案:A 5.某厂工人收入由工资性收入和其他收入两部分构成.2003年该工厂工人收入3150元(其中工资性收入1800元,其他收入1350元).预计该地区自2004年开始的5年内,工人的工资性收入将以每年6%的年增长率.其他收入每年增加160元.据此分析,2008年该厂工人人均收入将介于() A.42004400 元 元B.44004600 C.46004800 元D.48005000 元 答案:B 二、填空题 6.兴修水利开渠,其横断面为等腰梯形,如图2,腰与水平线夹角为60 ,要求浸水周长(即断面与水接触的边界长)为定值l,同渠深h=,可使水渠量最大.

函数模型的应用实例(Ⅲ)

函数模型的应用实例(Ⅲ) 一、教学目标 1、知识与技能能够收集图表数据信息,建立拟合函数解决实际问题。 2、过程与方法体验收集图表数据信息、拟合数据的过程与方法,体会函数拟合的思想方法。 3、情感、态度、价值观深入体会数学模型在现实生产、生活及各个领域中的广泛应用及其重要价值。 二、教学重点、难点: 重点:收集图表数据信息、拟合数据,建立函数模解决实际问题。 难点:对数据信息进行拟合,建立起函数模型,并进行模型修正。 三、学学与教学用具 1、学法:学生自查阅读教材,尝试实践,合作交流,共同探索。 2、教学用具:多媒体 四、教学设想 (一)创设情景,揭示课题 2003年5月8日,西安交通大学医学院紧急启动“建立非典流行趋势预测与控制策略数学模型”研究项目,马知恩教授率领一批专家昼夜攻关,于5月19日初步完成了第一批成果,并制成了要供决策部门参考的应用软件。 这一数学模型利用实际数据拟合参数,并对全国和北京、山西等地的疫情进行了计算仿真,结果指出,将患者及时隔离对于抗击非典

至关重要、分析报告说,就全国而论,菲非典病人延迟隔离1天,就医人数将增加1000人左右,推迟两天约增加工能力100人左右;若外界输入1000人中包含一个病人和一个潜伏病人,将增加患病人数100人左右;若4月21日以后,政府示采取隔离措施,则高峰期病人人数将达60万人。 这项研究在充分考虑传染病控制中心每日工资发布的数据,建立了非典流行趋势预测动力学模型和优化控制模型,并对非典未来的流行趋势做了分析预测。 本例建立教学模型的过程,实际上就是对收集来的数据信息进行拟合,从而找到近似度比较高的拟合函数。 (二)尝试实践探求新知 例1.某地区不同身高的未成年男性的体重平均值发下表 (身高:cm;体重:kg) 1)根据表中提供的数据,建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重与身高ykg与身高xcm的函数模型的解析式。 2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm ,体重为78kg的在校男

函数模型及其应用

2021年新高考数学总复习第二章《函数与基本初等函数》 函数模型及其应用 1.几类函数模型 函数模型函数解析式 一次函数模型f(x)=ax+b(a,b为常数,a≠0) 反比例函数模型f(x)= k x+b(k,b为常数且k≠0) 二次函数模型 f(x)=ax2+bx+c (a,b,c为常数,a≠0) 指数函数模型 f(x)=ba x+c (a,b,c为常数,b≠0,a>0且a≠1) 对数函数模型 f(x)=b log a x+c (a,b,c为常数,b≠0,a>0且a≠1) 幂函数模型f(x)=ax n+b (a,b为常数,a≠0) 2.三种函数模型的性质 函数 性质 y=a x(a>1) y=log a x(a>1) y=x n(n>0) 在(0,+∞)上 的增减性 单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳 图象的变化 随x的增大逐渐表 现为与y轴平行 随x的增大逐渐表 现为与x轴平行 随n值变化而各有不同值的比较存在一个x0,当x>x0时,有log a x

题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.( × ) (2)函数y =2x 的函数值比y =x 2的函数值大.( × ) (3)不存在x 0,使0x a 0,b ≠1)增长速度越来越快的形象比喻.( × ) 题组二 教材改编 2.某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( ) A .收入最高值与收入最低值的比是3∶1 B .结余最高的月份是7月 C .1至2月份的收入的变化率与4至5月份的收入的变化率相同 D .前6个月的平均收入为40万元 答案 D 解析 由题图可知,收入最高值为90万元,收入最低值为30万元,其比是3∶1,故A 正确;由题图可知,7月份的结余最高,为80-20=60(万元),故B 正确;由题图可知,1至2月份的收入的变化率与4至5月份的收入的变化率相同,故C 正确;由题图可知,前6个月的平均收入为1 6 ×(40+60+30+30+50+60)=45(万元),故D 错误.

第17讲 函数模型的应用实例(基础)

函数模型的应用实例 【学习目标】 1.能够找出简单实际问题中的函数关系式,应用指数函数、对数函数模型解决实际问题,并初步掌握数学建模的一般步骤和方法. 2.通过具体实例,感受运用函数建立模型的过程和方法,体会指数函数、对数函数模型在数学和其他学科中的应用. 3.通过函数应用的学习,体会数学应用的广泛性,树立事物间相互联系的辩证观,培养分析问题、解决问题的能力,增强数学的应用意识. 【要点梳理】 要点一、解答应用问题的基本思想和步骤 1.解应用题的基本思想 2.解答函数应用题的基本步骤 求解函数应用题时一般按以下几步进行: 第一步:审题 弄清题意,分清条件和结论,理顺数量关系,初步选择模型. 第二步:建模 在细心阅读与深入理解题意的基础上,引进数学符号,将问题的非数学语言合理转化为数学语言,然后根据题意,列出数量关系,建立函数模型.这时,要注意函数的定义域应符合实际问题的要求. 第三步:求模 运用数学方法及函数知识进行推理、运算,求解数学模型,得出结果. 第四步:还原 把数学结果转译成实际问题作出解答,对于解出的结果要代入原问题中进行检验、评判,使其符合实际背景. 上述四步可概括为以下流程: 实际问题(文字语言)?数学问题(数量关系与函数模型)?建模(数学语言)?求模(求解数学问题)?反馈(还原成实际问题的解答). 要点二、解答函数应用题应注意的问题 首先,要认真阅读理解材料.应用题所用的数学语言多为“文字语言、符号语言、图形语言”并用,往往篇幅较长,立意有创新脱俗之感.阅读理解材料要达到的目标是读懂题目所叙述的实际问题的意义,领悟其中的数学本质,接受题目所约定的临时性定义,理解题目中的量与量的位置关系、数量关系,确立解体思路和下一步的努力方向,对于有些数量关系较复杂、较模糊的问题,可以借助画图和列表来理清它. 其次,建立函数关系.根据前面审题及分析,把实际问题“用字母符号、关系符号”表达出来,建立函数关系.

函数模型及其应用习题课

函数模型及其应用习题课 教学目标:1 掌握根据已知条件建立函数关系式。2培养学生分析问题、解决问题的能力。3 培养学生应用数学的意识。 教学过程: 一.基础练习: 1. 某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……,现 有2个这样的细胞,分裂x 次后得到的细胞个数y 为( ) A .y=21+x B 。y=21-x C 。y=2x D 。y=2x 2. 一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,它的解析式为( ) A . y=20-2x (x ≤10) B y=20-2x (x <10) C y=20-2x (5 ≤x ≤10) D y=20-2x (5

2021版高考数学(人教A版理科)一轮复习攻略核心素养测评+十二+函数模型及其应用

核心素养测评十二 函数模型及其应用 (30分钟60分) 一、选择题(每小题5分,共25分) 1.某股民购进某只股票,在接下来的交易时间内,他的这只股票先后经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下降10%),则该股民这只股票的盈亏情况(不考虑其他费用)为 ( ) A.略有盈利 B.略有亏损 C.不盈不亏 D.无法判断 【解析】选B.设这只股票的价格为a元,则经历n次涨停后的价格为a×1.1n,再经历n次跌停后的价格为a×1.1n×0.9n=0.99n a

y 3 8.01 15 23.8 36.04 则最能体现这组数据关系的函数模型是( ) A.y=-1 B.y=x2-1 C.y=2 log2x D.y=x3 【解析】选B.由表格数据可知,函数的解析式应该是指数函数类型、二次函数类型、幂函数类型,选项C不正确.取x=2.01,代入A选项,得y=-1>7,代入B选项,得y=x2-1≈3,代入D选项,得y=x3>8;取x=3,代入A选项,得y=-1=15,代入B选项,得y=x2-1=8,代入D 选项,得y=x3=27. 4.某城市出租车起步价为10元,最远可租乘3 km(含3 km),以后每1 km增加1.6元(不足1 km按1 km计费),则出租车的费用y(元)与行驶的路程x(km)之间的函数图象大致为( ) 【解析】选C.出租车起步价为10元(最远3 km的路程),即在(0,3]内对应y的值为10,以后每1 km增加1.6元(不足1 km按1 km计费);C 项符合. 5.一水池有两个进水口,一个出水口,每个水口的进、出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.

3.2.2几种函数模型的应用举例

第三章 函数的应用 3.2.2几种函数模型的应用举例 【导学目标】 1.通过实例感受一次函数、二次函数、指数函数、对数函数以及幂函数的广泛应用,体会解决实际问题中建立函数模型的过程,从而进一步加深对这些函数的理解与应用; 2.初步了解对统计数据表的分析与处理. 【自主学习】 1、根据散点图设想比较接近的可能的函数模型: ①一次函数模型:()(0);f x kx b k =+≠ ②二次函数模型:2()(0);g x ax bx c a =++≠ ③指数函数模型:()x f x a b c =+g (0,a b ≠>0,1b ≠) ④对数函数模型:()log a f x m x b =+g (0,m ≠01a a >≠且) ⑤幂函数模型:12 ()(0);h x ax b a =+≠ 2、一般函数模型应用题的求解方法步骤: 1) 阅读理解,审清题意:逐字逐句,读懂题中的文字叙述,理解题中所反映的实际问题,明白已知什么,所求什么,从中提炼出相应的数学问题。 2)根据所给模型,列出函数表达式:合理选取变量,建立实际问题中的变量之间的函数关系,而将实际问题转化为函数模型问题。 3)运用所学知识和数学方法,将得到的函数问题予以解答,求得结果。 4)将所解得函数问题的解,翻译成实际问题的解答。 在将实际问题向数学问题的转化过程中,能画图的要画图,可借助于图形的直观性,研究两变量间的联系. 抽象出数学模型时,注意实际问题对变量范围的限制. 【典型例题】 例1:某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元. 销售单价与日均销售量的关系如下表所示: 请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?

课标通用版2020版高考数学大一轮复习第二章函数概念与基本初等函数第11讲函数模型及其应用检测文

第11讲 函数模型及其应用 [基础题组练] 1.如图,在不规则图形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把图形ABCD 分成两部分,设AE =x ,左侧部分面积为y ,则y 关于x 的大致图象为( ) 解析:选D.因为左侧部分面积为y ,随x 的变化而变化,最初面积增加得快,后来均匀增加,最后缓慢增加,只有D 选项适合. 2.某市家庭煤气的使用量x (m 3 )和煤气费f (x )(元)满足关系f (x )= ? ????C ,0A .已知某家庭今年前四个月的煤气费如下表: A .12.5元 B .12元 C .11.5元 D .11元 解析:选 A.由题意得C =4.将(25,14),(35,19)代入f (x )=4+B (x -A ),得 ?????4+B (25-A )=14,4+B (35-A )=19,解得? ????A =5,B =12 .所以f (x )=? ? ???4,05.故当x =22时,f (22)=12.5.故选A. 3.成都市某物流公司为了配合“北改”项目顺利进行,决定把三环内的租用仓库搬迁到北三环外重新租地建设.已知仓库每月占用费y 1与仓库到车站的距离成反比,而每月车载货物的运费y 2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y 1,y 2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站( ) A .5千米处 B .4千米处 C .3千米处 D .2千米处 解析:选A.设仓库应建在离车站x 千米处.因为仓库每月占用费y 1与仓库到车站的距

《函数模型的应用实例》说课稿

《函数模型的应用实例》说课稿 一、教材分析 “加强数学应用,形成和发展学生的数学应用意识”是新课标数学教育教学的基本理念之一,为此,新课标实验教材(人教A版)特将“函数的应用”独立成章,其中“函数模型的应用实例”是本章教材的核心内容.从教材体系和内容分析,本小节教材内容彰显如下三个特点: (1)教材围绕具体实例展开研究,各例题涉及的实际问题既有社会性,又具有浓郁的生活气息,在情感上体现了一种亲和力,易于学生理解和接受. (2)在知识层面上本节教材没有新增内容,要求学生运用已有函数知识,体会建立函数模型的过程,感受函数在生产、生活、科学、社会等领域中的广泛应用,理解函数是描述客观世界变化规律的基本数学模型,培养数学建模能力. (3)本小节教材是上小节“几类不同增长的函数模型”的延续和发展.上小节主要学习如何根据给定的几个函数模型,通过比较其增长速度,选择合适的函数模型解决实际问题.本小节要求根据背景材料中的有关信息,建立函数模型解决实际问题,体现了更高层次的能力要求. 本小节是一节例题教学课,教材共安排了4个例题(例3~例6),大致分为两类,其中例3和例5是根据图、表信息建立确定的函数模型解决实际问题,例4和例6是建立函数模型对样本数据进行拟合,再根据拟合函数模型解决实际问题.本小节分两个教学课时,本节课是第一课时.我将以教材例3和例5为基础,分别在图形和数表两种不同应用情境中,引导学生自主建立函数模型来解决实际问题. 二、教学目标分析 知识与技能目标: 1.通过例3的教学,使学生能根据图象信息建立分段函数模型;通过例5的教学,使学生能根据表格提供的数据抽象出函数模型; 2.学生在根据图表信息建立函数模型后,要求会利用所建立的函数模型解决实际问题,体现函数建模的应用价值; 3.解决数学应用性问题,是培养学生阅读理解、抽象概括、数据处理、语言

高一数学《函数模型及其应用》练习题及答案

1.某公司为了适应市场需求,对产品结构做了重大调整.调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与产量x的关系,则可选用() A.一次函数 B.二次函数 C.指数型函数 D.对数型函数 解析:选D.一次函数保持均匀的增长,不符合题意; 二次函数在对称轴的两侧有增也有降; 而指数函数是爆炸式增长,不符合“增长越来越慢”; 因此,只有对数函数最符合题意,先快速增长,后来越来越慢. 2.某种植物生长发育的数量y与时间x的关系如下表: x123… y138… 则下面的函数关系式中,能表达这种关系的是() A.y=2x-1 B.y=x2-1 C.y=2x-1 D.y=1.5x2-2.5x+2 解析:选D.画散点图或代入数值,选择拟合效果的函数,故选D. 3.如图表示一位骑自行车者和一位骑摩托车者在相距80km的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息: ①骑自行车者比骑摩托车者早出发了3小时,晚到1小时; ②骑自行车者是变速运动,骑摩托车者是匀速运动; ③骑摩托车者在出发了1.5小时后,追上了骑自行车者. 其中正确信息的序号是() A.①②③ B.①③ C.②③ D.①② 解析:选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了1.5小时后,追上了骑自行车者,正确. 4.长为4,宽为3的矩形,当长增加x,且宽减少x2时面积,此时 x=________,面积S=________. 解析:依题意得:S=(4+x)(3-x2)=-12x2+x+12 =-12(x-1)2+1212,∴当x=1时,Smax=1212.

高三数学一轮复习 函数模型及其应用巩固与练习

高三数学一轮复习 函数模型及其应用巩固与练习 1.(原创题)《优化方案》系列丛书第三年的销量比第一年的销量增长44%,若每年的平均增长率相同(设为x ),则以下结论正确的是( ) A .x >22% B .x <22% C .x =22% D .x 的大小由第一年的销量确定 解析:选B.(1+x )2=1+44%,解得x =0.2<0.22.故选B. 2.(2009年高考湖北卷)在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为( ) A .2000元 B .2200元 C .2400元 D .2800元 解析:选B.设需使用甲型货车x 辆,乙型货车y 辆,运输费用z 元,根据题意,得线性约束条件 ????? 20x +10y ≥100,0≤x ≤4, 0≤y ≤8, 求线性目标函数z =400x +300y 的最小值,解得当????? x =4y =2时 z min =2200,故选B. 3.国家规定某行业收入税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( ) A .560万元 B .420万元 C .350万元 D .320万元 解析:选D.设该公司的年收入为a 万元, 则280p %+(a -280)(p +2)%=a (p +0.25)%. 解之得a =280×22-0.25 =320. 4.某种商品降价10%后,欲恢复原价,则应提价________. 解析:设商品原价为a ,应提价为x , 则有a (1-10%)(1+x )=a , ∴x =11-10%-1=109-1=19 ≈11.11%. 答案:11.11% 5.司机酒后驾驶危害他人的安全,一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3 mg/mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL ,那么,一个喝了少量酒后的驾驶员,至少经过________小时,才能开车?(精确到1小时) 解析:设x 小时后,血液中的酒精含量不超过0.09 mg/mL ,则有0.3·(34 )x ≤0.09,即(34 )x ≤0.3,估算或取对数计算得5小时后,可以开车. 答案:5 6.某市原来的民用电价为0.52元/千瓦时,换装分时电表后,峰时段(早上8点至晚上21点)的电价为0.55元/千瓦时,谷时段(晚上21点至次日早上8点)的电价为0.35元/千瓦时,对于一个平均每月用电量为200千瓦时的家庭,要使节省的电费不少于原来电费

第2章第9讲 函数模型及其应用

第9讲函数模型及其应用 基础知识整合 1.常见的函数模型 函数模型函数解析式 一次函数型f(x)=ax+b(a,b为常数,a≠0) 二次函数型f(x)=ax2+bx+c(a,b,c为常数,a≠0) 指数函数型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0) 对数函数型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0) 幂函数型f(x)=ax n+b(a,b为常数,a≠0) 2.指数、对数及幂函数三种增长型函数模型的图象与性质 函数 性质 y=a x(a>1)y=log a x(a>1)y=x n(n>0) 在(0,+∞) 上的增减性 □01单调递增□02单调递增□03单调递增增长速度越来越快越来越慢相对平稳 图象的变化 随x的增大逐渐表 现为与□04y轴平行 随x的增大逐渐表 现为与□05x轴平行 随n值变化而各有 不同值的比较 存在一个x0,当 x>x0时,有 log a x

上单调递减. (2)当x >0时,x =a 时取最小值2a , 当x <0时,x =-a 时取最大值-2a . 1.(2019·嘉兴模拟)为了预防信息泄露,保证信息的安全传输,在传输过程中需要对文件加密,有一种加密密钥密码系统(Private -Key Cryptosystem),其加密、解密原理为:发送方由明文→密文(加密),接收方由密文→明文(解密).现在加密密钥为y =kx 3,若明文“4”通过加密后得到密文“2”,则接收方接到密文“1 256 ”,解密后得到的明文是( ) A .12 B .14 C .2 D .18 答案 A 解析 由已知,可得当x =4时,y =2,所以2=k ·43,解得k =243=1 32,故y =132x 3.令y =132x 3=1256,即x 3=18,解得x =1 2.故选A . 2.在某个物理实验中,测量得变量x 和变量y 的几组数据,如下表: x 0.50 0.99 2.01 3.98 y -0.99 0.01 0.98 2.00 则对x ,y 最适合的拟合函数是( ) A .y =2x B .y =x 2-1 C .y =2x -2 D .y =log 2x 答案 D 解析 根据x =0.50,y =-0.99,代入各选项计算,可以排除A ;根据x =2.01,y =0.98,代入其余各选项计算,可以排除B ,C ;将各数据代入函数y =log 2x ,可知满足题意.故选D . 3.(2019·山东烟台模拟)某城市对一种售价为每件160元的商品征收附加税,

高考数学函数模型及其应用

重庆名校精华中学08届高考一轮复习教案函数模型及其应用 一.课标要求: 1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义; 2.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。 二.命题走向 函数应用问题是高考的热点,高考对应用题的考察即考小题又考大题,而且分值呈上升的趋势。高考中重视对环境保护及数学课外的的综合性应用题等的考察。出于“立意”和创设情景的需要,函数试题设置问题的角度和方式也不断创新,重视函数思想的考察,加大函数应用题、探索题、开放题和信息题的考察力度,从而使高考考题显得新颖、生动和灵活。 预测2007年的高考,将再现其独特的考察作用,而函数类应用题,是考察的重点,因而要认真准备应用题型、探索型和综合题型,加大训练力度,重视关于函数的数学建模问题,学会用数学和方法寻求规律找出解题策略。 (1)题型多以大题出现,以实际问题为背景,通过解决数学问题的过程,解释问题; (2)题目涉及的函数多以基本初等函数为载体,通过它们的性质(单调性、极值和最值等)来解释生活现象,主要涉计经济、环保、能源、健康等社会现象。 三.要点精讲 1.解决实际问题的解题过程 (1)对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量; (2)建立函数模型:将变量y表示为x的函数,在中学数学内,我们建立的函数模型一般都是函数的解析式; (3)求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解. 这些步骤用框图表示: 2 (1)阅读理解、整理数据的能力:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等; (2)建立函数模型的能力:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域; (3)求解函数模型的能力:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图象的作用。 四.典例解析

相关主题
文本预览
相关文档 最新文档