当前位置:文档之家› 现代控制理论综述论文

现代控制理论综述论文

论文题目:现代控制理论综述

摘要

本文是对现代控制理论课程的完整综述,现代控制理论的主要内容包括控制系统的状态空间表达式及其解,线性控制系统的能控性和能观性,稳定性与李雅普诺夫方法,线性定常系统的综合以及最优控制理论等部分。本文通过对控制理论各部分的阐述,构出了现代控制理论的主要框架及各部门的基本内容。

关键词:现代控制;状态方程;稳定性;最优控制;

Abstract

This article is a complete review of modern control theory course, the main contents of the modern control theory, including the control system of the state space expression and its solution, the controllability of linear control systems and can view, stability and Lyapunov method, the synthesis of linear time-invariant system and optimal control theory. This article through to all parts of the control theory, compose the main framework of modern control theory and the basic content of each department.

Keywords: Modern control; State equation;Stability;Optimal control

目录

摘要................................................................................................................................. I Abstract .........................................................................................................................II

一、控制理论的发展历史 (1)

二、现代控制理论的基本内容 (3)

2.1 控制系统的状态空间表达式 (5)

2.2 线性控制系统的能控性和能观性 (5)

2.2.1 线性控制系统的能控性 (6)

2.2.2 线性控制系统的能观性 (7)

2.3 自动控制系统的稳定性 (8)

2.4 最优控制 (10)

三、控制理论的发展展望 (10)

四、总结 (11)

参考文献 (14)

一、控制理论的发展历史

控制理论是关于各种系统的一般性控制规律的科学,它研究如何通过信号反馈来修正动态系统的行为和性能,以达到预期的控制目的。

控制理论是有实践中发展而来的,自动控制理论的形成远比人们利用自动控制装置晚很多。工业中最早的自动控制装置是瓦特发明的蒸汽机中的调速器,但那时他并不是建立在理论的基础上,而是一种凭借经验的所为。当然也正是因为社会实践中遇到了很多的问题难以解决,才促使人们对其思考,总结,并逐渐形成今天我们所有的理论。控制理论也是这样的,实际系统往往含有许多未知的不确定因素,为了对它进行有效的控制,就要对它进行系统辨识,建模,跟踪,对测量信号进行包括滤波,预测以及状态估计在内的各种科学处理,然后设计反馈控制规律,使系统的某些性能达到预期的最优控制目标。

概括的讲,控制理论的发展大体经历了三个时期:

第一个阶段是20世纪40年代末到50年代的经典控制论时期,着重研究单机自动化,解决单输入单输出(SISO)系统的控制问题,它的主要数学工具是微分方程,拉普拉斯变换和传递函数,主要研究方法是时域法、频域法和根轨迹法,主要问题是控制系统的快速性,稳定性及其精度。20世纪20年代到40年代,马克斯威尔对装有调速器的蒸汽机系统动态特性的分析,马诺斯基对船舶驾驶控制的研究都是控制理论的开拓性工作。奈奎斯特,伯德等人对单回路反馈系统的研究结果显示出反馈系统即使在对系统情况知道不多时也能起到很好的作用。

第二个阶段是20世纪60年代的现代控制理论时期,着重解决机组自动化

和生物系统的多输入多输出(MIMO)系统的控制问题;主要数学工具是一次微分方程组,矩阵论,状态空间法等;主要方法是变分法,极大值原理,动态规划理论等;重点是最优控制、随即控制、核心装置是电子计算机。

20世纪50年代后期到60年代初期是控制理论发展的转折时期,第二次世界大战后华尔德的序贯分析和贝尔曼的动态规划是转折时期的开端,这些理论受到最优统计决策和资源分配中的序贯规划问题的研究的激发。他们在概念上的贡献是考虑了一大类以初始状态参数化了的动态优化问题,这个理论的中心问题是建立最优性能的动态规划方程,从它的解就可以确定最优反馈控制规律。与此同

时,优化领域中的另一个长期被忽视的强调不等式约束的线性和非线性规划也开始得到发展,这个领域的研究人员首先设计了便于计算机计算的数值方法,这种方法后来在控制中变得十分有用。苏联学者在20世纪50年代对包含非线性特性、饱和作用和受到限制的控制等因素的系统的最优瞬态的研究表现出很大的兴趣,这些学者的研究导致了庞特里亚金的“极大值原理”,极大值原理的贡献可说是20世纪50年代和60年代对于大量轨迹优化数值计算方法的研究和冲力,这种研究最后导致许多空间运载器的成功的设计,其中包括阿波罗计划和宇航飞行计划。

第三个阶段是20世纪70年代的大系统理论时期,着重解决生物系统、社会系统这样一些众多变量的大系统的综合自动化问题;方法以时域法为主,重点是大系统的多级递阶控制;核心装置是网络化的电子计算机。

随着人工智能的发展和引入了新的计算机结构,控制理论和计算机科学的联系愈来愈密切,近年来已有一些专家系统可以自动寻求最优随即控制和滤波问题的理论解和数值解。在控制框架上将符号运算和数值运算相结合的研究工作正在开展。智能控制的概念也在发展,其目的之一是将当前的控制理论和尚未成型的人工智能成功的合为一体。离散时间系统理论架起了一座通向扩展了的状态机器理论的桥梁,在将来可能为评价计算机系统的性能提供了一个建模工具。

二、现代控制理论的基本内容

现代控制一般是指20世纪五六十年代所产生的一些重要控制理论,主要包括:用状态空间法对多输入多输出复杂系统建模,并进一步通过状态方程求解分析,研究系统的可控性、可观性及其稳定性,分析系统的实现问题;用变分法、

最大值原理、动态规划原理等求解系统的最优控制问题,其中常见的最优控制问题包括时间最短、耗能最少等,以及它们的组合优化问题,相应的有状态调节器、输出调节器、跟踪器等综合设计问题;最优控制往往要求系统的状态反馈控制,但许多情况下,系统的状态很难求出,往往需要一些专门的处理方法,如卡尔曼滤波技术等。

2.1 控制系统的状态空间表达式

在经典控制理论中,对一个线性定常系统,可用常微分方程或者传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来。实际上系统除了输出量这个变量之外,还包含其他相互独立的变量,而微分方程或传递函数对这些内部的中间变量是不便描述的,因而不能包含系统的所有信息。显然,从能否完全揭示系统的全部运动状态来讲,用微分方程或传递函数来描述一个系统相比用状态空间表达式来描述有其不足之处。

在用状态空间法分析系统时,系统的动态特性是用由状态变量构成的一阶微分方程组来描述的,它能反映系统的全部独立变量的变化

一个系统在一个特定的时刻都有其特定的状态,每个状态都可以用最小的一组独立的状态变量来描述。比如若系统有n个变量x1,x2,...x n,他们都是实践t的函数,控制系统的每一个状态都可以在一个由x1,x2,...x n为轴的n维状态空间上的一点来表示,即可以用一个向量形式来表示系统的状态。在现代控制理论中,用系统的状态方程和输出方程来描述系统的动态特性,状态方程和输出方程合起来叫做系统的状态空间表达式。

2.2 线性控制系统的能控性和能观性

在现代控制理论中,能控性和能观性是两个重要的概念,它们是卡尔曼在1960年首先提出来的,也是最优控制和最优估计的设计基础。当然系统的能控性和能观性研究一般都是基于系统的状态空间表达式的。

2.2.1 线性控制系统的能控性

能控性是指外加控制作用u(t)对受控系统的状态变量x(t)和输出变量y(t)的支配能力,它回答了u(t)能否使x(t)和y(t)做任意转移的问题。它只是考察系统在控制作用u(t)的控制下,状态矢量x(t)的转移情况,与y(t)无关,所以只需从系统的状态方程研究出发即可。

对于一个线性定常系统:x =Ax+Bu,如果存在一个分段连续的输入u(t),能在有限时间区间[t0, t f]内,使系统由某一初始状态x(t0),转移到指定的任一终

端状态x(t f),则称此状态时能控的。若系统所有状态都是能控的,则称此系统为状态完全能控的,或简称系统是能控的。

对于一个线性连续时变系统:x =A(t)x+B(t)u,其能控性的定义与定常系统的定义相同,但是A(t)、B(t)是时变矩阵而非常系数矩阵,其状态矢量x(t)的转移,与初始时刻t0的选取有关,所以在时变系统能控性的定义中,应强调在t0时刻系统是能控的。

对于一个单输入的n阶线性定常离散系统x(k+1)=Gx(k)+Hu(k),其中u(k)是标量控制作用,它在(k,k+1)区间内是个常值,则其能控性定义为:若存在控制作用序列u(k),u(k+1),...,u(l-1)能将第k步的某个状态x(k)在第l步上达到零状态,即x(l)=0,其中l是大于k的有限数,那么就成此状态是能控的。若系统在第k步上的所有状态x(k)都是能控的,那么称此系统为完全能控的,即能控系统。

线性定常系统能空性的判别标准有两种形式:一种是先将系统进行状态变换,把状态方程化为约旦标准型(A?,B?),再根据B?阵,确定系统的能控性;另一种方法是直接根据状态方程的A阵和B阵,确定其能控性。

2.2.2 线性控制系统的能观性

现代控制系统大多采用反馈控制形式。其反馈信息是由系统的状态变量组合而成,但并非所有的系统的状态变量都能够观测到,于是提出了能否通过对输出的测量获取全部状态变量的信息,这就是系统的能观测问题。

能观性针对的是系统状态空间模型中的状态的可观测性,是指系统的测量输出向量y(t)识别状态向量x(t)的测辨能力,它回答了能否通过y(t)的测量值来识别

x(t)的问题。

能观性所表示的是输出y(t)反映状态矢量x(t)的能力,与控制作用没有直接关系,所以分析能观性问题时,只需从齐次状态方程和输出方程出发,即:x =Ax,x(t0)=x0

y=Cx

如果对任意的输入u,在有限的观测时间t f>t0,使得根据[t0,t f]期间的输出y(t)能唯一地确定系统在初始时刻的状态x(t0),则称状态x(t0)是能观测的,若系统的每个状态都是能观测的,则称系统是状态完全能观测的。

定常系统能观性的判别也有两种方法,一种是对系统进行坐标变换,将系统的状态空间表达式变换成约旦标准型,然后根据标准型下的C阵,判别其能观性;另一种方法是直接根据A阵和C阵进行判别。

2.3 自动控制系统的稳定性

对于一个实际的控制系统,其工作的稳定性无疑是一个极其重要的问题,因为一个不稳定的系统在实际应用中是很难发挥作用的。从直观上讲,系统的稳定性就是一个处于稳态的系统,在某一个干扰信号的作用下,其状态偏离了原有的平衡位置,如果该系统是稳定的,那么当干扰取消后在有限的时间内,系统会在自身作用下回到回到平衡状态;反之若系统不稳定,则系统永远不会回到原来的平衡位置。

系统的稳定一般有外部稳定和内部稳定两种。外部稳定又称作输出稳定,也就是当系统在干扰取消后,在一定时间内,其输出会恢复到原来的稳态输出,输出稳定有时描述为系统的BIBO稳定,即有限的系统输入只能产生有限的系统输

出。系统内部稳定主要针对系统内部状态,反映的是系统内部状态受到干扰信号的影响,当干扰信号取消后,系统的内部状态会在一定的时间内恢复到原来的平衡状态。

早在1892年,俄国数学家李雅普诺夫就提出将判定系统稳定性的问题归纳为两种方法:李雅普诺夫第一法和李雅普诺夫第二法。前者是通过求解系统微分方程,然后根据解的性质来判断系统的稳定性,他的基本思路和分析方法与经典理论是一致的。李雅普诺夫第二法的特点是不求解系统方程,而是通过李雅普诺夫函数的标量函数来直接判断系统的稳定性的。由于系统的复杂性和多样性,往往不能直观的找到一个能量函数来描述系统的能量关系,于是李雅普诺夫定义了一个正定的标量函数V(x),作为虚构的广义能量函数,然后根据V(x)=d V(x)/d t的符号特征来判断系统的稳定性。实际上,任何一个标量函数只要满足李雅普诺夫稳定性判据所假设的条件,均可作为李雅普诺夫函数。过去,寻找李雅普诺夫函数主要是靠试探,几乎完全凭借设计者的经验和技巧,现在随着计算机的发展,借助计算机不仅可以找到所需要的李雅普诺夫函数,而且还能确定系统的稳定区

域。当然要想找到一种任何系统都是用的方法还是很困难的。

2.4 最优控制

控制系统的分析和综合设计是系统研究的两大课题。系统的分析是建立在控制系统的数学模型的基础上的,分析系统的各种性能,如系统的稳定性、能观性、能控性等,系统的综合是设计系统控制器,以改善原系统的性能,达到系统要求的各种性能指标。系统综合可以分为常规综合和最优综合。最优综合即最优控制通常是针对控制系统本身而言的,目的在于使一组机器、一台设备或一个生产过程实现局部最优。

最优控制理论是现代控制理论的重要组成部分,是研究和解决从一切可能的控制方案中寻找最优解的一门学科,基本内容和常用方法包括动态规划,最大值原理和变分方法。

三、控制理论的发展展望

在未来的发展中,控制理论将和其他领域广泛交叉渗透,控制领域的应用范围已从单纯的技术领域渗透到社会,经济,人口,环境和生命科学等领域的控制问题中,并将继续大大拓广。

此外,复杂系统的控制理论问题将越来越受到重视,复杂系统的主要特征可归纳为:动力学模型的不确定性;测量信息的粗糙性和不完整性;动态行为或扰动的随机性等,复杂系统控制在规模上、复杂性及灵活性上将大大突破传统的自动控制在概念和方法上的局限性。他要求控制系统对被控制对象的动力学模型要有“学习”和“识别”的能力,对环境和扰动的变化要有“适应”和“稳健”能力等

四、总结

控制论与相对论、量子论一起被称为20世纪上半叶科学发展的三大飞跃,经过半个世纪的发展,控制理论的应用已使人类大大突破了人类自身的极限,成

为人类认识和改造自然过程中的一个不可或缺的基本手段。以后,控制理论的发展将使人们以更科学的方式来处理人民生活、社会经济、生态环境、工业生产等领域出现的复杂系统控制问题,在更加广泛的方面造福人类。

近年来,我国的控制理论队伍的学术水平和国际地位不断提高,在某些方面的研究成果已达到国际领先水平,但是还应看到,目前我国的控制理论研究水平在整体上和影响上与欧美国家相比还有很大差距,当然在我们的共同努力下,我们在控制领域做出的成绩一定能够达到领先的水平。

参考文献:

[1] 刘豹,唐万生.现代控制理论[M].机械工业出版社,2006

[2] 王翼.现代控制理论[M].机械工业出版社,2005

[3] 方水良. 现代控制理论及其MATLAB实践,浙江大学出版社,2005

[4] Bennett S. A brief history autornatic control. IEEE Control System,1996,16(3)

[5] Isidori A.Nonlinear Control Systems.2nd ed,Berlin:Springer, 1989

[6] Middleton R H,Goodwin G C.Digital Control and Estimation:A Unified Approach.Englewood Cliffs,NJ:Prentice Hall,1990:58~59

[7] I,I,Eremin,A.I.Kibzun in Automation and Remote Control,2004

[8] Jan Awrejcewicz Communications in Nonlinear Science and Numerical Simulation,Volume 16,Issue 5,May 2011,Pages2203-2204.

[9] Jaroslaw Smieja . Advanced modern control system theory and design.Stanley m .Shinners Wiley.Automatica,Volume 37,Issue 2,February 2001,Pages 317-318.

[10] Hanfu Chen,Daizhan Cheng.Early Development of Control Theory in China.European Journal of Control,Volume 13,Issue 1,2007,page 25-29 [11] O,L,R.Jacobs.Modern control system theory.Automatica Volume 22,Issue 2,March 1986,pages 258-259.

[12] Jin R,Chen W,Sudjianto A.An Efficient Algorithm for Constructing Optimal Design of Computer Experiments[J].Journal of Statistical Planning

and Inference,2005,134(1):268-287.

[13] El-Kady M M,Salim M S.Numerical treatment of multiobjective optimal control problems[J].Automatia,2003,39:47-55

[14] Oscar Barambomes,Victor Etxebarrrta.Robust neural control for robotic manipulators[J].Automatica,2002,38:235-242

[15] Athans M and Falb P.L.etc.Optimal Control.New York,McGraw-Hill,2006

[16] Underwood M.A.and Enterprises T.etc.Recent System Development for Multi-Actuator Vibration Control.Sound and Vibration,2001:1-6

[17] Kim J.T.and Jung H.J.etc.Optimal Structural Control Using Neural Networks.Journal of Engineer Mechanics,2000,126(2):201-205

[18] Meirovitch L.Dynamics and Control of Structures.New York,Wiley,1990

[19] 田玉虎.现代控制若干理论及应用研究.硕士学位论文.2003

自动控制原理论文

自动控制 摘要:综述了自动控制理论的发展情况,指出自动控制理论所经历的三个发展阶段,即经典控制理论、现代控制理论和智能控制理论。最后指出,各种控制理论的复合能够取长补短,是控制理论的发展方向。 自动控制理论是自动控制科学的核心。自动控制理论自创立至今已经过了三代的发展:第一代为20世纪初开始形成并于50年代趋于成熟的经典反馈控制理论;第二代为50、60年代在线性代数的数学基础上发展起来的现代控制理论;第三代为60年代中期即已萌芽,在发展过程中综合了人工智能、自动控制、运筹学、信息论等多学科的最新成果并在此基础上形成的智能控制理论。经典控制理论(本质上是频域方法)和现代控制理论(本质上是时域方法)都是建立在控制对象精确模型上的控制理论,而实际上的工业生产系统中的控制对象和过程大多具有非线性、时变性、变结构、不确定性、多层次、多因素等特点,难以建立精确的数学模型。因此,自动控制专家和学者希望能从要解决问题领域的知识出发,利用熟练操作者的丰富经验、思维和判断能力,来实现对上述复杂系统的控制,这就是基于知识的不依赖于精确的数学模型的智能控制。本文将对经典控制理论、现代控制理论和智能控制理论的发展情况及基本内容进行介绍。 1自动控制理论发展概述 自动控制是指使用自动化仪器仪表或自动控制装置代替人 自动地对仪器设备或工业生产过程进行控制,使之达到预期的状态或性能指标。对传统的工业生产过程采用自动控制技术,可以有效提高产品的质量和企业的经济效益。对一些恶劣环境下的控制操作,自动控制显得尤其重要。 自动控制理论是和人类社会发展密切联系的一门学科,是自动控制科学的核心。自从19世纪M ax we ll对具有调速器的蒸汽发动机系统进行线性常微分方程描述及稳定性分析以来,经过20世纪初Ny qu i s t,B od e,Ha rr is,Ev ans,W ie nn er,Ni cho l s等人的杰出贡献,终于形成了经典反馈控制理论基础,并于50年代趋于成熟。经典控制理论的特点是以传递函数为数学工具,采用频域方法,主要研究“单输入—单输出”线性定常控制系统的分析和设计,但它存在着一定的局限性,即对“多输入—多输出”系统不宜用经典控制理论解决,特别是对非线性、时变系统更

现代控制理论发展史香港科技大学李泽湘教授的报告

自动控制技术与人类科技文明 Automatic Control & Human Civilization 前言 从远古的漏壶和计时容器到公元前的水利枢纽工程,从中世纪的钟摆、天文望远镜到工业革命的蒸汽机、蒸汽机车和蒸汽轮船,从百年前的飞机、汽车和电话通讯到半个世纪前的电子放大器和模拟计算机,从二战期间的雷达和火炮防空网到冷战时代的卫星、导弹和数字计算机,从六十年代的登月飞船到现代的航天飞机、宇宙和星球探测器,这些著名的人类科技发明直接催生和发展了自动控制技术。源于实践,服务于实践,在实践中升华。经过千百年的提炼,尤其是近半个世纪工业实践的普遍应用,自动控制技术已经成为人类科技文明的重要组成部分,在日常生活中不可或缺。随着新型制造业的兴起和网络信息技术的进步,自动控制技术的发展与应用将进入一个全新的时代,新的维纳和卡尔曼将陆续诞生。数风流人物,还看今朝。 1

I.前期控制(Early Control)(1400B.C. - 1900) (0)中国,埃及和巴比伦出现自动计时漏壶 (1400B.C. ~1100B.C.)。孙武著《孙子兵法》 (600B.C.) (1)秦昭王时,李冰主持修筑都江堰体现的系 西汉漏壶统观念和实践(300B.C.) 2

(2)亚历山大的希罗发明开闭庙门和分发圣水等自动装置(100年) (3)中国张衡发明水运浑象,研制出自动测量地震的候风地动仪(132年) 3

(4)中国马钧研制出用齿轮传动的自动指示方向的指南车(235年) (5)中国定向驾驶舵(1180年) (人类首台控制机构)(6)中国明代宋应星所著《天工开物》 记载有程序控制思想(CNC)的提花织 机结构图(1637年) 4

现代控制理论课程设计心得【模版】

宁波理工学院现代控制理论课程设计报告 题目打印机皮带驱动系统能控能观和稳定性分析项目成员史旭东童振梁沈晓楠 专业班级自动化112 指导教师何小其 分院信息分院 完成日期 2014-5-28

目录 1. 课程设计目的 (4) 2.课程设计题目描述和要求 (4) 3.课程设计报告内容 (4) 3.1 原理图 (4) 3.2 系统参数取值情况 (5) 3.3 打印机皮带驱动系统的状态空间方程 (5) 4. 系统分析 (8) 4.1 能控性分析 (8) 4.2 能观性分析 (8) 4.3 稳定性分析 (9) 5. 总结 (11)

项目组成员具体分工

打印机皮带驱动系统能控能观和稳定性 分析 课程设计的内容如下: 1.课程设计目的 综合运用自控现代理论分析皮带驱动系统的能控性、能观性以及稳定性,融会贯通并扩展有关方面的知识。加强大家对专业理论知识的理解和实际运用。培养学生熟练运用有关的仿真软件及分析,解决实际问题的能力,学会应用标准、手册、查阅有关技术资料。加强了大家的自学能力,为大家以后做毕业设计做很好的铺垫。 2.课程设计题目描述和要求 (1)环节项目名称:能控能观判据及稳定性判据 (2)环节目的: ①利用MATLAB分析线性定常系统的可控性和客观性。 ②利用MATLAB进行线性定常系统的李雅普诺夫稳定性判据。 (3)环节形式:课后上机仿真 (4)环节考核方式: 根据提交的仿真结果及分析报告确定成绩。 (5)环节内容、方法: ①给定系统状态空间方程,对系统进行可控性、可观性分析。 ②已知系统状态空间方程,判断其稳定性,并绘制出时间响应曲线验 证上述判断。 3.课程设计报告内容 3.1 原理图 在计算机外围设备中,常用的低价位喷墨式或针式打印机都配有皮带驱动器。它用于驱动打印头沿打印页面横向移动。图1给出了一个装有直流电机的皮

现代控制理论课后习题答案

绪论 为了帮助大家在期末复习中能更全面地掌握书中知识点,并且在以后参加考研考博考试直到工作中,为大家提供一个理论参考依据,我们11级自动化二班的同学们在王整风教授的带领下合力编写了这本《现代控制理论习题集》(刘豹第三版),希望大家好好利用这本辅助工具。 根据老师要求,本次任务分组化,责任到个人。我们班整体分为五大组,每组负责整理一章习题,每个人的任务由组长具体分配,一个人大概分1~2道题,每个人任务虽然不算多,但也给同学们提出了要求:1.写清题号,抄题,画图(用CAD或word画)。2.题解详略得当,老师要求的步骤必须写上。3.遇到一题多解,要尽量写出多种方法。 本习题集贯穿全书,为大家展示了控制理论的基础、性质和控制一个动态系统的四个基本步骤,即建模、系统辨识、信号处理、综合控制输入。我们紧贴原课本,强调运用统一、联系的方法分析处理每一道题,将各章节的知识点都有机地整合在一起,力争做到了对控制理论概念阐述明确,给每道题的解析赋予了较强的物理概念及工程背景。在课后题中出现的本章节重难点部分,我们加上了必要的文字和图例说明,让读者感觉每一题都思路清晰,简单明了,由于我们给习题配以多种解法,更有助于发散大家的思维,做到举一反三!

这本书是由11级自动化二班《现代控制理论》授课老师王整风教授全程监管,魏琳琳同学负责分组和发布任务书,由五个小组组组长李卓钰、程俊辉、林玉松、王亚楠、张宝峰负责自己章节的初步审核,然后汇总到胡玉皓同学那里,并由他做最后的总审核工作,绪论是段培龙同学和付博同学共同编写的。 本书耗时两周,在同学的共同努力下完成,是二班大家庭里又一份智慧和努力的结晶,望大家能够合理使用,如发现错误请及时通知,欢迎大家的批评指正! 2014年6月2日

现代控制理论论文

湖北民族学院 姓名 XX 班级 XX 学号 XXXXXXXX

摘要 最优控制,又称无穷维最优化或动态最优化,是现代控制理论的最基本,最核心的部分。它所研究的中心问题是:如何根据受控系统的动态特性,去选择控制规律,才能使得系统按照一定的技术要求进行运转,并使得描述系统性能或品质的某个“指标”在一定的意义下达到最优值。最优控制问题有四个关键点:受控对象为动态系统;初始与终端条件(时间和状态);性能指标以及容许控制。 一个典型的最优控制问题描述如下:被控系统的状态方程和初始条件给定,同时给定目标函数。然后寻找一个可行的控制方法使系统从输出状态过渡到目标状态,并达到最优的性能指标。系统最优性能指标和品质在特定条件下的最优值是以泛函极值的形式来表示。因此求解最优控制问题归结为求具有约束条件的泛函极值问题,属于变分学范畴。变分法、最大值原理(最小值原理)和动态规划是最优控制理论的基本内容和常用方法。庞特里亚金极大值原理、贝尔曼动态规划以及卡尔曼线性二次型最优控制是在约束条件下获得最优解的三个强有力的工具,应用于大部分最优控制问题。尤其是线性二次型最优控制,因为其在数学上和工程上实现简单,故其有很大的工程实用价值。 关键词:最优控制;控制规律;最优性能指标;线性二次型

Abstract The optimal control, also called dynamic optimization or infinite dimension, optimization of modern control theory, the most basic part of the core. It is the center of the research question: how to control system based on the dynamic characteristics, to choose, can control system according to certain technical requirements, and makes the operation performance of the system or the quality of describing a "index" in certain significance to achieve optimal value. The optimal control problem has four points for dynamic systems, controlled, The initial and terminal conditions (state) and, Performance index and allow control. A typical of optimal control problem is described as follows: the state equation and initial conditions are given, and given the objective function. Then a feasible method for the control system of the output state transition to the target state and optimum performance. The optimal performance index and quality in the specific conditions of the optimal value is functional form. Therefore solution of optimal control problem is due to the constraint condition of functional, belongs to the category of variational learning. The variational method, the maximum principle (minimum principle) and dynamic planning is the optimal control theory, the basic contents and methods. The Pontryagin maximum principle, Behrman dynamic programming and Kaman linear quadratic optimal control is obtained in the constraint condition of the optimal solution of the three powerful tools, used in the most optimal control problem. Especially the linear quadratic optimal control, because its in mathematics and engineering implementation is simple, so it has great practical value. Key words: The optimal control, Control rule, optimal performance indicators, The linear quadratic

自动控制现代控制与智能控制的关系

自动控制、现代控制与智能控制的关系 一、基本区别 控制理论发展至今已有100多年的历史,经历了“经典控制理论”和“现代控制理论”的发展阶段,已进入“大系统理论”和“智能控制理论”阶段。智能控制理论的研究和应用是现代控制理论在深度和广度上的拓展。20世纪80年代以来,信息技术、计算技术的快速发展及其他相关学科的发展和相互渗透,也推动了控制科学与工程研究的不断深入,控制系统向智能控制系统的发展已成为一种趋势。 自动控制理论中建立在频率响应法和根轨迹法基础上的一个分支。经典控制理论的研究对象是单输入、单输出的自动控制系统,特别是线性定常系统。经典控制理论的特点是以输入输出特性(主要是传递函数)为系统数学模型,采用频率响应法和根轨迹法这些图解分析方法,分析系统性能和设计控制装置。经典控制理论的数学基础是拉普拉斯变换,占主导地位的分析和综合方法是频率域方法。建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。 在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。 智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。 二、华山论剑:自动控制的机遇与挑战 传统控制理论在应用中面临的难题包括:(1)传统控制系统的设计与分析是建立在已知系统精确数学模型的基础上,而实际系统由于存在复杂性、非线性、时变性、不确定性和不完全性等,一般无法获得精确的数学模型;(2)研究这类系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合;(3)对于某些复杂的和包含不确定性的对象,根本无法用传统数学模型来表示,即无法解决建模问题;(4)为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初始投资和维修费用,降低了系统的可靠性。 为了讨论和研究自动控制面临的挑战,早在1986年9月,美国国家科学基金会(NSF)及电气与电子工程师学会(1EEE)的控制系统学会在加利福尼亚州桑克拉拉大学(University of Santa Clare)联合组织了一次名为“对控制的挑战”的专题报告会。有50多位知名的自动控制专家出席了这一会议。他们讨论和确认了每个挑战。根据与会自动控制专家的集体意见,他们发表了《对控制的挑战——集体的观点》,洋洋数万言,简直成为这一挑战的宣言书。 到底为什么自动控制会面临这一挑战,还面临哪些挑战,以及在哪些研究领域存在挑战呢? 在自动控制发展的现阶段,存在一些至关重要的挑战是基于下列原因的:(1)科学技术

现代控制理论考试试卷A

北京航空航天大学 2019-2020 学年 第二学期期末 《现代控制理论》 A卷 班 级______________学 号 _________ 姓 名______________成 绩 _________ 2020年6月22日

班号 学号 姓名 成绩 《现代控制理论》期末考试卷 一、(本题10分)某RLC 电路如题一图所示,其中u 为输入信号、y 为输出信号、i 为流过网络的电流。若令状态x 1=i ,x 2=y ,建立系统的动态方程,并判断系统的可控性和可观测性(所有参数非零)。 题一图 二、(本题10分)系统的动态方程为 010*********???? ????=+????-???????? x x u , []001=y x 若[](0)001=-T x ,()()δ=u t t (单位脉冲信号),求()x t 和()y t 。 三、(本题15分)已知系统具有如下形式: []111122********* a b x Ax bu a x b u b y cx c c c x l l l éù éùêúêúêúêú=+=+êúêú êúêú???? == (1). 若12=l l ,给出系统可控并且可观测的充分必要条件;若12≠l l ,20=b ,

给出系统可控的充分必要条件(即参数12123123,,,,,,,a a b b b c c c 需满足的条件); (2). 若11=-l ,11=a ,[][]12123301,1000b b c c c b éùéù êúêú êúêú==êúêúêúêú??? ?,计算系统的传 递函数()G s ,并给出该传递函数的可观标准型最小阶实现。 四、(本题20分)已知系统具有如下形式: []1112212200 n n A A x Ax bu x u A A b y cx c x éùéù êúêú=+=+êúêú????== 其中, 11A 为(1)(1)-?-n n 的方阵,22A 为11?的方阵,12A 为(1)-n 维列向量,21A 为(1)-n 维行向量,n b 和n c 分别为非零实数。 (1). 证明系统既可控又可观测的充分必要条件是:1112(,)A A 可控且1121(,)A A 可观测; (2). 若A 的特征多项式为()p s ,而 110100001000011000 A éù êúêúêúêú=êúêúêú êú?? 求系统的传递函数,并证明若系统既可控又可观测,则有(1)0≠p 。 五、(本题15分)已知系统动态方程如下: 210431x x u éùéù êúêú=+êúêúêúêú???? , 11y x éù=êú?? (1). 判断系统的可控性。若系统可控,将系统化为可控标准型; (2). 是否可以用状态反馈将A bk -的特征值配置到{}2,3--?若可以,求出状态反馈增益阵k 。

现代控制理论概述及实际应用意义

13/2012 59 现代控制理论概述及实际应用意义 王 凡 王思文 郑卫刚 武汉理工大学能源与动力工程学院 【摘 要】控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。本文介绍了现代控制理论的产生、发展、内容、研究 方法和应用以及经典控制理论与现代控制理论的差异,并介绍现代控制理论的应用。提出了学习现代控制理论的重要意义。【关键词】现代控制理论;差异;应用;意义 1.引言 控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。例如,我们的教学也使用了控制理论的方法。老师在课堂上讲课,大家在课堂上听,本身可看作一个开环函数;而同学们课下做作业,再通过老师的批改,进而改进和提高老师的授课内容和方法,这就形成了一个闭环控制。像这样的例子很多,都是控制理论在生活中的应用。现代控制理论如此广泛,因此学好现代控制理论至关重要。 2.现代控制理论的产生与发展现代控制理论的产生和发展经过了很长的时期。从现代控制理论的发展历程可以看出,它的发展过程反映了人类由机械化时代进入电气化时代,并走向自动化、信息化、智能化时代。其产生和发展要分为以下几个阶段的发展。 2.1 现代控制理论的产生在二十世纪五十年代末开始,随着计算机的飞速发展,推动了核能技术、空间技术的发展,从而对出现的多输入多输出系统、非线性系统和时变系统的分析与设计问题的解决。 科学技术的发展不仅需要迅速 地发展控制理论,而且也给现代控制理论的发展准备了两个重要的条件—现代数学和数字计算机。现代数学,例如泛函分析、现代代数等,为现代控制理论提供了多种多样的分析工具;而数字计算机为现代控制理论发展提供了应用的平台。 2.2 现代控制理论的发展五十年代后期,贝尔曼(Bellman)等人提出了状态分析法;在1957年提出了动态规则;1959年卡尔曼(Kalman)和布西创建了卡尔曼滤波理论;1960年在控制系统的研究中成功地应用了状态空间法,并提出了可控性和可观测性的新概念;1961年庞特里亚金(俄国人)提出了极小(大)值原理;罗森布洛克(H.H.Rosenbrock)、麦克法轮(G.J.MacFarlane)和欧文斯(D.H.Owens)研究了使用于计算机辅助控制系统设计的现代频域法理论,将经典控制理论传递函数的概念推广到多变量系统,并探讨了传递函数矩阵与状态方程之间的等价转换关系,为进一步建立统一的线性系统理论奠定了基础。 20世纪70年代奥斯特隆姆(瑞典)和朗道(法国,https://www.doczj.com/doc/31159058.html,ndau)在自适应控制理论和应用方面作出了贡献。 与此同时,关于系统辨识、最优控制、离散时间系统和自适应控制的发展大大丰富了现代控制理论的内容。 3.现代控制理论的内容及研究方法 现代控制理论的内容主要有为系统辨识;最优控制问题;自适应控制问题;线性系统基本理论;最佳滤波或称最佳估计。 (1)系统辨识 系统辨识是建立系统动态模型的方法。根据系统的输入输出的试验数据,从一类给定的模型中确定一个被研究系统本质特征等价的模型,并确定其模型的结构和参数。 (2)最优控制问题 在给定约束条件和性能指标下,寻找使系统性能指标最佳的控制规律。主要方法有变分法、极大值原理、动态规划等极大值原理。现代控制理论的核心即:使系统的性能指标达到最优(最小或最大)某一性能指标最优:如时间最短或燃料消耗最小等。 (3)自适应控制问题 在控制系统中,控制器能自动适应内外部参数、外部环境变化,自动调整控制作用,使系统达到一定意义下的最优。模型参考自适应控制

现代控制理论的论文

第一章经典控制理论和现代控制理论 本学期学习了现代控制理论课程的主要内容,现代控制理论建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。 以下是经典控制理论和现代控制理论的比较: 1、经典控制理论: (1)理论基础:Evens的根轨迹,Nyquist稳定判据。 (2)研究对象:线性定常SISO系统分析与设计。 (3)分析问题:稳、准、快 (4)采用方法:是以频率域中传递函数为基础的外部描述方法。 (5)数学描述:高阶微分方程、传递函数、频率特性;方块图、信号流图、频率特性曲线。 (6)研究方法:时域法、根轨迹法、频率法。 2、现代控制理论: (1)理论基础:李雅普诺夫稳定性理论,Bellman动态规划,Понтрягин极值原理,Kalman 滤波。 (2)研究对象:MIMO系统分析与设计(复杂系统:多变量、时变、非线性) (3)分析问题:稳、准、快 (4)设计(综合)问题: 1)采用方法:是以时域中(状态变量)描述系统内部特征的状态空间方法为基础的内部描述方法。 2)数学描述:状态方程及输出方程、传递函数阵、频率特性;状态图、信号流图、频率特性曲线。 3)研究方法:状态空间法(时域法)、频率法。多采用计算机软硬件教学辅助设计——MATLAB软件 (5)特点: 1)系统:MIMO、非线性、时变。 2)方法将矩阵理论和方法应用到控制理论中,不仅能描述系统的输入与输出之间的关系,而且在任何初始条件下,都能揭示系统内部的行为。 3)一个复杂系统可能有多个输入和多个输出,并且以某种方式相互关联或耦合。为了分析这样的系统,必须简化其数学表达式,转而借助于计算机来进行各种大量而乏味的分析与计算。从这个观点来看,状态空间法对于系统分析是最适宜的。

控制科学发展前沿课程论文报告

研究生课程论文封面 课程名称控制科学发展前沿讲座教师姓名 研究生姓名 研究生学号 研究生专业 所在院系自动化学院 类别: 硕士 日期:

对智能控制技术的认识 1 引言 随着计算机、材料、能源等现代科学技术的迅速发展和生产系统规模不断扩大,形成了复杂的控制系统,导致了控制对象、控制器、控制任务等更加复杂。与此同时,对自动化程度的要求也更加广泛,面对来自柔性控制系统(FMS)、智能机器人系统(IRS)、数控系统(CNS)、计算机集成制造系统(CIMS)等复杂系统的挑战,经典的与现代的控制理论和技术已不适应复杂系统的控制。智能控制是在控制论、信息论、人工智能、仿生学、神经生理学及计算机科学发展的基础上逐渐形成的一类高级信息与控制技术。智能控制是自动控制发展的高级阶段。 2 背景和意义 现代科学技术的迅速发展,生产系统的规模越来越大,形成了复杂的大系统,导致了控制对象、控制器以及控制任务和目的的日益复杂化。别一方面,人类对自动化的要求也更加广泛,面对来自旬电力系统、工业生产过程控制系统、智能机器人系统、计算机集成制造系统(CIMS)、核电站安全运行控制、航空航天及军事指挥系统等复杂性系统的挑战,传统的自动控制理论和方法显得已不适应于复杂系统的控制。能否建立新一代的控制理论方法来解决复杂系统的控制问题,已成为各国控制学术界所共同关心的热门研究课题。 近年来人们开始认识到,在许多系统中,复杂性不仅仅表现在高维性上,更多则表现在:(1)被控对象模型的不确定必;(2)系统信息的模糊性,信息模式;(3)高度非线性;(4)输入(传感器)信息的多样化;(5)多层次、多目标的控制要求;(6)计算复杂性和庞大的数据处理以及严格性能指标。自然,对于复杂系统需要在传统的控制理论基础上结合其它学科的知识,建立一种更有力的控制理论和方法,以解决上述提到的问题。智能控制就是在这种背景下提出和形成的。 人类对智能机器及其控制的幻想与追求已有三千多年的历史,然而,真正的智能机器只有在计算机技术和人工智能技术发展的基础上才能成为可能。人工智

(完整版)现代控制理论考试卷及答案

西北工业大学考试试题(卷)2008 -2009 学年第2 学期

2009年《现代控制理论》试卷A 评分标准及答案 第一题(10分,每个小题答对1分,答错0分) (1)对 (2)错 (3)对 (4)错 (5)对 (6)对 (7)对 (8)对 (9)对 (10)错 第二题(15分) (1))(t Φ(7分):公式正确3分,计算过程及结果正确4分 ? ? ? ???+-+---=-=Φ?? ?? ??????+- +-+- +-+- ++-+=??????-+++=-??? ???+-=------------t t t t t t t t e e e e e e e e A sI L t s s s s s s s s s s s s A sI s s A sI 22221 11 2222}){()(22112 21221112112 213)2)(1(1 )(321 (2) 状态方程有两种解法(8分):公式正确4分,计算过程及结果正确4分 ??????-+-+-=????? ???????+-+++-+++-++??????+--=??????????? ???????++-++++-=-+-=??????---+-=????? ?+--+??? ???+--=??????-Φ+Φ=------------------------------??t t t t t t t t t t t t t t t t t t t t t e e te e e te s s s s s s L e e e e t x t x s s s s s L x A sI L t x s BU A sI x A sI s X e e t e e t d e e e e e e e e e t x t x d t Bu x t t x 222 21 22212 21111122)(02222210 2344}2414)1(42212)1(4 {2)()(} )2()1(4) 2()1()3(2{)}0(){()() ()()0()()(2)34()14(22222)()()()()0()()(或者 ττ τττττττ 第三题(15分,答案不唯一,这里仅给出可控标准型的结果) (1) 系统动态方程(3分) []x y u x x 0010 1003201 00010=???? ??????+??????????--=&

现代控制理论----综述论文-2015

2015级硕士期末论文《现代控制理论综述》 课程现代控制理论姓名 学号 专业 2016 年1 月 4 日

经典控制理论与现代控制理论的差异 现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。 现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。这类控

制问题十分复杂,采用经典控制理论难以解决。1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。 现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。 线性系统理论是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。 非线性系统理论的分析和综合理论尚不完善。研究领域主要还限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。更一般的非线性系统理论还有待建立。从70年代中期以来,由微分几何理论得出的某些方法对

现代控制理论课程设计

现代控制理论 学院:电气工程学院 班级:09级自动化3班姓名:赵明 学号: 任课教师:刁晨 单倒置摆控制系统的状态空间设计

一.设计题目 1.介绍 单倒置摆系统的原理图,如图1所示。设摆的长度为L、质量为m,用铰链安装在质量为M的小车上。小车有一台直流电动机拖动,在水平方向对小车施加控制力u,相对参考系产生位移z。若不给小车施加控制力,则倒置摆会向左或向右倾倒,因此,它是一个不稳定系统。控制的目的是,当倒置摆无论出现向左或向右倾倒时,通过控制直流电动机,使小车在水平方向运动,将倒置摆保持在垂直位置上。 2.用途 倒立摆系统以其自身的不稳定性为系统的平衡提出了难题,也因此成为自动控制实验中验证控制算法优劣的极好的实验装置。单倒立摆的系统结构、数学模型以及系统的稳定性和可控性,对倒立摆进行了成功的控制,并在MATLAB 中获得了良好的仿真效果。倒立摆控制理论将在半导体及精密仪器加工、机器人技术、伺服控制领域、导弹拦截控制系统、航空器对接技术等方面具有广阔的开发利用前景。 3.意义 倒立摆是一种典型的快速、多变量、非线性、绝对不稳定系统. 人们试图寻找同的控制方法以实现对倒立摆的控制,以便检验或说明该方法对严重非线性和绝对不稳定系统的控制能力。同时,由于摩擦力的存在,该系统具有一定的不确定性。对这样一个复杂系统的研究在理论上将涉及系统控制中的许多关键问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等都可以以它为例进行研究。 二.被控对象的模型 为简化问题,工程上往往忽略一些次要因素。这里,忽略摆杆质量、执行电动机惯性以及摆轴、轮轴、轮与接触面之间的摩擦及风力。设小车瞬时位置为z,倒置摆出现的偏角为θ,则摆心瞬时位置为(z+lsinθ)。在控制力u的作用下,小车及摆均产生加速运动,根据

现代控制理论综述论文

论文题目:现代控制理论综述 摘要 本文是对现代控制理论课程的完整综述,现代控制理论的主要内容包括控制系统的状态空间表达式及其解,线性控制系统的能控性和能观性,稳定性与李雅普诺夫方法,线性定常系统的综合以及最优控制理论等部分。本文通过对控制理论各部分的阐述,构出了现代控制理论的主要框架及各部门的基本内容。 关键词:现代控制;状态方程;稳定性;最优控制;

Abstract This article is a complete review of modern control theory course, the main contents of the modern control theory, including the control system of the state space expression and its solution, the controllability of linear control systems and can view, stability and Lyapunov method, the synthesis of linear time-invariant system and optimal control theory. This article through to all parts of the control theory, compose the main framework of modern control theory and the basic content of each department. Keywords: Modern control; State equation;Stability;Optimal control

控制理论各历史阶段发展的特点

控制理论各历史阶段发展的特点 经典控制理论在20世纪30到40年代,奈奎斯特、伯德、维纳等人的著作为自动控制理论的初步形成奠定了基础;二次大战以后,又经过众多学者的努力,在总结了以往的实践和关于反馈理论、频率响应理论并加以发展的基... 经典控制理论(20世纪40-50年代) 在20世纪30到40年代,奈奎斯特、伯德、维纳等人的著作为自动控制理论的初步形成奠定了基础;二次大战以后,又经过众多学者的努力,在总结了以往的实践和关于反馈理论、频率响应理论并加以发展的基础上,形成了较为完整的自动控制系统设计的频率法理论。1948年又提出了根轨迹法。至此,自动控制理论发展的第一阶段基本完成。这种建立在频率法和根轨迹法基础上的理论,通常被称为经典控制理论。 经典控制理论以拉氏变换为数学工具,以单输入-单输出的线性定常系统为主要的研究对象。将描述系统的微分方程或差分方程变换到复数域中,得到系统的传递函数,并以此作为基础在频率域中对系统进行分析和设计,确定控制器的结构和参数。通常是采用反馈控制,构成所谓闭环控制系统。经典控制理论具有明显的局限性,突出的是难以有效地应用于时变系统、多变量系统,也难以揭示系统更为深刻的特性。当把这种理论推广到更为复杂的系统时,经典控制理论就显得无能为力了,这是因为它的以下几个特点所决定。 1.经典控制理论只限于研究线性定常系统,即使对最简单的非线性系统也是无法处理的;出描述方式,这就从本质上忽略了系统结构的内在特性,也不能处理输入和输出皆大于1的系统。实际上,大多数工程对象都是多输入-多输出系统,尽管人们做了很多尝试,但是,用经典控制理论设计这类系统都没有得到满意的结果; 2.经典控制理论采用试探法设计系统。即根据经验选用合适的、简单的、工程上易于实现的控制器,然后对系统进行分析,直至找到满意的结果为止。虽然这种设计方法具有实用等很多优点,但是,在推理上却是不能令人满意的,效果也不是最佳的,人们自然提出这样一个问题,即对一个特定的应用课题,能否找到最佳的设计。综上所述,经典控制理论的最主要的特点是:线性定常对象,单输入单输出,完成镇定任务。即便对这些极简单的对象、对象描述及控制任务,理论上也尚不完整,从而促使现代控制理论的发展:对经典理的精确化、数学化及理论化。 现代控制理论(20世纪60-70年代) 现代控制理论中首先得到透彻研究的是多输入多输出线性系统,其中特别重要的是对刻划控制系统本质的基本理论的建立,如可控性、可观性、实现理论、典范型、分解理论等,使控制由一类工程设计方法提高为一门新的科学。同时为满足从理论到应用,在高水平上解决很多实际中所提出控制问题的需要,促使非线性系统、最优控制、自适应控制、辩识与估计理论、卡尔曼滤波、鲁棒控制等发展为成果丰富的独立学科分支。 在50年代蓬勃兴起的航空航天技术的推动和计算机技术飞速发展的支持下,控制理论在1960年前后有了重大的突破和创新。在此期间,贝而曼提出寻求最优控制的动态规划法。庞特里亚金证明了极大值原理,使得最优控制理论特得到极大的发展。卡而曼系统地把状态空间法引入到系统与控制理论中来,并提出了能控性、能观测性的概念和新的滤波理论。这些就构成了后来被称为现代控制理论的发展起点和基础。 现代控制理论以线性代数和微分方程为主要的数学工具,以状态空间法为基础,分析与设计控制系统。状态空间法本质上是一种时域的方法,它不仅描述了系统的外部特性,而且描述和揭示了系统的内部状态和性能。它分析和综合的目标是在揭示系统内在规律的基础上,实现系统在一定意义下的最优化。它的构成带有更高的仿生特点,即不限于单纯的闭环,

现代控制理论基础试卷及答案

现代控制理论基础考试题 西北工业大学考试题(A卷) (考试时间120分钟) 学院:专业:姓名:学号: 一.填空题(共27分,每空1.5分) 1.现代控制理论基础的系统分析包括___________和___________。 2._______是系统松弛时,输出量、输入量的拉普拉斯变换之比。 3.线性定常系统齐次状态方程是指系统___________时的状态方程。 4.推导离散化系统方程时在被控对象上串接一个开关,该开关以T为周期进 行开和关。这个开关称为_______。 5.离散系统的能______和能______是有条件的等价。 6.在所有可能的实现中,维数最小的实现称为最小实现,也称为__________。 7.构造一个与系统状态x有关的标量函数V(x, t)来表征系统的广义能量, V(x, t)称为___________。 8.单输入-单输出线性定常系统,其BIBO稳定的充要条件是传递函数的所有 极点具有______。 9.控制系统的综合目的在于通过系统的综合保证系统稳定,有满意的 _________、_________和较强的_________。 10.所谓系统镇定问题就是一个李亚普诺夫意义下非渐近稳定的系统通过引入_______,以实现系统在李亚普诺夫意义下渐近稳定的问题。 11.实际的物理系统中,控制向量总是受到限制的,只能在r维控制空间中某一个控制域内取值,这个控制域称为_______。 12._________和_________是两个相并行的求解最优控制问题的重要方法。二.判断题(共20分,每空2分) 1.一个系统,状态变量的数目和选取都是惟一的。(×) 2.传递函数矩阵的描述与状态变量选择无关。(√) 3.状态方程是矩阵代数方程,输出方程是矩阵微分方程。(×) 4.对于任意的初始状态) ( t x和输入向量)(t u,系统状态方程的解存在并且惟一。(√) 5.传递函数矩阵也能描述系统方程中能控不能观测部分的特性。(×) 6.BIBO 稳定的系统是平衡状态渐近稳定。(×) 7.一个系统能正常工作,稳定性是最基本的要求。(√) 8.如果系统的状态不能测得,只要系统能观测,可以采用状态观测器实现状

现代控制理论课程设计(大作业)

现代控制理论课 程设计报告 题目打印机皮带驱动系统能控能观和稳定性分析 项目成员史旭东童振梁沈晓楠 专业班级自动化112 指导教师何小其 分院信息分院 完成日期 2014-5-28

目录 1. 课程设计目的 (3) 2.课程设计题目描述和要求 (3) 3.课程设计报告内容 (4) 3.1 原理图 (4) 3.2 系统参数取值情况 (4) 3.3 打印机皮带驱动系统的状态空间方程 (5) 4. 系统分析 (7) 4.1 能控性分析 (7) 4.2 能观性分析 (8) 4.3 稳定性分析 (8) 5. 总结 (10)

项目组成员具体分工 打印机皮带驱动系统能控能观和稳定性 分析 课程设计的内容如下: 1.课程设计目的 综合运用自控现代理论分析皮带驱动系统的能控性、能观性以及稳定性,融会贯通并扩展有关方面的知识。加强大家对专业理论知识的理解和实际运用。培养学生熟练运用有关的仿真软件及分析,解决实际问题的能力,学会使用标准、手册、查阅有关技术资料。加强了大家的自学能力,为大家以后做毕业设计做很好的铺垫。 2.课程设计题目描述和要求 (1)环节项目名称:能控能观判据及稳定性判据 (2)环节目的: ①利用MATLAB分析线性定常系统的可控性和客观性。 ②利用MATLAB进行线性定常系统的李雅普诺夫稳定性判据。 (3)环节形式:课后上机仿真 (4)环节考核方式: 根据提交的仿真结果及分析报告确定成绩。 (5)环节内容、方法: ①给定系统状态空间方程,对系统进行可控性、可观性分析。 ②已知系统状态空间方程,判断其稳定性,并绘制出时间响应曲线验

证上述判断。 3.课程设计报告内容 3.1 原理图 在计算机外围设备中,常用的低价位喷墨式或针式打印机都配有皮带驱动器。它用于驱动打印头沿打印页面横向移动。图1给出了一个装有直流电机的皮带驱动式打印机的例子。其光传感器用来测定打印头的位置,皮带张力的变化用于调节皮带的实际弹性状态。 图1 打印机皮带驱动系统 3.2 系统参数取值情况 表1打印装置的参数

相关主题
文本预览
相关文档 最新文档