当前位置:文档之家› 各种天线或天线反射器及其零件:(HS 852910)2017 哈萨克斯坦(202个

各种天线或天线反射器及其零件:(HS 852910)2017 哈萨克斯坦(202个

各种天线或天线反射器及其零件:(HS 852910)2017 哈萨克斯坦(202个
各种天线或天线反射器及其零件:(HS 852910)2017 哈萨克斯坦(202个

HFSS仿真对称阵子天线

基于HFSS的对称阵子天线仿真 、对称阵子天线概述 对称阵子天线是最基本也是最常用的天线形式。对于中心点馈电的对称振子天线,其结构可看做是一段开路传输线张开而成。馈电时,在对称振子两臂产生高频电流,此电流将产生辐射场。可以将对称振子分成无数小段,每一小段都可以看成电基本振子,则对称振子辐射场就是这些无数小段电基本振子辐射场的总和。 由于结构简单,对称振子广泛应用于雷达、通信、电视和广播等无线电技术设备中。对称振子的工作频率从短波波段到微波波段。它既可作为独立的天线使用,也可以作为天线阵基本单元组成线阵或平面阵,还可以作为反射面天线的馈源。 天线参数 反射系数,回波损耗这几个重要参数。图1为用MATLAB 仿真得出的半波对称阵子的E面方向图。 对称阵子天线主要有输入阻抗, 输入阻抗Z in R in jX in,反射系数Z in Z0 Z in Z o ,回波损耗RL20lg

图 三、仿真过程 对称阵子天线模型由几部分组成:两臂、馈电、辐射箱。对称阵子的两臂为 圆柱体,材料为理想导体,半径为变量r ,臂长为变量I 。对称阵子一般通过同轴 馈电,可以看作在振子的两臂之间施加了及总电压。在用 HFSS 仿真时通过一个 平面连接两臂,在平面上设置激励源来实现。 通过建立辐射箱,表面设置吸收边 界条件来模拟无界空间。依据这些要点建立了对阵振子天线模型,如图 2。

* 图2对称阵子天线模型 四、结果分析 图3为阻抗曲线图,深色为实部,浅色为虚部,模拟情况与理论值接近。图4为端口2匹配时端口1的反射系数。条件设定为r=1mm,l=25mm,即半波对称阵子。比较图3和图4,可以得出在2.6GHz处反射系数最低,端口阻抗值约

(整理)几种天线的比较.

天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。 反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。下文对一些常用的天线作简单介绍。 1.抛物面天线 抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。

图1 抛物面天线 抛物面天线的优点是结构简单,较双反射面天线便于装配。缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。2.卡塞格伦天线 卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。目前,大多数地球站采用的都是修正型卡塞格伦天线。 卡塞格伦天线的优点是天线的效率高,噪声温度低,馈源和低噪声放大器可以安装在天线后方的射频箱里,这样可以减小馈线损耗带来的不利影响。缺点是副反射面极其支干会造成一定的遮挡。

2.4G 天线设计完整指南(原理、设计、布局、性能、调试)

本文章使用简单的术语介绍了天线的设计情况,并推荐了两款经过测试的低成本PCB天线。这些PCB天线能够与PRoC?和PSoC?系列中的低功耗蓝牙(BLE)解决方案配合使用。为了使性能最佳,PRoC BLE和PSoC4 BLE2.4GHz射频必须与其天线正确匹配。本应用笔记中最后部分介绍了如何在最终产品中调试天线。 1、简介 天线是无线系统中的关键组件,它负责发送和接收来自空中的电磁辐射。为低成本、消费广的应用设计天线,并将其集成到手提产品中是大多数原装设备制造商(OEM)正在面对的挑战。终端客户从某个RF产品(如电量有限的硬币型电池)获得的无线射程主要取决于天线的设计、塑料外壳以及良好的PCB布局。 对于芯片和电源相同但布局和天线设计实践不同的系统,它们的RF(射频)范围变化超过50%也是正常的。本应用笔记介绍了最佳实践、布局指南以及天线调试程序,并给出了使用给定电量所获取的最宽波段。

图1.典型的近距离无线系统 设计优良的天线可以扩大无线产品的工作范围。从无线模块发送的能量越大,在已给的数据包错误率(PER)以及接收器灵敏度固定的条件下,传输的距离也越大。另外,天线还有其他不太明显的优点,例如:在某个给定的范围内,设计优良的天线能够发射更多的能量,从而可以提高错误容限化(由干扰或噪声引起的)。同样,接收端良好的调试天线和Balun(平衡器)可以在极小的辐射条件下工作。 最佳天线可以降低PER,并提高通信质量。PER越低,发生重新传输的次数也越少,从而可以节省电池电量。 2、天线原理 天线一般指的是裸露在空间内的导体。该导体的长度与信号波长成特定比例或整数倍时,它可作为天线使用。因为提供给天线的电能被发射到空间内,所以该条件被称为“谐振”。 图2. 偶极天线基础 如图2所示,导体的波长为λ/2,其中λ为电信号的波长。信号发生器通过一根传输线(也称为天线馈电)在天线的中心点为其供电。按照这个长度,将在整个导线上形成电压和电流驻波,如图2所示。 输入到天线的电能被转换为电磁辐射,并以相应的频率辐射到空中。该天线由天线馈电供电,馈电的特性阻抗为50Ω,并且辐射到特性阻抗为377Ω的空间中。

第一讲 天线基本原理

第一讲天线基本原理 1、天线的基本概念 1.天线的作用 在任何无线电通信设备中,总存在一个向空间辐射电磁能量和从空间接收电磁能量的装置,这个装置就是天线。 天线的作用就是将调制到射频频率的数字信号或模拟信号发射到空间无线信道,或从空间无线信道接收调制在射频频率上的数字或模拟信号。 2.天线问题的实质 从电磁场理论出发,天线问题实质上就是研究天线所产生的空间电磁场分布,以及由空间电磁场分布所决定的电特性。空间任何一点的电磁场满足电磁场方程——麦克斯韦方程及其边界条件。因此,天线问题是时变电磁场问题的一种特殊形式。 从信号系统的角度出发,天线问题可以理解为考察由一个电磁波激励源产生的电磁响应特性。从通信系统的角度出发,天线可以理解为信号发射和接收器,收发天线之间的无线电信号强度满足通道传输方程和多径衰落特性。 3.对天线结构的概念理解 采用不同的模型,对天线可以有不同的理解。典型的模型比如:开放的电容 [思考] 野外电台或电视发射塔,无线电视或电台接收机,为什么能构成一个天线,其电流回路在什么地方? 开放的传输线 从传输线理论理解,天线可以看做是将终端开路的传输线终端掰 开。 TM mn型波导 将天线辐射看做是在4π空间管道中传输的波导,则对应的传输波型是TM型波,但在传输过程中不断遇到波导的不连续性,因此不断激励

高次模。 由电磁波源和电磁波传输媒质形成电磁波传输的机构 波的形成都需要波源和传输媒质。在一盆水中形成机械波纹,可以使用点激励源产生波,并在水面上传播。波的传播特性只与媒质特性有关而与波源无关。将一个肉包子扔出去,这个肉包子可能产生不同的结果,或者被狗吃了,或者掉在什么地方了,都与扔包子的人不再有任何关系。而对天线来说,馈点的激励源就是这种波源,天线导体和外界空间就是传输媒质。不过电磁波的传输媒质可以是真空。 [思考] 电磁波具有波粒二象性。频率越低,波动性越强;频率越高,粒子性越强。所以光波主要表现出粒子性,而长波表现出波动性。射频电磁波就是介于这二者之间的一种电磁波,它既有显著的波动性,又有显著的粒子性。只要认清这一点,许多问题就会变得易于理解。认清事物的本质规律我们才能很好地利用它,我们不能把一头驴当马使,否则就会出现许多荒唐的错误。有人认为射频很复杂,有人认为很简单,就是这个道理。 [哲学启示] 电磁波由于看不见,摸不着,所以在很多人看来它很抽象。但考虑到世界是普遍联系的,尽管不同的事物也有许多不相同点,但找到它们之间的联系,就能获得认识抽象事物的“火眼金睛”。 2、电磁场基本方程 1.麦克斯韦方程 (电生磁。若电场变化,则磁场随之变化) (磁生电。若磁场变化,则电场随之变化) (磁力线是无始无终的封闭闭合曲线) (电力线出发和终止于自由电荷)

螺旋天线初步仿真总结

螺旋天线初步仿真总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

反射系数(驻波)和耦合系数: 不圆度:m1-m2=0.7744

增益(0.92GHz) 加载线圈: 无线圈: 总结: 不圆度指标可在1dB内; 驻波和耦合是难点; 把螺旋天线内置在天线罩中,耦合增强,但对位置敏感,需要和室分天线联合调参。

fpc-induce2 good 天线变小了 反射系数(驻波)和耦合系数:940MHz 0.50 0.75 1.00 1.25 1.50 1.75 2.00 F req [ G H z ] -30.00 -25.00 -20.00 -15.00 -10.00 -5.00 0.00 Y 1 g o o d X Y P lo t 2 -6.2077-4.7591-9.3256 C u rve I n fo d B (S (1,1))S e tu p 1 : S we e p d B (S (1,2))S e tu p 1 : S we e p d B (S (2,2))S e tu p 1 : S we e p 不圆度:m1-m2=0.7444

-2.20 -2.00 -1.80 -1.60 90 60 30 -30 -60 90 -120 -150150 120 m1 m2 N a m e P h i An g M a g m1269.0000-91.0000-2.2586 m285.000085.0000-1.5142 940Mhz 端口损耗=1.2023-(-1.4088)=2.6111 dB S11=-9.3256dB, P: 0.116799235 S21=-4.7591dB, P: 0.334264303 GAIN-REALIZEDGAIN=1-|S11|-|S21|= 0.548953998=-2.604640473 dB 吻合!

经典雷达资料-第6章__反射面天线

第6章反射面天线 Helmut E. Schrank Gary E. Evans Daniel Davis 6.1 引言 天线的作用 雷达天线的基本作用是实现电磁波的自由空间传播和导波传播之间的转换。发射期间天线的特定功能是将辐射能集中到具有某种形状的定向波束内,以照射指定方向的目标。接收期间天线收集目标反射的回波信号能量并将之送往接收机。因此,在以发射方式和接收方式工作时,雷达天线起到互易的,然而是相互关联的作用。在两种方式或者作用中主要的目的都是要精确确定目标的方向角。为实现此目的,需要有高度定向的(窄的)波束,从而不仅达到所需的角精度,而且能够分辨相互靠得很近的目标。雷达天线的这一重要特性可以定量的用波束宽度来表示,也可以表示为发射增益和有效接收孔径。后两个参量相互成正比,并且与检测距离和角精度有直接关系。许多雷达都设计成工作在微波频率,这时用适当物理尺寸的天线就能获得窄的波束宽度。 以上雷达天线的功能性描述意味着一副天线既用于发射,又用于接收。虽然大多数雷达系统都是这样工作的,但是也有例外,如一些单基地雷达采用收发分离的天线,当然,双基地雷达按定义必定是收发分离的天线。在这一章中,重点介绍较常用的单部天线,特别是广泛使用的反射面天线。相控阵天线的内容参见第7章。 波束扫描与目标跟踪 由于雷达天线一般具有定向波束,大范围的角度覆盖要求窄波束快速往复地在空域内扫描,以保证不论目标在哪个方向上都能探测到。这就是警戒雷达或搜索雷达的功能。有些雷达系统设计成一旦探测到目标便可进行跟踪,这种跟踪功能要求专门设计与警戒雷达天线不同的天线。在某些雷达系统中,特别是在机载雷达中,将天线设计成既具有搜索又有跟踪的功能。 测高 大多数警戒雷达都是二维坐标的,只测定目标的距离和方位坐标。在早期的雷达系统中,另外的测高天线通过机械俯仰摆动来测量第三个坐标,即仰角,由此计算出空中目标的高度。现在设计的3D雷达采用一副天线测量所有三个坐标,例如,一部天线在接收方式工作时在俯仰方向形成多个堆积波束,而在发射方式工作时形成宽覆盖的垂直波束。这些波束在水平方向同样窄,但垂直堆积接收波束可以用两个相邻的交叠波束测量回波振幅来确定目标的仰角。

(整理)天线原理与设计习题集解答_第8_11章.

第八章 口径天线的理论基础(8-1) 简述分析口径天线辐射场的基本方 法。 答:把求解口径天线在远区的电场问题分为两部分: ①. 天线的内部问题; ②. 天线的外部问题; 通过界面上的边界条件相互联系。 近似求解内部问题时,通常把条件理想化,然后把理想条件下得到的解直接地或加以修正后作为实际情况下的近似解。这样它就变成了一个与外部问题无关的独立的问题了。 外部问题的求解主要有: 辅助源法、矢量法,这两种是严格的求解方法; 等效法、惠更斯原理法、几何光学法、几何绕射法,这些都是近似方法。 (8-2) 试述几何光学的基本内容及其在口径天线设计中的应用。 答:在均匀的媒质中,几何光学假设能量沿着射线传播,而且传播的波前(等相位面)处处垂直于射线,同时假设没有射线的区域就没有能量。 在均匀媒质中,射线为直线,当在两种媒质的分界面上或不均匀媒质传播时,便发生反射和折射,而且完全服从光的反射、折射定律。 B A l nds =? 光程长度: 在任何两个给定的波前之间,沿所有射线路径的光程长度必须相等,这就是光程定律。''PdA P dA = 应用: ①. 可对一个完全聚焦的点源馈电的天线系统,求出它在给定馈源功率方向图 为P(φ,ξ)时,天线口径面上的相对功率分布。 ②. 对于完全聚焦的线源馈电抛物柱面天线系统,口径上的相对功率分布也可 用同样类似的方法求解。 (8-3) 试利用惠更斯原理推证口径天线的远区场表达式。 解:惠更斯元产生的场: (1cos )2SP j r S SP jE dE e r βθλ-?= ?+?? 222)()(z y y x x r S S SP +-+-= r , r sp >>D (最大的一边)

一种直线阵馈电抛物柱面天线的分析与设计

直线阵馈电抛物柱面天线的分析与设计 吴素云 摘要本文对一种直线阵馈电抛物柱面天线进行了研究,并给出了抛物柱面和馈源的口径场分析方法以及仿真结果。根据理论分析和仿真结果研制出的天线具有宽频带、高增益和全口径增益宽角覆盖能力等优良的电气性能。关键词直线阵抛物柱面宽频带 Analyze and Design of parabolic cylindrical antenna with feed for linear arrays WU suyun (The 723 Institute of CSIC,Yangzhou 225001,China) Abstract:This paper makes research on parabolic cylindrical antenna with feed for linear arrays,generates aperture-field analysis methods and simulation results of parabolic cylinder and feed .The antenna which is manufactured according to the theoretical analysis and simulation results.performances excellent electric apabilities such as wide frequency band ,high gain ,gaining wide-angle covering abilities in full aperture ,and so on . Keywords:linear array,parabolic cylinder,wideband 1 引言 随着电磁环境的日趋复杂,电磁信号越来越密集,威胁目标种类越来越多样化,以常规的单波束天线组成的系统越来越难于适应现代装备的需要,而以直线阵馈电抛物柱面天线可以在一定的方位面、俯仰面内形成同时多方向的波束簇,在宽频带范围内,能快速地对应于不同方位、不同仰角方向上的各种目标,实现频率和方向的双重瞄准,且具有空间功率的合成能力。如果在每个天线单元后接入中等功率的功放,就能以大的等效辐射功率去干扰多个目标。在对目标进行干扰时,抛物柱反射体不动全由线阵馈源系统的波束间转换来实现,可机扫也可电扫,有效地减小干扰盲区,在电子战中有很大的应用潜力。 2 总体思路 该天线系统由抛物柱面反射体和沿焦线设置的多喇叭直线阵馈源组成。反射体由抛物线母线绕焦线平移而成。这样的反射体在俯仰面具有聚焦特性只压窄俯仰波束,而在方位面上只具有反射作用,保持了直线阵馈源在方位面上的波束特性。该天线系统采用偏馈设计和通过阵列馈源恒波束设计以达到降低馈源遮挡和解决宽频带使用时反射体边缘漏损问题。该方案集成了阵列天线的快速扫描和抛物面天线聚焦特性,解决了天线宽频带、高增益的需求。 3 设计原理及分析 抛物柱面天线是一抛物线沿一直线平移而成,如图1所示,其焦线为一直线,抛物柱面的馈源可以有多种形式,可以为同相线源,也可以为位于焦线某一点的放置的点源。 图1 抛物柱面天线 直线阵馈电抛物柱面天线由抛物柱面反射体和沿焦线设置的多喇叭直线阵馈源组成。直线阵馈源相位中心位于抛物柱面的焦线之上,故在天线口径上的场是同相的,馈源为同相线源。反射体由抛物线母线绕焦线平移而成。这样的反射体在俯仰面具有聚焦特性只压窄俯

球面反射面天线

3.3.4球面反射面天线 上面我们讨论的都是指可驱动的天线,即认为它是一架可以指向天空任意位置并能跟踪的天线。为了提高空间分辨率和灵敏度,射电天线一般都做得很大,它重量小到几百吨大至几千吨。这种可驱动的大天线极易受到重力、风、热等因素的影响而变形,致使天线的增益降低。研究表明,单个可驱动天线的极限口径可能是100米。为了增加天线的口径,天文学家和工程技术人员想到了固定的天线,它类似一口大锅支在山凹之中,其本上解决了重力和风对天线的影响,口径可以做得很大。最典型的例子是位于美国 Arecibo 天文台,口径为305米的球反射面天线(参看图3.26)。 40 a 我想读者首先感兴趣的一个问题是:为什么固定反射面天线往往选择为球面。这是因为球面是一个没有确定主轴的反射镜面,即球面对任意方向投射到它上面的光束 (如图3.27 a 中A 和B 光束)都有相同的物理性质。固定球面天线总是对向天顶,移动在天线上方的馈源,在一定天区范围不同方向来的光束经球面反射后总可以汇聚到馈源。如图30 b 所示的那样,如果α是馈源照明区域相对于球心所张的立体角,0α是固定球面天线所张的立体角,则观测天区的立体角为 00a θαα=?′ (3.65) 定义馈源照明区域的直径为有效照明口径,则从上式我们发现,为了观测比较大的天区,固定球面天线的口径要大,而有效馈源照明口径要小。为了保证一定的灵敏度,有效馈源照明口径又不能太小,于是球面天线口径和有效馈源照明口径要折衷选取,才能使固定球面天线既有足够的灵敏度又有比较大的观测观天区。 固定球面天线有一个很大的缺点是它有严重的球差,即如图3.27a 所示,入射的一束平行光束经球面天线反射后不是聚集到焦点而是一条线。平行入射到照明区且离轴很近的光束将聚焦到近轴焦点O ,而离轴越远的光线,它的焦点离近轴焦点也越远,最后来自照明区边沿的反射光束,它的焦点离近轴焦点最远。如果把一个平面放在近轴焦点上并与轴垂直,这个平面称高斯平面。在高斯平面上这些光束形成一个斑。如果是一个馈源来有效地接收这些辐射,这个馈源必须是一个线馈源,在线馈源各部分接收到的辐射必须做振幅和相位改正。最早期的固定球面天线用的确实是一种带槽的线状

线天线的仿真与实现

前言 随着现代通信技术的迅猛发展,无线通讯越来越广泛,越来越多的应用于国防建设,经济建设以及人民的生活等领域。在无线通信系统中,需要将来自发射机的导波能量转变为无线电波,用来辐射或接受无线电波的装置称为天线。在通信过程中,特别是点对点的通信,要求天线具有相当强的方向性,即希望天线能将绝大部分的能量集中向某一预定方向辐射。阵列天线就是近代天线研究的一种方向,其研究催生了包括相控阵天线,均匀直线列天线,智能天线等在无线通信,雷达,导航领域中广泛应用的新型天线。而天线阵列辐射场的研究是其中很重要的一部分。 天线是无线通信,广播电视,导航等工程系统中辐射或接收无线电波的部件。无线电信是以辐射传播的电磁波作为信息的载体而实现通信。在无线电信的实现中,天线具有至关重要的作用:在发送端天线把载有信息的导行电磁波转换为辐射电磁波;在接收端则完成相反的过程,即把载有信息的辐射电磁波转换为导行电磁波。无论是理论上还是工程实际中,天线问题的核心则是求取辐射电磁波在空间存在的规律,特别是求取其场量辐射的空间分布规律,这称之为天线的方向性。从易于理解和研究问题的方便考虑研究辐射波的问题都是从辐射源的分布求其辐射场的分布,即分析研究发射天线的辐射问题。 在天线的诸多特性参量中,天线的方向性无疑是第一位的,因为不同用途的无线电信系统要求不同的辐射场分布。单一天线靠改变尺寸及天线上的高频电流分布,对方向图的调控是极其有限的。这时我们就可以用多个天线(单元天线)组成一个天线系统,实现对天线辐射方向性的调控,获得所需的方向图。由单元天线组成的天线阵的目的是实现天线方向性的调控,以期获得所要求的方向性。

天线原理笔记

1天线原理 1.1.天线的作用 任何无线电设备都是通过无线电波来传递信息,因此就必须有能辐射或接收电磁波的装置。 天线的第一个作用就是辐射和接收电磁波。当然能辐射或接收电磁波的东西不一定都能用来作为天线。例如任何高频电路,只要不是完全屏蔽起来的,都可以向周围空间或多或少地辐射电磁波,或者从周围空间或多或少地接收到电磁波。但是,任意一个高频电路并不一定能作天线,因为它辐射和接收电磁波的效率很低。只有能够有效地辐射和接收电磁波的设备才有可能作为天线使用。 天线的另一个作用是“能量转换”。大家知道,发信机通过馈线送入天线的并不是无线电波,收信天线也不能直接把无线电波送入收信机,这里有一个能量的转换过程。即把发信机所产生的高频振荡电流经馈线送入天线输入端,天线要把高频电流转换为空间高频电磁波,以波的形式向周围空间辐射;反之在接收时,也是通过收信天线把截获的高频电磁波的能量转换成高频电流的能量后,再送给收信机。显然这里有一个转换效率问题:天线增益越高,则转换效率就越高。 1.2.天线的工作原理 天线本身就是一个振荡器,但又与普通的LC振荡回路不同,它是普通振荡回路的变形。 1.2.1.辐射原理 LC是发信机的振荡回路。电场集中在电容器的两个极板之中,而磁场则分布在电感线圈的有限空间里,电磁波显然不能向广阔空间辐射。如果将振荡电路展开,使电磁场分布于空间很大的范围,这就创造了有利于辐射的条件。下图示出了它的演变过程。

导线载有交变电流时,就可以形成电磁波的辐射,辐射的能力与导线的长短和形状有关。如由于两导线的距离很近,且两导线所产生的感应电动势几乎可以抵消,因而辐射很微弱。如果将两导线张开,这时由于两导线的电流方向相同,由两导线所产生的感应电动势方向相同,因而辐射较强。于是,来自发信机的、已调制的高频信号电流由馈线送到天线上,并经天线把高频电流能量转变为相应的电磁波能量,向空间辐射。 谐波转换为振子动态图.gif 当导线的长度L远小于波长时,导线的电流很小,辐射很微弱;当导线的长度增大到可与波长相比拟时,导线上的电流就大大增加,因而就能形成较强的辐射。通常将上述能产生显著辐射的直导线称为振子。 1.2.2.接收原理 电磁波的能量从发信天线辐射出去以后,将沿地表面所有方向向前传播。若在交变电磁场中放置一导线,由于磁力线切割导线,就在导线两端激励一定的交变电压——电动势,其频率与发信频率相同。若将该导线通过馈线与收信机相连,在收信机中就可以获得已调波信号的电流。因此,这个导线就起了接收电磁波能量并转变为高频信号电流能量的作用,所以称此导线为收信天线。 无论是发信天线还是收信天线,它们都属于能量变换器,“可逆性”是一般能量变换器的特性。同样一副天线,它既可作为发信天线使用,也可作为收信天线使用,通信设备一般都是收、发共同用一根天线。因此,同一根天线既关系到发信系统的有效能量输出,又直接影响着收信系统的性能。天线的可逆性不仅表现在发信天线可以用作收信天线,收信天线可以用作发信天线,并且表现在天线用作发信天线时的参数,与用作收信天线时的参数保持不变,这就是天线的互易原理。为便于讨论,常将天线作为发信天线来分析,所得结论同样适用于该天线用作收信天线的情况。 1.3.天线辐射单元

天线原理与设计期中考试资料

西南交通大学2012-2013 学年第( 2 )学期期 中考试试卷 课程代码 3143373 课程名称 天线原理与设计 考试时间 90分钟 阅卷教师签字: 一. 判断题:(20分)(正确标√,错误标?,每题2分) 1. 元天线的方向性系数为1.5。(√) 2. 元天线的远区辐射场是平面波。(?) 3. 在功率方向图中,功率为主瓣最大值一半对应两点所张的 夹角就是主瓣宽度。(√ ) 4. 侧射式天线阵须满足各单元馈电幅度和相位均相等。(√ ) 5. 坡印亭矢量法可以求出天线的辐射阻抗。(? ) 6. 对称振子的平均特性阻抗愈小,其频率特性就愈好。(√ ) 7. 对称振子的谐振长度总是略大于0.25和0.5。(? ) 8. 右旋圆极化天线可以接收左旋圆极化天线发射的信号。 (? ) 9. 要使接收天线接收到的功率达到最大,需满足阻抗匹配和 班 级 学 号 姓 名 密封装订线 密封装订线 密封装订线

极化匹配。(√ ) 10.笼形天线设计增加了阻抗频带宽度。(√ ) 二. 填空题:(30分,每空2分) 1.在场强方向图中,主瓣宽度是指场强大小下降到最大值的( 0.707 )倍处对应的两点之间的夹角。 2. 在功率方向图中,主瓣宽度是指功率大小下降到最大值的( 0.5 )倍处对应的两点之间的夹角。 3. 在分贝方向图中,主瓣宽度是指场强的分贝值下降到(-3 )dB 处对应的两点之间的夹角。 4.当2/(1.44)l λ≤时,对称阵子的最大辐射方向在0 90m θ=。 5.当2/ 1.44l λ≤时,对称阵子的最大辐射方向在 (90)m θ=。 6.半波天线的归一化方向图()cos cos 2( )sin F πθθθ ?? ???=, 方向性系数(1.64)D =,输入阻抗(73.142.5)Z j =+Ω。 7.间距为 d 的二元等幅同相(1,0)m α==阵因子 ()cos ,(2cos )a d f πθ θ?λ =。 8.间距为d 的二元等幅反相(1,)m απ==阵因子 ()cos ,(2sin )a d f πθ θ?λ =。 9. 间距为d 的均匀直线式N 元天线阵的阵因子

反射面天线仿真

利用Ansoft HFSS-IE 设计Ka波段低副瓣抛物反射面天线文章来源: ANSYS 2011中国用户大会优秀论文录入: https://www.doczj.com/doc/3113354913.html, 点击数: 628 【摘要】本文仿真设计了一种工作于Ka波段的低副瓣抛物反射面天线,该天线采用馈源前置式单反射面形式。馈源采用E 面扇形喇叭天线,利用先进的三维电磁场仿真软件Ansoft HFSS v12 首先对馈源进行了仿真与优化设计,得到了满足技术指标要求的结构参数。在此基础上,利用Ansoft HFSS 与HFSS-IE 协同设计了所要求的抛物反射面天线。仿真结果表明,所设计的抛物反射面天线增益大于36dBi,副瓣低于-27dB。仿真结果与理论计算结果比较吻合,并且满足了技术指标要求。此外,通过整个设计过程以及软件仿真结果也直接证明了HFSS-IE 计算的准确性以及快速实用性,对于大口径反射面天线的设计具有一定的指导价值。 1 引言 单反射面天线是指用一个反射面来获得所需方向图的天线系统,其中抛物反射面天线是最经典,用的最多的一种形式。它是一种主瓣窄、副瓣低、增益高的微波天线,广泛应用于雷达、卫星通信、微波中继通信以及射电天文等领域中[1]。 如图1所示,抛物反射面天线由一个旋转抛物面和一个馈源组成。抛物面由抛物线绕其轴线oz旋转一周形成;馈源可以采用多种形式,如带反射板的短偶极子[2],缝隙天线,喇叭天线等,且馈源视在相位中心应放置于抛物面的焦点F上。该天线的基本原理基于几何光学定律的思想。发射状态时,利用抛物面的反射特性,使得由其焦点处的馈源发出的球面波前,经抛物面反射后转变为在抛物面口径上的平面波前,从而使抛物反射面天线具有锐波束、高增益的性能;接收状态时,外来的平面波经抛物面反射后,聚焦到其焦点处,由馈源接收[3]。

天线原理与设计 讲义

第八章 口径天线理论基础 在第七章以前我们讨论的是线状天线,其特点是天线呈直线、折线或曲线状,且天线的尺寸为波长的几分之一或数个波长。所构成的基本理论称之为线天线理论。既使是第七章的开槽缝隙天线,在分析时也是借助了缝隙天线的互补天线—金属线天线来分析。 在实际工作中,还将遇到金属导体构成的口径天线和反射面天线。有时我们统称为口面天线。它们包括:喇叭天线、透镜天线、抛物面天线、双反射面的卡塞格伦天线等。见P169图8-1。它们的尺寸可以是波长的十几到几十倍以上。 口面天线的分析模型如图8-1所示: 图8-1 口面天线的分析模型 S ′为天线金属导体面,为开口面,S S ′+构成一个封闭面,封闭面内有一源。 S 对这样一个分析模型,要求解空间某点p 处的电磁场E P 、H P 。它们可描述为由两部分组成:一部分是源的直达波,一部分是由天线导体面上感应电流产生的散射场。这种分析方法我们称之为面电流法。面电流法对反射面天线有效,它是分析反射面天线的方法之一。但是,面电流法对喇叭天线、波导口天线一类的口径天线无效,或者说处理很难。我们可采用口径场法。 口径场法步骤: 1、解内问题,即由场源求得口面上的场分布; 2、解外问题,即由口面上场分布求解远区辐射场。 由此可见,反射面天线也可用口径场法分析。 喇叭天线一类:口径场法; 反射面天线一类:口经场法,面电流法。(近似方法) 有的反射面天线如抛物环面,由于口径场不易确定,还只得用面电流法。 口径场法和面电流法都是近似的方法,它们只能求出口径面前方半空间的辐射场,口面后方半空间的场无法求得。实际上口面天线的外表面及口径边缘L 上均有感应电流。这部分电流就是对口面天线后向辐射的主要贡献。但通常的做法是采用几何绕射理论,求由边缘L 产生的绕射。 值得说明的是,口面天线的边缘绕射场与前方半空间的场相比是微不足道的。 如果采用口径场法,那么,现在的问题是:能否用口径天线口面上的场分布来确定天线辐射场?回答是肯定的,这就须由惠更斯—菲涅尔原理来说明。

偏置反射面天线的研究与设计

目录 摘要.......................................................................................................................................I Abstract................................................................................................................................II 目录....................................................................................................................................III 第一章绪论 (1) §1.1课题研究背景及意义 (1) §1.2国内外研究现状 (1) §1.2.1反射面天线的研究现状 (1) §1.2.2反射面天线馈源与正交模耦合器的研究现状 (3) §1.3本文的主要工作和章节安排 (4) 第二章偏置反射面天线的理论与分析 (6) §2.1偏置反射面天线的工作原理及几何特性 (6) §2.2反射面天线的分析方法 (9) §2.2.1几何光学法 (9) §2.2.2物理光学法 (10) §2.2.3两种计算方法的补充 (11) §2.3偏置反射面天线电气特性 (12) §2.3.1线极化时交叉极化的劣化 (12) §2.3.2圆极化时的波束倾斜 (13) §2.4多波束反射面天线的偏焦问题 (13) §2.5本章小结 (15) 第三章馈源的设计 (16) §3.1反射面天线馈源简介 (16) §3.2T零型短杯同轴多模馈源 (18) §3.3介质棒辐射体馈源 (20) §3.4本章小结 (23) 第四章正交模耦合器与功分器的设计 (24) §4.1正交模耦合器的设计 (24) §4.1.1正交模耦合器概述与分类 (24) §4.1.2插针式正交模耦合器的原理、设计、仿真和测试 (25) §4.2波导功分器的设计 (30) §4.2.1波导功分器的概述 (30) §4.2.2一种E面T型功分器原理、设计、仿真 (31)

实验五对称振子天线的设计与仿真

实验五对称振子天线的设计与仿真 一、实验目的 1.设计一个对称振子天线 2.查看并分析该对称振子天线的反射系数及远场增益方向 二、实验设备 装有HFSS 软件的笔记本电脑一台 三、实验原理 1、电流分布 对于从中心馈电的偶极子,其两端开路,故电流为零。工程上通常将其电流分布近似为正弦分布。 假设天线沿z轴放置,其中心坐标位于坐标原点,如图所示,则长度为l的偶极子天线的电流分布为:I(z)=Imsink(l-|z|),其中Im是波腹电流,k波数。对半波偶极子而言l=λ/4.则半波偶极子的电流分布,可以写成:I(z)=Imsin(π/2-kz)=Imcos(kz)。 首先明白一点:半波偶极子天线就是对称阵子天线。 2、辐射场和方向图 已知半波偶极子天线上的电流分布,可以利用叠加原理来计算半波偶极子天线的辐射场。

式中, 称为半波偶极子的方向性函数。 3、方向系数: 对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。一臂的导线半径为,长度为I。两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=21。对称振子的长度与波长相比拟,本身己可以构成实用天线。在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布,忽略振子损耗。根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心店对称;超过半波长就会出现反相电流。在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z),长度为dz的电流元件串联而成。利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。 四、实验内容 利用HFSS软件设计一个近似理想导体平面的UHF 对称振子天线。 中心频率为,采用同轴线馈电,并考虑平衡馈电的巴伦结构。最后得到反射系数和二维辐射远场仿真结果。 五、实验步骤

天线仿真软件介绍

天线与微波仿真软件介绍 一.MMANA GAL天线分析系统 MMANA-GAL 具有以下功能: 1.线设计与设定的表格编辑器 2.图形天线观察器 3.水平和垂直波形观察器 4.3维波形显示 5.两种或两种以上计算结果的比较 6.天线单元编辑器 7.天线导线编辑器 8.不同直径管材的设定工具 9.以电抗, 驻波比, 增益, 前后比, 仰角, 电流为参数的自动优化处理 10.表单化手工调整的优化结果 11.频率特性图表生成 12.数据库文件生成器 13.用户语言设定 二.Zeland IE3D 主要功能 天线分析设计 阵列天线分析 微波器件分析 单片微波集成电路MMIC 射频集成电路RFIC 低温陶瓷共烧LTCC 信号完整性SI PBG结构分析 封装package (SOP SIP) 高温超导HTS IC互联 EMC/EMI 三. 天线设计专业仿真软件GRASP9 GRASP9介绍: 1、分析方法:物理光学法Physical Optics(PO),物理绕射理论Physical Theory of Diffraction (PTD),几何光学法Geometrical Optics(GO),几何绕射理论Uniform Geometrical Theory of Diffraction(GTD)。 2、能分析多种类型的反射面天线:包括抛物面(paraboloid)、椭球面(ellipsoid)、双曲

面(hyperboloid)、平面(plane)、球面(sphere)、通用二阶多项式表示的曲面(general second-order polynomials),以数值表示在规则或不规则栅格上面的曲面、Zernike modes 曲面等等。 3、能精确分析馈源系统支架以及辅助反射器支架(Support struts)对天线性能的影响,GRASP9中能直接提供圆形以及多边形支架。 4、能设计分析多种不同的馈源方式(Feed type) 5、能设置多种不同材料的天线反射面(Surface materials)。 四.Ansoft HFSS简介 HFSS采用的理论基础是基于有限元方法的一种电磁场仿真分析软件。由于分析和测量真实天线的各种电参数往往要花费很大的代价,因此可以通过在Ansoft HFSS中建立所需研究的天线仿真模型,并设置好相应的频率、激励源、辐射边界、精度等参数,通过Ansoft HFSS仿真就能够得到天线的方向图、增益、效率、阻抗带宽等仿真结果。工程实践表明,采用Ansoft HFSS所得到的仿真结果与真实天线的实测结果十分吻合,所以在天线的前期设计中,可以通过Ansoft HFSS仿真分析天线的性能,从而有助于高效设计性能良好的天线。此外,可以将Ansoft HFSS与Matlab相结合,利用Matlab强大的数值计算和图像可视化的能力,将Ansoft HFSS中多个仿真图像在Matlab中以一个图形显示出来,从而可以简单分析天线的性能。

天线原理与设计习题集解答-第2章

第二章 天线的阻抗 (2-1) 由以波腹电流为参考的辐射电阻公式:220 30 (,)sin r R d f d d π π ?θ?θθ?π = ? ? 计算对称半波天线的辐射电阻。(提示:利用积分201cos ln(2)(2)x dx C Ci x πππ-=+-?,式中,0.577, 023.0)2(-=πCi ) 解:半波振子天线的辐射方向图函数为 cos(cos ) 2(,)sin f π θθ?θ =, 则 2222000cos (cos )301cos(cos )2sin 60(cos )sin 2(1cos ) r R d d d ππππθπθ?θθθπθθ+==--??? 011130()[1cos(cos )](cos )21cos 1cos d ππθθθθ=+++-? 01cos(cos )1cos(cos )15[](cos )1cos 1cos d ππθπθθθθ++=++-? 01cos[(1cos )]1cos[(1cos )]15(cos )1cos 1cos d ππθπθθθθ -+--=++-? 1cos[(1cos )] 15[(1cos )](1cos )d ππθπθπθ-+=++? 01cos[(1cos )]15[(1cos )](1cos )d ππθπθπθ--+--? 20 1cos 215x dx x π -=?? 30[ln(2)(2)]C Ci ππ=+- 73.1()=Ω (2-2) 利用下式求全波振子的方向性系数 r R f D ) ,(120),(2?θ?θ= , θβθβ?θsin cos )cos cos(),( -=f 若全波振子的效率为5.0=a η,求其最大增益的分贝数和3/πθ=时的方向性系数。 解:(1) 求增益(即最大辐射方向上的方向性系数与效率的积) 全波振子半长度为/2l λ=,则 cos(cos )1()sin f πθθθ +=,max /2()|2f f θπθ===,199r R =Ω 2 max 1201204 2.41199 r f D R ?=== 0.5 2.41 1.205A G D η=?=?= (0.8)

HFSS仿真对称阵子天线

基于HFSS 的对称阵子天线仿真 一、对称阵子天线概述 对称阵子天线是最基本也是最常用的天线形式。对于中心点馈电的对称振子天线,其结构可看做是一段开路传输线张开而成。馈电时,在对称振子两臂产生高频电流,此电流将产生辐射场。可以将对称振子分成无数小段,每一小段都可以看成电基本振子,则对称振子辐射场就是这些无数小段电基本振子辐射场的总和。 由于结构简单,对称振子广泛应用于雷达、通信、电视和广播等无线电技术设备中。对称振子的工作频率从短波波段到微波波段。它既可作为独立的天线使用,也可以作为天线阵基本单元组成线阵或平面阵,还可以作为反射面天线的馈源。 二、天线参数 对称阵子天线主要有输入阻抗,反射系数,回波损耗这几个重要参数。图1为用MATLAB 仿真得出的半波对称阵子的E 面方向图。 输入阻抗in in in jX R Z +=,反射系数0 0Z Z Z Z in in +-=Γ,回波损耗Γ=lg 20RL 。

图1 理论E面方向图 三、仿真过程 对称阵子天线模型由几部分组成:两臂、馈电、辐射箱。对称阵子的两臂为圆柱体,材料为理想导体,半径为变量r,臂长为变量l。对称阵子一般通过同轴馈电,可以看作在振子的两臂之间施加了及总电压。在用HFSS仿真时通过一个平面连接两臂,在平面上设置激励源来实现。通过建立辐射箱,表面设置吸收边 界条件来模拟无界空间。依据这些要点建立了对阵振子天线模型,如图2。

图2 对称阵子天线模型 四、结果分析 图3为阻抗曲线图,深色为实部,浅色为虚部,模拟情况与理论值接近。图4为端口2匹配时端口1的反射系数。条件设定为r=1mm,l=25mm,即半波对称阵子。比较图3和图4,可以得出在2.6GHz处反射系数最低,端口阻抗值约 为50Ω,此为半波对称阵子天线的谐振频率。 图3 阻抗曲线

相关主题
文本预览
相关文档 最新文档