当前位置:文档之家› 12.高考必考十四大经典物理专题集锦应用气体实验定律解决“三类模型问题”(解析版)

12.高考必考十四大经典物理专题集锦应用气体实验定律解决“三类模型问题”(解析版)

12.高考必考十四大经典物理专题集锦应用气体实验定律解决“三类模型问题”(解析版)
12.高考必考十四大经典物理专题集锦应用气体实验定律解决“三类模型问题”(解析版)

【专题12】应用气体实验定律解决“三类模型问题”

(解析版)

考点分类:考点分类见下表

考点内容

常见题型及要求

考点一 “玻璃管液封”模型 计算题 考点二 “汽缸活塞类”模型 计算题 考点三 “变质量气体”模型 计算题

考点一: “玻璃管液封”模型

1.三大气体实验定律

(1)玻意耳定律(等温变化):p 1V 1=p 2V 2或pV =C (常数). (2)查理定律(等容变化):p 1T 1=p 2T 2或p

T =C (常数).

(3)盖—吕萨克定律(等压变化):V 1T 1=V 2T 2或V

T =C (常数).

2.利用气体实验定律及气态方程解决问题的基本思路

3.玻璃管液封模型

求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程,要注意:

(1)液体因重力产生的压强大小为p=ρgh(其中h为至液面的竖直高度);

(2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力;

(3)有时可直接应用连通器原理——连通器内静止的液体,同种液体在同一水平面上各处压强相等;

(4)当液体为水银时,可灵活应用压强单位“cmHg”等,使计算过程简捷.

考点二“汽缸活塞类”模型

汽缸活塞类问题是热学部分典型的物理综合题,它需要考虑气体、汽缸或活塞等多个研究对象,涉及热学、力学等物理知识,需要灵活、综合地应用知识来解决问题.

1.一般思路

(1)确定研究对象,一般地说,研究对象分两类:一类是热学研究对象(一定质量的理想气体);另一类是力学研究对象(汽缸、活塞或某系统).

(2)分析物理过程,对热学研究对象分析清楚初、末状态及状态变化过程,依据气体实验定律列出方程;对力学研究对象要正确地进行受力分析,依据力学规律列出方程.

(3)挖掘题目的隐含条件,如几何关系等,列出辅助方程.

(4)多个方程联立求解.对求解的结果注意检验它们的合理性.

2.常见类型

(1)气体系统处于平衡状态,需综合应用气体实验定律和物体的平衡条件解题.

(2)气体系统处于力学非平衡状态,需要综合应用气体实验定律和牛顿运动定律解题.

(3)两个或多个汽缸封闭着几部分气体,并且汽缸之间相互关联的问题,解答时应分别研究各部分气体,找出它们各自遵循的规律,并写出相应的方程,还要写出各部分气体之间压强或体积的关系式,最后联立求解.

说明当选择力学研究对象进行分析时,研究对象的选取并不唯一,可以灵活地选整体或部分为研究对象进行受力分析,列出平衡方程或动力学方程.

考点三:“变质量气体”模型

分析变质量气体问题时,要通过巧妙地选择研究对象,使变质量气体问题转化为定质量气体问题,用气体实验定律求解.

(1)打气问题:选择原有气体和即将充入的气体作为研究对象,就可把充气过程中气体质量变化问题转化为

定质量气体的状态变化问题.

(2)抽气问题:将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程可以看成是等温膨胀过程.

(3)灌气问题:把大容器中的剩余气体和多个小容器中的气体整体作为研究对象,可将变质量问题转化为定质量问题.

(4)漏气问题:选容器内剩余气体和漏出气体整体作为研究对象,便可使问题变成一定质量气体的状态变化,可用理想气体的状态方程求解.

★考点一:“玻璃管液封”模型

◆典例一:(单独气体问题)(2019广东深圳二模)某同学设计了测量液体密度的装置。如图,左侧容器开口;右管竖直,上端封闭,导热良好,管长Lo=1m,粗细均匀,底部有细管与左侧连通,初始时未装液体。现向左侧容器缓慢注入某种液体,当左侧液面高度为h1=0.7m时,右管内液柱高度h2=0.2m。己知右管横截面积远小于左侧横截面积,大气压强p0=l.0×105Pa,取g=10m/s2。

(i)求此时右管内气体压强及该液体的密度;

(ii)若此时右管内气体温度T=260K,再将右管内气体温度缓慢升高到多少K时,刚好将右管中液体全部挤出?(不计温度变化对液体密度的影响)

【答案】T’=351K

【解析】(i)对右侧管气体,由玻意耳定律,

p0V0= p1V1

其中:V0= L0S,V1=(L0-h2)S,

解得:p 1= l.25×105Pa , 又,p 1= p 0+ρg (h 1- h 2) 解得:ρ=5×103kg/m 3

(ii )对右侧管气体,由理想气体状态方程,

11

p V T = 20'

p V T

其中:p 2= p 0+ρgh 1 解得:T ’=351K

◆典例二:关联气体问题(2016·全国卷Ⅲ·33(2))一U 形玻璃管竖直放置,左端开口,右端封闭,左端上部有一光滑的轻活塞.初始时,管内汞柱及空气柱长度如图3所示.用力向下缓慢推活塞,直至管内两边汞柱高度相等时为止.求此时右侧管内气体的压强和活塞向下移动的距离.已知玻璃管的横截面积处处相同;在活塞向下移动的过程中,没有发生气体泄漏;大气压强p 0=75.0 cmHg.环境温度不变.(保留三位有效数字)

图3

【答案】144 cmHg ;9.42 cm

【解析】设初始时,右管中空气柱的压强为p 1,长度为l 1;左管中空气柱的压强为p 2=p 0,长度为l 2.活塞被下推h 后,右管中空气柱的压强为p 1′,长度为l 1′;左管中空气柱的压强为p 2′,长度为l 2′.以cmHg 为压强单位.由题给条件得学科#网

p 1=p 0+(20.0-5.00) cmHg =90 cmHg l 1=20.0 cm ①

l 1′=(20.0-20.0-5.002) cm =12.5 cm

由玻意耳定律得p 1l 1S =p 1′l 1′S

联立①②③式和题给条件得 p 1′=144 cmHg ④ 依题意p 2′=p 1′

l 2′=4.00 cm +20.0-5.00

2 cm -h =11.5 cm -h ⑥

由玻意耳定律得p 2l 2S =p 2′l 2′S ⑦

联立④⑤⑥⑦式和题给条件得 h ≈9.42 cm.

★考点二:“汽缸活塞类”模型

◆典例一:.(2018·高考全国卷Ⅰ)(10分)如图,容积为V 的汽缸由导热材料制成,面积为S 的活塞将汽缸分成容积相等的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K 。开始时,K 关闭,汽缸内上下两部分气体的压强均为p 0, 现将K 打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为

8V 时,将K 关闭,活塞平衡时其下方气体的体积减小了6

V

,不计活塞的质量和体积,外界温度保持不变,重力加速度大小为g 。求流入汽缸内液体的质量。

【答案】01526p S

m g

=

【解析】设活塞再次平衡后,活塞上方气体的体积为V 1,压强为p 1;下方气体的体积为V 2,压强为p 2,在活塞下移的过程中,活塞上下方气体的温度均保持不变。由玻意耳定律得

0112

V

p p V =① 0

222

V

p p V =② 由已知条件得

113

26824

V V V V V =

+-=③ 2=263

V V V V =

-④ 设活塞上方液体的质量为m ,由力的平衡条件得

21p S p S mg =+⑤

联立以上各式得

01526p S

m g

◆典例二:关联气体问题(2017·全国卷Ⅰ·33(2))如图7,容积均为V 的汽缸A 、B 下端有细管(容积可忽略)连通,阀门K 2位于细管的中部,A 、B 的顶部各有一阀门K 1、K 3;B 中有一可自由滑动的活塞(质量、体积均可忽略).初始时,三个阀门均打开,活塞在B 的底部;关闭K 2、K 3,通过K 1给汽缸充气,使A 中气体的压强达到大气压p 0的3倍后关闭K 1.已知室温为27 ℃,汽缸导热.

图7

(1)打开K 2,求稳定时活塞上方气体的体积和压强; (2)接着打开K 3,求稳定时活塞的位置;

(3)再缓慢加热汽缸内气体使其温度升高20 ℃,求此时活塞下方气体的压强. 【答案】 (1)V

2

2p 0 (2)B 的顶部 (3)1.6p 0

【解析】(1)设打开K 2后,稳定时活塞上方气体的压强为p 1,体积为V 1.依题意,被活塞分开的两部分气体都经历等温过程.由玻意耳定律得 p 0V =p 1V 1

(3p 0)V =p 1(2V -V 1)

联立①②式得 V 1=V 2

③ p 1=2p 0

(2)打开K 3后,由④式知,活塞必定上升.设在活塞下方气体与A 中气体的体积之和为V 2(V 2≤2V )时,活塞下

气体压强为p 2,由玻意耳定律得 (3p 0)V =p 2V 2

由⑤式得 p 2=3V V 2

p 0

由⑥式知,打开K 3后活塞上升直到B 的顶部为止; 此时p 2为p 2′=3

2

p 0

(3)设加热后活塞下方气体的压强为p 3,气体温度从T 1=300 K 升高到T 2=320 K 的等容过程中,由查理定律得p 2′T 1=p 3

T 2

将有关数据代入⑦式得 p 3=1.6p 0

★考点三:“变质量气体”模型 ◆典例一:一氧气瓶的容积为,开始时瓶中氧气的压强为20个大气压。某实验室每天消耗1个大气

压的氧气

当氧气瓶中的压强降低到2个大气压时,需重新充气。若氧气的温度保持不变,求这瓶氧

气重新充气前可供该实验室使用多少天。 【答案】

【解析】方法一:设氧气开始时的压强为,体积为,压强变为个大气压时,体积为.

根据玻意耳定律得

重新充气前,用去的氧气在压强下的体积为

设用去的氧气在

个大气压压强下的体积为,则有

设实验室每天用去的氧气在下的体积为

,则氧气可用的天数为

联立

式,并代入数据得

方法二:根据玻意耳定律

,有

解得:

答:这瓶氧气重新充气前可供该实验室使用4天.

◆典例二 某自行车轮胎的容积为V ,里面已有压强为p 0的空气,现在要使轮胎内的气压增大到p ,设充气过程为等温过程,空气可看做理想气体,轮胎容积保持不变,则还要向轮胎充入温度相同、压强也是p 0、体积为________的空气. A.p 0p V B.p p 0

V C.(p p 0-1)V D.(p

p 0+1)V 【答案】C

【解析】设充入的气体体积为V 0,根据玻意耳定律可得p 0(V +V 0)=pV ,解得V 0=(p

p 0-1)V ,C 项正确.

1. (2019·山西太原市模拟) (10分)如图所示,马桶吸由皮吸和汽缸两部分组成,下方半球形皮吸空间的容积为1000 cm 3,上方汽缸的长度为40 cm ,横截面积为50 cm 2。小明在试用时,用手柄将皮吸压在水平地面上,皮吸中气体的压强等于大气压。皮吸与地面及活塞与汽缸间密封完好不漏气,不考虑皮吸与汽缸的形状变化,环境温度保持不变,汽缸内薄活塞、连杆及手柄的质量忽略不计,已知大气压强p 0=1.0×105 Pa ,g =10 m/s 2。

①若初始状态下活塞位于汽缸顶部,当活塞缓慢下压到汽缸皮吸底部时,求皮吸中气体的压强;

②若初始状态下活塞位于汽缸底部,小明用竖直向上的力将活塞缓慢向上提起20 cm 高度保持静止,求此时小明作用力的大小。

【答案】 (2)①3×105 Pa ②250 N

【解析】 (2)①以汽缸和皮吸内的气体为研究对象,开始时封闭气体的压强为p 0, 体积V 1=1000 cm 3+40×50 cm 3=3000 cm 3

当活塞下压到汽缸底部时,设封闭气体的压强为p ,体积为V 2=1000 cm 3, 由玻意耳定律p 0V 1=p 2V 2 解得:p 2=3p 0=3×105 Pa 。

②以皮吸内的气体为研究对象,开始时封闭气体的压强为p 0,体积为V 2=1000 cm 3,活塞缓慢向上提起20 cm 高度保持静止时,设小明作用力的大小为F ,封闭气体的压强为p 3,体积为V 3=1000 cm 3+20×50 cm 3=2000 cm 3

由玻意耳定律有p 0V 2=p 3V 3 F +p 3S =p 0S 解得:F =250 N 。

2.(2020四川泸州市泸县一中月考)一圆柱形气缸,质量M 为10kg ,总长度L 为40cm ,内有一活塞,质量m 为5kg ,截面积S 为50cm 2,活塞与气缸壁间摩擦可忽略,但不漏气(不计气缸壁与活塞厚度),当外界大气压强p 0为1×105Pa ,温度t 0为7℃时,如果用绳子系住活塞将气缸悬挂起来,如图所示,气缸内气体柱的高L 1为35cm ,g 取10m/s 2.求:

①此时气缸内气体的压强;

②当温度升高到多少摄氏度时,活塞与气缸将分离? 【答案】(1)此时气缸内气体的压强是0.8×105

Pa ; (2)当温度升高到47℃,活塞与气缸将分离。

【解析】(1)以气缸为研究对象,受力分析,受到重力、外界大气压力,气缸内气体的压力。 根据平衡条件得:

p 0S =pS +Mg p =p 0-

s

Mg =1×105

Pa-Pa=0.8×105

Pa ,

(2)温度升高,气缸内气体的压强不变,体积增大,根据气体等压变化方程得:

当活塞与气缸将分离时,气柱的总长度为40cm ,代入数据得:

解得:T 2=320K =47℃

3.如图所示,一圆筒形汽缸静止于地面上,汽缸的质量为M ,活塞(连同手柄)的质量为m ,汽缸内部的横截面积为S ,大气压强为p 0,平衡时汽缸内的容积为V .现用手握住活塞手柄缓慢向上提.设汽缸足够长,不计汽缸内气体的重力和活塞与汽缸壁间的摩擦,求汽缸在开始以及刚提离地面时封闭气体的压强分别为多少?

【答案】:p 2=p 0-Mg

S

.

【解析】:开始时由于活塞处于静止状态,对活塞进行受力分析,如图甲所示.由平衡条件可得p 0S +mg =

p 1S ,则p 1=p 0+mg

S

当汽缸刚被提离地面时汽缸处于静止状态,汽缸与地面间无作用力,对汽缸进行受力分析,如图乙所示.由平衡条件可得p 2S +Mg =p 0S

则p 2=p 0-Mg S

.

4.(2018·全国Ⅱ卷)如图,一竖直放置的汽缸上端开口,汽缸壁内有卡口a 和b ,a 、b 间距为h ,a 距缸底的高度为H ;活塞只能在a 、b 间移动,其下方密封有一定质量的理想气体,已知活塞质量为m ,面积为S ,厚度可忽略;活塞和汽缸壁均绝热,不计它们之间的摩擦,开始时活塞处于静止状态,上、下方气体压强均为p 0,温度均为T 0.现用电热丝缓慢加热汽缸中的气体,直至活塞刚好到达b 处,求此时汽缸内气体的温度以及在此过程中气体对外所做的功.重力加速度大小为g .

【答案】:? ????1+h H ? ??

??1+mg p 0S T 0 (p 0S +mg)h 【解析】:开始时活塞位于a 处,加热后,汽缸中的气体先经历等容过程,直至活塞开始运动.设此时汽缸中气体的温度为T 1,压强为p 1,根据查理定律有p 0T 0=p 1

T 1

,① 根据力的平衡条件有p 1S =p 0S +mg ,② 联立①②式可得T 1=?

??

??

1+

mg p 0S T 0,③ 此后,汽缸中的气体经历等压过程,直至活塞刚好到达b 处,设此时汽缸中气体的温度为T 2;活塞位于a 处和b 处时气体的体积分别为V 1和V 2,根据盖—吕萨克定律有V 1T 1=V 2

T 2

,④ 式中V 1=SH ,⑤

V 2=S (H +h ),⑥

联立③④⑤⑥式解得T 2=?

????1+h H ?

?

?

??

1+mg p 0

S

T 0.⑦

从开始加热到活塞到达b 处的过程中,汽缸中的气体对外做的功为

W =(p 0S +mg )h .

5.如图所示,一根粗细均匀的长l =72 cm 的细玻璃管AB 开口朝上竖直放置,玻璃管中有一段长h =24 cm 的水银柱,下端封闭了一段长x 0=24 cm 的空气柱,系统温度恒定,外界大气压强恒为p 0=76 cmHg.现将玻璃管缓慢倒置,若空气可以看做理想气体,求倒置后水银柱相对B 端移动的距离.

【答案】22 cm

【解析】设水银密度为ρ,玻璃管横截面积为S ,重力加速度为g .如图所示,倒置前,下部空气压强为p B =p 0+ρgh =100 cmHg.

倒置后,若水银没有流出玻璃管,封闭空气柱的压强为

p ′=p 0-ρgh .

由玻意耳定律得p B Sx 0=p ′Sx 2, 解得x 2=46 cm.

则x 2+h <l ,故假设成立.

所以水银柱相对B 端移动46 cm -24 cm =22 cm.

6.(2018·全国Ⅰ卷)如图,容积为V 的汽缸由导热材料制成,面积为S 的活塞将汽缸分成容积相等的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K ,开始时,K 关闭,汽缸内上下两部分气体的压强均为p 0.现将K 打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为V

8

时,将K 关

闭,活塞平衡时其下方气体的体积减小了V

6,不计活塞的质量和体积,外界温度保持不变,重力加速度大小

为g .求流入汽缸内液体的质量.

【答案】m =15p 0S

26g

.

【解析】设活塞再次平衡后,活塞上方气体的体积为V 1,压强为p 1;下方气体的体积为V 2,压强为p 2,在活塞下移的过程中,活塞上下方气体的温度保持不变.由玻耳定律得p 0V

2

=p 1V 1

p 0V

2

=p 2V 2

由已知条件得V 1=V 2+V 6-V 8=13

24V

V 2=V 2

-V 6=V 3

设活塞上方液体的质量为m ,由平衡条件得p 2S =p 1S +mg 联立以上各式得m =15p 0S

26g

.

7.如图所示,内壁光滑的圆柱形导热汽缸固定在水平面上,汽缸内部被活塞封有一定质量的理想气体,活塞横截面积为S,质量和厚度都不计,活塞通过弹簧与汽缸底部连接在一起,弹簧处于原长。已知周围环境温度为T 0,大气压强为p 0,弹簧的劲度系数k=

0l s

p (S 为活塞横截面积),原长为l 0,一段时间后,环境温度降低,在活塞上施加一水平向右的压力F,使活塞缓慢向右移动,当压力增大到一定值时保持恒定,此时活塞向右移动了0.2l 0,缸内气体压强为1.1p 0。

(ⅰ)求此时缸内的气体的温度T 1;

(ⅱ)对汽缸加热,使气体温度缓慢升高,当活塞移动到距离汽缸底部1.2l 0时,求此时缸内的气体温度T 2。

【答案】T1=0.88T0 T2=1.8T0

【解析】:(ⅰ)汽缸内的气体,初态时,压强为p0,体积为V0=Sl0,温度为T0

末态时,压强为p1=1.1p0,体积为V1=S(l0-0.2l0)

根据理想气体状态方程可得=

解得T1=0.88T0

(ⅱ)当活塞移动到距汽缸底部1.2l0时

体积为V2=1.2l0S,设气体压强为p2,

由理想气体状态方程可得:=

此时活塞受力平衡

p0S+F-p2S+k(1.2l0-l0)=0

当活塞向右移动了0.2l0后压力F保持恒定,活塞受力平衡

p0S+F-1.1p0S-0.2l0k=0

解得T2=1.8T0

8.如图所示,体积为V、内壁光滑的圆柱形导热汽缸顶部有一质量和厚度均可忽略的活塞;汽缸内密封有温度为2.4T0、压强1.2p0的理想气体,p0与T0分别为大气的压强和温度。已知:理想气体内能U与温度T的关系为U=αT,α为正的常量;容器内气体的所有变化过程都是缓慢的。求:

①汽缸内气体与大气达到平衡时的体积V1;

②在活塞下降过程中,汽缸内气体放出的热量Q。

【答案】:V1=V Q=p0V+αT0

【解析】:①在气体由压强p=1.2p0下降到p0的过程中,气体体积不变,温度由T=2.4T0变为T1

由查理定律得:=,解得T1=2T0

在气体温度由T1变为T0过程中,体积由V减小到V1,气体压强不变

由盖—吕萨克定律得=

解得V 1=V

②在活塞下降过程中,活塞对气体做的功为W=p 0(V-V 1) 在这一过程中,气体内能的减少为ΔU=α(T 1-T 0) 由热力学第一定律得,汽缸内气体放出的热量为Q=W+ΔU 解得Q=p 0V+αT 0

9.如图中两个汽缸质量均为M ,内部横截面积均为S ,两个活塞的质量均为m ,左边的汽缸静止在水平面上,右边的活塞和汽缸竖直悬挂在天花板下。两个汽缸内分别封闭有一定质量的空气A 、B ,大气压为p 0,求封闭气体A 、B 的压强各多大?

【答案】: p 0+mg

S p 0-Mg S

【解析】:题图甲中选m 为研究对象。

p A S =p 0S +mg 得p A =p 0+mg

S

题图乙中选M 为研究对象得p B =p 0-Mg S

10.如图6所示,两端开口的汽缸水平固定,A 、B 是两个厚度不计的活塞,可在汽缸内无摩擦滑动,面积分别为S 1=20 cm 2,S 2=10 cm 2,它们之间用一根水平细杆连接,B 通过水平细绳绕过光滑的轻质定滑轮与质量为M =2 kg 的重物C 连接,静止时汽缸中的气体温度T 1=600 K ,汽缸两部分的气柱长均为L ,已知大气压强p 0=1×105 Pa ,取g =10 m/s 2,缸内气体可看做理想气体.

图6

(1)活塞静止时,求汽缸内气体的压强;

(2)若降低汽缸内气体的温度,当活塞A 缓慢向右移动L

2

时,求汽缸内气体的温度.

【答案】

(1)1.2×105 Pa (2)500 K

【解析】(1)设静止时汽缸内气体压强为p 1,活塞受力平衡p 1S 1+p 0S 2=p 0S 1+p 1S 2+Mg 代入数据解得p 1=1.2×105 Pa

(2)由活塞受力平衡可知缸内气体压强没有变化,设开始温度为T 1,变化后温度为T 2,由盖—吕萨克定律得 S 1L +S 2L T 1=S 1·L 2+S 2·3L

2T 2 代入数据解得T 2=500 K.

11.某自行车轮胎的容积为V ,里面已有压强为p 0的空气,现在要使轮胎内的气压增大到p ,设充气过程为等温过程,空气可看做理想气体,轮胎容积保持不变,则还要向轮胎充入温度相同、压强也是p 0、体积为________的空气. A.p 0p V B.p p 0

V C.(p p 0-1)V D.(p

p 0+1)V 【答案】C

【解析】设充入的气体体积为V 0,根据玻意耳定律可得p 0(V +V 0)=pV ,解得V 0=(p

p 0

-1)V ,C 项正确.

高考物理专题汇编物理牛顿运动定律的应用(一)及解析

高考物理专题汇编物理牛顿运动定律的应用(一)及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x =L?x 相对滑动产生的热量为: Q=μmg △x 代值解得: Q =0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs ,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:, (1)A 、B 两球开始运动时的加速度. (2)A 、B 两球落地时的动能. (3)A 、B 两球损失的机械能总量. 【答案】(1)2 5m/s A a =27.5m/s B a = (2)850J kB E = (3)250J 【解析】 【详解】 (1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得: 对A :A A A A m g f m a -= 对B :B B B B m g f m a -= A B f f = 0.5A A f m g = 联立以上方程得:2 5m/s A a = 27.5m/s B a = (2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动

高考经典物理模型:传送带模型

A θ 传送带模型(一) ——传送带与滑块 滑块与传送带相互作用的滑动摩擦力,是参与改变滑块运动状态的重要原因之一。其大小遵从滑动摩擦力的计算公式,与滑块相对传送带的速度无关,其方向取决于与传送带的相对运动方向,滑动摩擦力的方向改变,将引起滑块运动状态的转折,这样同一物理环境可能同时出现多个物理过程。因此这类命题,往往具有相当难度。 滑块与传送带等速的时刻,是相对运动方向及滑动摩擦力方向改变的时刻,也是滑块运动状态转折的临界点。按滑块与传送带的初始状态,分以下几种情况讨论。 一、滑块初速为0,传送带匀速运动 [例1]如图所示,长为L 的传送带AB 始终保持速度为v 0 的水平向右的速度运动。今将一与皮带间动摩擦因数为μ的滑块C ,轻放到A 端,求C 由A 运动到B 的时间t AB 解析:“轻放”的含意指初速为零,滑块C 所受滑动摩擦 力方向向右,在此力作用下C 向右做匀加速运动,如果传送带够长,当C 与传送带速度相等时,它们之间的滑动摩擦力消失,之后一起匀速运动,如果传送带较短,C 可能由A 一直加速到B 。滑块C 的加速 度为 ,设它能加速到为 时向前运动的距离为 。 若 ,C 由A 一直加速到B ,由 。 若 ,C 由A 加速到 用时 ,前进的距离 距 离 内 以 速 度 匀 速 运 动 C 由A 运动到B 的时间 。 [例2]如图所示,倾角为θ的传送带,以 的恒定速度按图示 方向匀速运动。已知传送带上下两端相距L 今将一与传送带间动 C A B

摩擦因数为μ的滑块A轻放于传送带上端,求A从上端运动到下端的时间t。 解析:当A的速度达到时是运动过程的转折点。A初始下滑的加速度 若能加速到,下滑位移(对地)为 。 (1)若。A从上端一直加速到下端 。 (2)若,A下滑到速度为用时 之后距离内摩擦力方向变为沿斜面向上。又可能有两种情况。 (a)若,A达到后相对传送带停止滑动,以速度匀速, 总时间 (b)若,A达到后相对传送带向下滑,,到达末端速度 用时 总时间

气体实验定律物理教案

气体实验定律物理教案 知识目标 1、知道什么是等温变化,知道玻意耳定律的实验装置和实验过程,掌握玻意耳定律 的内容与公式表达. 2、知道什么是等容变化,了解查理定律的实验装置和实验过程,掌握查理定律的内 容与公式表达. 3、掌握三种基本图像,并能通过图像得到相关的物理信息. 能力目标 通过实验培养学生的观察能力和实验能力以及分析实验结果得出结论的能力. 情感目标 通过实验,培养学生分析问题和解决问题的能力,同时树立理论联系实际的观点. 教学建议 教材分析 本节的内容涉及三个实验定律:玻意耳定律、查理定律和盖?吕萨克定律.研究压强、体积和温度之间的变化关系,教材深透了一般物理研究方法――“控制变量法”:在研究 两个以上变量的关系时,往往是先研究其中两个变量间的关系,保持其它量不变,然后综 合起来得到所要研究的几个量之间的关系,在牛顿第二定律、力矩的平衡、单摆周期确定 等教学中,我们曾经几次采用这种方法. 教法建议 通过演示实验,及设定变量的方法得到两个实验定律;注意定律成立的条件.提高学生 对图像的分析能力. 教学设计方案 教学用具:验证玻意耳定律和查理定律的实验装置各一套. 教学主要过程设计:在教师指导下学生认识实验并帮助记录数据,在教师启发下学生 自己分析总结、推理归纳实验规律. 课时安排:2课时 教学步骤

(一)课堂引入: 教师讲解:我们学习了描述气体的三个物理参量――体积、温度、压强,并知道对于 一定质量的气体,这三个量中一个量变化时,另外两个量也会相应的发生变化,三个量的 变化是互相关联的,那么,对于一定质量的气体,这三个量的变化关系是怎样的呢?这节课,我们便来研究一下! (二)新课讲解: 教师讲解:在物理学中,当需要研究三个物理量之间的关系时,往往采用“保持一个 量不变,研究其它两个量之间的关系,然后综合起来得出所要研究的几个量之间的关系”,我们研究一定质量的气体温度、体积、压强三者的关系,就可以采用这种方法.首先,我 们设定温度不变,研究气体体积和压强的关系. 1、气体的压强与体积的关系――玻意耳定律 演示实验:一定质量的气体,在保持温度不变的情况下改变压强,研究压强与体积的 关系.让学盛帮助记录数据. 压强Pa0.51.01.52.02.53.03.54.0 体积V/L8.04.02.72.01.61.31.11.0 4.04.04.054.04.03.93.854.0 以横坐标表示气体的体积,纵坐标表示气体的压强,作出压强p与体积的关系如图所示. 可见,一定质量的气体,在体积不变的情况,压强P随体积V的关系图线为一双曲线,称为等温线.①见等温线上的每点表示气体的一个状态.②同一等温线上每一状态的温度均 相同.③对同一部分气体,在不同温度下的等温线为一簇双曲线,离坐标轴越近的等温线 的温度越高. 通过实验得出,一定质量的某种气体,在温度保持不变的情况下,压强p与体积V的 乘积保持不变,即:常量 或压强p与体积V成反比,即: 这个规律叫做玻意耳定律,也可以写成:或 例如:一空气泡从水库向上浮,由于气泡的压强逐渐减小,因此体积逐渐增大. 例题1:如图所示,已知:,求:和 解:根据图像可得:

(完整word版)备战2018年高考物理板块模型

高考物理复习之板块模型 一、动力学中的板块模型 1、力学中板块 2、动力学中板块 二、功能关系中的板块模型 三、动量守恒中的板块模型 四、电磁学中板块模型 1、电学中板块 2、磁场中板块

一、动力学中的板块模型 1、力学类型 例题一、(2004年调研题)如图10所示, 质量为m 的木块P 在质量为M 的长木板A 上滑行,长木板放在水平地面上,一直处于静止状态.若长木板A 与地面间的动摩擦因数为1μ,木块P 与长板A 间的动摩擦因数为2μ,则长木板A 受到地面的摩擦力大小为 ( ) A Mg 1μ B .g M m )(1+μ C mg 2μ D mg Mg 21μμ+ 例题二、如图所示,物体放在粗糙的较长的木块上,木板可以绕M 端自由转动,若将其N 端缓慢地从水平位置抬起,木板与水平面的夹角为θ,物体所受木板的摩擦力为F 1,试定性地说明物体所受的摩擦力的大小F 1随θ的变化情况。(设物体所受的最大静摩擦力跟同样情况下的滑动摩擦力相等)并画在图乙中。 例题三、如图所示,质量为m 1的木块受到向右的拉力F 的作用沿质量为m 2的长木板向右滑行,长木板保持静止状态。已知木块与长木板问的动摩擦因数为μ1,长木板与地面间的动摩擦因数为μ2,则 ( ) A .长木板受到地面的摩擦力大小一定为μ2(m 1+m 2)g B .长木板受到地面的摩擦力大小一定为μ1m 1g C .若改变F 的大小,当F>μ2(m 1+m 2)g 时,长木板将开始运动 D .无论怎样改变F 的大小,长木板都不可能运动 例题四、北京陈经纶中学2011届高三物理期末练习 2011.17.如图所示,木板B 放在粗糙水平面上,木块A 放在B 的上面,A 的右端通过一不可伸长的轻绳固定在竖直墙上,用水平恒力F 向左拉动B ,使其以速度v 做匀速运动,此时绳水平且拉力大小为T ,下面说法正确的是 A .绳上拉力T 与水平恒力F 大小相等 B .木块A 受到的是静摩擦力,大小等于T C .木板B 受到一个静摩擦力,一个滑动摩擦力,合力大小等于F D .若木板B 以2v 匀速运动,则拉力仍为F 例题五、如图所示,质量为M 、上表面光滑的平板水平安放在A 、B 两固定支座上。质量为m 的小滑块以某一速度从木板的左端滑至右端。能正确反映滑行过程中,B 支座所受压力N B 随小滑块运动时间 t 变化规律的是 N B N B N B N B m M A B N B N B N B N B m M A B T 图10 A P V θ N M 图甲 F 1 θ 图乙

高考物理牛顿运动定律试题经典及解析

高考物理牛顿运动定律试题经典及解析 一、高中物理精讲专题测试牛顿运动定律 1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求: (1)物体与水平面间的动摩擦因数; (2)水平推力F的大小; (3)s内物体运动位移的大小. 【答案】(1)0.2;(2)5.6N;(3)56m。 【解析】 【分析】 【详解】 (1)由题意可知,由v-t图像可知,物体在4~6s内加速度: 物体在4~6s内受力如图所示 根据牛顿第二定律有: 联立解得:μ=0.2 (2)由v-t图像可知:物体在0~4s内加速度: 又由题意可知:物体在0~4s内受力如图所示 根据牛顿第二定律有: 代入数据得:F=5.6N (3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:

【点睛】 在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活 处理.在这类问题时,加速度是联系运动和力的纽带、桥梁. 2.如图所示为工厂里一种运货过程的简化模型,货物(可视为质点质量4m kg =,以初速度010/v m s =滑上静止在光滑轨道OB 上的小车左端,小车质量为6M kg =,高为 0.8h m =。在光滑的轨道上A 处设置一固定的障碍物,当小车撞到障碍物时会被粘住不 动,而货物继续运动,最后恰好落在光滑轨道上的B 点。已知货物与小车上表面的动摩擦因数0.5μ=,货物做平抛运动的水平距离AB 长为1.2m ,重力加速度g 取210/m s 。 ()1求货物从小车右端滑出时的速度; ()2若已知OA 段距离足够长,导致小车在碰到A 之前已经与货物达到共同速度,则小车 的长度是多少? 【答案】(1)3m/s ;(2)6.7m 【解析】 【详解】 ()1设货物从小车右端滑出时的速度为x v ,滑出之后做平抛运动, 在竖直方向上:2 12 h gt = , 水平方向:AB x l v t = 解得:3/x v m s = ()2在小车碰撞到障碍物前,车与货物已经到达共同速度,以小车与货物组成的系统为研 究对象,系统在水平方向动量守恒, 由动量守恒定律得:()0mv m M v =+共, 解得:4/v m s =共, 由能量守恒定律得:()2201122 Q mgs mv m M v μ==-+共相对, 解得:6s m =相对, 当小车被粘住之后,物块继续在小车上滑行,直到滑出过程,对货物,由动能定理得: 22 11'22 x mgs mv mv 共μ-= -,

2019-2020年教科版物理选修3-3讲义:第2章+3.气体实验定律及答案

3.气体实验定律 [先填空] 1.研究气体的性质,用压强、体积、温度等物理量描述气体的状态.描述气体状态的这几个物理量叫做气体的状态参量. 2.气体的体积是指气体占有空间的大小,就是贮放气体的容器的容积.在国际单位制中,体积的单位是立方米,符号是m3.常用单位间的换算关系:1 L=10-3 m3,1 mL=10-6 m3. 3.温度是气体分子平均动能的标志,热力学温度,亦称绝对温度,用符号T 表示,单位是开尔文,符号是K.两种温度间的关系是T=t+273. 4.气体的压强是大量气体分子对器壁撞击的宏观表现,用符号p表示.在国际单位制中,单位是帕斯卡,符号是Pa. [再判断] 1.气体体积就是所有气体分子体积的总和.(×) 2.温度越高,所有的分子运动越快.(×) 3.一个物体的温度由10 ℃升高到20 ℃,与它从288 K升高到298 K所升高的温度是相同的.(√) [后思考] 摄氏温度的1 ℃与热力学温度的1 K大小相同吗?

【提示】热力学温度与摄氏温度零点选择不同,但它们的分度方法,即每一度的大小是相同的. 1.温度的含义:温度表示物体的冷热程度,这样的定义带有主观性,因为冷热是由人体的感觉器官比较得到的,往往是不准确的. 2.温标 (1)常见的温标有摄氏温标、华氏温标、热力学温标. (2)比较摄氏温标和热力学温标. 1.关于热力学温度下列说法中正确的是() A.-33 ℃=240 K B.温度变化1 ℃,也就是温度变化1 K C.摄氏温度与热力学温度都可能取负值 D.温度由t℃升至2t℃,对应的热力学温度升高了273 K+t E.-136 ℃比136 K温度高 【解析】T=273+t,由此可知:-33 ℃=240 K,A正确,同时B正确;D中初态热力学温度为273+t,末态为273+2t温度变化t K,故D错;对于摄氏温度可取负值的范围为0到-273 ℃,因绝对零度达不到,故热力学温度不可能取

高考物理板块模型典型例题+答案

1.(8分)如图19所示,长度L = 1.0 m 的长木板A 静止在水平地面上,A 的质量m 1 = 1.0 kg ,A 与水平地面之间的动摩擦因数μ1 = 0.04.在A 的右端有一个小物块B (可视为质点).现猛击A 左侧,使A 瞬间获得水平向右的速度υ0 = 2.0 m/s .B 的质量m 2 = 1.0 kg ,A 与B 之间的动摩擦因数μ2 = 0.16.取重力加速度g = 10 m/s 2. (1)求B 在A 上相对A 滑行的最远距离; (2)若只改变物理量υ0、μ2中的一个,使B 刚好从A 上滑下.请求出改变后该物理量的数值(只要求出一个即可). 2、(8分)如图13所示,如图所示,水平地面上一个质量M=4.0kg 、长 度L=2.0m 的木板,在F=8.0N 的水平拉力作用下,以v 0=2.0m/s 的速度向右做匀速直线运动.某时刻将质量m=1.0kg 的物块(物块可视为质点)轻放在木板最右端.(g=10m/s 2) (1)若物块与木板间无摩擦,求物块离开木板所需的时间;(保留二位有效数字) (2)若物块与木板间有摩擦,且物块与木板间的动摩擦因数和木板与地面间的动摩擦因数相等,求将物块放在木板上后,经过多长时间木板停止运动。 3.(2009春会考)(8分)如图15所示,光滑水平面上有一块木板,质量M = 1.0 kg ,长度L = 1.0 m .在木板的最左端有一个小滑块(可视为质点),质量m = 1.0 kg .小滑块与木板之间的动摩擦因数μ = 0.30.开始时它们都处于静止状态.某时刻起对小滑块施加一个F = 8.0 N 水平向右的恒力,此后小滑块将相对木板滑动. (1)求小滑块离开木板时的速度; (2)假设只改变M 、m 、μ、F 中一个物理量的大小,使得小滑块速度总是木板速度的2倍,请你通过计算确定改变后的那个物理量的数值(只要提出一种方案即可). B A v 0 L 图19 m M F 图15

最新高考物理牛顿运动定律练习题

最新高考物理牛顿运动定律练习题 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可 视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求: (1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ? 【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】 (1)滑块与小车动量守恒0()mv m M v =+可得1m/s v = (2)木板静止后,滑块匀减速运动,根据动能定理有:2102 mgs mv μ-=- 解得0.25m s = (3)从滑块滑上木板到共速时,由能量守恒得:220111 ()22 mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+= 2.如图,光滑固定斜面上有一楔形物体A 。A 的上表面水平,A 上放置一物块B 。已知斜面足够长、倾角为θ,A 的质量为M ,B 的质量为m ,A 、B 间动摩擦因数为μ(μ<), 最大静擦力等于滑动摩擦力,重力加速度为g 。现对A 施加一水平推力。求: (1)物体A 、B 保持静止时,水平推力的大小F 1; (2)水平推力大小为F 2时,物体A 、B 一起沿斜面向上运动,运动距离x 后撒去推力,A 、B 一起沿斜面上滑,整个过程中物体上滑的最大距离L ; (3)为使A 、B 在推力作用下能一起沿斜面上滑,推力F 应满足的条件。 【答案】(1) (2) (3)

高考物理模型之圆周运动模型

第二章 圆周运动 解题模型: 一、水平方向的圆盘模型 1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。物体和转盘间最大静摩擦力是其正压力的μ倍,求: (1)当转盘的角速度ωμ12=g r 时,细绳的拉力F T 1。 (2)当转盘的角速度ωμ232=g r 时,细绳的拉力F T 2。 图2.01 解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=g r 。 (1)因为ωμω102=g r ,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得 F mg T 22=μ。 2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心

r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求: (1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力? (2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大 角速度为多大?(g m s =102/) 图2.02 解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。ω再增大,AB 间绳子开始受到拉力。 由F m r fm =1022ω,得:ω011111 055===F m r m g m r rad s fm ./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。如ω再增加,就不能维持匀速圆周运动了,A 、B 就在圆盘上滑动起来。设此时角速度为ω1,绳中张力为F T ,对A 、B 受力分析: 对A 有F F m r fm T 11121+=ω 对B 有F F m r T fm -=2212 2ω 联立解得:ω112 112252707=+-==F F m r m r rad s rad s fm fm /./ 3. 如图2.03所示,两个相同材料制成的靠摩擦传动的轮A 和轮B 水平放置,两轮半径 R R A B =2,当主动轮A 匀速转动时,在A 轮边缘上放置的小木块恰能相对静止在A 轮边缘上。若将小木块放在B 轮上,欲使木块相对B 轮也静止,则木块距B 轮转轴的最大距离为( ) A. R B 4 B. R B 3 C. R B 2 D. R B 答案: C

高三复习 物理 斜面上的板块模型 压轴题

例题1:地面固定一个斜面倾角 为 θ,AC 边长为L ,小物块乙置于木板 甲的一端,与木板一起从斜面顶端C 处无初速度释放,其中甲乙质量均为m ,斜面光滑,甲乙之间的动摩擦因素为 θμtan =,木板长度为 3L/4,重力加速度为g ,每当木 板滑到斜面底端时,就会与A 处的弹性挡板发生碰撞,木板碰撞后等速率反弹,而且碰撞时间极短,对木块速度的影响可以忽略。求:①甲乙开始静止下滑的加速度;②木板第一次碰撞反弹上升的最大距离;③物块乙从开始运动到最后与木板甲分离所用的时间。 【解析】木板、木块、斜面分别用角标P 、Q 、M 代表 <1>开始下滑时,甲乙相对静止,视为整体,由牛二律:ma mg 2sin 2=θ,故θsin g a = 碰到底部挡板时,有)4 3 (2021L L a v -=- 故2sin 1θ gL v = ,需时:θ sin 211g L a v t == <2>木板频道A 端反弹,沿斜面向上运动,物块仍然沿斜面向下,对木板P 有: 2sin cos 板ma mg mg =+θθμ 又μθ=tan ,故θsin 22 g a =板 反弹过程木板P 的初速度12 v v =板 设木板减速到零,走过的位移(相对斜面M ) 为2板对斜面S ,则有: 222 220-板对斜面板板S a v = 解得:L S 8 1 2 =板对斜面 所需时间θ sin 2212 22g L a v t = =板板板 对物块Q 有: 物ma mg mg =-θμθcos sin 又μθ=tan ,故0=物a ,即物块在木板上相 对地面匀速下滑 在2板t 时间内,物块对斜面下滑的位移为: L 4 1 212= =板物对斜面t v S ,则物块相对木板的位移为:L 8 3 2 22=+=板对斜面物对斜面物对板S S S <3> 木板减速到零后,方向沿斜面向下加速。 木板若加速到与木块共速,需走过 22214 板对斜面板板 S L a v S >== 故木板在回到斜面底端A 时,仍然没有达到与物体共速,故木板回到底端时的速度为: 12232v S a v ==板对斜面板板,所需时间为: θ sin 22122 33g L t a v t = == 板板板板 木板返回所走位移:L S S 8 123= =板对斜面板对斜面 此时间内物块又向下相对斜面走了位移: L t v S 4 1313= =板物对斜面

高考物理牛顿运动定律练习题及解析

高考物理牛顿运动定律练习题及解析 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。求: (1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。 【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】 (1)设释放后,滑块会相对于平板向下滑动, 对滑块m :由牛顿第二定律有:0 11sin 37mg f ma -= 其中0 1cos37N F mg =,111N f F μ= 解得:002 11sin 37cos374/a g g m s μ=-= 对薄平板M ,由牛顿第二定律有:0 122sin 37Mg f f Ma +-= 其中00 2cos37cos37N F mg Mg =+,222N f F μ= 解得:2 21m/s a = 12a a >,假设成立,即滑块会相对于平板向下滑动。 设滑块滑离时间为t ,由运动学公式,有:21112x a t =,2221 2 x a t =,12x x L -= 解得:1s t = 2.如图1所示,在水平面上有一质量为m 1=1kg 的足够长的木板,其上叠放一质量为m 2=2kg 的木块,木块和木板之间的动摩擦因数μ1=0.3,木板与地面间的动摩擦因数μ2=0.1.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等?现给木块施加随时间t 增大的水平拉力F =3t (N ),重力加速度大小g =10m/s 2

高考经典物理模型:传送带模型(一)

高考经典物理模型:传 送带模型(一) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 传送带模型(一) ——传送带与滑块 滑块与传送带相互作用的滑动摩擦力,是参与改变滑块运动状态的重要原因之一。其大小遵从滑动摩擦力的计算公式,与滑块相对传送带的速度无关,其方向取决于与传送带的相对运动方向,滑动摩擦力的方向改变,将引起滑块运动状态的转折,这样同一物理环境可能同时出现多个物理过程。因此这类命题,往往具有相当难度。 滑块与传送带等速的时刻,是相对运动方向及滑动摩擦力方向改变的时刻,也是滑块运动状态转折的临界点。按滑块与传送带的初始状态,分以下几种情况讨论。 一、滑块初速为0,传送带匀速运动 [例1]如图所示,长为L 的传送带AB 始终保持速度为v 0的水平向右的速度运动。今将一与皮带间动 摩擦因数为μ的滑块C ,轻放到A 端,求C 由A 运动到B 的时间t AB 解析:“轻放”的含意指初速为零,滑块C 所受滑动摩擦力方向向右,在此力作用下C 向右做匀加速运动,如果传送带够长,当C 与传送带速度相等时,它们之间的滑动摩擦力消失,之后一起匀速运动,如果传送带较短,C 可能由A 一直加速到B 。

3 A θ 滑块C 的加速度为 ,设它能加速到为 时向前运动的距离为 。 若 ,C 由A 一直加速到B ,由 。 若 ,C 由A 加速到 用时 ,前进的距离 距离内以 速度匀速运动 C 由A 运动到B 的时间 。 [例2]如图所示,倾角为θ的传送带,以 的恒定速度 按图示方向匀速运动。已知传送带上下两端相距L 今将一与传送带间动摩擦因数为μ的滑块A 轻放于传送带上 端,求A 从上端运动到下端的时间t 。 解析:当A 的速度达到 时是运动过程的转折点。A 初始下滑的加速 度 若能加速到 ,下滑位移(对地)为 。 (1)若 。A 从上端一直加速到下端

高中物理专题六机械能守恒定律选讲5板块模型

. 板块模型 木板和物块组成的相互作用的系统称为板块模型,该模型涉及到静摩擦力、滑动摩擦力的转化、方向判断等静力学知识,还涉及到牛顿运动定律、运动学规律、动能定理和能量的转化和守恒、动量守恒定律等方面的知识。板块模型是多个物体的多个过程问题,是一个最经典、最基本的模型之一。 一、基础篇 例1.两个叠在一起的滑块,置于固定的、倾角为θ的斜面上,如图所示,滑块A 、B 的质量分别为M 、m ,A 与斜面之间的动摩擦因数为 μ 1,B 与A 之间的动摩擦因数为μ2,已知两滑块都从静止开始以相同的加速度从斜面滑下,滑块B 受到的摩擦力 A .等于零 B .方向沿斜面向上 C .大小等于μ1mgcos θ D .大小等于μ2mgcos θ BC 例2(2011天津第2题)如图所示,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B 受到的摩擦力 A .方向向左,大小不变 B .方向向左,逐渐减小 C .方向向右,大小不变 D .方向向右,逐渐减小 【解析】:考查牛顿运动定律处理连接体问题的基本方法,简单题。对于多个物体组成的物体系统,若系统内各个物体具有相同的运动状态,应优先选取整体法分析,再采用隔离法求解。取A 、B 系统整体分析 B 两物块叠放在一起共同向右做匀减速运动,整体根据牛顿第二定律a==μg 。 B 与A 具有共同的运动状态,取B 为研究对象,根据牛顿第二定律有 f AB =m B a=μm B g 大小不变, 物体B 做速度方向向右的匀减 速运动,故而加速度方向向左,摩擦力向左;故选A 。 μ(m A +m B )g m A +m B 例3.(新课标理综第21题).如图,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t 增大的水平力F=kt (k 是常数),木板和木块加速度的大小分别为a1和a2,下列反映a1和a2变化的图线中正确的是( ) A . 例4.如图所示,长12m ,质量100kg 的小车静止在光滑水平地面上.一质量为50kg 的人从小车左端,以4m/s 2加速度向右匀加速跑至小车的右端(人的初速度为零).求: (1)小车的加速度大小; (2)人从开始起跑至到达小车右端所经历的时间; (3)人从开始起跑至到达小车右端对小车所做的功.

高考物理牛顿运动定律专项训练及答案.doc

高考物理牛顿运动定律专项训练及答案 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,一足够长木板在水平粗糙面上向右运动。某时刻速度为v0= 2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v1= 4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v2= 1m/s,方向向左。重力加速度g= 10m/s2,试求: (1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2 (3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。 【答案】( 1)0.3( 2)1 (3)2.75m 20 【解析】 【分析】 (1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】 (1)对小滑块分析:其加速度为:a1 v2 v1 1 4 m / s2 3m / s2,方向向右 t 1 对小滑块根据牛顿第二定律有:1mg ma1,可以得到: 1 0.3 ; (2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到: v0 1 mg22mg m t1 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到: 1 mg 2 2mg m v2 t2 而且 t1 t2 t 1s 联立可以得到: 1 t1 0.5s,t2 0.5s ; 2 , 20 (3)在t1 0.5s时间内,木板向右减速运动,其向右运动的位移为:0v0 x1t10.5m ,方向向右; 在 t20.5s 时间内,木板向左加速运动,其向左加速运动的位移为:

12.高考必考十四大经典物理专题集锦应用气体实验定律解决“三类模型问题”(解析版)

【专题12】应用气体实验定律解决“三类模型问题” (解析版) 考点分类:考点分类见下表 考点内容 常见题型及要求 考点一 “玻璃管液封”模型 计算题 考点二 “汽缸活塞类”模型 计算题 考点三 “变质量气体”模型 计算题 考点一: “玻璃管液封”模型 1.三大气体实验定律 (1)玻意耳定律(等温变化):p 1V 1=p 2V 2或pV =C (常数). (2)查理定律(等容变化):p 1T 1=p 2T 2或p T =C (常数). (3)盖—吕萨克定律(等压变化):V 1T 1=V 2T 2或V T =C (常数). 2.利用气体实验定律及气态方程解决问题的基本思路

3.玻璃管液封模型 求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程,要注意: (1)液体因重力产生的压强大小为p=ρgh(其中h为至液面的竖直高度); (2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力; (3)有时可直接应用连通器原理——连通器内静止的液体,同种液体在同一水平面上各处压强相等; (4)当液体为水银时,可灵活应用压强单位“cmHg”等,使计算过程简捷. 考点二“汽缸活塞类”模型 汽缸活塞类问题是热学部分典型的物理综合题,它需要考虑气体、汽缸或活塞等多个研究对象,涉及热学、力学等物理知识,需要灵活、综合地应用知识来解决问题. 1.一般思路 (1)确定研究对象,一般地说,研究对象分两类:一类是热学研究对象(一定质量的理想气体);另一类是力学研究对象(汽缸、活塞或某系统). (2)分析物理过程,对热学研究对象分析清楚初、末状态及状态变化过程,依据气体实验定律列出方程;对力学研究对象要正确地进行受力分析,依据力学规律列出方程. (3)挖掘题目的隐含条件,如几何关系等,列出辅助方程. (4)多个方程联立求解.对求解的结果注意检验它们的合理性. 2.常见类型 (1)气体系统处于平衡状态,需综合应用气体实验定律和物体的平衡条件解题. (2)气体系统处于力学非平衡状态,需要综合应用气体实验定律和牛顿运动定律解题. (3)两个或多个汽缸封闭着几部分气体,并且汽缸之间相互关联的问题,解答时应分别研究各部分气体,找出它们各自遵循的规律,并写出相应的方程,还要写出各部分气体之间压强或体积的关系式,最后联立求解. 说明当选择力学研究对象进行分析时,研究对象的选取并不唯一,可以灵活地选整体或部分为研究对象进行受力分析,列出平衡方程或动力学方程. 考点三:“变质量气体”模型 分析变质量气体问题时,要通过巧妙地选择研究对象,使变质量气体问题转化为定质量气体问题,用气体实验定律求解. (1)打气问题:选择原有气体和即将充入的气体作为研究对象,就可把充气过程中气体质量变化问题转化为

高考物理学霸复习讲义气体实验定律-第一部分 气体实验定律——玻意耳定律

1.玻意耳定律:pV=C或p1V1=p2V2(温度不变)。 2.利用气体实验定律解决问题的基本思路: 【典例】如图所示,U形细玻璃管竖直放置,各部分水银柱的长度分别为L2=25 cm、L3 =25 cm、L4=10 cm,A端被封空气柱的长度为L1=60 cm,BC在水平面上。整个装置处在恒温环境中,外界气压p0=75 cmHg。将玻璃管绕B点在纸面内沿逆时针方向缓慢旋转90°至AB管水平,求此时被封空气柱的长度。 【答案】40 cm 【解析】设细玻璃管的横截面积为S,旋转前,V1=L1S,p1=p0–L2+L4 旋转后,V2=L S,p2=p0+L3 由玻意耳定律:1122 p V p V = 代入数据:()() 7525107525 60L S S -++ ?= 解得:() 6010 36cm cm L L- =< ,不成立 所以设原水平管中有长为x cm的水银进入左管(75–25+10)×60S=(75+25–x)×(60–10–x)S 解得:x=10 cm 所以L′=60?10?x=40 cm 【名师点睛】由玻意耳定律进行分析,即可求得空气柱的长度,再根据实际情况进行计论,明确是否第一部分气体实验定律——玻意耳定律

能符合题意,判断是否有水银进行左管;从而确定长度。 1.如图所示,由导热材料制成的气缸和活塞将一定质量的理想气体封闭在气缸内,活塞与气缸壁之间无摩擦。在活塞上缓慢地放上一定量的细砂。假设在此过程中,气缸内气体的温度始终保持不变,下列说法正确的是 A.气缸中气体的内能增加 B.气缸中气体的压强减小 C.气缸中气体的分子平均动能不变 D.单位时间内气缸中气体分子对活塞撞击的次数不变 【答案】C 【解析】气体做等温变化,而温度是气体是分子平均动能的标志,故气体分子的平均动能不变,理想气体的内能等于分子动能,所以内能不变,A错误,C正确;在活塞上缓慢地、一点点放上一定量的细沙,封闭气体压强增大,故B错误;封闭气体压强增大,温度不变,根据理想气体的状态方程可得气体的体积减小,缸中气体分子数密度增大,单位时间内气缸中气体分子对活塞撞击的次数增大,D错误。 【名师点睛】根据题意可知,被封闭气体作等温变化,在活塞上缓慢地、一点点放上一定量的细沙,压强逐渐增大。 2.一足够长的粗细均匀的玻璃管开口向上竖直放置,管内由15 cm长的水银柱封闭着50 cm长的空气柱。若将管口向下竖直放置,空气柱长变为多少cm?(设外界大气压强为75 cmHg,环境温度不变) 【答案】75 cm 【解析】封闭气体的状态参量:p1=p0+h=75 cmHg+15 cmHg=90 cmHg,V1=L1S=50S p2=p0﹣h=75 cmHg﹣15 cmHg=60 cmHg 气体发生等温变化,由玻意耳定律得p1V1= p2V2 即90×50S=60×LS 解得:L=75cm 3.如图所示,开口向上竖直放置的内壁光滑气缸,其侧壁是绝热的,底部导热,内有两个质量均为m

(完整word版)高考物理板块模型典型例题+与答案

1.(8分)如图19所示,长度L = 1.0 m的长木板A静止在水平地面上,A的质量m1 = 1.0 kg,A与水平地面之间的动摩擦因数μ1 = 0.04.在A 的右端有一个小物块B(可视为质点).现猛击A左侧,使A瞬间获得水平向右的速度υ0 = 2.0 m/s.B的质量m2 = 1.0 kg,A与B之间的动摩擦因数μ2 = 0.16.取重力加速度g = 10 m/s2. (1)求B在A上相对A滑行的最远距离; (2)若只改变物理量υ0、μ2中的一个,使B刚好从A上滑下.请求出改变后该物理量的数值(只要求出一个即可). 2、(8分)如图13所示,如图所示,水平地面上一个质量M=4.0kg、长度L=2.0m的木板,在F=8.0N的水平拉力作用下,以v0=2.0m/s的速度向右做匀速直线运动.某时刻将质量m=1.0kg的物块(物块可视为质点)轻放在木板最右端.(g=10m/s2) (1)若物块与木板间无摩擦,求物块离开木板所需的时间;(保留二位有效数字) (2)若物块与木板间有摩擦,且物块与木板间的动摩擦因数和木板与地面间的动摩擦因数相等,求将物块放在木板上后,经过多长时间木板停止运动. B A v0 L 图19

3.(2009春会考)(8分)如图15所示,光滑水平面上有一块木板,质量M = 1.0 kg,长度L = 1.0 m.在木板的最左端有一个小滑块(可视为 质点),质量m = 1.0 kg.小滑块与木板之间的动摩擦因数μ= 0.30.开始时它们都处于静止状态.某时刻起对小滑块施加一个F = 8.0 N水平向右的恒力,此后小滑块将相对木板滑动. (1)求小滑块离开木板时的速度; (2)假设只改变M、m、μ、F中一个物理量的大小,使得小滑块速度总是木板速度的2倍,请你通过计算确定改变后的那个物理量的数值(只要提出一种方案即可). 4.(2009夏)(8分)如图15所示,水平桌面到地面的高度h= 0.8 m. 质量m = 0.2 kg的小物块(可以看作质点)放在桌面A端. 现对小物块施加一个F=0.8 N的水平向右的恒力,小物块从静止开始运动. 当它经过桌面上的B点时撤去力F,一段时间后小物块从桌面上的C端飞出,最后落在水平地面上. 已知AB = BC = 0.5 m,小物块在A、B间运动时与桌面间的动摩擦因数μ1 = 0.2,在B、C间运动时与桌面间的动摩擦因数μ2 = 0.1. (1)求小物块落地点与桌面C端的水平距离; (2)某同学作出了如下判断:若仅改变AB段的长度而保持BC段的长度不变,或仅改变BC段的长度而保持AB段的长度不变,都可以使小物块落地点与桌面C端的水平距离变为原来的2倍. 请你通过计算说明这位同学的判断是否正确. m M F 图15 F h A B C 图15

高考物理牛顿运动定律真题汇编(含答案)

高考物理牛顿运动定律真题汇编(含答案) 一、高中物理精讲专题测试牛顿运动定律 1.如图,有一水平传送带以8m/s 的速度匀速运动,现将一小物块(可视为质点)轻轻放在传送带的左端上,若物体与传送带间的动摩擦因数为0.4,已知传送带左、右端间的距离为4m ,g 取10m/s 2.求: (1)刚放上传送带时物块的加速度; (2)传送带将该物体传送到传送带的右端所需时间. 【答案】(1)24/a g m s μ==(2)1t s = 【解析】 【分析】 先分析物体的运动情况:物体水平方向先受到滑动摩擦力,做匀加速直线运动;若传送带足够长,当物体速度与传送带相同时,物体做匀速直线运动.根据牛顿第二定律求出匀加速运动的加速度,由运动学公式求出物体速度与传送带相同时所经历的时间和位移,判断以后物体做什么运动,若匀速直线运动,再由位移公式求出时间. 【详解】 (1)物块置于传动带左端时,先做加速直线运动,受力分析,由牛顿第二定律得: mg ma μ= 代入数据得:2 4/a g m s μ== (2)设物体加速到与传送带共速时运动的位移为0s 根据运动学公式可得:2 02as v = 运动的位移: 2 0842v s m a ==> 则物块从传送带左端到右端全程做匀加速直线运动,设经历时间为t ,则有 212 l at = 解得 1t s = 【点睛】 物体在传送带运动问题,关键是分析物体的受力情况,来确定物体的运动情况,有利于培养学生分析问题和解决问题的能力. 2.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)

相关主题
文本预览
相关文档 最新文档