当前位置:文档之家› 最新第一章---生物技术概论

最新第一章---生物技术概论

最新第一章---生物技术概论
最新第一章---生物技术概论

第一章生物技术概论

1、医学遗传学发展到现代医学分子遗传学与先进技术的发展密切相关, 特别两项生物技术: 细胞融合技术和DNA重组技术所起的作用十分重要。

2、19世纪:

细胞是生命的基本单位

细胞学说:细胞是动植物结构和功能的基本单位,一切生命现象都是以细胞为基础表达的

3、以核酸和蛋白质为中心的生物大分子是生命现象的共同物质基础,细胞和有机体所有生命活动都是以这些生物大分子及其复合物的结构、运动和相互作用来实现的。

4、人类对自然界的要求:认识——利用——再造——改造——创造

5、生物技术学科的地位

世界新技术革命的主角之一, 生物技术与新材料, 信息技术(包括微电子、计算机)一起已成为新产业革命三大支柱之一;

阳光技术,朝阳产业,黄金工程,倍受世界各国重视。

21世纪是生物生命世纪,生物技术将成为21世纪高技术革命的核心内容。

6、生物技术的重要性

有助于解决全球的重大难题:资源(能源)、人口、粮食、生态环境、健康与疾病和战争与灾害;

促进传统产业的技术改造和新产业的形成,对人类社会生活产生深远的革命性影响;

生物技术这一新生事物正迅速走向老百性日常生活各个方面, 将对人类的发展做出贡献。

第一节生物技术的概念和内容

1、生物技术(Biotechnology, BT), 亦称为生物工程(bioengineering), 现统一称: 生物技术。

2、定义:(国际上)生物技术是指应用生物科学及工程学原理,依靠生物体系作反应器,将物料进行加工改造,

获得人类所需产品的技术。

3、现代生物技术定义:以现代生命科学为基础, 把生物体系与工程学技术有机结合在一起,按照预先的设计,

定向地在不同水平上改造生物遗传性状或加工生物原料, 产生对人类有用的新产品(或达到某种目的)之综合性科学技术。

4、要点

①对象是具遗传特性有生命物质:包括病毒、细菌、植物、动物、直到人类。

②生物体系多个不同水平研究: 从大分子(DNA、RNA、蛋白质、酶)、亚细胞、细胞、组织、器官到整个机体。

③应用工程学原理: 经人类思维, 设计方案、定向修饰、加工制作过程、经过体外环节。

④有目的产品: 目的产品有三新特征: 新遗传功能、新遗传性状、新物种。要有合乎人类所需的工业、农业、医疗和食品产品。

⑤高新技术起重要作用。

5、传统生物技术:传统生物技术的发展(经典+近代)

? 1 000多年前, 当人类用发方法制备酒、醋、酱及食品等, 此时主要是生物技术的经验阶段。

?19世纪人们才有意识地大规模利用酵母发酵,并形成产业。

?20世纪初,提出了生物技术这一概念。

? 1928年,青霉素的发现使生物技术从单纯的食品、饲料制备扩展到抗生素产品,该产业至今长盛不衰。

? 20世纪 50年代和60年代,生物技术增添了氨基酸发酵和酶制剂工业新成员。

6、传统生物技术有如下特点:

①主要通过微生物初级发酵获得产品,仅仅局限在微生物发酵和化学工程领域。

②没有改变微生物的遗传物质,也没有出现新的微生物遗传性状。

③生产过程简单,上游主要是培养大量的微生

物、对粗材料进行加工即进行发酵和转化,

通过诱变选育良种,下游主要对产品进行纯化。

④生产周期长,费用高,产量低,效率差。

7、现代生物技术

自1953年起,分子遗传学的兴起与发展,

DNA转移和重组工程,有性繁殖,转基因技术,细胞工程,转基因药物,转基因动植物,无性繁殖,克隆技术

特别是DNA重组技术可以:

改变生物的遗传性状, 使分离高产量的工程菌变的容易, 简化了生产过程;扩大了反应器范围,从发酵罐发展到细胞、植物及动物个体天然生物反应器。

8、生物技术的特点 (八高一低)

高水平:即学科具有先进性,是知识、技术密集型产业, 处分子水平、新技术前沿。

高综合:跨学科专业, 位多学科发展的交叉点上,涉及的行业多、范围广。

高投入, 与其他技术比较, 在资金、人员、设备、试剂及研发上投资大。

高竞争,各国、各行业、个单位之间,在技术、时效性、知识及人才上竞争激烈。

高风险,上述原因造成一定风险,加上技术风险带来高风险。

高效益, 应用性强, 有目的产品, 最易商业化。

从事生物技术犹如种树将获得丰硕果实, 如干扰素的投入虽然高达数百万美元,但产值数年达30亿美元, 用于治病将产生巨大经济和社会效益。生物技术在解决人类面临众多难题上是没有任何产业可比的。

高智力:

具有创新性和突破性, 可按人类需要定向改变和创造生物的遗传特性,要求在人才、计划、设计、工艺和产品上都要与众不同。

从认识、利用、再造阶段上升到改造和创造阶段。

高控性:采用工程学手段,易自动化、程控化及连续化生产。

低污染:生物技术以生物资源为对象, 生物资源具有再生性, 是再生资源。具有不受限制、污染小、周期短的优点。

9、生物技术的内容

医学生物技术、药学生物技术、动物生物技术、农业生物技术、海洋生物技术、微生物生物技术

10、生物技术与诸学科关系

注: 上述十项工程是国家科委规定统计的上报内容, 注意下述三个概念:

上游工程:

是生物技术的实验室研究阶段, 应用基础研究, 产生三新产品的源泉。

下游工程:

是生物技术的扩大生产, 加工应用阶段, 使三新产品能达到三化: 商品化、工程化、企业化, 是效益阶段。

11、生物技术的上中下游

上游工程:实验室研究和开发阶段,包括基因、细胞、干细胞、转基因生物、组织工程等获得优良菌株、细胞系或固定化的菌体等。

中游工程:中游加工以生物反应器为中心,优化和放大生产工艺。

下游工程:从反应液中提取目的产物加工精制成合格产品。

12、遗传工程

其基本含义是指对不同来源的物质, 人工体外操作, 重新组合, 定向改建, 获得具有新遗传性状的新物品之技术。对象包括:细胞、亚细胞、染色体、核酸分子、基因等, 包括大部分上游工程。

13、生物技术涉及的具体技术包括:

DNA 重组技术, 细胞培养及融合技术,

抗体制备技术,

干细胞培养及定向分化, 显微注射技术,

动物饲养技术,

转基因技术, 胚胎克隆, 细胞及酶的固定化技术,

发酵技术,

生物反应器, 蛋白质分离纯化, 生物大分子

合成及纯化,

生物大分子修饰, 生物物理、生物信息及其他

相关领域技术。

六. 生物技术诸工程的内容及种类 ( 十大工程 )

(一) 基因工程 (Gene engineering)

1. 对象: 在核酸分子 (DNA或RNA) 或基因上操作。

2. 定义: 在体外对DNA进行切割、拼接, 使遗传物质重新组合, 经载体转移到细胞中扩增表达, 获得人类所需产品, 或组建新生物类型的技术。

文献上常见到DNA重组、分子克隆、基因克隆、遗传工程等名词与基因工程混用, 事实上主要内容相似, 不同之处在于所突出的内容有异。

3. 应用 (后有详述)。

(二)细胞工程 (cell engineering)

1.对象: 细胞, 在细胞水平上实现基因转移或改变生物学性状。

2、定义

(1)广义

细胞融合技术: 在特定的条件下 (环境、融合技术), 使不同的细胞融合, 获得具有来自双亲代基因的杂交细胞, 杂交细胞的遣传物质发生改变, 达到改造物种,创建新种之目的。

(2) 狭义:

淋巴细胞杂交瘤技术:

骨髓瘤细胞+淋巴细胞融合(制备 McAb)。

(3) 现代概念:

把广义的概念扩展, 指在体外条件对细胞进行培养、繁殖,按人们的意愿改变细胞某些生物学特性,获得有用的产品或达到改良生物品种的技术。

细胞工程包括:

①细胞融合技术

②工程细胞移植, 即有目的地改造细胞

遗传特性后, 植入机体。

③细胞折合,

④染色体导入及细胞器导入技术,

⑤胚胎细胞植入。

3. 分类:

①微生物细胞工程, 如原生质体融合, 试管菌。②植物细胞工程,1978年培育出土豆西红柿新物种。

③动物细胞工程, McAb。

4. 应用: 以McAb制备成绩突出,

诊断、治疗。

(三) 蛋白质工程 (Protein engineering)

1.对象: 基因序列——DNA分子中改造, 最终导致蛋白分子氨基酸序列改变。

2. 定义:在X衍射和晶体分析术了解蛋白质三维空间结构和功能关系基础上, 借用计算机和分子设计辅助技术, 在DNA分子水平上操作更换或改变其序列, 达到改变蛋白质分子氨基酸序列, 实现人为改变蛋白质分子形状及功能, 使之具有新遗传学特性。

3. 核心:

蛋白质空间结构, DNA重组, 人工定向改造蛋白质功能域构象, 使得功能改变。

这被称为是生物技术发展的第二浪, 如通过增加或减少人工二硫键、置换氨基酸等修饰技术, 提高或改变活性多肽 (激素、酶、细胞因子) 的稳定性。

(四)抗体工程(Antibody engineering )

1.对象:Ig 基因

2.定义:抗体工程:

通过对抗体分子结构和功能关系的研究,有计划地对抗体基因序列进行改造,改善抗体的某些功能的技术。

在80年代初,抗体基因结构和功能的研究成果与重组DNA技术相结合,产生了基因工程抗体技术。

基因工程抗体即将抗体的基因按不同需要进行加工、改造和重新装配,然后导入适当的受体细胞中进行表达的抗体分子。

3.抗体工程的内容

完整抗体,及抗体的人源化

完整抗体与抗体片段的药代动力学比较

改造抗体片段的多种特异性

双功能抗体

抗体库的构建、展示和筛选

噬菌体展示技术

mRNA-蛋白质复合物库

细胞表面库

转基因鼠

抗体的生产、稳定性和表达水平

亲和力成熟

骨架替换

临床应用

中和病原体及抗病毒治疗

细胞内抗体

肿瘤治疗与细胞补充疗法

疫苗应用

用于未来诊断的生物传感器和微矩阵技术

(五) 组织工程(Tissue engineering)

1、对象:干细胞、组织和器官。

2、定义:运用工程学和生命科学原理和方法,在了解正常和病理学组织结构与功能关系和生长机理的基础上,研制生物学组织器官替代品,通过移植,达到重建、恢复、维持和改进组织功能学科。

3、要点:

①依据正常组织结构、功能设计方案;②选择种子细胞培养;③选择细胞外基质、生物支架材料;

④体外构建三维结构替代品;⑤植入机体,替代病理组织。

4、应用:组织器官移植。

(六)干细胞工程 (stem cell engineering)

干细胞

干细胞是具有无限期产生各种分化细胞能力的细胞。它是各种干细胞的统称。通常认为

干细胞有几个主要特征:

未分化的早期细胞;

具有分化成各种特定细胞的能力;

可无限地分裂增值,产生大量后裔;

其子细胞有两种命运,保持为干细胞或分化为特定细胞。

(七) 转基因动物(亦称: 胚胎工程Transgenetic animal)

1.对象: 胚胎早期细胞上实现基因转移。

2. 定义:

把新的遗传信息 (DNA序列) 用特定技术导入胚胎早期受精卵, 经发育后, 外源遗传信息分布到所有体细胞生殖细胞中去, 这种使动物带有新遗传信息的基因转移技术称胚胎工程。

所得动物称转基因动物 (Transgenetic animals),或基因工程动物。

3. 过程:

①提取人所需要蛋白质基因、cDNA;②基因重组 (cDNA+控制基因+载体);③分离、培养人工受精的卵细胞(如牛);④把重组体转入到受精的卵细胞;⑤植入子宫 ,使之发育为个体(每一个体细胞均含有新的基因);

⑥活化植入新基因,使之表达 (如在乳腺中表达);⑦提取目的基因表达产物,进行验证(定性、定量);

⑧进行安全性及临床试验。

4. 要点:

①必须有外源新基因转移, ②在早期生殖细胞整合, ③发育成新个体中有外源基因正常表达,

④可遗传后代。

5. 应用:

①肿瘤发生、传染病的动物模型, ②新品种:新物种研究, ③药物生产、动物乳汁中分泌有 tPA, IX因子,

④免疫机制研究。

(八) 生物医学工程 ( Biomedical engineering)

1.对象: 人体

2.定义:

从工程学角度研究人体结构、功能及生命现象, 为防治疾病提供新技术、新方法、新仪器和新材料的科学。3.内容:

生物材料( 人造器官、起搏器的材料)、康复工程、医学成像( 超声、CT、核磁)、生物传感、监护系统等。

(九) 生物制药/化学制药工程(Biochemical pharmaceutical engineering)

1.生产对象: 药物( 活性多肽、酶、抗生素等)

2.定义 (待确定): 利用现代生物技术, 以生物反应器(微生物、动物细胞、植物及动物个体),大规模地制备高纯度的药物。如基因工程药物、同份异构体的拆分(利用 Abzyme 特异结合、特异地进行酶消化来完成)等。

(十) 酶工程 (Enzyme engineering)

1.对象:酶分子修饰、生产应用和酶的固定化

2. 定义:

在给定的生产工艺和生物反应器中, 利用酶、细胞器或细胞所具有的特异催化功能,或对酶进行修饰改造提高酶的转化率, 把对应的原料高效地转化成所需有用的物质之技术。

3. 要点:

固定化酶、酶分子改造技术和酶反映器的设计是当前酶工程的重点。近年把酶电极生物传感器也归到酶工程范围内。如: 底物+固定化酶—→化学信号—→电信号—→人视觉—→控制反应。

(十一) 发酵工程 (Fermentation engineering)

1.对象:

微生物, 在常规发酵工艺上发展而成。有时也称微生物工程。

2. 定义:

利用微生物特定性状(生长快、培养简单和代谢过程特殊等), 通过现代化工程技术, 快速、连续生产人类所需物质的技术。

3. 要点:

①核心是提高产率,

②过程包括: 菌种选育、生产、

代谢产物的利用。

③所用技术包括大规模悬浮培养,

细胞固定化, 产物分离提取。

4.应用:

药物生产( 活性多肽、抗生素)、单细胞蛋白生产、环境保护、微生物冶金技术。

(十二) 生化工程

(Biochemistry engineering)

1.对象:

①生化反应器(反应环境与装置),

②产品的分离提纯技术

2.定义(待确定):

为活细胞和酶提供适宜反应环境, 能大规模自动化生产、分离、精制出所需产品的技术。

3.内容包括:

生物反应器的设计、传感器的制造、电泳、离心、层折、免疫层析等。这是下游工程的关键一环。

注:

1.十二大工程相互联系, 相辅相成。

上游中, 基因工程是基础、核心, 通过它才能真正按人的意向通过设计、改造、生产特定生物工程产品。

下游工程中关键是发酵工程的生产和利用生化工程对产物进行提纯, 它们是生物技术产生效益的必要条件。其他工程相互配合,共同组成生物技术体系。

2. 生物技术发展迅速, 任务内容不断丰富更新, 应密切关注。

第二节生物技术的意义及应用

生物技术的应用领域很广,可把生物技术分为:医学生物技术、植物生物技术、动物生物技术、食品生物技术、环境生物技术和军事生物技术等。生物技术应用的意义巨大,主要有以下几个方面。

一. 战略意义

相关主题
文本预览
相关文档 最新文档