当前位置:文档之家› 高考数学专题复习圆锥曲线(文)

高考数学专题复习圆锥曲线(文)

2017年高考数学专题复习:圆锥曲线(文)

学校:___________姓名:___________班级:___________考号:___________

一、选择题(题型注释) 1.(2016高考新课标1文数)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l

的距离为其短轴长的

1

4

,则该椭圆的离心率为( ) (A )13 (B )12 (C )13 (D )34

2.(2016高考新课标2文数)设F 为抛物线C :y 2

=4x 的焦点,曲线y=k

x

(k >0)与C 交于点P ,PF ⊥x 轴,则k=( ) (A )

12 (B )1 (C )3

2

(D )2

3.(2016高考新课标Ⅲ文数)已知O 为坐标原点,F 是椭圆C :22

221(0)

x y a b a b

+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )

13 (B )12 (C )23 (D )3

4

4.(2016高考四川文数)抛物线2

4y x =的焦点坐标是( ) (A )(0,2) (B )(0,1) (C )(2,0) (D )(1,0)

5.(2016江西师大附中、鹰潭一中一联)已知抛物线C 的标准方程为)0(22

>=p px y ,M 为抛物线C 上一动点,)0)(0,(≠a a A 为其对称轴上一点,直线MA 与抛物线C 的另一个交点为N .当A 为抛物线C 的焦点且直线MA 与其对称轴垂直时,△MON 的面积为18. (Ⅰ)求抛物线C 的标准方程; (Ⅱ)记AN

AM t 1

1+=

,若t 值与M 点位置无关,则称此时的点A 为“稳定点”,试求出所有“稳定点”,若没有,请说明理由.

6.【2015高考新课标1,文5】已知椭圆E 的中心为坐标原点,离心率为

1

2

,E 的右焦点与抛物线2

:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = ( ) (A )3 (B )6 (C )9 (D )12

7.【2015高考重庆,文9】设双曲线222

2

1(a 0,b 0)x y a b 的右焦点是F ,左、右顶

点分别是12A ,A ,过F 做12A A 的垂线与双曲线交于B ,C 两点,若12A B A C ⊥,则双曲线的渐近线的斜率为( ) (A )

1

2 (B )2

2

(C )1 (D )2

8.【2015高考四川,文7】过双曲线2

2

13

y x -=的右焦点且与x 轴垂直的直线交该双曲线的两条渐近线于A 、B 两点,则|AB|=( )

(A (B )(C )6 (D ) 9.【2015高考陕西,文3】已知抛物线2

2(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( )

A .(1,0)-

B .(1,0)

C .(0,1)-

D .(0,1)

10.【2015高考广东,文8】已知椭圆22

2125x y m

+=(0m >)的左焦点为()1F 4,0-,则m =( )

A .9

B .4

C .3

D .2

11.【2015高考湖南,文6】若双曲线22

221x y a b

-=的一条渐近线经过点(3,-4),则此

双曲线的离心率为( )

A 、

3 B 、5

4 C 、43 D 、5

3

12.【2015高考安徽,文6】下列双曲线中,渐近线方程为2y x =±的是( )

(A )22

14y x -= (B )2

214

x y -= (C )22

12y x -= (D )2

212

x y -= 13.【2015高考福建,文11】已知椭圆22

22:1(0)x y E a b a b

+=>>的右焦点为F .短轴

的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于

4

5

,则椭圆E 的离心率的取值范围是( )

A .

B .3(0,]4

C .

D .3[,1)4

二、填空题(题型注释)

14.(2016高考上海文数)已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离_______________.

15.(2016高考北京文数)已知双曲线22221x y a b -= (0a >,0b >)的一条渐近线为

20x y +=,一个焦点为(5,0),则a =_______;b =_____________.

16.(2016高考浙江文数)设双曲线x 2

–23y =1的左、右焦点分别为F 1,F 2.若点P 在

双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是_______.

17.(2016高考山东文数)已知双曲线E :22x a

–22y b =1(a >0,b >0).矩形ABCD 的四

个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB|=3|BC|,则E 的离心率是_______. 18.(2016江西南昌一模)已知抛物线C:x 2

=4y 的焦点为F ,过点F 且斜率为1的直线与抛物线相交于M ,N 两点.设直线l 是抛物线C 的切线,且l ∥MN ,P 为l 上一点,则

的最小值为___________.

19.(2016湖南师大附中等四校联考)若抛物线)0(22

>=p px y 的准线经过双曲线

122=-y x 的一个焦点,则=p _____.

20.【2015高考浙江,文15】椭圆22221x y a b

+=(0a b >>)的右焦点()F ,0c 关于直

线b

y x c

=

的对称点Q 在椭圆上,则椭圆的离心率是 . 21.【2015高考北京,文12】已知()2,0是双曲线2

2

21y x b

-=(0b >)的一个焦点,

则b = .

22.【2015高考上海,文7】抛物线)0(22

>=p px y 上的动点Q 到焦点的距离的最小

值为1,则=p .

23.【2015高考上海,文12】已知双曲线1C 、2C 的顶点重合,1C 的方程为14

22

=-y x ,若2C 的一条渐近线的斜率是1C 的一条渐近线的斜率的2倍,则2C 的方程为 .

24.【2015高考山东,文15】过双曲线C :22

221x y a a

-=0,0a b >>()

的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为 .

三、解答题(题型注释)

25.(2016高考新课标1文数)在直角坐标系xOy 中,直线l:y=t (t≠0)交y 轴于点M,交抛物线C :2

2(0)y px p =>于点P,M 关于点P 的对称点为N,连结ON 并延长交C 于点H . (Ⅰ)求

OH

ON

; (Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.

26.(2016高考新课标2文数)已知A 是椭圆E :22

143

x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,

MA NA ⊥.

(Ⅰ)当AM AN =时,求AMN ?的面积;

(Ⅱ)当AM AN =2k <.

27.(2016高考新课标Ⅲ文数)已知抛物线C :2

2y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点. (Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR

FQ ;

(Ⅱ)若PQF ?的面积是ABF ?的面积的两倍,求AB 中点的轨迹方程.

28.(2016高考天津文数)(设椭圆13

2

22=+y a x (3>a )的右焦点为F ,右顶点为A ,

已知

|

|3||1||1FA e

OA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;

(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点

M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠=∠,求直线的l 斜率.

29.(2016高考上海文数)双曲线22

21(0)y x b b

-=>的左、右焦点分别为F1、F2,直线l

过F2且与双曲线交于A 、B 两点.

(1)若l 的倾斜角为

2

π

,1F AB △是等边三角形,求双曲线的渐近线方程;

(2)设b l 的斜率存在,且|AB|=4,求l 的斜率.学科&网

30.(2016广东广州综合测试一)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶

点为A ,左焦点为()12

0F -,,点(B 在椭圆C 上,直线()0y kx k =≠与椭圆

C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N .

(Ⅰ)求椭圆C 的方程;

(Ⅱ)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

31.【2015高考安徽,文20】设椭圆E 的方程为22

221(0),x y a b a b

+=>>点O 为坐标原

点,点A 的坐标为(,0)a ,点B 的坐标为(0,b ),点M 在线段AB 上,满足2,

BM MA =

直线OM . (Ⅰ)求E 的离心率e ;

(Ⅱ)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB .

32.【2015高考北京,文20】(本小题满分14分)已知椭圆C:2

2

33x y +=,过点()

D 1,0且不过点()2,1

E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M . (Ⅰ)求椭圆C 的离心率;

(Ⅱ)若AB 垂直于x 轴,求直线BM 的斜率;

(Ⅲ)试判断直线BM 与直线D E 的位置关系,并说明理由.

33.【2015高考湖南,文20】(本小题满分13分)已知抛物线2

1:4C x y =的焦点F 也

是椭圆22

222:1y x C a b

+=

(0)a b >>的一个焦点,

1C 与2C 的公共弦长为过点F 的直线l 与1C 相交于,A B 两点,与2C 相交于,C D 两点,且AC 与BD 同向. (Ⅰ)求2C 的方程;

(Ⅱ)若AC BD =,求直线l 的斜率.

34.【2015高考山东,文21】平面直角坐标系xOy 中,已知椭圆C :

22

22

+=1(>>0)x y b b αα的离心率为2,12)在椭圆C 上. (Ⅰ)求椭圆C 的方程;

(Ⅱ)设椭圆E :22

22+=144x y a b

,P 为椭圆C 上任意一点,

过点P 的直线=+y kx m 交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .

(ⅰ)求||

||

OQ OP 的值; (ⅱ)求ABQ ?面积的最大值.

35.【2015高考陕西,文20】如图,椭圆22

22:1(0)x y E a b a b

+=>>经过点(0,1)A -,且离心率为2.

(Ⅰ)求椭圆E 的方程; (Ⅱ)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同两点,P Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.

36.【2015高考四川,文20】如图,椭圆E :22

221x y a b

+=(a>b>0)的离心率是22,点P (0,1)在短轴CD 上,且PC PD ?=-1

(Ⅰ)求椭圆E 的方程;

(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ,使得OA OB PA PB λ?+?为定值?若存在,求λ的值;若不存在,请说明理由.

37.【2015高考上海,文22】(本题满分14分)本题共3个小题,第1小题4分,第2小题6分,第3小题6分.

已知椭圆1222=+y x ,过原点的两条直线1l 和2l 分别于椭圆交于A 、B 和C 、D ,

设AOC ?的面积为S .

(1)设),(11y x A ,),(22y x C ,用A 、C 的坐标表示点C 到直线1l 的距离,并证明||21221y x y x S -=;

A D B

C O

x y

P

(2)设kx y l =:1,)3

3,33(C ,31=S ,求k 的值; (3)设1l 与2l 的斜率之积为m ,求m 的值,使得无论1l 与2l 如何变动,面积S 保持不变.

参考答案

1.B

【解析】

试题分析:如图,由题意得在椭圆中,11OF c,OB b,OD 2b b 42

===?= 在Rt OFB ?中,|OF ||OB||BF ||OD |?=?,且222a b c =+,代入解得

22a 4c =,所以椭圆得离心率得1e 2=

,故选B .

考点:椭圆的几何性质

【名师点睛】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a,c 的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求e .

2.D

【解析】

试题分析:因为F 抛物线24y x =的焦点,所以(1,0)F , 又因为曲线(0)k y k x =>与C 交于点P ,PF x ⊥轴,所以21

k =,所以2k =,选D . 考点: 抛物线的性质,反比例函数的性质. 【名师点睛】抛物线方程有四种形式,注意焦点的位置.对函数y=

k x (0)k ≠,当0k >时,在(,0)-∞,(0,)+∞上是减函数,当0k <时,在(,0)-∞,(0,)+∞上是增函数.

3.A

【解析】

试题分析:由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得点||()FM k a c =-,||OE ka =,由OBE CBM ??,得1||||2||||

OE OB FM BC =,

2(c)ka a k a a c =-+,整理,得13c a =,所以椭圆离心率为13

e =,故选A . 考点:椭圆方程与几何性质.

【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得

b a

或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .

4.D

【解析】

试题分析:由题意,24y x =的焦点坐标为(1,0),故选D .

考点:抛物线的定义.

【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单的性质是我们重点要掌握的内容,一定要熟记掌握.

5.(Ⅰ)212y x =;(Ⅱ)仅当1103a -=,即3a =时,t 与m 无关 【解析】(Ⅰ)由题意,211||||2182222

MON p p S OA MN p =??=??==△, 6p =∴, 抛物线C 的标准方程为212y x =.

(Ⅱ)设1122()()M x y N x y ,,,,

设直线MN 的方程为x my a =+,联立212x my a y x

=+??=?得212120y my a --=, ∴2144480m a ?=+>, 1212y y m +=, 1212y y a =-,

由对称性,不妨设0m >,

(ⅰ)0a <时,12120y y a =->∵, 12y y ∴,同号,

又11||||t AM AN =+= 222

1222222212()111441111()11441y y m t m y y m a a m +??=?=?=- ?+++??

∴, 不论a 取何值,t 均与m 有关, 即0a <时,A 不是“稳定点”; (ⅱ)0a >时,12120y y a =-<∵, 12y y ∴,异号.

又11||||t AM AN =+=

2

21222

12()11()y y t m y y -=?+∴21212

2212()411()y y y y m y y +-=?+2

221144481144m a m a +=?+22111311a a m ??- ?=+ ?+ ?

???

, ∴仅当1

103

a -=,即3a =时,t 与m 无关,

6.B

【解析】∵抛物线2

:8C y x =的焦点为(2,0),准线方程为2x =-,∴椭圆E 的右焦点为(2,0),

∴椭圆E 的焦点在x 轴上,设方程为22

221(0)x y a b a b

+=>>,c=2,

∵12

c e a ==,∴4a =,∴222

12b a c =-=,∴椭圆E 方程为2211612x y +=, 将2x =-代入椭圆E 的方程解得A (-2,3),B (-2,-3),∴|AB|=6,故选B .

【考点定位】抛物线性质;椭圆标准方程与性质 【名师点睛】本题是抛物线与椭圆结合的基础题目,解此类问题的关键是要熟悉抛物线的定义、标准方程与性质、椭圆的定义、标准方程与性质,先由已知曲线与待确定曲线的关系结合已知曲线方程求出待确定曲线中的量,写出待确定曲线的方程或求出其相关性质. 7.C

【解析】由已知得右焦点(,0)F c (其中)0,2

2

2

>+=c b a c ,

)0,(),0,(21a A a A -,),(),,(2

2a

b c C a b c B -,

从而),(),,(2

221a b a c A a b a c A -=-+=,又因为12A B A C ⊥,

所以120AB A C ?=,即0)()()()(2

2=?-++?-a

b a b a

c a c , 化简得到1122±=?=a b

a

b ,即双曲线的渐近线的斜率为1±,

故选C .

【考点定位】双曲线的几何性质与向量数量积. 【名师点睛】本题考查双曲线的简单几何性质,利用向量垂直的条件来转化两直线垂直的条件而得到a 与b 的关系式来求解.本题属于中档题,注意运算的准确性. 8.D

【解析】由题意,a =1,b

c =2, 渐近线方程为y

将x =2代入渐近线方程,得y 1,2=±

故|AB|=D

【考点定位】本题考查双曲线的概念、双曲线渐近线方程、直线与直线的交点、线段长等基础知识,考查简单的运算能力. 【名师点睛】本题跳出直线与圆锥曲线位置关系的常考点,进而考查直线与双曲线渐近线交点问题,考生在解题中要注意识别.本题需要首先求出双曲线的渐近线方程,然后联立方程组,接触线段AB 的端点坐标,即可求得|AB|的值.属于中档题. 9.B

【解析】由抛物线2

2(0)y px p =>得准线2

p

x =-,因为准线经过点(1,1)-,所以2p =, 所以抛物线焦点坐标为(1,0),故答案选B

【考点定位】抛物线方程和性质.

【名师点睛】1.本题考查抛物线方程和性质,采用待定系数法求出p 的值.本题属于基础题,注意运算的准确性.2.给出抛物线方程要求我们能够找出焦点坐标和直线方程,往往这个是解题的关键. 10.C

【解析】由题意得:222549m =-=,因为0m >,所以3m =,故选C .

【考点定位】椭圆的简单几何性质.

【名师点晴】本题主要考查的是椭圆的简单几何性质,属于容易题.解题时要注意椭圆的焦点落在哪个轴上,否则很容易出现错误.解本题需要掌握的知识点是椭圆的简单几何性质,

即椭圆22221x y a b

+=(0a b >>)的左焦点()1F ,0c -,右焦点()2

F ,0c ,其中222

a b c =+. 11.D

【解析】因为双曲线22

221x y a b -=的一条渐近线经过点(3,-4),

2225

349163

c b a c a a e a ∴=∴-=∴=

,(),=. 故选D . 【考点定位】双曲线的简单性质

【名师点睛】渐近线是双曲线独特的性质,在解决有关双曲线问题时,需结合渐近线从数形

结合上找突破口.与渐近线有关的结论或方法还有:(1)与双曲线22

221x y a b -=共渐近线的可设为2222(0)x y a b λλ-=≠;(2)若渐近线方程为b

y x a =±,则可设为2222(0)x y a b λλ-=≠;(3)双曲线的焦点到渐近线的距离等于虚半轴长b ;(4)22

2

21(0.0)x y a b a b -=>>的一条渐近线的

斜率为b a =口的大小.另外解决不等式恒成立问题关键是等价转化,其实质是确定极端或极限位置.

12.A

【解析】由双曲线的渐进线的公式可行选项A 的渐进线方程为x y 2±=,故选A . 【考点定位】本题主要考查双曲线的渐近线公式.

【名师点睛】在求双曲线的渐近线方程时,考生一定要注意观察双曲线的交点是在x 轴,还是在y 轴,选用各自对应的公式,切不可混淆. 13.A

【解析】设左焦点为F ,连接1AF ,1BF .则四边形1BF AF 是平行四边形,故1AF BF =,所以

142AF AF a +==,所以2a =,设(0,)M b ,则

44

55

b ≥,故1b ≥,从而221a

c -≥,203c <≤,

0c <≤E 的离心率的取值范围是(0,

]2

,故选A . 【考点定位】1、椭圆的定义和简单几何性质;2、点到直线距离公式.

【名师点睛】本题考查椭圆的简单几何性质,将4AF BF +=转化为

142AF AF a +==,进而确定a 的值,是本题关键所在,体现了椭圆的对称性和椭圆概

念的重要性,属于难题.求离心率取值范围就是利用代数方法或平面几何知识寻找椭圆中基本量,,a b c 满足的不等量关系,以确定

c

a

的取值范围.

14【解析】试题分析:

利用两平行线间距离公式得

d 5

=

=

=

考点:两平行线间距离公式.

【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即,x y 的系数应该分别相同,本题较为容易,主要考查考生的基本运算能力. 15.1,2a b ==. 【解析】

试题分析:依题意有2c b a

?=?

?=-??,结合222c a b =+,解得1,2a b ==.

考点:双曲线的基本概念 【名师点睛】在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.

求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为12

2

=+By Ax 的形式,当0>A ,0>B ,

B A ≠时为椭圆,当0

16

.. 【解析】

试题分析:由已知1,2a b c ==

=,则2c

e a

=

=,设(,)P x y 是双曲线上任一点,由对称性不妨设P 在右支上,则12x <<,121PF x =+,221PF x =-,

12F PF ∠为锐角,则222

1212PF PF F F +>,即222(21)(21)4x x ++->

,解得x >

2x <<

,124PF PF x +=∈. 考点:双曲线的几何性质.

【思路点睛】先由对称性可设点P 在右支上,进而可得1F P 和2F P ,再由12F F ?P 为锐角三角形可得2

2

2

1212F F FF P +P >,进而可得x 的不等式,解不等式可得12F F P +P 的取值范

围. 17.2 【解析】

试题分析:依题意,不妨设6,4AB AD ==,作出图象如下图所示

则2124,2;2532,1

,c c a DF DF a ===-=-==故离心率2

21

c a == 考点:双曲线的几何性质

【名师点睛】本题主要考查双曲线的几何性质.本题解答,利用特殊化思想,通过对特殊情况的讨论,转化得到一般结论,降低了解题的难度.本题能较好的考查考生转化与化归思想、一般与特殊思想及基本运算能力等. 18.-14

【解析】设l :y x b =+,代入抛物线方程,得2

440x x b --=,因为l 与抛物线相切,所以16160b ?=+=,解得1b =-,所以l :1y x =-.由抛物线的方程,知(0,1)F ,

所以MN l :1y x =+.设1122(,),(,)M x y N x y ,由2

41x x y y ==+???,得2

440x x --=,所以12124,4x x x x +==-,所以

12126,1y y y y +==.设

(,1)P m m -,则

11(,1)PM x m y m =--+,22(,1)PN x m y m =--+,所以12()()

PM PN x m x m ?=--+12(1)(1)y m y m -+-+=2

121212()x x m x x m y y -++++2

12(1)()(1)m y y m -++-=

222(62)2[(3)7]14m m m -+=--≥-,所以PM PN ?的最小值为-14.

19.22.

【解析】抛物线)0(22>=p px y 的准线方程是2

p x -=,双曲线122=-y x 的一个焦点)0,2(1-F ,

∵抛物线)0(22>=p px y 的准线经过双曲线122=-y x 的一个焦点,∴22

-=-p ,解得22=p .

20

.2

【解析】设()F ,0c 关于直线b y x c =的对称点为(,)Q m n ,则有1222n b m c c n b m c

??=-??-?+?=???,解得3222222,c b bc bc m n a a --==,所以32222

22(,)c b bc bc Q a a --在椭圆上,即有32222422(2)(2)1c b bc bc a a b

--+=,解得222a c =

,所以离心率2c e a ==. 【考点定位】1.点关于直线对称;2.椭圆的离心率.

【名师点睛】本题主要考查椭圆的离心率.利用点关于直线对称的关系,计算得到右焦点的对称点,通过该点在椭圆上,代入方程,转化得到关于,a c 的方程,由此计算离心率.本题属于中等题。主要考查学生基本的运算能力.

21

【解析】由题意知2,1c a ==,2223b c a =-=

,所以b =

【考点定位】双曲线的焦点.

【名师点晴】本题主要考查的是双曲线的简单几何性质,属于容易题.解题时要注意双曲线的焦点落在哪个轴上,否则很容易出现错误.解本题需要掌握的知识点是双曲线的简单几何性质,即双曲线22

221x y a b

-=(0a >,0b >)的左焦点()1F ,0c -,右焦点()2F ,0c ,其中222c b a =+.

22.2

【解析】依题意,点Q 为坐标原点,所以12

=p ,即2=p . 【考点定位】抛物线的性质,最值.

【名师点睛】由于抛物线上的点到焦点的距离与到准线的距离相等,所以抛物线的顶点到焦点的距离最小.

23.14422=-y x 【解析】因为1C 的方程为1422=-y x ,所以1C 的一条渐近线的斜率2

11=k ,所以2C 的一条渐近线的斜率12=k ,因为双曲线1C 、2C 的顶点重合,即焦点都在x 轴上,

设2C 的方程为)0,0(122

22>>=-b a b

y a x , 所以2==b a ,所以2C 的方程为14

42

2=-y x . 【考点定位】双曲线的性质,直线的斜率.

【名师点睛】在双曲线的几何性质中,应充分利用双曲线的渐近线方程,简化解题过程.同时要熟练掌握以下三方面内容:(1)已知双曲线方程,求它的渐近线; (2)求已知渐近线的双曲线的方程; (3)渐近线的斜率与离心率的关系,如

24.23+

【解析】双曲线22221x y a a -=的右焦点为(,0)c .不妨设所作直线与双曲线的渐近线b y x a

=平行,其方程为()b y x c a =-,代入22221x y a a -=求得点P 的横坐标为222a c x c +=,由2222a c a c +=,得2()410c c a a -+=,解之得23c a =,23c a

=(舍去,因为离心率1c a

>),故双曲线的离心率为23. 【考点定位】1.双曲线的几何性质;2.直线方程.

【名师点睛】本题考查了双曲线的几何性质及直线方程,解答本题的关键,首先是将问题进一步具体化,即确定所作直线与哪一条渐近线平行,事实上,由双曲线的对称性可知,两种情况下结果相同;其次就是能对所得数学式子准确地变形,利用函数方程思想,求得离心率. 本题属于小综合题,也是一道能力题,在较全面考查直线、双曲线等基础知识的同时,考查考生的计算能力及函数方程思想.

25.(Ⅰ)2(Ⅱ)没有

【解析】

试题分析:先确定),(2

t p t N ,ON 的方程为x t

p y =,代入px y 22=整理得0222=-x t px ,

解得01=x ,p t x 222=,得)2,2(2t p t H ,由此可得N 为OH 的中点,即2|

|||=ON OH . (Ⅱ)把直线MH 的方程x t

p t y 2=-,与px y 22=联立得04422=+-t ty y ,解得t y y 221==,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其它公共点.

试题解析:(Ⅰ)由已知得),0(t M ,),2(2

t p

t P . 又N 为M 关于点P 的对称点,故),(2

t p t N ,ON 的方程为x t

p y =,代入px y 22=整理得022

2=-x t px ,解得01=x ,p t x 222=,因此)2,2(2

t p t H . 所以N 为OH 的中点,即2|

|||=ON OH . (Ⅱ)直线MH 与C 除H 以外没有其它公共点.理由如下:

直线MH 的方程为x t

p t y 2=-,即)(2t y p t x -=.代入px y 22=得04422=+-t ty y ,解得t y y 221==,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其它公共点.

考点:直线与抛物线

【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成;解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题.其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.

26.(Ⅰ)14449;(Ⅱ))

2. 【解析】

试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN ?的面积;(Ⅱ)设()11,M x y ,,将直线AM 的方程与椭圆方程组成方程组,消去y ,用k 表示1x ,从而表示||AM ,同理用k 表示||AN ,再由2AM AN =求k .

试题解析:(Ⅰ)设11(,)M x y ,则由题意知10y >.

由已知及椭圆的对称性知,直线AM 的倾斜角为4

π, 又(2,0)A -,因此直线AM 的方程为2y x =+.

将2x y =-代入22

143

x y +=得27120y y -=, 解得0y =或127y =,所以1127

y =. 因此AMN ?的面积11212144227749AMN S ?=???=. (2)将直线AM 的方程(2)(0)y k x k =+>代入22

143

x y +=得 2222(34)1616120k x k x k +++-=.

由2121612(2)34k x k -?-=+得212

2(34)34k x k -=+,故12||2|34AM x k =+=+.

由题设,直线AN 的方程为1(2)y x k

=-+,故同理可得212||43AN k =+. 由2||||AM AN =得

2223443k k k =++,即3246380k k k -+-=. 设32()4638f t t t t =-+-,则k 是()f t 的零点,22'()121233(21)0f t t t t =-+=-≥,

所以()f t 在(0,)+∞单调递增,又260,(2)60f f =<=>,

因此()f t 在(0,)+∞有唯一的零点,且零点k 在2)2k <<. 考点:椭圆的性质,直线与椭圆的位置关系. 【名师点睛】本题中22233k tk k t

=++,分离变量t ,得()332132k k t k -=>-,解不等式,即求得实数k 的取值范围.

27.(Ⅰ)见解析;(Ⅱ)21y x =-.

【解析】

试题分析:(Ⅰ)设出与x 轴垂直的两条直线,然后得出,,,,A B P Q R 的坐标,然后通过证明直线AR 与直线FQ 的斜率相等即可证明结果了;(Ⅱ)设直线l 与x 轴的交点坐标1(,0)D x ,利用面积可求得1x ,设出AB 的中点(,)E x y ,根据AB 与x 轴是否垂直分两种

情况结合AB DE k k =求解. 试题解析:由题设)0,2

1

(F .设b y l a y l ==:,:21,则0≠ab ,且 )2

,21(),,21(),,21(),,2(),0,2(22b a R b Q a P b b B a A +---. 记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x .

(Ⅰ)由于F 在线段AB 上,故01=+ab .

记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b a ab a ab a b a a b a k =-=-==--=+-=

, 所以AR FQ .

(Ⅱ)设l 与x 轴的交点为)0,(1x D , 则2

,2121211b a S x a b FD a b S PQF ABF -=--=-=??. 由题设可得2

21211b a x a b -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E .

当AB 与x 轴不垂直时,由DE AB k k =可得

)1(12≠-=+x x y b a . 而y b a =+2

,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为12-=x y .

考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法.

【方法归纳】(1)解析几何中平行问题的证明主要是通过证明两条直线的斜率相等或转化为利用向量证明;(2)求轨迹的方法在高考中最常考的是直接法与代入法(相关点法),利用代入法求解时必须找准主动点与从动点.

28.(Ⅰ)22143

x y +=(Ⅱ)± 【解析】

试题分析:(Ⅰ)求椭圆标准方程,只需确定量,由113||||||c OF OA FA +=,得113()c c a a a c +=-,再利用2223a c b -==,可解得21c =,24a =(Ⅱ)先化简条件:

MOA MAO ∠=∠?||||MA MO =,即M 再OA 中垂线上,1M x =,再利用直线与椭圆位

置关系,联立方程组求B ;利用两直线方程组求H ,最后根据HF BF ⊥,列等量关系解出直线斜率.

试题解析:(1)解:设(,0)F c ,由

113||||||c OF OA FA +=,即113()

c

c a a a c +=-,可得2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为

22

143

x y +=. (2)设直线的斜率为(0)k k ≠,则直线l 的方程为(2)y k x =-,

设(,)B B B x y ,由方程组22

1,43

(2),x y y k x ?+

=???=-?

消去y , 整理得2

2

2

2

(43)1616120k x k x k +-+-=,解得2x =或22

86

43

k x k -=+, 由题意得228643B k x k -=+,从而21243

B

k

y k -=+, 由(1)知(1,0)F ,设(0,)H H y ,有(1,)H FH y =-,22

29412(,)4343k k

BF k k -=++, 由BF HF ⊥,得0BF HF ?=,所以22

2124904343H

ky k k k -+=++, 解得29412H k y k -=,因此直线MH 的方程为2

19412k y x k k

-=-+,

设(,)M M M x y ,由方程组2

194,12(2),

k y x k k y k x ?-=-+

???=-?

消去y ,得22

20912(1)M k x k +=+, 在MAO ?中,MOA MAO ∠=∠?||||MA MO =,

即2

222(2)M M

M

M

x y x y -+=+,化简得1M x =,即

22209

112(1)

k k +=+,

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

【2020届】高考数学圆锥曲线专题复习:圆锥曲线解答题12大题型解题套路归纳

【高考数学中最具震撼力的一个解答题!】注:【求解完第一问以后,】→WILL COME ACROSS圆锥曲线题10大题型:(1)弦长问题(2)中点问题(3)垂直问题(4)斜率问题(5)对称问题(6)向量问题(7)切线问题(8)面积问题(9)最值问题(10)焦点三角形问题。中的2-----4类;分门别类按套路求解; 1.高考最重要考:直线与椭圆,抛物线的位置关系。第一问最高频考(总与三个问题有关):(1)———————;(2)——————————;(3)—————————; 2.圆锥曲线题,直线代入圆锥曲线的“固定3步走”:---------------------------------------------------; ——————————————————————————————————————; 3.圆锥曲线题固定步骤前9步:-------------------;---------------------------------------------;————————————;—————————;——————————;—————————————————;———————————;——————————————; 4.STEP1:首先看是否属于3种特殊弦长:(1)圆的弦长问题;(2)中点弦长问题(3)焦点弦长问题;→(1)圆的弦长问题:(2法)首选方法:垂径定理+勾

股定理:图示:--------------------------------;公式为:-------------------------;其中求“点线距”的方法:———————;次选:弦长公式;→(2) 中点弦长问题:(2法)首选方法:“点差法” 椭圆:(公式一)--------------------------------;(公式二)--------------------------------;副产品:两直线永远不可能垂直!原因:___________;【两直线夹角的求法:(夹角公式)___________;】双曲线(公式一)--------------------------------;(公式二)--------------------------------;抛物线:形式一:___________;(公式一)--------------------------------;(公式二)--------------------------------;形式2:___________;(公式一)--------------------------------;(公式二)--------------------------------;附:“点差法”步骤:椭圆:“点”_______________________;___________________________;“差”__________________________________;“设而不求法”_______________________________;“斜率公式”+“中点公式”_____________________;___________;___________;→得公式:(公式一)-------------------;(公式二)---------------------;附:“点差法”步骤:抛物线;形式一___________;:“点”_______________________;_____________________;“差”_________________________;“设而不求法”___________________;“斜率公式”+“中点公式”_____________;___________;___________;→得公式:(公式一)---------------------;(公式二)--------------------;附:“点差法”步骤:

高考数学一轮复习专题突破训练圆锥曲线

圆锥曲线 一、填空题 1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值 为___ 2 __________。 2、(2013年江苏高考)双曲线19 162 2=-y x 的两条渐近线的方程为 。 3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为 )0,0(122 22>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆 C 的离心率为 。 4、( 南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C : y x 42=的焦点为F ,定点)0, 22(A ,若射线FA 及抛物线C 相交于点M ,及抛物线C 的准线相交于点N ,则FM :MN= 5、(苏锡常镇四市 高三教学情况调研(二))已知双曲线22 221(,0) x y a b a b -=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲ 6、(泰州市 高三第二次模拟考试)已知双曲线22 14x y m -=的渐近线方程为 2 y x =± ,则m = ▲

7、(盐城市 高三第三次模拟考试)若抛物线28y x =的焦点F 及双曲线 22 13x y n -=的一个焦点重合,则n 的值为 ▲ 8、( 江苏南京高三9月调研)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近 线方程 为y =±3x ,则该双曲线的离心率为 ▲ 9、( 江苏苏州高三9月调研)已知双曲线22 15 x y m -=的右焦点及抛物线 212y x =的焦点相同,则此双曲线的渐近线方程为 ▲ 10、(南京市、盐城市 高三)若双曲线222(0)x y a a -=>的右焦点及抛物线 24y x =的焦点重合,则a = ▲ . 11、(南通市 高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物 线24y x =焦点的双曲线的方程是 12、(苏州市 高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为 13、(泰州市 高三上期末)双曲线12222=-b y a x 的右焦点到渐近线的距离是其 到左顶点距离的一半,则双曲线的离心率e = ▲ 14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线22 19x y m -=的一个焦点为(5,0),则实数 m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐 标系xOy 中,双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线及抛物线y 2=4x Y

高三文科数学圆锥曲线综合复习讲义

高三文科数学圆锥曲线综合复习讲义 一、基础知识【理解去记】 1.椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF 1|+|PF 2|=2a (2a>|F 1F 2|=2c). 第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0b>0), F 1(-c, 0), F 2(c, 0)是它的两焦点。若P(x, y)是椭圆上的任意一 点,则|PF 1|=a+ex, |PF 2|=a-ex. 5.补充知识点: 几个常用结论: 1)过椭圆上一点P(x 0, y 0)的切线方程为: 12020=+b y y a x x ; 2)斜率为k 的切线方程为222b k a kx y +±=;3)过焦点F 2(c, 0)倾斜角为θ的弦的长为 θ 2222 cos 2c a ab l -=。 6.双曲线的定义,第一定义: 满足||PF 1|-|PF 2||=2a(2a<2c=|F 1F 2|, a>0)的点P 的轨迹; 第二定义:到定点的距离与到定直线距离之比为常数e(>1)的点的轨迹。 7.双曲线的方程:中心在原点,焦点在x 轴上的双曲线方程为

高考数学圆锥曲线专题复习

圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上?f(x0,y 0)=0; 点P0(x0,y0)不在曲线C上?f(x0,y0)≠0 两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0 点P0(x0,y0)是C1,C2的交点? f2(x0,y0) =0 方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆 圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2 +(y-b)2 =r 2 圆心在坐标原点,半径为r 的圆方程是 x 2 +y 2 =r 2 (2)一般方程 当D 2 +E 2 -4F >0时,一元二次方程 x 2 +y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2 E ),半径是 2 4F -E D 22+.配方,将方程 x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44 F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内, 其中|MC |=2 02 0b)-(y a)-(x +. (3)直线和圆的位置关系 ①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法 (ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d= 2 2 C Bb Aa B A +++与半径r 的大小关系来判 定.

全国名校高考数学专题训练圆锥曲线

全国名校高考专题训练——圆锥曲线选择填空100题 一、选择题(本大题共60小题) 1.(江苏省启东中学高三综合测试二)在抛物线y2=2px上,横坐标为4的点到焦点的距离为5,则p的值为( ) C. 2 D. 4 2.(江苏省启东中学高三综合测试三)已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率等于( ) 3.(江苏省启东中学高三综合测试四)设F1,F2是椭圆4x2 49 + y2 6 =1的两个焦 点,P是椭圆上的点,且|PF1|:|PF2|=4:3,则△PF1F2的面积为( ) 4.(安徽省皖南八校高三第一次联考)已知倾斜角α≠0的直线l过椭圆x2 a2+ y2 b2 =1(a>b>0)的右焦点F交椭圆于A,B两点,P为右准线上任意一点,则∠APB为( ) A.钝角 B.直角 C.锐角 D.都有可能 5.(江西省五校高三开学联考)从一块短轴长为2b的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是[3b2,4b2],则这一椭圆离心率e的取值范围是( ) A.[ 5 3 , 3 2 ] B.[ 3 3 , 2 2 ] C.[ 5 3 , 2 2 ] D. [ 3 3 , 3 2 ]

6.(安徽省淮南市高三第一次模拟考试)已知点A ,F 分别是椭圆x 2a 2+y 2 b 2=1(a >b >0)的右顶点和左焦点,点B 为椭圆短轴的一个端点,若BF →·BA →=0=0,则椭圆的离心率e 为( ) 7.(安徽省巢湖市高三第二次教学质量检测)以椭圆x 2a 2+y 2 b 2=1(a >b >0)的 右焦点为圆心的圆经过原点,且被椭圆的右准线分成弧长为2:1的两段弧,那么该椭圆的离心率等于( ) 8.(北京市朝阳区高三数学一模)已知双曲线C 1:x 2a 2-y 2 b 2=1(a >0,b >0)的 左,右焦点分别为F 1,F 2,抛物线C 2的顶点在原点,它的准线与双曲线C 1的左准线重合,若双曲线C 1与抛物线C 2的交点P 满足PF 2⊥F 1F 2,则双曲线 C 1的离心率为( ) A. 2 B. 3 C.233 2 9.(北京市崇文区高三统一练习一)椭圆x 2a 2+y 2 b 2=1(a >b >0)的中心,右焦 点,右顶点,右准线与x 轴的交点依次为O ,F ,A ,H ,则|FA | |OH |的最大值为 ( ) A.12 B.13 C.14 10.(北京市海淀区高三统一练习一)直线l 过抛物线y 2=x 的焦点F ,交抛物线于A ,B 两点,且点A 在x 轴上方,若直线l 的倾斜角θ≥ π 4 ,则|FA |

高考数学圆锥曲线综合题题库1 含详解

1、(广东省广州执信中学、中山纪念中学、深圳外国语学校三校期末联考)设1F 、2F 分别是 椭圆22 154 x y +=的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求21PF PF ?的最大值和最小值; (Ⅱ)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C 、D ,使得|F 2C|=|F 2D|?若存在,求直线l 的方程;若不存在,请说明理由. 解:(Ⅰ)易知)0,1(),0,1(,1,2,521F F c b a -=∴=== 设P (x ,y ),则1),1(),1(2 221-+=--?---=?y x y x y x PF 35 1 1544222+=-- +x x x ]5,5[-∈x , 0=∴x 当,即点P 为椭圆短轴端点时,21PF PF ?有最小值3; 当5±=x ,即点P 为椭圆长轴端点时,21PF PF ?有最大值4 (Ⅱ)假设存在满足条件的直线l 易知点A (5,0)在椭圆的外部,当直线l 的斜率不 存在时,直线l 与椭圆无交点,所在直线l 斜率存在,设为k 直线l 的方程为)5(-=x k y 由方程组22 22221(54)5012520054 (5)x y k x k x k y k x ?+ =?+-+-=??=-? ,得 依题意220(1680)0k k ?=-><< ,得 当5 5 55< <- k 时,设交点C ),(),(2211y x D y x 、,CD 的中点为R ),(00y x , 则4 5252,455022 2102221+=+=+=+k k x x x k k x x .4 520)54525()5(22200+-=-+=-=∴k k k k k x k y 又|F 2C|=|F 2D|122-=??⊥?R F k k l R F

全国卷高考数学圆锥曲线大题集大全

全国卷高考数学圆锥曲线大题集大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: (R); AG AD λλ=∈2; GE GF GH +=0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23 = e ,已知点)3,0(P 到 这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

新人家A版高考数学一轮复习:圆锥曲线的综合问题

圆锥曲线的综合问题 [知识能否忆起] 1.直线与圆锥曲线的位置关系 判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0). 若a ≠0,可考虑一元二次方程的判别式Δ,有: Δ>0?直线与圆锥曲线相交; Δ=0?直线与圆锥曲线相切; Δ<0?直线与圆锥曲线相离. 若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题 设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2),则弦长|AB |=1+k 2|x 1 -x 2|或 1+1 k 2|y 1-y 2|. [小题能否全取] 1.(教材习题改编)与椭圆x 212+y 2 16=1焦点相同,离心率互为倒数的双曲线方程是( ) A .y 2- x 23=1 B.y 23 -x 2 =1 C.34x 2-3 8 y 2=1 D.34y 2-3 8 x 2=1 解析:选A 设双曲线方程为y 2a 2-x 2 b 2=1(a >0,b >0), 则????? a 2+ b 2= c 2, c a =2,c =2, 得a =1,b = 3. 故双曲线方程为y 2- x 2 3 =1. 2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 2 4=1的位置关系是( ) A .相交 B .相切 C .相离 D .不确定 解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高考数学总复习圆锥曲线综合

第六节 圆锥曲线综合 考纲解读 1.掌握与圆锥曲线有关的最值、定值和参数范围问题. 2.会处理动曲线(含直线)过定点的问题. 3.会证明与曲线上的动点有关的定值问题. 4.会按条件建立目标函数,研究变量的最值及取值范围问题,注意运用数形结合法和几何法求某些量的最值. 命题趋势研究 从内容上看,预测2015年高考主要考查两大类问题:一是根据条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质,其热点有:①以客观题的形式考查圆锥曲线的基本概念和性质;②求平面曲线的方程和轨迹;③圆锥曲线的有关元素计算、关系证明或范围确定;④涉及圆锥曲线对称变换、最值或位置关系的有关问题. 从形式上看,以解答题为主,难度较大. 从能力要求上看,要求学生具备一定的数形结合、分析问题和解决问题及运算能力. 知识点精讲 一、定值问题 解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量—函数—定值”,具体操作程序如下: (1)变量----选择适当的量为变量. (2)函数----把要证明为定值的量表示成变量的函数. (3)定值----化简得到的函数解析式,消去变量得到定值. 求定值问题常见的方法有两种: (1)从特殊情况入手,求出定值,再证明该定值与变量无关; (2)直接推理、计算,并在计算推理过程中消去变量,从而得到定值. 二、求最值问题常用的两种方法 (1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形性质来解决,这是几何法. (2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求该函数的最值.求函数的最值常见的方法有基本不等式法、单调性法、导数法和三角换元法等,这就是代数法. 三、求定值、最值等圆锥曲线综合问题的“三重视” (1)重视定义在解题中的作用(把定义作为解题的着眼点). (2)重视曲线的几何特征特别是平面几何性质与方程的代数特征在解题中的作用. (3)重视根与系数的关系在解题中的作用(涉及弦长、中点要用根与系数的关系). 四、求参数的取值范围 据已知条件及题目要求等量或不等量关系,再求参数的范围. 题型归纳及思路提示 题型150 平面向量在解析几何中的应用 思路提示 解决平面向量在解析几何中的应用要把几何特征转化为向量关系,并把向量用坐标表示.常见的应用有如下两个方面. (1)用向量的数量积解决有关角的问题.直角?0a b =,钝角?0a b <(且,a b 不反向),

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线11与12是同一平面两条互相垂直的直线, 交点是A ,点B 、D 在直线11上(B 、 D 位于点A 右侧),且|AB|=4 , |AD|=1 , M 是该平面上的一个动点, M 在l i 上的射影点 是 N ,且 |BN|=2|DM|. (I )建立适当的坐标系,求动点 M 的轨迹C 的方程. (II )过点D 且不与11、12垂直的直线1交(I )中的轨迹C 于E 、F 两点;另外平面上的点 G 、 求点G 的横坐标的取值围. M ___ B ___________________ A D N B 11 、3 e 2. 设椭圆的中心是坐标原点,焦点在 x 轴上,离心率 2,已知 点P(0,3) 到这个椭圆 上的点的最远距离是 4,求这个椭圆的方程. H 满足: AD( R); G E G F 2G H ; G H E F 0. 12

2 2 C x y 1( b 0) 3. 已知椭圆/ b2的一条准线方程是25 , 4其左、右顶点分别

(I) 求椭圆C i的方程及双曲线C2的离心率; (H)在第一象限取双曲线C2上一点P,连结AP交椭圆C i于点M,连结PB并延长交椭 圆C i于点N,若AM MP.求证:MN ?AB 0. 4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45。的直线交 椭圆于A, B两点.设AB中点为M,直线AB与OM的夹角为 a. (1) 用半焦距c表示椭圆的方程及tan ; (2) 若2b>0)的离心率 3 ,过点A (0, -b)和B (a, 0)的直线 ,3 与原点的距离为 2 (1)求椭圆的方程 (2)已知定点E (-1, 0),若直线y= kx + 2 (k乒0与椭圆交于C D两点问:是否存在k的值,使以CD 为直径的圆过E点?请说明理由 2 2 C x y 是A、B;双曲线, a2b2 1 的一条渐近线方程为3x- 5y=0. 2 x 2 5.已知椭圆a

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上 (B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ①(R);AG AD λλ=∈②2;GE GF GH +=③0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率23 = e ,已知点)3,0(P 到这个椭圆 上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若MP AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

历年高考数学圆锥曲线第二轮专题复习

高考数学试题圆锥曲线 一. 选择题: 1.又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点, 且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到 抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 41 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于它 到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C . D . 6.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A )

高考数学圆锥曲线及解题技巧

椭圆与双曲线的性质 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线 方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆 的焦点角形的面积为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应 于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除 去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)

数学高考圆锥曲线压轴题

数学高考圆锥曲线压轴 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学高考圆锥曲线压轴题经典预测一、圆锥曲线中的定值问题 ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的离心率e= 3 2,a+b=3. (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值. ★★如图,椭圆C:x2 a2+ y2 b2=1(a>b>0)经过点P(1, 3 2),离心率e= 1 2,直 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3若存在,求λ的值;若不存在,说明理由. ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的左右焦点分别是F1,F2,离心率为 3 2,过 F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只 有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明 1 kk1+ 1 kk2 为定值,并求出这个定值. - 2 -

二、圆锥曲线中的最值问题 +y2 b2=1( a>b>0)的离心率为 (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. - 3 -

相关主题
文本预览
相关文档 最新文档