当前位置:文档之家› 交通折算系数表

交通折算系数表

交通折算系数表
交通折算系数表

表交通量调查车型划分及车辆折算系数

function che= Untitled( input_args )

%UNTITLED Summary of this function goes here

% Detailed explanation goes here

t=[40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,60,62]'; y=[11,17,16,9,19,15,14,16,15,21,16,19,13,18,18,17,18,19,25]'; plot(t,y)

xlabel('ê±??/t');

ylabel('êyá?/y');

grid on

end

function che2= Untitled2( input_args )

%UNTITLED2 Summary of this function goes here

% Detailed explanation goes here

t1=[35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64]; y=[23.5,23.5,23,20.5,25.5,21,20,22,32.5,20.5,20.5,24.5,18,24,21,26.5,22.5,22.5,22.5,27,22,26.5,2 7.5,27,22.5,17.5,21.5,22.5,19.5,23];

t2=[40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,60,62]';

z=[8,22.5,13,9,24,19,18.5,18,18.5,22,14,21,23.5,21.5,20.5,19,25,18.5,21.5]';

plot(t1,y,'b',t2,z,'r')

xlabel('时间/t');

% ylabel('数量/y');

grid on

end

常用材料摩擦系数表

常用材料摩擦系数 摩擦系数 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━摩擦副材料摩擦系数μ无润滑有润滑——————————————————————————————————————————————钢-钢 0.15* 0.1-0.12* 0.1 0.05-0.1 钢-软钢 0.2 0.1-0.2 钢-不淬火的T8 0.15 0.03 钢-铸铁 0.2-0.3* 0.05-0.15 0.16-0.18 钢-黄铜 0.19 0.03 钢-青铜 0.15-0.18 0.1-0.15* 0.07 钢-铝 0.17 0.02 钢-轴承合金 0.2 0.04 钢-夹布胶木 0.22 - 钢-钢纸 0.22 - 钢-冰 0.027* - 0.014 石棉基材料-铸铁或钢 0.25-0.40 0.08-0.12 皮革-铸铁或钢 0.30-0.50 0.12-0.15 材料(硬木)-铸铁或钢 0.20-0.35 0.12-0.16 软木-铸铁或钢 0.30-0.50 0.15-0.25 钢纸-铸铁或钢 0.30-0.50 0.12-0.17 毛毡-铸铁或钢 0.22 0.18 软钢-铸铁 0.2*,0.18 0.05-0.15 软钢-青铜 0.2*,0.18 0.07-0.15 铸铁-铸铁 0.15 0.15-0.16 0.07-0.12 铸铁-青铜 0.28* 0.16* 0.15-0.21 0.07-0.15 铸铁-皮革 0.55*,0.28 0.15*,0.12 铸铁-橡皮 0.8 0.5 皮革-木料 0.4-0.5* - 0.03-0.05 铜-T8钢 0.15 0.03 铜-铜 0.20 - 黄铜-不淬火的T8钢 0.19 0.03 黄铜-淬火的T8钢 0.14 0.02 黄铜-黄铜 0.17 0.02 黄铜-钢 0.30 0.02 黄铜-硬橡胶 0.25 - 黄铜-石板 0.25 - 黄铜-绝缘物 0.27 - 青铜-不淬火的T8钢 0.16 -

双环法测野外渗透系数

双环法测野外渗透系数SK-500型试坑双环注水试验装置 双环法测野外渗透系数 一、实验目的和意义 双环法试验是野外测定包气带非饱和松散岩层的渗透系数的常用的简易方法,试验的结果更接近实际情况。利用这个试验资料研究区域性水均衡以及水库、灌区、渠道渗漏量等都是十分重要的。 二、实验方法 野外测定包气带非饱和松散岩层的渗透系数最常用的是试坑法,单环法和双环法。其中双环法的精度最高。 三、实验原理 在一定的水文地质边界以内,向地表松散岩层进行注水,使渗入的水量达到稳定,即单位时间的渗入水量近似相等时,再利用达西定律的原理求出渗透系数(K)值。 在坑底嵌入两个高约20cm,直径分别为0.25m和0.5m的铁环,试验时同时往内、外铁环内注水,并保持内外环的水柱都保持在同一高度,以0.1m为宜,由于外环渗透场的约束作用使内环的水只能垂向渗入,因而排除了侧向渗流的误差,因此它比试坑法和单环法的精度都高。 图1双环法渗水试验示意图 四、实验仪器 双环、铁锹、尺子、水桶、胶带、橡皮管 五、实验步骤 (1)选择试验场地,最好在潜水埋藏深度大于5m的地方为好。如果潜水埋深小于2m时,因渗透路径太短,测得的渗透系数不真实,就不要使用渗水试验。 (2)按双环法渗水试验示意图,安装好试验装置。 (3)往内、外铁环内注水,并保持内外环的水柱都保持在同一高度,以0.1m为宜。 (4)按一定的时间间隔观测渗入水量。开始时因渗入量大,观测间隔时间要短,稍后可按一定时间间隔比如每10分钟观测一次,直至单位时间渗入水量达到相对稳定,再延续2~4小时即可结束试验。 六、注意事项 (1)随时保持内外环的水柱都保持在0.1m的同一高度。 (2)向供水瓶注水时,做好水量转换的换算 七、实验成果 (1)野外渗水试验的记录格式见表1。 表1 野外渗水试验记录 工程名称试验者 工程编号计算者 试验日期校核者 试验次数经过的时间 (s) 渗透流量 m3/min 渗透速度 m/min 渗透系数 m/min 注:A-双环内径面积(314cm2)I是水力梯度, (2)计算渗透系数

常用材料的导热系数表

材料的导热率 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W;K: 导热率,W/mk;A:接触面积;d: 热量传递距离;△T:温度差;R: 热阻值 导热率K是材料本身的固有性能参数,用于描述材料的导热能力。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 根据R=A△T/Q这个公式,理论上来讲就能测试并计算出一个材料的热阻值R。但是这个公式只是一个最基本的理想化的公式,他设定的条件是:接触面是完全光滑和平整的,所有热量全部通过热传导的方式经过材料,并达到另一端。实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个

100种常用计量单位换算系数表

100种常用计量单位换算系数表一、长度SI基本单位:米(m) 1(市)尺=1/3 m *1埃=10-10 m *1费密=10-15 m *1码=9.144000×10-1 m *1英寸=2.540000×10-2 m *1英尺=3.048000×10-1 m *1英里=1.609344×103m *1海里=1.852000×103 m 1光年=9.46055×1015 m *1μ=10-6 m *1密耳=2.540000×10-5 m 二、面积SI导出单位:平方米㎡ *1公亩=102㎡ *1公顷=104㎡ *1靶恩=10-28㎡ 1英亩=4.04686×103㎡ 1平方码=8.361274×10-1㎡ 三、体积、容积SI导出单位立方米(m3) 1升=10-3 m3 1桶(石油业)=1.589873×10-1m3

1蒲式耳(美)=3.523907×10-2m3 1加仑(英)4.546092×10-3 m3 1加仑(美)3.785412×10-3 m3 1液盎司(美)=2.957353×10-5m3 1液盎司(英)=2.841307×10-5 m3 1立方英寸=1.638706×10-5 m3 1立方英尺=2.831685×10-2 m3 1立方码=7.645549×10-1 m3 四、质量、重量SI基本单位:千克(公斤)(kg)*1市斤=0.5 kg *1吨=103 kg 1原子质量单位≈1.66×10-27kg *1(米制)克拉=2×10-4kg 1盎司(常衡)=2.834952×10-2kg 1盎司(金衡,药衡)=3.110340×10-2kg *1磅(常衡)=4.535920×10-1kg 1磅(金衡,药衡)=3.732417×10-1kg 1斯勒格=1.459390×10kg 1英吨(长)=1.016047×103kg 1英吨(短)=0.9071847×103 kg 五、时间SI基本单位:秒(s) 1分=60 s

土壤—饱和导水率(渗透系数)的测定—渗透筒法pdf

FHZDZTR0020 土壤 饱和导水率(渗透系数)的测定 渗透筒法 F-HZ-DZ-TR-0020 土壤—饱和导水率(渗透系数)的测定—渗透筒法 1 范围 本方法适用于田间土壤饱和导水率(渗透系数)的测定。 2 原理 土壤饱和导水率系在单位水压梯度下,通过垂直于水流方向的单位土壤截面积的水流速度,又称土壤渗透系数。本法可在田间进行测定,但易受下层土体性质的影响。在饱和水分的土壤中,土壤的饱和导水率(渗透系数)是根据达西(H. Darcy )定律: K =h t S L Q ×××……(1) 式(1)中: K ——饱和导水率(渗透系数),cm/s ; Q ——流量,渗透过一定截面积S (cm 2)的水量,mL ; L ——饱和土层厚度,渗透经过的距离,cm ; S ——渗透筒的横截面积,cm 2; t ——渗透过水量Q 时所需的时间,s ; h ——水层厚度,水头(水位差),cm 。 饱和导水率(渗透系数)与土壤孔隙数量、土壤质地、结构、盐分含量、含水量和温度等有关。饱和导水率(渗透系数)K 的量纲为cm/s 或mm/min 或cm/h 或m/d 。从达西定律可以看到,通过某一土层的水量,与其截面积、时间和水层厚度(水头)呈正比,与渗透经过的距离(饱和土层厚度)呈反比,所以饱和导水率(渗透系数)是土壤所特有的常数。 图1 渗透筒Q =K ×S ×t ×h /L 3 仪器 3.1 渗透筒(图1)。 3.2 量筒,500mL 。 3.3 烧杯,400mL 。 3.4 漏斗。 3.5 秒表。 3.6 温度计。 4 操作步骤 4.1 测定深度:根据土壤发生层次(A 、B 、C )进行测定,每一层次要重复 测定5次。 A 层测定主要用作设计防止土壤侵蚀的措施及制定灌溉制度。 B 层测定用作设计防止土壤侵蚀的措施及预测该层土壤水分可能停滞的 情况,鉴定该层的坚实度和碱化度,并可鉴定该层是否适于作临时灌溉和固 定灌溉渠槽。 C 层测定结果可以提供土壤保水情况及鉴定是否可以作为大型灌溉渠 道、渠槽的资料。 4.2 在选定的试验地上,用渗透筒采取原状土,取土深度为10cm ,将垫有滤 纸的底筛网盖好,带回室内待测定。 4.3 将渗透筒浸入水中,注意水面不要超过土柱。一般砂土浸4h~6h ,壤土浸8h~12h ,粘土浸24h 。 4.4 在预定时间将渗透筒取出,挂在适当位置,待重力水滴完后装上漏斗,漏斗下接一烧杯。

常用导热系数单位之间的换算关系

常用导热系数单位之间的换算关系 下表为常用导热系数单位换算表。 上表中,关于几种温度单位: 开氏温度(K ):国际单位制基本单位。绝对零度℃为0开氏度。 摄氏温度(℃):一个大气压下,规定水的冰点为0℃,沸点为100℃。 华氏温度(℉):一个大气压下,规定水的冰点为32℉,沸点为212℉。 温度单位之间的换算关系为: 摄氏度与开氏度:K=℃- 摄氏度与华氏度:℉=(9/5)*℃+32 摄氏度与华氏度:K=5/9(℉+ 1 根据预制直埋保温管规范推算 2 根据埋深和聚氨酯和玻璃钢的承重计算 已知保温材料导热系数外墙保温厚度怎么计算 首先明确你用的外墙要达到什么标准,是50节能、还是65节能标准。以65%节能为例,传热系数Km≤ W/()。其倒数即为符合墙体传热阻,再减去内外墙传热阻以及基墙传热阻就可以得到你用的外墙的热阻,再根据公式R = δ/λ(热阻=材料厚度/导热系数),即可算出你所需要的厚度。 隔热保温层厚度计算

2009-05-25 13:37:15|分类:个人日记 |标签: |字号大中小订阅 聚氨酯泡沫塑料作为隔热保温材料已广泛用于建筑、冷库、油管、保温管道等。 正确地确定隔热层厚度将大大地节省原料,降低材料费用。 绝热工程包括保温和保冷两方面的内容。 经济厚度计算方法是一种最广泛使用的方法。 把绝热材料的投资和热冷损失的费用综合考虑后得出一种经济厚度,此时保温与保冷费用和热损失费用之和为最小。 一般控制绝热层表面单位面积的热损失不大于规定值。 在实际计算中,保温层表面温度ts如何确定与各方面都有关系。 从能耗考虑,ts与大气温度t0越接近越好,但是,相应的其投资费用也越大。 反之,则能源又随投资费用的减少而大幅度的增加。 因此,保温保冷层表面温度应分别高于大气温度和露点温度。 同时,式中a1的值(外部传热系数)对保温的场合往往直接取10,对保冷取7。 例1,某冷库,库内最低温度为-20℃,夏季平均气温为30℃,湿度为85%,采用聚氨酯泡沫作绝热材料,其厚度应为多少 已知tf=-20℃ta=30℃λ=Kcal/m·h·℃a1=7Kcal/m2·h·℃ ts的求法: ts为绝热层表面露点温度,查阅饱和蒸汽压表得: 30℃时的饱和蒸汽压为柱 ×=

交通折算系数表

表交通量调查车型划分及车辆折算系数

function che= Untitled( input_args ) %UNTITLED Summary of this function goes here % Detailed explanation goes here t=[40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,60,62]'; y=[11,17,16,9,19,15,14,16,15,21,16,19,13,18,18,17,18,19,25]'; plot(t,y) xlabel('ê±??/t'); ylabel('êyá?/y'); grid on end

function che2= Untitled2( input_args ) %UNTITLED2 Summary of this function goes here % Detailed explanation goes here t1=[35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64]; y=[23.5,23.5,23,20.5,25.5,21,20,22,32.5,20.5,20.5,24.5,18,24,21,26.5,22.5,22.5,22.5,27,22,26.5,2 7.5,27,22.5,17.5,21.5,22.5,19.5,23]; t2=[40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,60,62]'; z=[8,22.5,13,9,24,19,18.5,18,18.5,22,14,21,23.5,21.5,20.5,19,25,18.5,21.5]'; plot(t1,y,'b',t2,z,'r') xlabel('时间/t'); % ylabel('数量/y'); grid on end

常用法定计量单位换算表

常用法定计量单位换算表 我国的法定计量单位(以下简称法定单位)包括: 1.国际单位制的基本单位; 2.国际单位制的辅助单位; 3.国际单位制中具有专门名称的导出单位; 4.国家选定的非国际单位制单位; 5.由以上单位构成的组合形式的单位; 6.由词头和以上单位所构成的十进倍数和分数单位。 国际单位制中具有专门名称的导出单位 量的名称单位名称单位符号其它表示式例频率赫[兹] Hz s-1 力、重力牛[顿] N kgm/s2 压力、压强、应力帕[斯卡] Pa N/m2 能量、功、热焦[耳] J Nm 功率、辐射通量瓦[特] W J/s 电荷量库[仑] C As 电位、电压、电动势伏[特] V W/A 电容法[拉] F C/V 电阻欧[姆] S V/A 电导西[门子] Wb A/V 磁通量韦[伯] T Vs 磁通量密度、磁感应强度特[斯拉] H Wb/m2 电感亨[利] C Wb/A 摄氏温度摄氏度1m cdsr 光通量流[明] 1x 1m/ m2 光照度勒[克斯] Bq s-1

放射性活度贝可[勒尔] Gy J/kg 吸收剂量戈[瑞] Sv J/kg 剂量当量希[沃特] 国家选定的非国际单位制单位 量 的名称单位名 称 单位符号换算关系和说明 时间分 [小] 时天 (日) min h d 1min=60s 1h=60min=3600s 1d=24h=86400s 平面角[角]秒 [角] 分度 (″) (′) (°) 1″=( π/640800)rad (π为圆周率) 1′=60″=(π/10800)rad 1°=60′= (π/180)rad 旋 转 速 度 转每分 r/min 1r/min=(1/60)s-1 长 度 海里n mile 1n mile=1852m (只用于航行) 速度节kn 1kn=1n mile/h =(1852/3600)m/s (只用于航 行) 质量吨原 子质量 单位 t u 1t=103kg1u≈×10-27kg 体 积 升L,(1) 1L=1dm3=10-3m3 能电子伏 eV 1eV≈×10-19J 级 差 分贝dB 线密度特[克 斯] tex 1tex=1g/km

常用单位换算表大全

常用单位换算表大全 常用单位换算表大全 力 1牛顿(N)=0.225磅力(lbf)= 0.102千克力(kgf) 1千克力(kgf)= 9.81牛(N) 1磅力(lbf)= 4.45牛顿(N)1达因(dyn)= 10-5牛顿(N) 压力 1巴(bar)= 105帕(Pa) 1千帕(kPa)= 0.145磅力/英寸2(psi) = 0.0102千克力/厘米2(kgf/cm2) = 0.0098大气压(atm) 1磅力/英寸2(psi)= 6.895千帕(kPa) = 0.0703千克力/厘米2(kg/cm2) =0.0689巴(bar)= 0.068大气压(atm) 1物理大气压(atm)= 101.325千帕(kPa)= 14.696磅/英寸2(psi)= 1.0333巴(bar) 1工程大气压= 98.0665千帕(kPa) 1毫米水柱(mmH2O)= 9.80665帕(Pa)1毫米汞柱(mmHg)= 133.322帕(Pa) 1托(Torr) = 133.322帕(Pa)1达因/厘米2(dyn/cm2)= 0.1帕(Pa) 温度 K=5/9(°F+459.67)K = ℃+273.15 n°F= [(n-32)×5/9]℃n℃= (5/9×n+32)°F1°F= 5/9℃(温度差) 1千米(km)= 0.621英里(mile) 1米(m)= 3.281英尺(ft)= 1.094码(yd) 1厘米(cm)= 0.394英寸(in) 1埃(A)= 10-10米(m) 1英里(mile)= 1.609千米(km) 1英寻(fm)= 1.829(m)1英尺(ft)= 0.3048米(m) 1英寸(in)= 2.54厘米(cm)

渗透试验报告

双环渗透 8.1试验的目的 双环法试验是野外测定包气带非饱和松散岩层的渗透系数的常用的简易方法,试验的结果更接近实际情况。利用这个试验资料研究区域性水均衡以及水库、灌区、渠道渗漏量等都是十分重要的。 8.2试验的适用范围 对砂土和粉土,可采用试坑法或单环法,对粘性土应采用试坑双环法 8.3试验的基本原理 水在土中的流动符合达西定律,水在土的孔隙中流动时,大多数情况下流速较小,可以认为属于层流(即水流流线相互平行的流动)。则渗透速度与水力坡降成正比。当水力坡降为1时的渗透速度称为土的渗透系数。对于饱和土的渗透现象常用达西定律来表示。即 v= k =或 kIF q I 在一定的水文地质边界以内,向地表松散岩层进行注水,使渗入的水量达到稳定,即单位时间的渗入水量近似相等时,再利用达西定律的原理求出渗透系数(K)值。在坑底嵌入两个高约50cm,直径分别为0.25m和0.50m的铁环,试验时同时往内、外铁环内注水,并保持内外环的水柱都保持在同一高度,以0.1m为宜,由于外环渗透场的约束作用使内环的水只能垂向渗入,因而排除了侧向渗流的误差,因此它比试坑法和单环法的精度都高。 8.4 试验仪器及制样工具 双环、铁锹、水平尺、量筒、笔直的树枝 双环:(外环:上底0.5m,下底0.5m,高0.25m;内环:上底0.25m,下底0.25m,高0.25m)。 8.5试验的操作步骤 (1)选择试验场地,最好在潜水埋藏深度大于5m的地方为好。如果潜水埋深小于2m时,因渗透路径太短,测得的渗透系数不真实,就不要使用渗水试验; (2)按双环法渗水试验示意图,安装好试验装置。 (3)往内、外铁环内注水,并保持内外环的水柱都保持在同一高度,以0.1m为宜。 (4)按一定的时间间隔观测渗入水量。开始时因渗入量大,观测间隔时间要短,

关于调整公路交通情况调查车型分类及车辆折算系数的通知

关于调整公路交通情况调查车型分类及车辆折算系数的通知 规统便字[2005]126号 各省、自治区、直辖市交通(厅、委),天津、上海市政工程管理局,新疆生产建设兵团交通局,各有关单位: 根据《公路工程技术标准》(JTG B01—2003)关于车型分类及车辆折算系数的规定,并结合公路交通情况调查统计工作的实际情况,现对公路交通情况调查车型分类及车辆折算系数进行调整。具体如下: 一、车型分类及车辆折算系数 公路交通情况调查统计工作所采用的调查车型及车辆折算系数的调整方案见下表: 调查车型分类及车辆折算系数表 车 型折 算 系 数 荷载及功率备 注 机动车汽 车 小客车 1.0 额定座位 ≤19座 大客车 1.5 额定座位> 19座 小型货 车 1.0载质量≤2吨 中型货 车 1.5 2吨<载质量 ≤7吨 包括吊车 大型货 车 2.0 7吨<载质量 ≤14吨 特大型 货车 3.0 载质量>14 吨 拖挂车 3.0包括半挂车、平板拖车 集装箱 车 3.0 摩托车 1.0 包括轻骑、载货摩托车及载货

(客)机动三轮车等拖拉机 4.0 非机动车人 畜 力 车 畜力 车 4.0 人力 车 1.0包括人力三轮车、手推车自行车0.2包括助动车 注:交通量换算采用小客车为标准车型。 二、实施安排 自2005年9月1日起,各有关单位应按本通知要求的调查车型分类及车辆折算系数(简称“新方案”,2004年以前的车型分类及车辆折算系数方案简称“旧方案”),开展公路交通情况调查统计及分析工作。2005年统计年报数据应按“新方案”进行统计、分析,其中2005年1-8月份的数据参照2005年9月-12月按新方案统计的数据进行车型分类的调整。 各有关单位应认真做好公路交通情况调查车型分类及折算系数的调整工作,同时做好交通量调查设备车型分类调整工作,确保统计数据的连续性和准确性。

土力学计算公式

一、 土的不均匀程度: C U = 10 60 d d 式中 d 60——小于某粒径颗粒含量占总土质量的60%时的粒径, 该粒径称为限定粒径 d 10——小于某粒径颗粒含量占总土质量的10%时的粒 径,该粒径称为有效粒径。 C U 小于5时表示颗粒级配不良,大于10时表示颗粒级配良好 二 1、土的密度ρ和土的重力密度γ ρ= v m (t/m 3或g/cm 3) γ=ρg(KN/m 3 ) 一般g=10m/s 2 ρ 表示土的天然密度称为土的湿密度 γ 表示天然重度。 天然状态下土的密度和重度的变化范围较大, 一般ρ=1.6——2.2(t/m 3),γ=16——22(KN/m 3 ) 2、土粒比重ds (相对密度) d s =w s s v m ρ ρw ——水的密度,可取1t/m 3 3 土的含水量 = ωs m m ω×100%

换算指标 4、土的孔隙比e e=s v v v 5、土的孔隙率n n=%100?v v v 6、土的饱和度Sr Sr=v w V V 7、土的干密度ρd ρd =v m s (t/m 3 ) γd =ρd g(KN/m 3 ) 8、土的饱和密度ρsat ρsat =v v m w v s ρ+ ( t/m 3 ) 饱和重度 9、土的有效密度ρ, 和有效重度γ, ρ, =v v m w v s ρ- ( t/m 3 ) =ρsat –ρw γ, = ρ, g=γsat -γw 土的三相比例指标换算公式

10、砂的相对密度Dr Dr=m in m ax m ax e e e e -- 11、塑性指数I P I P =ωL -ωP (不要百分号) 液性指数I L

不同单位之间换算大全

1兆帕(MPa)=145磅/英寸2(psi)=10.2千克/厘米2(kg/cm2)=10巴(bar)=9.8大气压(atm) 1磅/英寸2(psi)=0.006895兆帕(MPa)=0.0703千克/厘米2(kg/cm2)=0.0689巴(bar)=0.068大气压(atm) 1巴(bar)=0.1兆帕(MPa)=14.503磅/英寸2(psi)=1.0197千克/厘米2(kg/cm2)=0.987大气压(atm) 1大气压(atm)=0.101325兆帕(MPa)=14.696磅/英寸2(psi)=1.0333千克/厘米2(kg/cm2)=1.0133巴(bar) 1立方英尺(scf)=0.028317立方米(MMscfd:百万标准立方英尺/天、scf:立方英尺/天) 1英寸=25.4毫米 1立方米=6.29桶(油) 1吨=6.29/ρ桶ρ为原油密度,t/m3 大概一桶油就是135公斤左右 1桶(bbl)=42加仑(美制)=159升(l)=0.159立方米(m3) 1吨约等于7桶. 单位属性:属于专用单位 详细解释:体积与重量单位之间的换算必须引入密度p(原油及成品油的密度) pt表示在某个温度状态下,每立方米体积的石油为p吨重。换算关系为: 一吨油的体积数=1/p立方米 一吨油相当的桶数=1/p * 6.29桶(油) 一桶油相当的吨数=p / 6.29吨(油) 将6.29除以密度即为求1吨油等于多少桶油的换算系数公式。此换算系数 的大小与油品的密度大小有关,且互为倒数关系, 如:大庆原油密度为 0.8602,胜利101油库原油密度为0.9082,可分别得: 大庆原油换算系数=6.29/0.8602=7.31 , 胜利原油换算系数=6.29/0.9082=6.93

渗透试验

渗透试验 专业班级港航5班学号姓名同组者 实验编号实验名称渗透试验 实验日期2012.10.10批报告日期成绩教师签名 一、试验目的 测量土体的渗透系数k。 二、试验原理 渗透试验原理就是在试验装置中测出渗流量,不同点的水头高度,从而计算出渗流速度和水力梯度,代入(8-1)式计算出渗透系数。 (8-1) v ki 由于土的渗透系数变化范围很大,自大于10-1cm/s到小于10-7cm/s,故实验室内常用两种不同的试验装置进行试验:常水头试验装置用来测定渗透系数k比较大的无凝聚性土的渗透系数;变水头渗透试验装置用来测定渗透系数k比较小的凝聚性土的渗透系数。特殊设计的变水头试验测定粗粒渗透系数和常水头试验测定渗透性极小的粘性土渗透系数也很常用。 三、试验设备及试验操作 (一)常水头试验 1.仪器设备 (1)70型渗透仪; (2)附属设备:木锤、秒表、天平等。 2.操作步骤 (1)装好仪器,检查是否漏水。将调节管与供水管相连,由仪器底部充水至水位达到金属透水板顶面时,放入滤纸,关止水夹; (2)取代表性风干土样3~4kg,称重精确至1g,测定风干含水率; (3)将试样分层装入仪器,根据预定孔隙比控制试样密度。每层装完后从调节管进水至试样顶面。最后一层应高出上测压管孔3~4cm。待最后一层试样饱和后,继续使水位上升至圆筒顶面。将调节管卸下,使管口高于圆筒顶面,观测三个测压管水位是否与孔口齐平; (4)量测试样顶面至筒顶余高,计算出试样高度。称量剩余土样,计算出装入质量,计算试样干密度和孔隙比; (5)供水管向圆筒顶面供水,使水面始终保持与渗透仪顶面齐平,同时降

低调节管高度,形成自下向上方向的渗流。固定调节管在某一高度,过一段时间后,三个测压管水位达到稳定值,表明形成稳定渗流场; (6)记录三个测压管水位H 1,H 2,H 3,则测压管Ⅰ和Ⅱ水位差为h 1= H 1-H 2,测压管Ⅱ和Ⅲ的水位差为h 2= H 2-H 3。计算渗径长度为L=10cm 的平均水位差h =( h 1+ h 2) /2= (H 1- H 3)/2; (7)开动秒表,用量筒接取经过一段时间Δt 的渗流量ΔQ ,量测渗透水的水温T °C ; (8)改变调节管的高度,达到渗透稳定后,重复(6)、(7)的步骤,平行进行5~6次试验; (9)按式(8-4)计算每次量测的水温T °C 时的渗透系数k ti ; QL k tAh ?= ? (8-4) (10)计算渗透系数均值: 1t ti k k N = ∑ (8-8) (11)按下式折算到20°C 时的渗透系数k 20: 2020 t t k k ηη= (8-9) 式中,t η,20η分别为水温T °C 和20°C 时水的动力粘滞系数。 (二) 变水头试验 1.仪器设备 (1)改进南55型渗透仪,试样高L =4cm ,试样横截面积A =30cm 2; (2)辅助设备:切土器、秒表、温度计、削土刀、凡士林等。 2.操作步骤 (1)试样制备 变水头渗透试验的试样分原状试样和扰动试样两种,其制备方法分别为:(a)原状试样:根据要测定的渗透系数的方向,用环刀在垂直或平行土层面方向切取原状试样,试样两端削平即可,禁止用修土刀反复涂抹。放入饱和器内抽气饱和(或其他方法饱和);(b)扰动试样:当干密 度较大(3 1.40/d g cm ρ≥)时,用饱和度较低(S t ≤80%)土压实或击实办 法制样;当干密度较低时,使试样泡于水中饱和后,制成需要干密度的饱 和试样。 (2)将盛有试样的环刀套入护筒,装好各部位止水圈。注意试样上下透水石和滤纸,按先后顺序装好,盖上顶盖,拧紧顶部螺丝,不得漏水漏气。 (3)把装好试样的渗透仪进水口与水头装置(测压管)相连。注意及时向测压管中补充水源,补水时,关闭进水口。 (4)在向试样渗透前,先由底部排气嘴出水,排除底部空气至气嘴无气泡时,关闭排气嘴,水自下向上渗流,由顶部出水管排水。 (5)待出水管有水流出后,开始测定试验数据。记录时间t=t 1时,上下游

常见材料导热系数(史上最全版)汇总

导热率K是材料本身的固有性能参数,用于描述材料的导热能力,又称为热导率,单位为W/mK。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。不同成分的导热率差异较大,导致由不同成分构成的物料的导热率差异较大。单粒物料的导热性能好于堆积物料。 稳态导热:导入物体的热流量等于导出物体的热流量,物体内部各点温度不随时间而变化的导热过程。 非稳态导热:导入和导出物体的热流量不相等,物体内任意一点的温度和热含量随时间而变化的导热过程,也称为瞬态导热过程。 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度 导热系数与材料的组成结构、密度、含水率、温度等因素有关。非晶体结构、密度较低的材料,导热系数较小。材料的含水率、温度较低时,导热系数较小。 通常把导热系数较低的材料称为保温材料(我国国家标准规定,凡平均温度不高于350℃时导热系数不大于0.12W/(m·K)的材料称为保温材料),而把导热系数在0.05瓦/米摄氏度以下的材料称为高效保温材料。 导热系数高的物质有优良的导热性能。在热流密度和厚度相同时,物质高温侧壁面与低温侧壁面间的温度差,随导热系数增大而减小。锅炉炉管在未结水垢时,由于钢的导热系数高,钢管的内外壁温差不大。而钢管内壁温度又与管中水温接近,因此,管壁温度(内外壁温度平均值)不会很高。但当炉管内壁结水垢时,由于水垢的导热系数很小,水垢内外侧温差随水垢厚度增大而迅速增大,从而把管壁金属温度迅速抬高。当水垢厚度达到相当大(一般为1~3毫米)后,会使炉管管壁温度超过允许值,造成炉管过热损坏。对锅炉炉墙及管道的保温材料来讲,则要求导热系数越低越好。一般常把导热系数小于0。8x10的3次方瓦/(米时·摄氏度)的材料称为保温材料。例如石棉、珍珠岩等填缝导热材料有:导热硅脂、导热云母片、导热陶瓷片、导热矽胶片、导热双面胶等。主要作用是填充发热功率器件与散热片之间的缝隙,通常看似很平的两个面,其实接触面积不到40%,又因为空气是不良导热体,导热系数仅有0.03w/m.k,填充缝隙就是用导热材料填充缝隙间的空气. 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W K: 导热率,W/mk A:接触面积 d: 热量传递距离△T:温度差 R: 热阻值 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。

实验五_土壤渗透系数的测定

实验五 土壤渗透系数的测定 1 测定意义 当土层被水分饱和后,土壤中的水分受重力影响而向下移动的现象称为渗透性。 土壤渗透性是土壤重要的特性之一,它与大气降水和灌溉水几乎完全进入土壤,并在其中贮存起来,而在渗透性不好的情况下,水分就沿土表流走,造成侵蚀。 土壤渗透性与土壤质地、结构、盐分含量、含水量以及湿度等有关。 2 测定原理 在饱和水分土壤中,渗透性按照达西公式计算如下: V=K ·I (厘米/秒) L h I = 式中:V ——渗透速度,每秒钟通过1平方厘米土壤断面的水的流量,以立 方厘米表示; I ——水压梯度,即渗透层中单位距离内的水压降; K ——渗透系数,在单位水压梯度(I=1)下,单位时间内通过单位截面积的流量 (毫升/分或小时); H ——土柱上水头差(厘米)即静水压力; L ——发生水分渗透作用的土层的厚度(厘米)即渗透路程。 在时间t 内渗透过一定截面积A (平方厘米)的水量Q ,可以用下列的方程式来表示: Q=V ·A ·t=K ·I ·A ·t 因此渗透系数 K=I t A Q ??(毫米/厘米2/分或小时) 土壤渗透性的测定有室外法(渗透简法)及室内法(环刀法)。

3 测定方法 3.1室外测定 3.1.1 仪器设备 ①渗透筒:铁制圆柱形筒,横截面积为1000平方厘米(内径358毫米),高350毫米。 ②量筒500ml和1000ml各一个。 ③小铁筒:打水用。 ④温度计:0—50℃ ⑤秒表或一般钟表 ⑥木制厘米尺、小刀、斧头等。 3.1.2 测定步骤 3.1.2.1、在选择具有代表性的地段上,布置一块约1平方米的圆形(直径113cm)试验地块,将其周围筑以土埂。土埂高约30 cm,顶宽20 cm,并捣实之。渗透筒置于中央,应用小刀按筒的圆周向外挖宽2—3cm,深15—20cm小沟,使筒深深嵌入土中。插好后,把取出的土壤重新填入隙缝并予捣实,防止沿壁渗漏损失。筒内部为试验区,外部为保护区。 也可用高15—20厘米面积分别为25×25 和50×50平方厘米的方形铁框或圆形铁筒打入土中3—5厘米进行测定。 3.1.2.2、在筒内:外各插入一米尺,以便观察灌水层的厚度。筒内外迅速灌水,使水层厚度保持为5cm. 为从一开始时,水就向土壤内渗入,所以必须很快地把水倒到预期的水层厚度。为了使灌入的水不致冲刷表层土壤,不应将水直接倒在土面上,而应在简内外灌水处用胶板或木板(甚至杂草或蒿草)保护之。 3.1.2.3、温度影响渗透系数很大,应在简内插入温度计,以使换算为10℃时的渗透系数。 3.1.2.4、当试验区内部灌水到5cm高时,应立即开始计时,每隔一定时间进行

常见材料换算方法

一、基础垫层材料换算方法: 1、灰土、砂、碎砖、碎石等单一材料、定额用量按下式取定: 定额用量:定额计量单位×压实系数×(1+损耗率) 压实系数=虚铺厚度÷压实厚度 2、多种材料混合垫层则用混合物的半成品数量遍入定额,其压实系数在定额附录配合比中已经考虑。 3、碎石或碎砖灌浆垫层,其砂浆或砂的用量按下式计算: 砂浆(砂)= ×填充密实度×(1+损耗率)×定额计量单位。 实例计算:以计价表2-116子目1:1砂石垫层为例(配合比以体积比计算): (1)石子的空隙率为×100%=44.4%,石子的空隙用砂填缝的密实度为90%。 (2)碎石40MM用量:0.5(定额计量体积)×1.04(压实系数)×1.5(容重)×1.02(损耗)=0.8T (3)黄砂用量:0.5(定额计量体积)×1.04(压实系数)×〖1.46(容重)×1.05(密实系数)÷1.18(此处应考虑干砂含水膨胀率18%)〗=0.676T 填缝隙用黄砂:〖0.5-0.5×0.56(石子密实体积)〗×0.9×1.04×(1.46×1.05÷1.18)=0.28T 合计黄砂用量:(0.676+0.28)×1.02(损耗)=0.98T。 二、砖砌体材料换算方法: 每立方米各种不同厚度砖墙用砖和砂浆用量的理论计算公式如下: A= ×K A:砖理论耗用量 K:墙厚的砖数×2(墙厚的砖数指0.5,1,1.5,2等) 砂浆净用量=1-砖墙×每块砖体积 实例计算:以计价表3-29一砖外墙子目为例 标准砖用量:=529.10块/M3 凸出墙面砖线条、扣梁头、垫块、预制板头等增加0.268%,即529.10×(1+0.268%)=530.51块/M3,另计损耗按1%计算:530.51×(1+1%)=536块/M3。 砂浆用量:1-0.24×0.115×0.053×529.10=0.266M3/M3,损耗率按1%计算,则(0.226+门窗四周嵌缝6.0×0.01×0.10)×(1+1%)=0.234M3/M3。 三、空心砌块墙、硅酸盐砌块墙 砌块= ×砌块比率×(1+损耗率) 标准砖=1M3砖砌体用砖量×比率 砂浆=1-各种规格砌块数×各种规格砌块每块砌体体积-每块砖体积×砖数 实例计算,以计价表3-22KP1砖砌体为例: KP1砖用量:×95%×(1+2%)=336块/M3 标准砖用量:15块/M3 四、桩基混凝土用量换算方法: 桩基混凝土用量=定额计量单位×充盈系数×操作损耗 其中混凝土充盈系数一般是指沉管灌注桩实灌混凝土体积与理论体积之比,即 充盈系数=实际灌注混凝土量÷按设计图计算混凝土量×(1+操作损耗%)。 实例计算:以计价表2-35、2-36钻孔灌注混凝土桩子目为例, 钻土孔:混凝土充盈系数取1.20,则混凝土用量=1.0×1.20×1.015=1.218M3/M3

停车场(库)设计车型外廓尺寸和换算系数

表一:停车场(库)设计车型外廓尺寸和换算系数 注: 1、三轮摩托车可按微型汽车尺寸计算。 2、二轮摩托车可按自行车尺寸计算。 3、车辆换算系数是按面积换算。 表二:机动车停车场设计参数

注:表中Ⅰ类指微型汽车,Ⅱ类指小型汽车,Ⅲ类指中型汽车,Ⅳ类指大型汽车,Ⅴ类指绞接车。表三:车辆纵横向净距 注:多层车库和地下车库的净距按国家标准GBJ67-84《汽车库设计防火规范》表5.0.6的规定执行。 表四:停车场通道的最小平曲线半径 表五:停车场通道最大纵坡度(%)

表六:自行车停车场主要设计指标 表七:旅馆机动车停车位指标 注: 第一类以接待外国人、港澳同胞和华侨为主。第二类接待国内旅客。 表八:饮食店停车位指标 表九:办公楼停车位指标(建议指标)

注: 1.一类:中央、省级机关、外贸机构及外国驻华办事机构。 2.二类:其他机构。 表十:商业场所停车位指标(建议指标) 注:以接待外国人、港澳同胞和华侨为主的商业场所机动车停车位指标应适当增加。表十一:体育馆停车位指标(建议指标) 注: 1.体育场停车位指标可适当减少。 2.体育馆:一类座位数≥4000;二类座位数<4000。 3.体育场:一类座位数≥15000;二类座位<15000。 表十二:影(剧)院停车位指标 注: 一类:省、市级和相当于省、市级的影(剧)院。 二类:一般影(剧)院。 表十三:展览馆停车位指标

表十四:医院停车位指标 注:表中所称建筑面积为门诊和住院部建筑面积之和。表十五:游览场所停车位指标 注: 一类:古典园林、风景名胜。 二类:一般性城市公园。 表十六:火车站停车位指标 表十七:码头停车位指标 表十八:住宅停车位指标

常用材料的导热系数表完整版

常用材料的导热系数表 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

材料的导热率 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W;K: 导热率,W/mk;A:接触面积;d: 热量传递距离;△T:温度差;R: 热阻值导热率K是材料本身的固有性能参数,用于描述材料的导热能力。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 根据R=A△T/Q这个公式,理论上来讲就能测试并计算出一个材料的热阻值R。但是这个公式只是一个最基本的理想化的公式,他设定的条件是:接触面是完全光滑和平整的,所有热量全部通过热传导的方式经过材料,并达到另一端。 实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM

常见的单位换算大全

常见的单位换算大全 1秒=1000毫秒(ms) 1毫秒=1/1,000秒(s) 1秒=1,000,000 微秒(μs) 1微秒=1/1,000,000秒(s) 1秒=1,000,000,000 纳秒(ns) 1纳秒=1/1,000,000,000秒(s) 1秒=1,000,000,000,000 皮秒(ps) 1皮秒=1/1,000,000,000,000秒(s) 1s=1000ms 1ms=1000us 1us=1000ns 1ns=1000ps 60秒= 1分钟 60分钟= 1小时 24小时= 1天 7天= 1星期 365.25天= 1年 100年= 1世纪 1平太阳日= 24小时3分56.555秒 1恒星日= 23小时56分4.091秒 1太阳年(回归年) = 365.2422天 (= 365天5小时48分46秒) 1恒星年= 365.2564天 (= 365天6小时9分9.5秒) 1朔望月= 29.5306天 1恒星月= 27.3712天 1太阳年= 12个朔望日= 354.36天 1秒=光行30万公里 1分=60秒 1刻=15分 1小时=4刻 1时=2小时 1天=12时 1候=5.0728125天 1节=3候 1旬=10天 1月=3旬 1季=6节 1年=4季 1代=10年

1世=30代 1纪=10代 面积 1平方公里(km2)=100公顷(ha)=247.1英亩(acre)=0.386平方英里(mile2) 1平方米(m2)=10.764平方英尺(ft2) 1平方英寸(in2)=6.452平方厘米(cm2) 1公顷(ha)=10000平方米(m2)=2.471英亩(acre) 1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2) 1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2) 1平方英尺(ft2)=0.093平方米(m2) 1平方米(m2)=10.764平方英尺(ft2) 1平方码(yd2)=0.8361平方米(m2) 1平方英里(mile2)=2.590平方公里(km2) 体积换算 1美吉耳(gi)=0.118升(1)1美品脱(pt)=0.473升(1) 1美夸脱(qt)=0.946升(1)1美加仑(gal)=3.785升(1) 1桶(bbl)=0.159立方米(m3)=42美加仑(gal)1英亩?英尺=1234立方米(m3) 1立方英寸(in3)=16.3871立方厘米(cm3)1英加仑(gal)=4.546升(1) 10亿立方英尺(bcf)=2831.7万立方米(m3)1万亿立方英尺(tcf)=283.17亿立方米(m3)

相关主题
文本预览
相关文档 最新文档