当前位置:文档之家› 关系数据库

关系数据库

关系数据库
关系数据库

1.3 常用关系数据库

目前主流的数据库厂商主要包括Oracle、Microsoft、Sybase、Informix、IBM等,每一个厂商都有自己不同版本的数据库产品。例如,Oracle数据库、Microsoft SQL Server数据库、Microsoft Access数据库、FoxPro数据库等。另外还有一些厂商提供了一些开源版本的数据库产品,主要包括MySQL数据库、PostgreSQL数据库、SAP等。这些数据库都是目前比较常用的关系数据库。这一节来介绍几种主要的常用关系数据库。

1.3.1 Oracle数据库

Oracle数据库是是美国Oracle公司(甲骨文)推出的关系数据库系统,它是目前主流的广泛使用的数据库系统之一。作为大型的数据库系统,Oracle数据库提供了完整的数据管理功能,主要作用与大、中型应用系统、C/S(客户端/服务器)、B/S(浏览器/服务器)系统中的服务器端。对于数据量大、并发操作多,实时性要求高的系统,服务器端的数据库一般都选择Oracle数据库。

Oracle公司从1984年推出运行在PC机上的Oracle数据库到现在,版本在不断的编号和更新。在1986年的第5版中,增加了Oracle数据库的分布式处理机制;在1992年的第7版中,提供了比较完善的分布式数据库功能;到2001年推出的Oracle9i是一个完整的、简单的、用于互联网的、智能化、安全可靠的数据库产品;随后Oracle公司又推出了Oracle10g,在Oracle10g中加入了网格计算的功能,并在安全性、可伸缩性、可用性都都得到了加强,并提供了SQL语言和PL/SQL语言对正则表达式的支持‘在2007年又推出了Oracle11g,该版本中在数据库管理和PL/SQL部分增加了许多新的特性。

1.3.2 Microsoft SQL Server数据库

Microsoft SQL Server数据库是Microsoft公司(微软)推出的关系数据库系。也是目前主流的广泛使用的数据库系统之一。SQL Server数据库具有高性能、可扩展、先进的系统管理、支持WINDOWS 图形化管理工具、很好的事务处理功能等特点。

Microsoft SQL Server数据库的1.0版本是在1989年推出的,之后经历了1.11、SQL Server for Windows NT3.1、6.0、7.0、等版本。在2000年、2005年和2008年Microsoft公司分别推出了SQL Server2000、SQL Server2005和SQL Server2008三个版本。目前常用的两个版本是SQL Server2005和SQL Server2008。SQL Server2008中在安全性、可靠性、可扩展性等方面都比SQL Server2005有了很大的改进,同时还增加了T-SQL语言的功能。例如,增加了T-SQL的行构造器、增加了日期时间的数据类型、增加了MERGE语句等。

1.3.3 MySQL数据库

MySQL是瑞典的MySQL AB公司开发的一款功能强大、使用灵活、多用户、多线程SQL的数据库管理系统。为用户提供了丰富的应用程序接口和非常有用的功能集,是互联网中流行的数据库服务器,很多软件开发人员和商业用户也都在使用MySQL数据库。

MySQL数据库是由C和C++语言编写的,它支持多线程,为不同的编程语言像Perl、PHP、Java、Python、C++语言等都提供了相应的API,并且具有操作简单、性能高、可移植性好、安装时占用的资

·217·

源少等特点。而它的最大特点就是对于个人用户它是免费的,可以到其官方网站https://www.doczj.com/doc/34921246.html,/上下载,其中文网址为https://www.doczj.com/doc/34921246.html,/。目前MySQL数据库的最新版本是MySQL5.0,本书中使用的就是这个版本。

1.3.4 PostgreSQL数据库

PostgreSQL数据库是以Postgres 版本4.2为基础,由美国加州伯克利分校开发的一款对象关系型数据库管理系统。PostgreSQL数据库采用的比较经典的C/S (客户端/服务器)结构,它支持事务、存储过程、并发控制、性能优异。PostgreSQL数据库服务器还提供了统一的客户端C 接口,像ODBC、JDBC、Perl、C/C++等不同的客户端接口都是源自这个C接口,而且PostgreSQL数据库几乎支持所有类型的数据库客户端接口。PostgreSQL数据库还拥有极其强大的扩展能力,可以很容易地扩展数据类型、函数、操作符、索引方法等。

与MySQL数据库相比,PostgreSQL数据库提供的功能要比MySQL数据库丰富,但是在速度和稳定性方面它不及MySQL数据库。PostgreSQL数据库也是免费的,可以到其官方网站http://www. https://www.doczj.com/doc/34921246.html,/上下载。

1.4 安装与使用MySQL5.0数据库

MySQL是一款功能强大、使用灵活、多用户、多线程SQL的数据库管理系统。具有操作简单、性能高、可移植性好、安装时占用的资源少等特点。这一节将来介绍MySQL 5.0和用户图形界面的安装以及MySQL 5.0的运行过程。

1.4.1 安装MySQL 5.0

MySQL 5.0的最新版本可以其官方网站https://www.doczj.com/doc/34921246.html,/下载,也可以到其中文网站上下载,其中文网站的网址为https://www.doczj.com/doc/34921246.html,/。完成之后下载后,就可以安装MySQL数据库库。这里以MySQL 5.0为例,来介绍如何安装MySQL 5.0数据库。

(1)将下载到的文件解压缩后,执行安装文件,会出现的安装向导界面中,如图1.4所示,然后单击“Next”按钮

·218·

图1.4 MySQL 5.0安装向导界面

(2)在出现的“Setup Type”界面中,选择“typical”安装类型,单击“Next“按钮,如图1.5所示。

图1.5 选择安装类型界面

(3)在出现的“Ready to Install the Program”界面中,单击“Install”按钮,如图1.6所示。

图1.6 安装MySQL 5.0数据库界面

(4)安装完成后,在出现的“MySQL https://www.doczj.com/doc/34921246.html, Sign-up”界面中,选择“skip Sign-up”单选按钮,单击“Next”按钮后,出现如图1.7所示的界面。

·219·

图1.7 安装完成界面

(5)安装完成后,会出现“Welcme to the MySQL 5.0 server Instance Configuration Wizard1.0.8”的界面。单击“finish”按钮。

(6)然后会出现“MySQL Server Instance Configuration”界面,继续安装MySQL Server。连续单击“Next”按钮,直到出现“please set the networking options”界面。

(7)在出现的“please set the networking options”界面中设置端口号。这里使用默认的端口号3306。如果想修改端口后,可以在“port Number”所指示的下拉列表中修改,修改完成后单击“Next”按钮,如图1.8所示。

图1.8 设置端口号界面

(8)在出现的“please set security options”的界面中输入密码root,并在确认后,单击“Next”按钮。,如图1.9所示。

·220·

图1.9 输入密码并确认界面

(9)在出现的“Configuration the MySQL Server 5.0 server instance”界面中,单击“Excute”按钮。

(10)单击“Excute”按钮后,会执行MySQL Server的安装程序,出现如图1.10所示的画面。

图1.10 安装MySQL Server界面

(11)正常安装结束后,单击“开始”|“所有程序”|“MySQL 5.0”|“MySQL 5.0 Command Line Client”命令。运行后在该界面中输入密码root,其结果如图1.11所示。

图1.11 MySQL 5.0 Command Line Client运行画面

1.4.2 安装用户图形界面

安装完成MySQL 5.0后,就可以进行数据操作了,但是如图1.11所示,其操作环境的界面并不友好,因此需要为其安装一个与用户交互的图形界面。MySQL的用户界面主要有MySQL Administrator

·221·

和MySQL Query Brower。其中,MySQL Query Brower主要用于编写和调试SQL语句,这里安装的就是MySQL Query Brower。其安装过程如下:

(1)执行“mysql-gui-tools-5.0-r10-win32.msi”文件,会出现如图1.12所示的画面,然后单击“Next”按钮。

图1.12 用户图形安装界面

(2)在出现的“License Agreement”界面中,单击“I accept the terms in the license agreement”后的单选按钮。

(3)在出现的“Destination Folder”界面中,出现选择安装路径的界面,选择默认的安装路径后单击“Next”按钮,如图1.13所示。

图1.13 选择安装路径界面

(4)在出现的“step type”界面中选择“complete”选项。

(5)在出现的“Ready to Instance Program”的界面中,单击“Next”按钮,其安装界面如图1.14所示。

·222·

图1.14 用户图形安装界面

(6)单击“Install”按钮,开始安装。安装完成后的界面如图1.15所示。单击“finish”按钮,完成用户图形界面的安装。

图1.15 安装完成界面

(5)在安装完成后,单击“开始”|“所有程序”|“MySQL”命令会出现如图1.16所示的内容。

图1.16 MySQL 5.0文件内容界面

1.4.3 运行MySQL 5.0

在安装完成图形界面工具以后,就可以运行MySQL 5.0了。单击“开始”|“MySQL”|“MySQL Query Brower”命令,会出现一个用户确认界面,如图1.16所示。

·223·

图1.16 用户确认界面

在第一次进入MySQL5.0的图形用户界面时,需要填写一些用户信息。在该界面的“Server Host”中需要输入127.0.0.1表示本地机器;“Port“是表示端口号,这里使用默认的端口号3306;“Username”文本框中输入root;“password”文本框中输入安装MySQL 5.0时设置的密码root;在“Default Schema 文本框中输入一个数据库的名字。这里输入的是test_STInfo。设置完成后,单击”OK“按钮进入MySQL 5.0。其界面如图1.17所示。

图1.17 MySQL 5.0图形用户界面

注意:如果在“Default Schema”文本框中输入的数据库在MySQL 5.0中不存在,则系统会为其创建一个同名的数据库。

图1.17显示的是一个MySQL 5.0图形用户界面。其中,最上面的标题栏显示的是用户名,连接机器的Server Host、端口号,以及操作的数据库名等信息;其下是菜单栏,菜单栏主要包括File、Edit、View、Query、Script、Tools、Windows和Help;在菜单栏下面的空白处用来编写SQL语句;中间的空白处用来显示查询结果;界面左侧在Schemta中有一个test_STInfo的数据库,这个就是用户新创建的数据库,但该数据库中没有任何的表。另外2个数据库是MySQL 5.0自带的数据库。

·224·

1.5 小结

这一章主要介绍了关系数据库中数据模型中涉及到的三个重要概念,概念模型和关系数据模型以及关系模式。另外还介绍了几种常用的数据库,并详细讲解了MySQL5.0数据库的安装和使用方法。在本书中,将以MySQL5.0数据库为基础对SQL语言进行讲解。在书中以后出现的SQL语言查询或者更新结果的插图都是在MySQL5.0数据库下运行的结果。

浅谈对的理解对象—关系型数据库

浅谈对对象—关系型数据库的理解 姓名:杨小敏 学号:2010206190026

针对对象—关系型数据库的理解我想结合自己的专业(地图学与地理信息系统)从下面三个方面来理解:(1)关系型数据的发展以及在空间数据管理方面的优缺点(2)面向对象数据库的发展及在空间数据管理方面的优缺点(3)关系型数据库和面向对象技术的融合在数据库发展中所起到的独特作用在我们GIS专业领域内,随着信息技术的发展,各种应用系统建设的不断深入,像现在面向21世纪的应急应用系统的建设、城市基础地理空间信息数据库系统与共享平台的建设、地理信息公共服务平台的建设,小到“数字城市”的建设,大到“数字地球”乃至“智慧地球”的建设,我们已经开始不满足数值和文字的信息处理,为了达到系统建设平台尤其是公共服务平台的建设起到良好的客户友好体验,大量的图形信息,音频信息已经深入到数据库的设计中,其中尤其是空间数据库管理备受瞩目。所以,面对信息爆炸的21世纪,海量数据的存储和管路已经不是传统的数据库能解决的,空间数据管理需要更强的数据库——对象关系型数据库。 为什么空间数据需要对象关系型数据库的管理才更有效?我想简单的说一下GIS空间数据的基本特征:(1)空间特征:每个空间对象都具有空间坐标,所以在存储空间数据的同时我们要考虑数据的空间分布特征;(2)非结构化特征:通用数据库或者是传统数据库数据记录一般是结构化的,在面对空间图形信息的时候难以直接采用关系数据管理系统;(3)空间关系特征:空间数据的空间关系最重要的就是空间拓扑关系,这种拓扑结构方便了空间数据的查询和空间分析,但是给空间数据的一致性和完整性的维护增加了复杂性;(4)海量数据的特征:数据库在面对海量数据的存储和组织时,一般在二维空间上划分块或图幅,在垂直的方向上划分层在组织海量空间数据。 在空间数据的管理技术的发展中,从手工管理管理阶段到文件管理阶段再到数据库管理阶段,在三个数据管理阶段,对数据管理方式也不尽相同,在这里,我想说的是空间数据库的发展历史对空间数据管理的影响,第一是层次关系型数据库:只是数据库发展的初级阶段,这是空间数据的管理大多用文件方式管理,很显然不适合管理海量的空间数据,所以淘汰;第二是网络关系型数据库:在一定程度上解决了空间数据复杂管理的难题,但还是被日益崛起的关系型数据库所淘汰;第三是关系型数据库的发展:为了解决难于保证数据的完整性,开始将空

关系数据库理论

第4部分关系数据库理论 复习习题与讲解资料 【主讲教师:钱哨】 一.考试大纲考点要求 1 了解关系模式设计中可能出现的问题及其产生原因以及解决的途径。 2 掌握函数依赖、完全函数依赖、部分函数依赖、传递函数依赖的定义,能计算属性的封闭集,并由此得到关系的候选键。 3 掌握第一范式( 1NF )、第二范式( 2NF )和第三范式( 3NF )的定义,能判别关系模式的范式等级。 4 掌握关系模式的分解(规范到 3NF )的步骤、分解的原则和分解的方法。 二.单项选择题 1. 为了设计出性能较优的关系模式,必须进行规范化,规范化主要的理论依据是()。 A. 关系规范化理论 B. 关系代数理论 C.数理逻辑 D. 关系运算理论 2. 规范化理论是关系数据库进行逻辑设计的理论依据,根据这个理论,关系数据库中的关系必须满足:每一个属性都是()。 A. 长度不变的 B. 不可分解的 C.互相关联的 D. 互不相关的 3. 已知关系模式R(A,B,C,D,E)及其上的函数相关性集合F={A→D,B→C ,E→ A },该关系模式的候选关键字是()。 A.AB B. BE C.CD D. DE

4. 设学生关系S(SNO,SNAME,SSEX,SAGE,SDPART)的主键为SNO,学生选课关系SC(SNO,CNO,SCORE)的主键为SNO和CNO,则关系R(SNO,CNO,SSEX,SAGE,SDPART,SCORE)的主键为SNO和CNO,其满足()。 A. 1NF B.2NF C. 3NF D. BCNF 5. 设有关系模式W(C,P,S,G,T,R),其中各属性的含义是:C表示课程,P表示教师,S表示学生,G表示成绩,T表示时间,R表示教室,根据语义有如下数据依赖集:D={ C →P,(S,C)→G,(T,R)→C,(T,P)→R,(T,S)→R },关系模式W的一个关键字是()。 A. (S,C) B. (T,R) C. (T,P) D. (T,S) 6. 关系模式中,满足2NF的模式()。 A. 可能是1NF B. 必定是1NF C. 必定是3NF D. 必定是BCNF 7. 关系模式R中的属性全是主属性,则R的最高范式必定是()。 A. 1NF B. 2NF C. 3NF D. BCNF 8. 消除了部分函数依赖的1NF的关系模式,必定是()。 A. 1NF B. 2NF C. 3NF D. BCNF 9. 如果A->B ,那么属性A和属性B的联系是()。 A. 一对多 B. 多对一 C.多对多 D. 以上都不是 10. 关系模式的候选关键字可以有1个或多个,而主关键字有()。 A. 多个 B. 0个 C. 1个 D. 1个或多个 11. 候选关键字的属性可以有()。 A. 多个 B. 0个 C. 1个 D. 1个或多个 12. 关系模式的任何属性()。 A. 不可再分 B. 可以再分 C. 命名在关系模式上可以不唯一 D. 以上都不是 13. 设有关系模式W(C,P,S,G,T,R),其中各属性的含义是:C表示课程,P表示教师,S表示学生,G表示成绩,T表示时间,R表示教室,根据语义有如下数据依赖集:D={ C →P,(S,C)→G,(T,R)→C,(T,P)→R,(T,S)→R },若将关系模式W分解为三个关系模式W1(C,P),W2(S,C,G),W2(S,T,R,C),则W1的规范化程序最

数据库表和数据库关系的实现

第五讲数据库表和数据库关系的实现 5.1数据类型 定义数据表的字段、声明程序中的变量时,都需要为他们设置一个数据类型。目的是指定该字段或变量所存放的数据类型,以及需要多少空间。 5.1.1整型:可以用来存放整数数据的字段或变量。有bigint、int、smallint、 两种类型,这两种类型完全相同,一般建议使用numeric。 使用numeric或decimal时,必须指明精确度(即全部有效位数)与小数点位数,例如:numeric(5,2)表示精度为5,总共位数为5位,其中3位整数及2位小数。若不指定,则默认值为numeric(18,0)。精确度可指定的范围为1~38, 取其“近似值”。例如:23456646677799变成 2.3E+13,此类数据类型有float 和real两种。注意:使用float和real类型,若数值的位数超过其有效位数的限

其中varchar及text的实际存储长度会依数据量而调整。如:varchar(10)表示最多可存储10字节,但若只填入5个字符,那么只会占用5字节。char与varchar 最多只能存储8000个字符,若数据超过此长度,请改用text类型。 在使用char及varchar时必须指定字符长度,例如char(50)、varchar(50); 的数据与字符串类型相当类似,Unicode字符串的一个字符是用2个字节存储,而一般字符串是一个字符用1个字节存储。此类数据类型有nchar、nvarchar、ntext。 在使用nchar及nvarchar时必须指定字符长度,例如nchar(50)、nvarchar 据多用16进制表示,而且要加上0x字头)。此类数据类型有binary、varbinary 与image,其特性分别相当于字符串类型的char、varchar、text。image类型还可以用来存放word文件、excel电子表格、以及位图、GIF和JPEG文件。 使用binary及varbinary时须指定字符长度,例如binary(50)、varbinary(30);若未指定,默认值为1。Image类型则不必指定长度。

对象关系模型数据库解析

面向对象数据库系统(Object Oriented Data Base System,简称OODBS)是数据库技术与面向对象程序设计方法相结合的产物。 对于OO数据模型和面向对象数据库系统的研究主要体现在:研究以关系数据库和SQL为基础的扩展关系模型;以面向对象的程序设计语言为基础,研究持久的程序设计语言,支持OO模型;建立新的面向对象数据库系统,支持OO数据模型。 面向对象程序设计方法是一种支持模块化设计和软件重用的实际可行的编程方法。它把程序设计的主要活动集中在建立对象和对象之间的联系(或通信)上,从而完成所需要的计算。一个面向对象的程序就是相互联系(或通信)的对象集合。面向对象程序设计的基本思想是封装和可扩展性。 面向对象数据库系统支持面向对象数据模型(以下简称OO模型)。即面向对象数据库系统是一个持久的、可共享的对象库的存储和管理者;而一个对象库是由一个OO模型所定义的对象的集合体。 一个OO模型是用面向对象观点来描述现实世界实体(对象)的逻辑组织、对象间限制、联系等的模型。一系列面向对象核心概念构成了OO模型的基础。概括起来,OO模型的核心概念有如下一些: (1)对象(Object)与对象标识OID(Object IDentifier) 现实世界的任一实体都被统一地模型化为一个对象,每个对象有一个唯一的标识,称为对象标识(OID)。 (2)封装(Encapsulation) 每一个对象是其状态与行为的封装,其中状态是该对象一系列属性(Attribute)值的集合,而行为是在对象状态上操作的集合,操作也称为方法(Method)。 (3)类(C1ass) 共享同样属性和方法集的所有对象构成了一个对象类(简称类),一个对象是某一类的一个实例(instance)。 (4)类层次(结构) 在一个面向对象数据库模式中,可以定义一个类(如C1)的子类(如C2),类Cl 称为类C2的超类(或父类)。子类(如C2)还可以再定义子类(如C3)。这样,面向对象数据库模式的一组类形成一个有限的层次结构,称为类层次。 (5)消息(Message) 由于对象是封装的,对象与外部的通信一般只能通过显式的消息传递,即消息从外部传送给对象,存取和调用对象中的属性和方法,在内部执行所要求的操作,操作的结果仍以消息的形式返回。 OODB语言用于描述面向对象数据库模式,说明并操纵类定义与对象实例。OODB语言主要包括对象定义语言(ODL)和对象操纵语言(OML),对象操纵语言中一个重要子集是对象查询语言(OQL)。OODB语言一般应具备下述功能: (1)类的定义与操纵 面向对象数据库语言可以操纵类,包括定义、生成、存取、修改与撤销类。其中类的定义包括定义类的属性、操作特征、继承性与约束等。 (2)操作/方法的定义 面向对象数据库语言可用于对象操作/方法的定义与实现。在操作实现中,语言的命令

关系数据库设计

目录 一 Codd的RDBMS12法则——RDBMS的起源 二关系型数据库设计阶段 三设计原则 四命名规则 数据库设计,一个软件项目成功的基石。很多从业人员都认为,数据库设计其实不那么重要。现实中的情景也相当雷同,开发人员的数量是数据库设计人员的数倍。多数人使用数据库中的一部分,所以也会把数据库设计想的如此简单。其实不然,数据库设计也是门学问。 从笔者的经历看来,笔者更赞成在项目早期由开发者进行数据库设计(后期调优需要DBA)。根据笔者的项目经验,一个精通OOP和ORM的开发者,设计的数据库往往更为合理,更能适应需求的变化,如果追其原因,笔者个人猜测是因为数据库的规范化,与OO的部分思想雷同(如内聚)。而DBA,设计的数据库的优势是能将DBMS的能力发挥到极致,能够使用SQL和DBMS实现很多程序实现的逻辑,与开发者相比,DBA优化过的数据库更为高效和稳定。如标题所示,本文旨在分享一名开发者的数据库设计经验,并不涉及复杂的SQL语句或DBMS使用,因此也不会局限到某种DBMS产品上。真切地希望这篇文章对开发者能有所帮助,也希望读者能帮助笔者查漏补缺。 一?Codd的RDBMS12法则——RDBMS的起源 Edgar Frank Codd(埃德加·弗兰克·科德)被誉为“关系数据库之父”,并因为在数据库管理系统的理论和实践方面的杰出贡献于1981年获图灵奖。在1985年,Codd 博士发布了12条规则,这些规则简明的定义出一个关系型数据库的理念,它们被作为所有关系数据库系统的设计指导性方针。 1.信息法则?关系数据库中的所有信息都用唯一的一种方式表示——表中的值。 2.保证访问法则?依靠表名、主键值和列名的组合,保证能访问每个数据项。 3.空值的系统化处理?支持空值(NULL),以系统化的方式处理空值,空值不依赖于数据类型。 4.基于关系模型的动态联机目录?数据库的描述应该是自描述的,在逻辑级别上和普通数据采用同样 的表示方式,即数据库必须含有描述该数据库结构的系统表或者数据库描述信息应该包含在用 户可以访问的表中。 5.统一的数据子语言法则?一个关系数据库系统可以支持几种语言和多种终端使用方式,但必须至少 有一种语言,它的语句能够一某种定义良好的语法表示为字符串,并能全面地支持以下所有规 则:数据定义、视图定义、数据操作、约束、授权以及事务。(这种语言就是SQL) 6.视图更新法则?所有理论上可以更新的视图也可以由系统更新。 7.高级的插入、更新和删除操作?把一个基础关系或派生关系作为单个操作对象处理的能力不仅适应 于数据的检索,还适用于数据的插入、修改个删除,即在插入、修改和删除操作中数据行被视 作集合。 8.数据的物理独立性?不管数据库的数据在存储表示或访问方式上怎么变化,应用程序和终端活动都 保持着逻辑上的不变性。 9.数据的逻辑独立性?当对表做了理论上不会损害信息的改变时,应用程序和终端活动都会保持逻辑 上的不变性。 10.数据完整性的独立性?专用于某个关系型数据库的完整性约束必须可以用关系数据库子语言定 义,而且可以存储在数据目录中,而非程序中。

关系数据库重点

第2章关系数据库 教学课时:6课时 本章学习目标: 1.掌握数据模型的基本概念 2.掌握实体-联系模型 3.掌握关系模型的概念和性质 4.掌握关系的完整性规则 5.掌握关系数据库的规范化理论、范式的基本概念和分解方法 教学重点: 1.关系数据模型 2.关系的规范化 3.关系完整性 教学难点: 1.实体—联系模型 2.关系模型的三要素 3.范式 4.实体完整性 5.参照完整性 教学方法:讲授法、讲解法、演示法、讨论法 教学过程及内容: 2.1 数据模型 2.1.1 数据模型的概念 一般地讲,数据模型是严格定义的一组概念的集合。这些概念精确地描述了系统的静态特性、动态特性和完整性约束条件。因此,数据模型通常由数据结构、数据操作和数据的完整性约束三部分组成。 1. 数据结构 数据结构是所研究的对象类型的集合,这些对象是数据库的组成成分。 2. 数据操作 数据操作是指对数据库中各种对象型的实例(如关系模型中的关系的值)所允许执行的操作的集合,包括操作及有关的操作规则。数据库主要有检索和更新(包括插入、删除、修改)两大类操作。 3. 数据的完整性约束条件 数据的完整性约束条件是一组完整性规则的集合。完整性规则是给定的数据模型中数据及其联系所具有的制约和依存规则,用以限定符合数据模型的数据库状态以及状态的变化,以保证数据的正确、有效、相容。 2.1.2 数据之间的联系 数据模型是数据库系统的核心和基础,各种数据库管理系统都是基于某种数据模型的。而具体的数据库管理系统所支持的数据模型不便于非计算机专业人员理解和应

用。 ●概念模型用于信息世界的建模,是现实世界到信息世界的第一层抽象。它不是面向 机器实现,而是面向现实世界,是按照用户的观点来对数据和信息建模。 图2.1 数据抽象层次 1. 实体及其属性 1) 实体 客观存在并可相互区分的事物称为实体。 2) 属性 实体所具有的某一特性称为属性。 3) 实体和属性的型与值 实体和属性有型与值之分。 4) 实体集 具有相同实体型的实体的集合称为实体集。 5) 关键字 在实体属性中,用于区别实体集合中不同个体的某个属性或某几个属性的组合,称为关键字。 2. 实体间的联系 实体内部的联系通常是指实体的各属性之间的联系。实体之间的联系通常是指一个实体集内部各实体之间的联系或者不同的实体集的实体之间的联系。 两个实体集之间的联系可以分为三类。 ●一对一联系(1∶1) ●一对多联系(1∶N) ●多对多联系(M∶N) 图2.2表示了两个实体集间的以上3种联系。 实际上,一对一联系是一对多联系的特例,而一对多联系又是多对多联系的特例。 通常情况下,两个以上的实体集之间也存在着一对一、一对多或多对多联系。 (a)一对一联系 (b)一对多联系 (c)多对多联系 实体集A 实体集B 实体集A 实体集B 实体集A 实体集B

关系数据库中

1关系数据库中,主键的正确描述是(D )。 (A) 创建唯一的索引,允许空值(B) 允许有多个主键的 (C) 只允许以表中第一字段建立(D) 为标识表中唯一的实体 2以下不适合创建非聚集索引的情况是(A )。 (A) 表中包含大量重复的列值(B) 带WHERE子句的查询 (C) 经常需要进行联接和分组操作的列(D) 表中包含大量非重复的列值 3使用视图的作用有4个,下列哪一个是错误的(A )。 (A) 导入数据(B) 定制操作 (C) 简化操作(D) 安全性 4叙述A:当视图被撤消,不会对基表造成任何影响。叙述B:不能改变作为计算结果的列。关于对以上叙述中,正确的是(C )。 (A) 叙述A错误,叙述B正确(B) 叙述A正确,叙述B错误 (C) 都正确(D) 都是错误的 5语句:select 10%7 的执行结果是(D )。 (A) 7 (B) 1 (C) 70 (D) 3 6下列关于关联的叙述正确的是( D)。 (A) 已创建关联的两个表中的关联字段数据 可能完全不同(B) 可在两个表的不同数据类型的同名字段 间创建关联 (C) 可在两个表的不同数据类型的字段间创 建关联(D) 可在两个表的相同数据类型的不同名称 的字段间创建关联 7用UNION合并两个SELECT查询的结果时,下列叙述中错误的是()。 (A) 两个SELECT语句必须输出同样的列数(B) 将来自不同查询的数据组合起来 (C) 两个表各相应列的数据类型必须相同(D) 被组合的每个查询都可以使用ORDER B Y子句 8查询所有目前年龄在24岁以上(不含24岁)的学生信息(学号、姓名、年龄),正确的命令是()。 (A) SELECT 学号,姓名,年龄=YEAR(GETDA TE())-YEAR(出生日期) FROM 学生 WHE RE YEAR(GETDATE())-YEAR(出生日 期)>24 (B) SELECT 学号,姓名,YEAR(GETDATE())- YEAR(出生日期) 年龄 FROM 学生 WHE RE YEAR(GETDATE())-YEAR(出生日 期)>24

关系数据库中的表不必具有的性质是什么

关系数据库中的表不必具有的性质是( ). A. 数据项不可再分 B. 同一列数据项要具有相同的数据类型 C. 记录的顺序可以任意排列 D. 字段的顺序不能任意排列 优质解答D.字段的顺序不能任意排列 1).Access数据库属于(C)数据库。 A)、层次模型 B)、网状模型 C)、关系模型 D)、面向对象模型 2).打开Access数据库时,应打开扩展名为(B)的文件。 A)、mda B)、mdb C)、mde D)、DBF 3).已知某一数据库中有两个数据表,它们的主关键字与主关键字之间是一个对应多个的关系,这两个表若想建立关联,应该建立的永久联系是(B)。 A)、一对一 B)、一对多 C)、多对多

D)、多对一 4).下列(B)不是Access数据库的对象类型? A)、表 B)、向导 C)、窗体 D)、报表 5).关系数据库中的表不必具有的性质是(D)。 A)、数据项不可再分 B)、同一列数据项要具有相同的数据类型 C)、记录的顺序可以任意排列 D)、字段的顺序不能任意排列 6).下列对于Access2000(高版本)与Access97(低版本)之间的说法不正确的是(C)。 A)、通过数据转换技术,可以实现高、低版本的共享. B)、高版本文件在低版本数据库中可以打开,但有些功能不能正常运行. C)、低版本数据库文件无法在高版本数据库中运行. D)、高版本文件在低版本数据库中能使用,需将高版本转换成低版本. 7).不能退出Access 2000的方法是(C)。 A)、单击"文件"菜单/"退出" B)、单击窗口右上角"关闭"按钮

C)、ESC D)、ALT+F4 8).Access在同一时间,可打开(A)个数据库。 A)、1 B)、2 C)、3 D)、4 9).对表中某一字段建立索引时,若其值有重复,可选择(D)索引。 A)、主 B)、有(无重复) C)、无 D)、有(有重复) 10).创建表时可以在(C)中进行。 A)、报表设计器 B)、表浏览器 C)、表设计器 D)、查询设计器 11).不能进行索引的字段类型是(A)。 A)、备注 B)、数值 C)、字符 D)、日期

数据库中表之间的关系

数据库中表之间的关系 表关系(一对一,一对多,多对多) 收藏 可以在数据库图表中的表之间创建关系,以显示一个表中的列与另一个表中的列是如何相链接的。 在一个关系型数据库中,利用关系可以避免多余的数据。例如,如果设计一个可以跟踪图书信息的数据库,您需要创建一个名为 titles 的表,它用来存储有关每本书的信息,例如书名、出版日期和出版社。您也可能保存有关出版社的信息,诸如出版社的电话、地址和邮政编码。如果您打算在 titles 表中保存所有这些信息,那么对于某出版社出版的每本书都会重复该出版社的电话号码。 更好的方法是将有关出版社的信息在单独的表,publishers,中只保存一次。然后可以在 titles 表中放置一个引用出版社表中某项的指针。 为了确保您的数据同步,可以实施 titles 和 publishers 之间的参照完整性。参照完整性关系可以帮助确保一个表中的信息与另一个表中的信息相匹配。例如,titles 表中的每个书名必须与 publishers 表中的一个特定出版社相关。如果在数据库中没有一个出版社的信息,那么该出版社的书名也不能添加到这个数据库中。 为了更好地理解表关系,请参阅: 定义表关系 实施参照完整性 定义表关系 关系的确立需要通过匹配键列中的数据(通常是两表中同名的列)。在大多数情况下,该关系会将一个表中的主键(它为每行提供了唯一标识)与另一个表的外部键中的某项相匹配。例如,通过创建 titles 表中的 title_id(主键)与 sales 表中的 title_id 列(外部键)之间的关系,则销售额就与售出的特定书名相关联了。 表之间有三种关系。所创建关系的类型取决于相关列是如何定义的。 一对多关系 多对多关系

关系数据库设计理论

第6章关系数据库设计理论 本章主要讲解在关系数据库的设计过程中,如何减少数据冗余,避免出现异常,该如何对数据库模式进行中心设计。 1.深入理解函数依赖和键码的概念。学会计算属性的封闭集。 2.模式设计是本章的重点。了解数据冗余和更新异常产生的根源;理解关系模式规范化的途径;准确理解第一范式、第二范式、第三范式和BC范式的含义、联系与区别; 深入理解模式分解的原则;熟练掌握模式分解的方法,能正确而熟练的将一个关系模式分解成属于第三范式或BC范式的模式。 3.了解多值依赖和第四范式的概念,掌握把关系模式分解成属于第四范式的模式的方法。 本章主要的知识点包括: 知识点1 函数依赖 知识点2 模式设计 知识点3 多值依赖 学习要点1、函数依赖 1.1函数依赖的定义 如果关系R的两个元组在属性A1,A2,… An上一致(也就是,两个元组在这些属性所对应的各个分量具有相同的值),则它们在另一个属性B上也一致。那么,我们就说在关系R中属性B函数依赖于属性A1A2…An。记做A1A2…An ,也可以说“A1,A2,…,An函数决定B”。A1A2…An称为决定因素。 举例: 在这个关系中,学号确定后,学生的姓名及所在的系就都确定了。属性中的这种依赖关系就是函数依赖。在本例中存在下列函数依赖。 ?Sno SN ame ?Sno S dept ?S dept Mname ?Sno C name Grade 1.2 关系的键码如一个或多个属性的集合{A1,…,An}满足如下条件,称该集合为关系R的键码: 1. 这些属性函数决定该关系的所有其它属性。 2. {A1,…,An}的任何真子集都不能函数决定R的所有其它属性,键码必须是最小的。 1.3 超键码包含键码的属性集称为“超键码” 。

数据库定义表之间关系(带图)

如何定义数据库表之间的关系 特别说明 数据库的正规化是关系型数据库理论的基础。随着数据库的正规化工作的完成,数据库中的 各个数据表中的数据关系也就建立起来了。 在设计关系型数据库时,最主要的一部分工作是将数据元素如何分配到各个关系数据表中。一旦完成了对这些数据元素的分类,对于数据的操作将依赖于这些数据表之间的关系,通过这些数据表之间的关系,就可以将这些数据通过某种有意义的方式联系在一起。例如,如果你不知道哪个用户下了订单,那么单独的订单信息是没有任何用处的。但是,你没有必要在同一个数据表中同时存储顾客和订单信息。你可以在两个关系数据表中分别存储顾客信息和订单信息,然后使用两个数据表之间的关系,可以同时查看数据表中每个订单以及其相关的客户信息。如果正规化的数据表是关系型数据库的基础的话,那么这些数据表之间的关系则 是建立这些基础的基石。 出发点 下面的数据将要用在本文的例子中,用他们来说明如何定义数据库表之间的关系。通过Boyce-Codd Normal Form(BCNF)对数据进行正规化后,产生了七个关系表: Books: {Title*, ISBN, Price} Authors: {FirstName*, LastName*} ZIPCodes: {ZIPCode*} Categories: {Category*, Description} Publishers: {Publisher*} States: {State*} Cities: {City*} 现在所需要做的工作就是说明如何在这些表之间建立关系。 关系类型 在家中,你与其他的成员一起存在着许多关系。例如,你和你的母亲是有关系的,你只有一位母亲,但是你母亲可能会有好几个孩子。你和你的兄弟姐妹是有关系的——你可能有很多兄弟和姐妹,同样,他们也有很多兄弟和姐妹。如果你已经结婚了,你和你的配偶都有一个配偶——这是相互的——但是一次只能有一个。在数据表这一级,数据库关系和上面所描述现象中的联系非常相似。有三种不同类型的关系: 一对一:在这种关系中,关系表的每一边都只能存在一个记录。每个数据表中的关键字在对应的关系表中只能存在一个记录或者没有对应的记录。这种关系和一对配偶之间的关系非常相似——要么你已经结婚,你和你的配偶只能有一个配偶,要么你没有结婚没有配偶。大多数的一对一的关系都是某种商业规则约束的结果,而不是按照数据的自然属性来得到的。如果没有这些规则的约束,你通常可以把两个数据表合并进一个数据表,而且不会打破任何规 范化的规则。

关系型大数据库和非关系型大数据库

关系型数据库和非关系型数据库 自1970年,埃德加·科德提出关系模型之后,关系数据库便开始出现,经过了40多年的演化,如今的关系型数据库具备了强大的存储、维护、查询数据的能力。但在关系数据库日益强大的时候,人们发现,在这个信息爆炸的“大数据”时代,关系型数据库遇到了性能方面的瓶颈,面对一个表中上亿条的数据,SQL语句在大数据的查询方面效率欠佳。我们应该知道,往往添加了越多的约束的技术,在一定程度上定会拖延其效率。 在1998年,Carlo Strozzi提出NOSQL的概念,指的是他开发的一个没有SQL功能,轻量级的,开源的关系型数据库。注意,这个定义跟我们现在对NoSQL的定义有很大的区别,它确确实实字如其名,指的就是“没有SQL”的数据库。但是NoSQL的发展慢慢偏离了初衷,CarloStrozzi也发觉,其实我们要的不是"nosql",而应该是"norelational",也就是我们现在常说的非关系型数据库了。 在关系型数据库中,导致性能欠佳的最主要因素是多表的关联查询,以及复杂的数据分析类型的复杂SQL报表查询。为了保证数据库的ACID特性,我们必须尽量按照其要求的范式进行设计,关系型数据库中的表都是存储一些格式化的数据结构,每个元组字段的组成都一样,即使不是每个元组都需要所有的字段,但数据库会为每个元组分配所有的字段,这样的结构可以便于表与表之间进行连接等操作,但从另一个角度来说它也是关系型数据库性能瓶颈的一个因素。 非关系型数据库提出另一种理念,他以键值对存储,且结构不固定,每一个元组可以有不一样的字段,每个元组可以根据需要增加一些自己的键值对,这样就不会局限于固定的结构,可以减少一些时间和空间的开销。使用这种方式,用户可以根据需要去添加自己需要的字段,这样,为了获取用户的不同信息,不需要像关系型数据库中,要对多表进行关联查询。仅需要根据id取出相应的value就可以完成查询。但非关系型数据库由于很少的约束,他也不能够提供想SQL所提供的where这种对于字段属性值情况的查询。并且难以体现设计的完整性。他只适合存储一些较为简单的数据,对于需要进行较复杂查询的数据,SQL数据库显得更为合适。 目前出现的NoSQL(Not only SQL,非关系型数据库)有不下于25种,除了Dynamo、Bigtable以外还有很多,比如Amazon的SimpleDB、微软公司的AzureTable、Facebook使用的Cassandra、类Bigtable的Hypertable、Hadoop的HBase、MongoDB、CouchDB、Redis以及Yahoo!的PNUTS等等。这些NoSQL各有特色,是基于不同应用场景而开发的,而其中以MongoDB和Redis最为被大家追捧。 以下是MongoDB的一些情况: MongoDB是基于文档的存储的(而非表),是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。他支持的数据结构非常松散,是类似json的bjson格式,因此可以存储比较复杂的数据类型。模式自由(schema-free),意味着对于存储在MongoDB数据库中的文件,我们不需要知道它的任何结构定义。如果需要的话,你完全可以把不同结构的文件存储在同一个数据库里。Mongo最大的特点是他支持的查询语言非常强大,

关系数据库理论

关系数据库理论

————————————————————————————————作者:————————————————————————————————日期:

第4部分关系数据库理论 复习习题与讲解资料 【主讲教师:钱哨】 一.考试大纲考点要求 1了解关系模式设计中可能出现的问题及其产生原因以及解决的途径。 2 掌握函数依赖、完全函数依赖、部分函数依赖、传递函数依赖的定义,能计算属性的封闭集,并由此得到关系的候选键。 3 掌握第一范式(1NF )、第二范式( 2NF )和第三范式(3NF )的定义,能判别关系模式的范式等级。 4 掌握关系模式的分解(规范到3NF )的步骤、分解的原则和分解的方法。 二.单项选择题 1.为了设计出性能较优的关系模式,必须进行规范化,规范化主要的理论依据是( ) 。A. 关系规范化理论 B. 关系代数理论 C.数理逻辑D. 关系运算理论 2. 规范化理论是关系数据库进行逻辑设计的理论依据,根据这个理论,关系数据库中的关系必须满足:每一个属性都是( ) 。 A. 长度不变的B. 不可分解的 C.互相关联的 D. 互不相关的 3.已知关系模式R(A,B,C,D,E)及其上的函数相关性集合F={A→D,B→C ,E→A },该关系模式的候选关键字是( ) 。 A.AB B. BE C.CDD.DE

4.设学生关系S(SNO,SNAME,SSEX,SAGE,SDPART)的主键为SNO,学生选课关系SC(SNO,CNO,SCORE)的主键为SNO和CNO,则关系R(SNO,CNO,SSEX,SA GE,SDPART,SCORE)的主键为SNO和CNO,其满足( )。 A.1NF B.2NF C.3NF D. BCNF 5. 设有关系模式W(C,P,S,G,T,R),其中各属性的含义是:C表示课程,P表示教师,S表示学生,G表示成绩,T表示时间,R表示教室,根据语义有如下数据依赖集:D={C →P,(S,C)→G,(T,R)→C,(T,P)→R,(T,S)→R },关系模式W的一个关键字是()。 A.(S,C)B. (T,R) C.(T,P) D. (T,S) 6.关系模式中,满足2NF的模式( ) 。 A. 可能是1NF B. 必定是1NF C. 必定是3NF D. 必定是BCNF 7.关系模式R中的属性全是主属性,则R的最高范式必定是()。 A. 1NF B. 2NF C. 3NF D. BCNF 8. 消除了部分函数依赖的1NF的关系模式,必定是()。 A.1NF B.2NF C.3NF D. BCNF 9.如果A->B ,那么属性A和属性B的联系是( ) 。 A.一对多B. 多对一 C.多对多D. 以上都不是 10. 关系模式的候选关键字可以有1个或多个,而主关键字有( )。 A.多个B.0个 C.1个D.1个或多个 11.候选关键字的属性可以有()。 A. 多个B. 0个 C.1个D. 1个或多个 12. 关系模式的任何属性()。 A.不可再分 B. 可以再分C. 命名在关系模式上可以不唯一D.以上都不是 13. 设有关系模式W(C,P,S,G,T,R),其中各属性的含义是:C表示课程,P表示教师,S表示学生,G表示成绩,T表示时间,R表示教室,根据语义有如下数据依赖集:D={ C→P,(S,C)→G,(T,R)→C,(T,P)→R,(T,S)→R },若将关系模式W分解为三个关系模式W1(C,P),W2(S,C,G),W2(S,T,R,C),则W1的规范化程序最高达到( )。 A.1NFB.2NF C.3NFD. BCNF

第二章 关系数据库基本原理

第二章关系数据库基本原理 一、选择题 1.关系数据表的关键字可由()字段组成。 A、一个 B、两个 C、多个 D、一个或多个 2.下列关于关系数据库叙述错误的是()。 A、关系数据库的结构一般保持不变,但也可根据需要进行修改 B、一个数据表组成一个关系数据库,多种不同的数据则需要创建多个数据库 C、关系数据表中的所有记录的关键字字段的值互不相同 D、关系数据表中的外部关键字不能用于区别该表中的记录 3.参照完整性规则:表的()必须是另一个表的主键的有效值,或者是空值。 A、候选键 B、外键 C、主键 D、主属性 4.关系数据库规范化是为了解决关系数据库中的()问题而引入的。 A、插入、删除和数据冗余 B、提高查询速度 C、减少数据操作的复杂性 D、保证数据的安全性和完整性 5.关系数据库是若干()的集合。 A、表(关系) B、视图 C、列 D、行 6.在关系模式中,实现“关系中不允许出现相同的元组”的约束是()约束。 A、候选键 B、主键 C、键 D、超键 7.约束“年龄限制在18~30岁之间”属于DBMS的()功能。 A、安全性 B、完整性 C、并发控制 D、恢复 8.反映现实世界中实体及实体间联系的信息模型是()。 A、关系模型 B、层次模型 C、网状模型 D、E-R模型 9.关系数据模型的3个组成部分中,不包括()。 A、完整性规则 B、数据结构 C、数据操作 D、并发控制 10.如何构造出一个合适的数据逻辑结构是()主要解决的问题。 A、关系数据库优化 B、数据字典 C、关系数据库规范化理论 D、关系数据库查询 11.学生社团可以接纳多名学生参加,但每个学生只能参加一个社团,从社团到学生之间的 联系类型是()。 A、多对多 B、一对一 C、多对一 D、一对多 12.关系模式的任何属性()。 A、不可再分 B、可以再分 C、命名在关系模式上可以不唯一 D、以上都不是 13.一个m:n联系转换为一个关系模式。关系的关键字为()。 A、某个实体的关键字 B、各实体关键字的组合 C、n端实体的关键字 D、任意一个实体的关键字 14.候选关键字的属性可以有()。 A、多个 B、0个 C、1个 D、1个或多个 15.关系模型中有三类完整性约束:实体完整性、参照完整性和域完整性。定义外部关键字 实体的是哪一类完整性()? A、实体完整性 B、域完整性 C、参照完整性 D、实体完整性、参照完整性和域完整性 16.设已知F={C→A,CG→D,CG→B,CE→A,ACD→B},从中去掉哪些函数依赖关系后得到 的新的函数依赖集合F1与F是等价的()。

关系数据库毕业论文

摘要 随着Internet的发展和人们对数据标准性、平台无关性的要求越来越高,XML(Extensible Markup Language)得到了广泛的应用,同时人们对于XML的存储方式提出了更高的要求。 本课题意在设计一种将XML数据存入关系数据库中的方法,并按照该方法开发一个XML 数据装入关系数据库的软件。 本文首先对XML的基本知识进行介绍,随后讨论用关系数据库存储XML数据的原因,并对目前已经提出的一些XML文档在关系数据库中的存储方式进行研究讨论,在此基础上提出一个无模式的XML文档对于关系数据库的存储方法。这个方法将XML数据分为文档、元素、属性、文本四种节点,并将这四种节点映射为数据库中四个关系表。另外将DOM树中的元素节点关系映射为一个数据库关系表,这五个表是本课题中数据库设计的核心。五个表中包含的属性信息要求方便于DOM接口和SAX接口两种方式访问。 提出存储方法后,我们将利用这种存储方法开发一个关系数据库中XML数据装入系统。文章后半部分将详细说明该软件的需求分析、设计、具体开发细节以及测试。该软件的测试结果验证了这种存储方法能够有效的将无模式的XML文档存入关系数据库。 关键词:关系数据库、XML

Abstract With the development of Internet and the people’s higher and higher requirement for data’s standardization and its independent of platform,XML(extensible markup language) is widely used,in the mean time the higher requirement for the storage of XML data is asked. This research group designed a method to store XML data into RDB(Relational Data Base) of which the technology have been very mature and widely used.Then we developed an application that can store the XML data into RDB using this method. At first this article will introduce basical knowledge of XML,and then discuss why store XML data using RDB.After that we’ll research and discuss the some methods for storing XML data into RDB that have been put forward.Based on them we’ll design a storage method from non-schema XML data to RDB.We classified XML data as four kind of nodes such as Document,Element,Atribute and Text.These four nodes are mapped to four tables in the RDB and we mapped the DOM Tree into a table too.The five tables is the core of the RDB design.The attribute information involved in the tables is required that both DOM and SAX interface can be easy to get information from the tables. After giving the method we designed we’ll develop an application that can storing the XML data into RDB using that method.It’s requirement analyse,design details and test result well be described in the second half part of the article.The test result will show that using the storage method we can storing the non-schema XML data into the RDB effectively. Key words:RDB(Relational Data Base),XML

数据库的表关系图

数据库的表关系图 1>:one-to-one(一对一关联)主键关联: 一对一关联一般可分为主键关联和外键关联 主键关联的意思是说关联的两个实体共享一个主键值,但这个主键可以由两个表产生. 现在的问题是: *如何让另一个表引用已经生成的主键值 解决办法: *Hibernate映射文件中使用主键的foreign生成机制 eg:学生表: 添加: 元素的lazy属性为true,表示延迟加载,如果lazy设为false,则表示立即加载.以下对这二点进行说明. 立即加载:表示在从数据库中取得数据组装好一个对象后,会立即再从数据库取得数据组装此对象所关联的对象 延迟加载:表示在从数据库中取得数据组装好一个对象后,不会立即从数据库中取得数据组装此对象所关联的对象, 而是等到需要时,才会从数据库取得数据组装此关联对象. 元素的fetch属性可选为select和join join:连接抓取,Hibernate通过在Select语句中使用outer join(外连接)来获得对象的关联实例或者关联集合. select:查询抓取,Hibernate需要另外发送一条select语句抓取当前对象的关联实体或集合. ******所以我们一般用连接抓取 证件表:

相关主题
文本预览
相关文档 最新文档