当前位置:文档之家› 2721驱动芯片全称UCC27210(免费)

2721驱动芯片全称UCC27210(免费)

2721驱动芯片全称UCC27210(免费)
2721驱动芯片全称UCC27210(免费)

UCC27210

UCC27211

https://www.doczj.com/doc/38620830.html, SLUSAT7B–NOVEMBER2011–REVISED FEBRUARY2012 120-V Boot,4-A Peak,High Frequency High-Side/Low-Side Driver

Check for Samples:UCC27210,UCC27211

FEATURES APPLICATIONS

?Drives Two N-Channel MOSFETs in?Power Supplies for Telecom,Datacom,and High-Side/Low-Side Configuration with Merchant

Independent Inputs?Half-Bridge and Full-Bridge Converters ?Maximum Boot Voltage120-V DC?Push-Pull Converters

?4-A Sink,4-A Source Output Currents?High Voltage Synchronous-Buck Converters ?0.9-ΩPull-Up/Pull-Down Resistance?Two-Switch Forward Converters

?Input Pins can Tolerate-10V to20V and are?Active-Clamp Forward Converters Independent of Supply Voltage Range?Class-D Audio Amplifiers

?TTL or Pseudo-CMOS Compatible Input

Versions DESCRIPTION

?8-V to17-V VDD Operating Range,(20V ABS The UCC27210and UCC27211Drivers are based on MAX)the popular UCC27200and UCC27201MOSFET

drivers,but offer several significant performance ?7.2-ns Rise and5.5-ns Fall Time with1000-pF

improvements.Peak output pull-up and pull-down Load

current has been increased to4-A source/4-A sink,?Fast Propagation Delay Times(18ns typical)and pull-up/pull-down resistance have been reduced ?2-ns Delay Matching to0.9Ω,thereby allowing for driving large power

MOSFETs with minimized switching losses during the ?Symmetrical Under Voltage Lockout for

transition through the MOSFET’s Miller Plateau.The High-Side and Low-Side Driver

input structure is now able to directly handle-10?All Industry Standard Packages Available VDC,which increases robustness and also allows (SOIC-8,PowerPAD?SOIC-8,4-mm x4-mm direct interface to gate-drive transformers without SON-8and4-mm x4-mm SON-10)using rectification diodes.The inputs are also

independent of supply voltage and have a20-V ?Specified from-40to140°C

maximum rating.

Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas

Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

UCC27210UCC27211

SLUSAT7B –NOVEMBER 2011–REVISED FEBRUARY https://www.doczj.com/doc/38620830.html,

These devices have limited built-in ESD protection.The leads should be shorted together or the device placed in conductive foam

during storage or handling to prevent electrostatic damage to the MOS gates.

DESCRIPTION (CONT.)

The UCC27210/1’s switching node (HS pin)is able to handle -18V maximum which allows the high-side channel

to be protected from inherent negative voltages caused parasitic inductance and stray capacitance.The

UCC27210(Pseudo-CMOS inputs)and UCC27211(TTL inputs)have increased hysteresis allowing for interface

to analog or digital PWM controllers with enhanced noise immunity.

The low-side and high-side gate drivers are independently controlled and matched to 2ns between the turn on

and turn off of each other.

An on-chip 120-V rated bootstrap diode eliminates the external discrete diodes.Under-voltage lockout is

provided for both the high-side and the low-side drivers providing symmetric turn-on/turn-off behavior and forcing

the outputs low if the drive voltage is below the specified threshold.

Both devices are offered in 8-pin SOIC (D),PowerPAD ?SOIC-8(DDA),4-mm x 4-mm SON-8(DRM)and

SON-10(DPR)packages.

Typical Application Diagrams

ORDERING INFORMATION

(1)PACKAGED DEVICES (1)INPUT TEMPERATURE RANGE T A =T J PowerPAD ?COMPATIBILITY

SOIC-8(D)(2)SON-8(DRM)(3)SON-10(DPR)(4)SOIC-8(DDA)(2)Pseudo CMOS

UCC27210D UCC27210DDA UCC27210DRM UCC27210DPR -40°C to 140°C

TTL UCC27211D UCC27211DDA UCC27211DRM UCC27211DPR (1)

These products are packaged in Lead (Pb)-Free and green lead finish of PdNiAu which is compatible with MSL level 1at 255°C to 260°C peak reflow temperature to be compatible with either lead free or Sn/Pb soldering operations.(2)

D (SOIC-8)and DDA (Power Pad ?SOIC-8)packages are available taped and reeled.Add R suffix to device type (e.g.UCC27210ADR/UCC27211ADR)to order quantities of 2,500devices per reel.(3)

DRM (SON-8)package comes either in a small reel of 250pieces as part number UCC27210ADRMT/UCC27211ADRMT,or larger reels of 3000pieces as part number UCC27210ADRMR/UCC27211ADRMR.(4)DPR (SON-10)package comes either in a small reel of 250pieces as part number UCC27210ADPRT/UCC27211ADPRT,or large reels

of 3000pieces as part number UCC27210ADPRR/UCC27211ADPRR.

2Submit Documentation Feedback Copyright ?2011–2012,Texas Instruments Incorporated

UCC27210

UCC27211 https://www.doczj.com/doc/38620830.html, SLUSAT7B–NOVEMBER2011–REVISED FEBRUARY2012 ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range(unless otherwise noted)

MIN MAX UNIT Supply voltage range,V DD(1),V HB-V HS-0.320

Input voltages on LI and HI,V LI,V HI-1020

DC-0.3V DD+0.3

Output voltage on LO,V LO

Repetitive pulse<100ns(2)-2V DD+0.3

DC V HS–0.3V HB+0.3V Output voltage on HO,V HO

Repetitive pulse<100ns(2)V HS-2V HB+0.3

DC-1115

Voltage on HS,V HS

Repetitive pulse<100ns(2)-18115

Voltage on HB,V HB-0.3120

Human Body Model(HBM)2

ESD kV

Field Induced Charged Device Model

1

(FICDM)

Operating virtual junction temperature range,T J-40150

Storage temperature,T STG-65150°C

Lead temperature(soldering,10sec.)300

(1)All voltages are with respect to VSS unless otherwise noted.Currents are positive into,negative out of the specified terminal.

(2)Verified at bench characterization.

RECOMMENDED OPERATING CONDITIONS

all voltages are with respect to V SS;currents are positive into and negative out of the specified terminal.–40°C

PARAMETER MIN TYP MAX UNIT Supply voltage range,V DD,V HB-V HS81217

Voltage on HS,V HS-1105

V Voltage on HS,V HS(repetitive pulse<100ns)-15110

V HS+8,V HS+17,

Voltage on HB,V HB

V DD–1115

Voltage slew rate on HS50V/ns Operating junction temperature range-40140°C

Copyright?2011–2012,Texas Instruments Incorporated Submit Documentation Feedback3

UCC27210

UCC27211

SLUSAT7B–NOVEMBER2011–REVISED https://www.doczj.com/doc/38620830.html, THERMAL INFORMATION

UCC27210/11(1)

THERMAL METRIC D DDA UNITS

8PINS8PINS

θJA Junction-to-ambient thermal resistance(2)111.837.7

θJCtop Junction-to-case(top)thermal resistance(3)56.947.2

θJB Junction-to-board thermal resistance(4)53.09.6

°C/W

ψJT Junction-to-top characterization parameter(5)7.8 2.8

ψJB Junction-to-board characterization parameter(6)52.39.4

θJCbot Junction-to-case(bottom)thermal resistance(7)n/a 3.6

(1)For more information about traditional and new thermal metrics,see the IC Package Thermal Metrics application report,SPRA953.

(2)The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard,high-K board,as

specified in JESD51-7,in an environment described in JESD51-2a.

(3)The junction-to-case(top)thermal resistance is obtained by simulating a cold plate test on the package top.No specific

JEDEC-standard test exists,but a close description can be found in the ANSI SEMI standard G30-88.

(4)The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB

temperature,as described in JESD51-8.

(5)The junction-to-top characterization parameter,ψJT,estimates the junction temperature of a device in a real system and is extracted

from the simulation data for obtainingθJA,using a procedure described in JESD51-2a(sections6and7).

(6)The junction-to-board characterization parameter,ψJB,estimates the junction temperature of a device in a real system and is extracted

from the simulation data for obtainingθJA,using a procedure described in JESD51-2a(sections6and7).

(7)The junction-to-case(bottom)thermal resistance is obtained by simulating a cold plate test on the exposed(power)pad.No specific

JEDEC standard test exists,but a close description can be found in the ANSI SEMI standard G30-88.

THERMAL INFORMATION

UCC27210/11(1)

THERMAL METRIC DRM DPR UNITS

8PINS10PINS

θJA Junction-to-ambient thermal resistance(2)33.936.8

θJCtop Junction-to-case(top)thermal resistance(3)33.236.0

θJB Junction-to-board thermal resistance(4)11.414.0

°C/W

ψJT Junction-to-top characterization parameter(5)0.40.3

ψJB Junction-to-board characterization parameter(6)11.714.2

θJCbot Junction-to-case(bottom)thermal resistance(7) 2.3 3.4

(1)For more information about traditional and new thermal metrics,see the IC Package Thermal Metrics application report,SPRA953.

(2)The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard,high-K board,as

specified in JESD51-7,in an environment described in JESD51-2a.

(3)The junction-to-case(top)thermal resistance is obtained by simulating a cold plate test on the package top.No specific

JEDEC-standard test exists,but a close description can be found in the ANSI SEMI standard G30-88.

(4)The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB

temperature,as described in JESD51-8.

(5)The junction-to-top characterization parameter,ψJT,estimates the junction temperature of a device in a real system and is extracted

from the simulation data for obtainingθJA,using a procedure described in JESD51-2a(sections6and7).

(6)The junction-to-board characterization parameter,ψJB,estimates the junction temperature of a device in a real system and is extracted

from the simulation data for obtainingθJA,using a procedure described in JESD51-2a(sections6and7).

(7)The junction-to-case(bottom)thermal resistance is obtained by simulating a cold plate test on the exposed(power)pad.No specific

JEDEC standard test exists,but a close description can be found in the ANSI SEMI standard G30-88.

4Submit Documentation Feedback Copyright?2011–2012,Texas Instruments Incorporated

UCC27210

UCC27211 https://www.doczj.com/doc/38620830.html, SLUSAT7B–NOVEMBER2011–REVISED FEBRUARY2012 ELECTRICAL CHARACTERISTICS

V DD=V HB=12V,V HS=V SS=0V,no load on LO or HO,T A=T J=-40°C to140°C,(unless otherwise noted)

PARAMETER TEST CONDITION MIN TYP MAX UNITS Supply Currents

I DD V DD quiescent current V(LI)=V(HI)=0V0.050.0850.17

I DDO UCC27210 2.4 2.6 4.3

V DD operating current f=500kHz,C LOAD=0

UCC27211 2.4 2.5 4.3mA

I HB Boot voltage quiescent current V(LI)=V(HI)=0V0.0150.0650.1

I HBO Boot voltage operating current f=500kHz,C LOAD=0 1.5 2.54

I HBS HB to V SS quiescent current V(HS)=V(HB)=115V0.00050.13μA

I HBSO HB to V SS operating current f=500kHz,C LOAD=00.070.9mA Input

V HIT Input voltage threshold 4.2 5.0 5.8

V LIT Input voltage threshold 2.4 3.2 4.0V

UCC27210

V IHYS Input voltage hysteresis 1.8

R IN Input pulldown resistance102kΩ

V HIT Input voltage threshold 1.9 2.3 2.7

V

V LIT Input voltage threshold 1.3 1.6 1.9

UCC27211

V IHYS Input voltage hysteresis700mV

R IN Input pulldown resistance68kΩUnder-Voltage Lockout(UVLO)

V DDR V DD turn-on threshold 6.27.07.8

V DDHYS Hysteresis0.5

V

V HBR V HB turn-on threshold 5.6 6.77.9

V HBHYS Hysteresis 1.1

Bootstrap Diode

V F Low-current forward voltage I VDD-HB=100μA0.650.8

V

V FI High-current forward voltage I VDD-HB=100mA0.850.95

R D Dynamic resistance,ΔVF/ΔI I VDD-HB=100mA and80mA0.30.50.85Ω

LO Gate Driver

V LOL Low-level output voltage I LO=100mA0.050.090.15

V

V LOH High level output voltage I LO=-100mA,V LOH=V DD-V LO0.10.160.27

Peak pull-up current(1)V LO=0V 3.7

A Peak pull-down current(1)V LO=12V 4.5

HO GATE Driver

V HOL Low-level output voltage I HO=100mA0.050.090.15

V

V HOH High-level output voltage I HO=-100mA,V HOH=V HB-V HO0.10.160.27

Peak pull-up current(1)V HO=0V 3.7

A Peak pull-down current(1)V HO=12V 4.5

(1)Ensured by design.

Copyright?2011–2012,Texas Instruments Incorporated Submit Documentation Feedback5

UCC27210

UCC27211

SLUSAT7B–NOVEMBER2011–REVISED https://www.doczj.com/doc/38620830.html, ELECTRICAL CHARACTERISTICS(continued)

V DD=V HB=12V,V HS=V SS=0V,no load on LO or HO,T A=T J=-40°C to140°C,(unless otherwise noted)

PARAMETER TEST CONDITION MIN TYP MAX UNITS

Switching Parameters:Propagation Delays

T DLFF V LI falling to V LO falling172137

T DHFF V HI falling to V HO falling172137

UCC27210,C LOAD=0

T DLRR V LI rising to V LO rising182446

T DHRR V HI rising to V HO rising182446

ns

T DLFF V LI falling to V LO falling101730

T DHFF V HI falling to V HO falling101730

UCC27211,C LOAD=0

T DLRR V LI rising to V LO rising101840

T DHRR V HI rising to V HO rising101840

Switching Parameters:Delay Matching

T J=25°C311

T MON From HO OFF to LO ON ns

T J=–40°C to140°C314

UCC27210

T J=25°C311

T MOFF From LO OFF to HO ON ns

T J=–40°C to140°C314

T J=25°C29.5

T MON From HO OFF to LO ON ns

T J=–40°C to140°C214

UCC27211

T J=25°C29.5

T MOFF From LO OFF to HO ON ns

T J=–40°C to140°C214

Switching Parameters:Output Rise and Fall Time

t R LO rise time7.2

C LOAD=1000pF,from10%to90%

t R HO rise time7.2

ns

t F LO fall time 5.5

C LOAD=1000pF,from90%to10%

t F HO fall time 5.5

t R LO,HO C LOAD=0.1μF,(3V to9V)0.360.6

μs

t F LO,HO C LOAD=0.1μF,(9V to3V)0.150.4

Switching Parameters:Miscellaneous

Minimum input pulse width that changes the

50 output ns

Bootstrap diode turn-off time(2)(3)I F=20mA,I REV=0.5A(4)20

(2)Ensured by design.

(3)I F:Forward current applied to bootstrap diode,I REV:Reverse current applied to bootstrap diode.

(4)Typical values for T A=25°C.

6Submit Documentation Feedback Copyright?2011–2012,Texas Instruments Incorporated

Input (HI,LI)

Output (HO,

MON MOFF

LI

HI

LO

UCC27210

UCC27211

https://www.doczj.com/doc/38620830.html, SLUSAT7B–NOVEMBER2011–REVISED FEBRUARY2012

Timing Diagrams

Copyright?2011–2012,Texas Instruments Incorporated Submit Documentation Feedback7

HI

LI V DD

HB HO HS LO

V SS VDD HB HO HS NC LO VSS

LI

HI

NC 10912345876

SON-10 (DPR)TOP

VIEW

VDD HB HO HS VSS

Power Pad TM SOIC-8(DDA)TOP VIEW

LO LI

HI

VDD HB HO HS LO VSS LI HI SOIC-8(D)

TOP VIEW VDD HB HO HS VSS SON-8(DRM)

TOP VIEW

LO LI HI UCC27210UCC27211

SLUSAT7B –NOVEMBER 2011–REVISED FEBRUARY https://www.doczj.com/doc/38620830.html,

DEVICE INFORMATION

Functional Block Diagram

8Submit Documentation Feedback Copyright ?2011–2012,Texas Instruments Incorporated

UCC27210

UCC27211 https://www.doczj.com/doc/38620830.html, SLUSAT7B–NOVEMBER2011–REVISED FEBRUARY2012

TERMINAL FUNCTIONS

PIN

PIN NAME DESCRIPTION

D/DDA/DRM DPR

Positive supply to the lower-gate driver.De-couple this pin to V SS(GND).Typical VDD11

decoupling capacitor range is0.22μF to1.0μF.

High-side bootstrap supply.The bootstrap diode is on-chip but the external bootstrap

capacitor is required.Connect positive side of the bootstrap capacitor to this pin.

HB22Typical range of HB bypass capacitor is0.022μF to0.1μF.The capacitor value is

dependant on the gate charge of the high-side MOSFET and should also be selected

based on speed and ripple criteria

HO33High-side output.Connect to the gate of the high-side power MOSFET.

High-side source connection.Connect to source of high-side power MOSFET.

HS44

Connect the negative side of bootstrap capacitor to this pin.

HI57High-side input.

LI68Low-side input.

VSS79Negative supply terminal for the device which is generally grounded.

LO810Low-side output.Connect to the gate of the low-side power MOSFET.

N/C-5/6Not Connected.

Utilized on the DDA,DRM and DPR packages only.Electrically referenced to V SS PowerPAD?(1)Pad Pad(GND).Connect to a large thermal mass trace or GND plane to dramatically improve

thermal performance.

(1)The PowerPAD?is not directly connected to any leads of the package.However it is electrically and thermally connected to the

substrate which is the ground of the device.

Copyright?2011–2012,Texas Instruments Incorporated Submit Documentation Feedback9

020*********

V DD = V HB ? Supply Voltage (V)I D D , I H B ? Q u i e s c e n t C u r r e n t (μA )G001 0.01

0.1110100

Frequency (kHz)I D D O ? O p e r a t i n g C u r r e n t (m A )G002 0.010.1110

100Frequency (kHz)I D D O ? O p e r a t i n g C u r r e n t (m A )G003 0.01

0.1110100

Frequency (kHz)I H B O ? O p e r a t i n g C u r r e n t (m A )

G004 ?10

123456

V DD ? Supply Voltage (V)H I , L I ? I n p u t T h r e s h o l d V o l t a g e (V )G005 ?10123

456Temperature (°C)H I , L I ? I n p u t T h r e s h o l d V o l t a g e (V )G006 UCC27210UCC27211

SLUSAT7B –NOVEMBER 2011–REVISED FEBRUARY https://www.doczj.com/doc/38620830.html,

TYPICAL CHARACTERISTICS

QUIESCENT CURRENT

UCC27210IDD OPERATING CURRENT vs

vs SUPPLY VOLTAGE

FREQUENCY Figure 1.

Figure 2.UCC27211IDD OPERATING CURRENT

BOOT VOLTAGE OPERATING CURRENT vs

vs FREQUENCY

FREQUENCY (HB to HS)Figure 3.

Figure 4.UCC27210/11INPUT THRESHOLD

UCC27210/11INPUT THRESHOLDS vs

vs SUPPLY VOLTAGE

TEMPERATURE Figure 5.Figure 6.

10Submit Documentation Feedback Copyright ?2011–2012,Texas Instruments Incorporated

00.04

0.08

0.120.160.20.240.280.32

Temperature (°C)V O H ? L O /H O O u t p u t V o l t a g e (V )G007 00.040.080.120.160.2

Temperature (°C)V O L ? L O /H O O u t p u t V o l t a g e (V )

G008 5.25.6

6

6.4

6.8

7.2

7.6

8

Temperature (°C)T h r

e s h o l d (V )G009 00.30.60.91.21.5Temperature (°C)H y s t e r e s i s (V )

G010

04

8

12

162024283236

40

Temperature (°C)P r o p a g a t i o n D e l a y (n s )

G011 08162432Temperature (°C)P r o p a g a t i o n D e l a y (n s )G012 UCC27210UCC27211

https://www.doczj.com/doc/38620830.html, SLUSAT7B –NOVEMBER 2011–REVISED FEBRUARY 2012

TYPICAL CHARACTERISTICS (continued)

LO AND HO HIGH LEVEL OUTPUT VOLTAGE

LO AND HO LOW LEVEL OUTPUT VOLTAGE vs

vs TEMPERATURE

TEMPERATURE Figure 7.

Figure 8.UNDERVOLTAGE LOCKOUT THRESHOLD

UNDERVOLTAGE LOCKOUT THRESHOLD HYSTERESIS vs

vs TEMPERATURE

TEMPERATURE Figure 9.

Figure 10.UCC27210PROPAGATION DELAYS

UCC27211PROPAGATION DELAYS vs

vs TEMPERATURE

TEMPERATURE Figure 11.Figure 12.

Copyright ?2011–2012,Texas Instruments Incorporated Submit Documentation Feedback 11

04

8

1216202428

32

V DD =V HB ? Supply Voltage (V)P r o p a g a t i o n D e l a y (n s )G012 0481216202428

32V DD =V HB ? Supply Voltage (V)P r o p a g a t i o n D e l a y (n s )G014 ?20

246810

Temperature (°C)D e l a y M a t c h i n g (n s )G015 0

12345

V LO , V HO ? Output Voltage (V)I L O , I H O ? O u t p u t C u r r e n t (A )G016 UCC27210UCC27211

SLUSAT7B –NOVEMBER 2011–REVISED FEBRUARY https://www.doczj.com/doc/38620830.html,

TYPICAL CHARACTERISTICS (continued)

UCC27210PROPAGATION DELAYS

UCC27211PROPAGATION DELAYS vs

vs SUPPLY VOLTAGE

SUPPLY VOLTAGE Figure 13.

Figure 14.DELAY MATCHING

OUTPUT CURRENT vs

vs TEMPERATURE

OUTPUT VOLTAGE Figure 15.Figure 16.

12Submit Documentation Feedback Copyright ?2011–2012,Texas Instruments Incorporated

0.0010.01

0.1

110

100500

550

600

650700750800850Diode Voltage (mV)D i o d e C u r r e n t (m A )G017

UCC27210UCC27211

https://www.doczj.com/doc/38620830.html, SLUSAT7B –NOVEMBER 2011–REVISED FEBRUARY 2012

TYPICAL CHARACTERISTICS (continued)

DIODE CURRENT

vs

DIODE VOLTAGE

NEGATIVE 10-V INPUT

Figure 17.

Figure 18.STEP INPUT SYMMETRICAL UVLO

Figure 19.Figure 20.

Copyright ?2011–2012,Texas Instruments Incorporated Submit Documentation Feedback 13

UCC27210

UCC27211

SLUSAT7B–NOVEMBER2011–REVISED https://www.doczj.com/doc/38620830.html,

APPLICATION INFORMATION

Functional Description

The UCC27210/11represent Texas Instruments’latest generation of high voltage gate drivers which are designed to drive both the high-side and low-side of N-Channel MOSFETs in a half-/full-bridge or synchronous buck configuration.The floating high-side driver is capable of operating with supply voltages of up to120V.This allows for N-Channel MOSFET control in half-bridge,full-bridge,push pull,two-switch forward and active clamp forward converters.

The UCC27210/11feature4-A source/sink capability,industry best-in-class switching characteristics and a host of other features listed in the table below.These features combine to ensure efficient,robust and reliable operation in high-frequency switching power circuits.

Table1.UCC27210/11Highlights

FEATURE BENEFIT

High peak current ideal for driving large power MOSFETs with

4-A source and sink current with0.9-Ωoutput resistance

minimal power loss(fast-drive capability at Miller plateau)

Increased robustness and ability to handle under/overshoot.Can Input pins(HI and LI)can directly handle-10VDC up to20VDC interface directly to gate-drive transformers without having to use

rectification diodes

120-V internal boot diode Provides voltage margin to meet telecom100-V surge requirements

Allows the high-side channel to have extra protection from inherent Switch node(HS pin)able to handle-18V maximum for100ns negative voltages caused parasitic inductance and stray

capacitance.

Robust ESD circuitry to handle voltage spikes Excellent immunity to large dV/dT conditions

Best-in-class switching characteristics and extremely low-pulse

18-ns propagation delay with7.2-ns/5.5-ns rise/fall Times

transmission distortion

2-ns(typ)delay matching between channels Avoids transformer volt-second offset in bridge

Symmetrical UVLO circuit Ensures high-side and low-side shut down at the same time

CMOS optimized threshold or TTL optimized thresholds with Complementary to analog or digital PWM controllers.Increased increased hysteresis hysteresis offers added noise immunity

In UCC27210/11,the high side and low side each have independent inputs which allow maximum flexibility of input control signals in the application.The boot diode for the high-side driver bias supply is internal to the UCC27210and UCC27211.The UCC27210is the Pseudo-CMOS compatible input version and the UCC27211 is the TTL or logic compatible version.The high-side driver is referenced to the switch node(HS)which is typically the source pin of the high-side MOSFET and drain pin of the low-side MOSFET.The low-side driver is referenced to V SS which is typically ground.The functions contained are the input stages,UVLO protection,level shift,boot diode,and output driver stages.

14Submit Documentation Feedback Copyright?2011–2012,Texas Instruments Incorporated

UCC27210

UCC27211 https://www.doczj.com/doc/38620830.html, SLUSAT7B–NOVEMBER2011–REVISED FEBRUARY2012 Input Stages

The input stages provide the interface to the PWM output signals.The input impedance of the UCC27210is100 kΩnominal and input capacitance is approximately2pF.The100kΩis a pull-down resistance to V SS(ground). The UCC27210Pseudo-CMOS input structure has been designed to provide large hysteresis and at the same time to allows interfacing to a multitude of analog or digital PWM controllers.In some CMOS designs,the input thresholds are determined as a percentage of VDD.By doing so,the high-level input threshold can become unreasonably high and unusable.The UCC27210recognizes the fact that VDD levels are trending downward and it therefore provides a rising threshold with5.0V(typ)and falling threshold with3.2V(typ).The input hysteresis of the UCC27210is1.8V(typ).

The input stages of the UCC27211have impedance of70kΩnominal and input capacitance is approximately2 pF.Pull-down resistance to V SS(ground)is70kΩ.The logic level compatible input provides a rising threshold of 2.3V and a falling threshold of1.6V.

Under Voltage Lockout(UVLO)

The bias supplies for the high-side and low-side drivers have UVLO protection.V DD as well as V HB to V HS differential voltages are monitored.The V DD UVLO disables both drivers when V DD is below the specified threshold.The rising V DD threshold is7.0V with0.5-V hysteresis.The VHB UVLO disables only the high-side driver when the V HB to V HS differential voltage is below the specified threshold.The V HB UVLO rising threshold is 6.7V with1.1-V hysteresis.

Level Shift

The level shift circuit is the interface from the high-side input to the high-side driver stage which is referenced to the switch node(HS).The level shift allows control of the HO output referenced to the HS pin and provides excellent delay matching with the low-side driver.

Boot Diode

The boot diode necessary to generate the high-side bias is included in the UCC27210/11family of drivers.The diode anode is connected to V DD and cathode connected to V HB.With the V HB capacitor connected to HB and the HS pins,the V HB capacitor charge is refreshed every switching cycle when HS transitions to ground.The boot diode provides fast recovery times,low diode resistance,and voltage rating margin to allow for efficient and reliable operation.

Output Stages

The output stages are the interface to the power MOSFETs in the power train.High slew rate,low resistance and high peak current capability of both output drivers allow for efficient switching of the power MOSFETs.The low-side output stage is referenced from V DD to V SS and the high side is referenced from V HB to V HS.

Copyright?2011–2012,Texas Instruments Incorporated Submit Documentation Feedback15

UCC27210

UCC27211

SLUSAT7B–NOVEMBER2011–REVISED https://www.doczj.com/doc/38620830.html, Layout Recommendations

To improve the switching characteristics and efficiency of a design,the following layout rules should be followed.?Locate the driver as close as possible to the MOSFETs.

?Locate the V DD and V HB(bootstrap)capacitors as close as possible to the driver.

?Pay close attention to the GND https://www.doczj.com/doc/38620830.html,e the thermal pad of the DDA and DRM package as GND by connecting it to the VSS pin(GND).The GND trace from the driver goes directly to the source of the MOSFET but should not be in the high current path of the MOSFET(S)drain or source current.

?Use similar rules for the HS node as for GND for the high-side driver.

?Use wide traces for LO and HO closely following the associated GND or HS traces.60to100-mils width is preferable where possible.

?Use as least two or more vias if the driver outputs or SW node needs to be routed from one layer to another.

For GND the number of vias needs to be a consideration of the thermal pad requirements as well as parasitic inductance.

?Avoid LI and HI(driver input)going close to the HS node or any other high dV/dT traces that can induce significant noise into the relatively high impedance leads.

Keep in mind that a poor layout can cause a significant drop in efficiency versus a good PCB layout and can even lead to decreased reliability of the whole system.

Example

Additional References

These references and links to additional information may be found at https://www.doczj.com/doc/38620830.html,

?Additional layout guidelines for PCB land patterns may be found in,QFN/SON PCB Attachment,Application Brief(Texas Instrument's Literature Number SLUA271)

?Additional thermal performance guidelines may be found in,PowerPAD?Thermally Enhanced Package Application Report,Application Report(Texas Instrument's Literature Number SLMA002A)

?Additional thermal performance guidelines may be found in,PowerPAD?Made Easy,Application Report (Texas Instrument's Literature Number SLMA004)

16Submit Documentation Feedback Copyright?2011–2012,Texas Instruments Incorporated

UCC27210

UCC27211 https://www.doczj.com/doc/38620830.html, SLUSAT7B–NOVEMBER2011–REVISED FEBRUARY2012

REVISION HISTORY

Changes from Revision A(November,2011)to Revision B Page ?Changed ordering information notes to reflect corrected part number (2)

Copyright?2011–2012,Texas Instruments Incorporated Submit Documentation Feedback17

PACKAGING INFORMATION

Orderable Device Status (1)Package Type Package

Drawing Pins Package Qty Eco Plan (2)Lead/

Ball Finish

MSL Peak Temp (3)Samples

(Requires Login)

UCC27210D ACTIVE SOIC D875Green (RoHS

& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

UCC27210DDA PREVIEW SO PowerPAD DDA875Green (RoHS

& no Sb/Br)

CU NIPDAUAGLevel-1-260C-UNLIM

UCC27210DDAR PREVIEW SO PowerPAD DDA82500Green (RoHS

& no Sb/Br)

CU NIPDAUAGLevel-1-260C-UNLIM

UCC27210DPRR ACTIVE WSON DPR103000Green (RoHS

& no Sb/Br)

CU NIPDAU Level-2-260C-1 YEAR

UCC27210DPRT ACTIVE WSON DPR10250Green (RoHS

& no Sb/Br)

CU NIPDAU Level-2-260C-1 YEAR

UCC27210DR ACTIVE SOIC D82500Green (RoHS

& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

UCC27210DRMR ACTIVE VSON DRM83000Green (RoHS

& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

UCC27210DRMT ACTIVE VSON DRM8250Green (RoHS

& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

UCC27211D ACTIVE SOIC D875Green (RoHS

& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

UCC27211DDA PREVIEW SO PowerPAD DDA875Green (RoHS

& no Sb/Br)

CU NIPDAUAGLevel-1-260C-UNLIM

UCC27211DDAR PREVIEW SO PowerPAD DDA82500Green (RoHS

& no Sb/Br)

CU NIPDAUAGLevel-1-260C-UNLIM

UCC27211DPRR ACTIVE WSON DPR103000Green (RoHS

& no Sb/Br)

CU NIPDAU Level-2-260C-1 YEAR

UCC27211DPRT ACTIVE WSON DPR10250Green (RoHS

& no Sb/Br)

CU NIPDAU Level-2-260C-1 YEAR

UCC27211DR ACTIVE SOIC D82500Green (RoHS

& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

UCC27211DRMR ACTIVE VSON DRM83000Green (RoHS

& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

UCC27211DRMT ACTIVE VSON DRM8250Green (RoHS

& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM (1) The marketing status values are defined as follows:

Addendum-Page 1

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check https://www.doczj.com/doc/38620830.html,/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Addendum-Page 2

TAPE AND REEL INFORMATION

*All dimensions are nominal Device Package Type Package Drawing

Pins

SPQ Reel Diameter (mm)Reel Width W1(mm)A0(mm)B0(mm)K0(mm)P1(mm)W (mm)Pin1Quadrant UCC27210DPRR WSON

DPR 103000330.012.4 4.25 4.25 1.158.012.0Q2UCC27210DPRT WSON

DPR 10250180.012.4 4.25 4.25 1.158.012.0Q2UCC27210DR SOIC

D 82500330.012.4 6.4 5.2 2.18.012.0Q1UCC27210DRMR VSON

DRM 83000330.012.4 4.25 4.25 1.158.012.0Q2UCC27211DPRR WSON

DPR 103000330.012.4 4.25 4.25 1.158.012.0Q2UCC27211DPRT WSON

DPR 10250180.012.4 4.25 4.25 1.158.012.0Q2UCC27211DR SOIC

D 82500330.012.4 6.4 5.2 2.18.012.0Q1UCC27211DRMR VSON

DRM 83000330.012.4 4.25 4.25 1.158.012.0Q2UCC27211DRMT VSON DRM 8250

180.012.4 4.25 4.25 1.158.012.0Q2

LED显示屏常用驱动芯片资料(精)

LED 常用芯片技术资料 1、列电子开关74HC595 (串并移位寄存器) 第14脚DATA ,串行数据输入口,显示数据由此进入,必须有时钟信号的配合才能移入。 第13脚EN ,使能口,当该引脚上为“1”时QA~QH口全部为“1”,为“0”时QA~QH的输出由输入的数据控制。第12脚STB ,锁存口,当输入的数据在传入寄存器后,只有供给一个锁存信号才能 将移入的数据送QA~QH口输出。 第11脚CLK ,时钟口,每一个时钟信号将移入一位数据到寄存器。 第10脚SCLR ,复位口,只要有复位信号,寄存器内移入的数据将清空,一般接VCC 。第9脚DOUT ,串行数据输出端,将数据传到下一个。第15、1~7脚,并行输出口也就是驱动输出口,驱动LED 。 2、译码器 74HC138 第1~3脚A 、B 、C ,二进制输入脚。第4~6脚片选信号控制,只有在4、5脚为“0”6脚为“1”时,才会被选通,输出受A 、B 、C 信号控制。其它任何组合方式将不被选通,且Y0~Y7输出全为“1”。

3、缓冲器件74HC245 第1脚DIR ,输入输出端口转换用,DIR=“1” A输入B 输出,DIR=“0” B输入A 输出。第2~9脚“A ”信号输入输出端;第11~18脚“B ”信号输入输出端。 第19脚G ,使能端,为“1”A/B端的信号将不导通,为“0”时A/B端才被启用。

4、4953的作用:行驱动管,功率管。 1、3脚VCC , 2、4脚控制脚,2脚控制7、8脚的输出,4脚控制5、6脚的输出,只有当2、4脚为“0”时,7、8、5、6才会输出,否则输出为高阻状态。 5、74HC04的作用:6位反相器。 信号由A 端输入Y 端反相输出,A1与Y1为一组,其它类推。例:A1=“1”则Y1=“0”、A1=“0”则Y1=“1”,其它组功能一样。 6、 74HC126(四总线缓冲器)正逻辑 Y=A 2、SDI 串行数据输入端 3、CLK 时钟信号输入端, 4、LE 数据锁存控制端 5~20、恒流源输出端 21、OE 输出使能控制端 22、SDO 串行数据输出端,级联下一个芯片 23、R-EXT 外接电阻,控制恒流源输出端电流大小

直流电机驱动电路设计

直流电机驱动电路设计 一、直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 1. 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电 器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。 如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 2. 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。 2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3)对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。 4)对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5)可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 二、三极管-电阻作栅极驱动

1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压范围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压范围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。 不能用LM339或其他任何开路输出的比较器代替运放,因为开路输出的高电平状态输出阻抗在1千欧以上,压降较大,后面一级的三极管将无法截止。 2.栅极驱动部分: 后面三极管和电阻,稳压管组成的电路进一步放大信号,驱动场效应管的栅极并利用场效应管本身的栅极电容(大约 1000pF)进行延时,防止H桥上下两臂的场效应管同时导通(“共态导通”)造成电源短路。 当运放输出端为低电平(约为1V至2V,不能完全达到零)时,下面的三极管截止,场效应管导通。上面的三极管导通,场效应管截止,输出为高电平。当运放输出端为高电平(约为VCC-(1V至2V),不能完全达到VCC)时,下面的三极管导通,场效

无刷直流电机的驱动及控制

无刷直流电机驱动 James P. Johnson, Caterpiller公司 本章的题目是无刷直流电动机及其驱动。无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。该原理的实际运用只能在开关电子学新发展的今天方可出现。BLDC电机控制是今天世界上发展最快的运动控制技术。可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。 2011-01-30 23.1 BLDC基本原理 在众文献中无刷直流电动机有许多定义。NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。”

图23.1 无刷直流电机构形 2011-01-31 若干类型的电机和驱动被归类于无刷直流电机,它们包括: 1 永磁同步电机(PMSMs); 2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机; 3 正弦形表面安装磁铁无刷直流电机; 4 内嵌式磁铁无刷直流电机; 5 电机与驱动装置组合式无刷直流电机; 6 轴向磁通无刷直流电机。 图23.1给出了几种较常见的无刷直流电机的构形图。永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。许多无刷直流电

L6203直流电机驱动设计原理图及例程

L6203直流电机控制驱动器 【简要说明】 一、尺寸:长66mmX宽33mm X高28mm 二、主要芯片:L6203 三、工作电压:控制信号直流4.5~5.5V;驱动电机电压7.2~30V 四、可驱动直流(7.2~30V之间电压的电机) 五、最大输出电流4A 六、最大输出功率20W 七、特点:1、具有信号指示 2、转速可调 3、抗干扰能力强 4、具有续流保护 5、可单独控制一台直流电机 6、PWM脉宽平滑调速(可使用PWM信号对直流电机调速) 7、可实现正反转 8、此驱动器非常时候控制飞思卡尔智能车,驱动器压降小,电流大,驱动能力强。【标注图片】

直流电机的控制实例 使用驱动器可以控制一台直流电机。电机分别为OUT1和OUT2。输入端EN可用于输入PWM脉宽调制信号对电机进行调速控制。(如果无须调速可将EN使能端,接高低电平,高电平启动,低电平停止。也可由单片机输出直接控制)实现电机正反转就更容易了,输入信号端IN1接高电平输入端IN2接低电平,电机正转。(如果信号端IN1接低电平,IN2接高电平,电机反转。)可参考下图表: 直流电机测试程序 【原理图】

【测试程序】 /******************************************************************** 汇诚科技 实现功能:调试程序 使用芯片:AT89S52 或者 STC89C52 晶振:11.0592MHZ 编译环境:Keil 作者:zhangxinchun 淘宝店:汇诚科技 *********************************************************************/ #include #define uchar unsigned char//宏定义无符号字符型 #define uint unsigned int //宏定义无符号整型 sbit P2_0=P2^0;//启动 sbit P2_1=P2^1;//停止 sbit P2_2=P2^2;//正转 sbit P2_3=P2^3;//反转 sbit P1_0=P1^0;//使能 sbit P1_1=P1^1;//IN1 sbit P1_2=P1^2;//IN2 /******************************************************************** 延时函数 *********************************************************************/ void delay(uchar t)//延时程序

LED驱动电源设计芯片的选用技巧介绍

LED驱动电源设计芯片的选用技巧介绍LED光源的技术日趋成熟,每瓦发光流明迅速增长,促使其逐年递减降价。LED绿色灯具的海量市场和持续稳定数年增长需求将是集成电路行业继VCD、DVD、手机、MP3之后的消费电子市场的超级海啸!LED灯具的高节能、长寿命、利环保的优越性能获得普遍的公认。 1、LED高节能:直流驱动,超低功耗(单管0.03~1W)电光功率转换接近100%,相同照明效果比传统光源节能80%以上。 2、LED长寿命:LED光源被称为长寿灯。固体冷光源,环氧树脂封装,灯体内也没有松动的部分,不存在灯丝发光易烧、热沉积、光衰快等缺点,使用寿命可达5万到10万小时,比传统光源寿命长10倍以上。 3、LED利环保:LED是一种绿色光源,环保效益更佳。光谱中没有紫外线和红外线,热量低和无频闪,无辐射,而且废弃物可回收,没有污染不含汞元素,冷光源,可以安全触摸,属于典型的绿色照明光源。 LED光源工作特点 照明用LED光源的VF电压都很低,一般情况下为2.75~3.8V,IF一般为15~1,400mA。因此,LED驱动IC的输出电压是VFxN或VFx1,IF保持恒流在15~1,400mA。LED灯具使用的LED光源有小功率(IF为15~20mA)和大功率(IF大于200mA)二种。小功率LED 多用做制作LED日光灯、装饰灯、格栅灯。大功率LED被用来做家庭照明灯、射灯、水底灯、洗墙灯、路灯、隧道灯、汽车工作灯等。功率LED光源是低电压、大电流驱动的器件,其发光强度由流过LED的电流大小决定。电流过大会引起LED光衰减,电流过小会影响LED的发光强度。因此,LED的驱动需要提供恒流电源,以保证大功率LED使用的安全性,

直流电机驱动电路设计

应用越来越广泛的直流电机,驱动电路设计 Source:电子元件技术| Publishing Date:2009-03-20 中心论题: ?在直流电机驱动电路的设计中,主要考虑功能和性能等方面的因素 ?分别介绍几种不同的栅极驱动电路并比较其性能优缺点 ?介绍PWM调速的实现算法及硬件电路 ?介绍步进电机的驱动方案 解决方案: ?根据实际电路情况以及要求仔细选择驱动电路 ?使用循环位移算法及模拟电路实现PWM调速 ?对每个电机的相应时刻设定相应的分频比值,同时用一个变量进行计数可实现步进电机的分频调速 直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1。输出电流和电压围,它决定着电路能驱动多大功率的电机。 2。效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3。对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。

4。对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5。可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 三极管-电阻作栅极驱动 1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2。7V 基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。

直流电机PWM调速与控制设计报告

综合设计报告 单位:自动化学院 学生姓名: 专业:测控技术与仪器 班级:0820801 学号: 指导老师: 成绩: 设计时间:2011 年12 月 重庆邮电大学自动化学院制

一、题目 直流电机调速与控制系统设计。 二、技术要求 设计直流电机调速与控制系统,要求如下: 1、学习直流电机调速与控制的基本原理; 2、了解直流电机速度脉冲检测原理; 3、利用51单片机和合适的电机驱动芯片设计控制器及速度检测电路; 4、使用C语言编写控制程序,通过实时串口能够完成和上位机的通信; 5、选择合适控制平台,绘制系统的组建结构图,给出完整的设计流程图。 6、要求电机能实现正反转控制; 7、系统具有实时显示电机速度功能; 8、电机的设定速度由电位器输入; 9、电机的速度调节误差应在允许的误差范围内。 三、给定条件 1、《直流电机驱动原理》,《单片机原理及接口技术》等参考资料; 2、电阻、电容等各种分离元件、IC、直流电机、电源等; 3、STC12C5A60S2单片机、LM298以及PC机; 四、设计 1. 确定总体方案; 2. 画出系统结构图; 3. 选择以电机控制芯片和单片机及速度检测电路,设计硬件电路; 4. 设计串口及通信程序,完成和上位机的通信; 5. 画出程序流程图并编写调试代码,完成报告;

直流电机调速与控制 摘要:当今社会,电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法、PID控制等,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,制动,正反转控制和顺序控制。这类控制可通过继电器,光耦、可编程控制器和开关元件来实现。还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。 本电机控制系统基于51内核的单片机设计,采用LM298直流电机驱动器,利用PWM 脉宽调制控制电机,并通过光耦管测速,经单片机I/O口定时采样,最后通过闭环反馈控制系统实现电机转速的精确控制,其中电机的设定速度由电位器经A/D通过输入,系统的状显示与控制由上位机实现。经过设计和调试,本控制系统能实现电机转速较小误差的控制,系统具有上位机显示转速和控制电机开启、停止和正反转等功能。具有一定的实际应用意义。关键字:直流电机、反馈控制、51内核、PWM脉宽调制、LM298 一、系统原理及功能概述 1、系统设计原理 本电机控制系统采用基于51内核的单片机设计,主要用于电机的测速与转速控制,硬件方面设计有可调电源模块,串口电路模块、电机测速模块、速度脉冲信号调理电路模块、直流电机驱动模块等电路;软件方面采用基于C语言的编程语言,能实现系统与上位机的通信,并实时显示电机的转速和控制电机的运行状态,如开启、停止、正反转等。 单片机选用了51升级系列的STC12c5a60s2作为主控制器,该芯片完全兼容之前较低版本的所有51指令,同时它还自带2路PWM控制器、2个定时器、2个串行口支持独立的波特率发生器、3路可编程时钟输出、8路10位AD转换器、一个SPI接口等,

LED驱动芯片的选用技巧

LED驱动芯片的选用技巧 LED光源的技术日趋成熟,每瓦发光流明迅速增长,促使其逐年递减降价。LED绿色灯具的海量市场和持续稳定数年增长需求将是集成电路行业继VCD、DVD、手机、MP3之后的消费电子市场的超级海啸! LED灯具的高节能、长寿命、利环保的优越性能获得普遍的公认。 1、LED高节能:直流驱动,超低功耗(单管0.03~1W)电光功率转换接近100%,相同照明效果比传统光源节能80%以上。 2、LED长寿命:LED光源被称为长寿灯。固体冷光源,环氧树脂封装,灯体内也没有松动的部分,不存在灯丝发光易烧、热沉积、光衰快等缺点,使用寿命可达5万到10万小时,比传统光源寿命长10倍以上。 3、LED利环保:LED是一种绿色光源,环保效益更佳。光谱中没有紫外线和红外线,热量低和无频闪,无辐射,而且废弃物可回收,没有污染不含汞元素,冷光源,可以安全触摸,属于典型的绿色照明光源。 LED光源工作特点 照明用LED光源的VF电压都很低,一般情况下为2.75~3.8V,IF一般为15~1,400mA。因此,LED驱动IC的输出电压是VFxN或VFx1,IF保持恒流在15~1,400mA。LED灯具使用的LED 光源有小功率(IF为15~20mA)和大功率(IF大于200mA)二种。小功率LED多用做制作LED 日光灯、装饰灯、格栅灯。大功率LED被用来做家庭照明灯、射灯、水底灯、洗墙灯、路灯、隧道灯、汽车工作灯等。 功率LED光源是低电压、大电流驱动的器件,其发光强度由流过LED的电流大小决定。电流过大会引起LED光衰减,电流过小会影响LED的发光强度。因此,LED的驱动需要提供恒流电源,以保证大功率LED使用的安全性,同时达到理想的发光强度。在LED照明领域,为体现出LED灯节能和长寿命的特点,正确选择LED驱动IC至关重要。没有好的驱动IC的匹配,LED照明的优势无法体现出来。 LED灯具对低压驱动芯片的要求 1、驱动芯片的标称输入电压范围应当满足直流8~40V,以覆盖较广的应用需要。耐压能力最好大于45V。当输入为交流12V或24V时,简单的桥式整流器输出电压会随电网电压波动,特别是当电压偏高时,输出直流电压也会偏高。如果驱动IC没有宽的输入电压范围,往往会在电网电压升高时会被击穿,从而烧毁LED光源。 2、驱动芯片的标称输出电流要求大于1.2~1.5A。作为照明用的LED光源,1W功率的LED光源的标称工作电流为350mA,3W功率的LED光源的标称工作电流为700mA。功率大的LED光源的需要更大电流,因此LED照明灯具选用的驱动IC必须有足够的电流输出,设计产品时也必须使驱动IC工作在满负荷输出的70~90%的最佳工作区域。使用满负荷输出电流的驱动IC 在灯具狭小空间散热不畅,容易导致灯具发生疲劳和早期失效。 3、驱动芯片的输出电流必须保持恒定,这样LED才能稳定发光,不会闪烁。同一批驱动芯片在同等条件下使用,其输出电流大小要尽可能一致,也就是离散性要小,这样在大批量自动化生产线上生产时才能保证有效和有序性。对于输出电流有一定离散性的驱动芯片,必选在出厂或投入生产线前进行分档挑选,调整PCB板上电流设定电阻的阻值大小,使之生产的LED 灯具恒流驱动板对同类LED光源的发光亮度一致,以保持最终产品的一致性。

无刷直流电机的组成及工作原理

无刷直流电机的组成及工作原理 2.1 引言 直流无刷电动机一般由电子换相电路、转子位置检测电路和电动机本体三部分组成,电子换相电路一般由控制部分和驱动部分组成,而对转子位置的检测一般用位置传感器来完成。工作时,控制器根据位置传感器测得的电机转子位置有序的触发驱动电路中的各个功率管,进行有序换流,以驱动直流电动机。下文从无刷直流电动机的三个部分对其发展进行分析。 2.2 无刷直流电机的组成 2.2.1 电动机本体 无刷直流电动机在电磁结构上和有刷直流电动机基本一样,但它的电枢绕组放在定子上,转子采用的重量、简化了结构、提高了性能,使其可*性得以提高。无刷电动机的发展与永磁材料的发展是分不开的,磁性材料的发展过程基本上经历了以下几个发展阶段:铝镍钴,铁氧体磁性材料,钕铁硼(NdFeB)。钕铁硼有高磁能积,它的出现引起了磁性材料的一场革命。第三代钕铁硼永磁材料的应用,进一步减少了电机的用铜量,促使无刷电机向高效率、小型化、节能的方向发展。 目前,为提高电动机的功率密度,出现了横向磁场永磁电机,其定子齿槽与电枢线圈在空间位置上相互垂直,电机中的主磁通沿电机轴向流通,这种结构提高了气隙磁密,能够提供比传统电机大得多的输出转矩。该类型电机正处于研究开发阶段。 2.2.2 电子换相电路 控制电路:无刷直流电动机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。控制电路最初采用模拟电路,控制比较简单。如果将电路数字化,许多硬件工作可以直接由软件完成,可以减少硬件电路,提高其可靠性,同时可以提高控制电路抗干扰的能力,因而控制电路由模拟电路发展到数字电路。 驱动电路:驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。驱动电路由大功率开关器件组成。正是由于晶闸管的出现,直流电动机才从有刷实现到无刷的飞跃。但由于晶闸管是只具备控制接通,而无自关断能力的半控性开关器件,其开关频率较低,不能满足无刷直流电动机性能的进一步提高。随着电力电子技术的飞速发展,出现了全控型的功率开关器件,其中有可关断晶体管(GTO)、电力场效应晶体管(MOSFET)、金属栅双极性晶体管IGBT 模块、集成门极换流晶闸管(IGCT)及近年新开发的电子注入增强栅晶体管(IEGT)。随着这些功率器件性能的不断提高,相应的无刷电动机的驱动电路也获得了飞速发展。目前,全控型开关器件正在逐渐取代线路复杂、体积庞大、功能指标低的普通晶闸管,驱动电路已从线性放大状态转换为脉宽调制的开关状态,相应的电路组成也由功率管分立电路转成模块化集成电路,为驱动电路实现智能化、高频化、小型化创造了条件。 2.2.3 转子位置检测电路

基于MC33035芯片的无刷直流电机驱动系统设计

基于MC33035的无刷直流电机驱动控制系统设计 摘要 随着社会的发展和人民的生活水平提高,人们对交通工具的需求也在不断发展和提高。电动自行车作为一种“绿色产品”已经在全国各省市悄然兴起,进入千家万户,成为人们,特别是中老年人和女士们理想的交通工具,受到广大使用者的喜爱。 MC33035的典型控制功能包括PWM开环速度控制、使能控制(起动或停止) 、正反转控制和能耗制动控制。此芯片具有过流保护、欠压保护、欠流保护、又因此芯片低成本、高智能化、从而简化系统构成、降低系统成本、增强系统性能、满足更多应用场合的需要。 设计的直流无刷电机控制器是采用 MC33035 芯片控制的,以本次设计结果表明,MC33035的典型控制功能带有可选时间延迟锁存关断模式的逐周限流特性以及内部热关断等特性。电动自行车作为一种新型交通工具已经在社会上引起很大的影响并受到广大使用者的喜爱。 关键词:电动自行车,无刷直流电机,MC33035,位置传感器

THE BRUSHLESS DC MOTOR DRIVE SYSTEM DESIGN BASED ON MC33035 CHIP ABSTRACT With the rapid development of technology, new energy technologies in recent years have been widely used. For example, the small size, light weight, high efficiency, low noise, large capacity and high reliability features such as permanent magnet brushless DC motor-driven bike. MC33035 Typical control functions include open loop PWM speed control so that it can control (start or stop), reversing control and braking control. This chip is overcurrent protection, undervoltage protection, under current protection, and therefore chip cost, high intelligence, which simplifies the system structure, lower system costs, increase system performance to meet the needs of more applications. The design of the brushless DC motor controller is controlled by MC33035 chip to this design results show that, MC33035 typical time delay control with an optional latch-by-week shutdown mode current limiting characteristics, and internal thermal shutdown characteristics. Electric bicycles as a mode of transportation has caused a great impact on society and loved by the majority of users. KEY WORDS: electric-bicycle, brushless DC motor, MC33035, position sensors

L298N直流电机驱动芯片的说明及应用

恒压恒流桥式2A驱动芯片L298N L298是SGS公司的产品,比较常见的是15脚Multiwatt封装的L298N,内部同样包含4通道逻辑驱动电路。可以方便的驱动两个直流电机,或一个两相步进电机。 L298N可接受标准TTL逻辑电平信号V SS,V SS可接4.5~7 V电压。4脚V S接电源电压,V S电压范围V IH为+2.5~46 V。输出电流可达2.5 A,可驱动电感性负载。1脚和15脚下管的发射极分别单独引出以便接入电流采样电阻,形成电流传感信号。L298可驱动2个电动机,OUT1,OUT2和OUT3,OUT4之间可分别接电动机,本实验装置我们选用驱动一台电动机。5,7,10,12脚接输入控制电平,控制电机的正反转。E nA,E nB 接控制使能端,控制电机的停转。表1是L298N功能逻辑图。

In3,In4的逻辑图与表1相同。由表1可知E nA为低电平时,输入电平对电机控制起作用,当E nA为高电平,输入电平为一高一低,电机正或反转。同为低电平电机停止,同为高电平电机刹停。 L298控制器原理如下: 图3是控制器原理图,由3个虚线框图组成。 下面是3个虚线框图功能: (1)虚线框图1控制电机正反转,U1A,U2A是比较器,V I来自炉体压强传感器的电压。当V I>V RBF1时,U1A输出高电平,U2A输出高电平经反相器变为低电平,电机正转。同理V I<V RBF1时,电机反转。电机正反转可控制抽气机抽出气体的流量,从而改变炉体压强。 (2)虚线框图2中,U3A,U4A两个比较器组成双

限比较器,当V B<V I<V A时输出低电平,当V I>V A,V I<V B时输出高电平。V A,V B是由炉体压强转感器转换电压的上下限,即反应炉体压强控制范围。根据工艺要求,我们可自行规定V A,V B的值,只要炉体压强在V A,V B所确定范围之间电机停转(注意V B<V RBF1<V A,如果不在这个范围内,系统不稳定)。 (3)虚线框图3是一个长延时电路。U5A是一个比较器,R s1是采样电阻,V RBF2是电机过流电压。R s1上电压大于V REF2,电机过流,U5A输出低电平。由上面可知,框图1控制电机正反转,框图2控制炉体压强的纹波大小。当炉体压强太小或太大时,电动机转到两端固定位置停止,根据直流电机稳态运行方程[3]: U=C eФN+R a I a 其中:Ф为电机每极磁通量; C e为电动势常数; N为电机转数; I a为电枢电流; R a电枢回路电阻。

LED显示屏专用驱动芯片详细介绍

目前,LED显示屏专用驱动芯片生产厂家主要有TOSHIBA(东芝)、TI(德州仪器)、SONY(索尼)、MBI{聚积科技}、SITI(点晶科技)等。在国内LED显示屏行业,这几家的芯片都有应用。 TOSHIBA产品的Xing价比较高,在国内市场上占有率也最高。主要产品有TB62705、TB62706、TB62725、TB62726、TB62718、TB62719、TB62727等。其中TB62705、TB62725是8位源芯片,TB62706、TB62726是16位源芯片。TB62725、TB62726分别是TB62705、TB62706的升级芯片。这些产品在电流输出误差(包括位间和片间误差)、数据移位时钟、供电电压以及芯片功耗上均有改善。作为中档芯片,目前”TB62725、TB62726已经逐渐替代了TB62705和TB62706。另外,TB62726还有一种窄体封装的TB62726AFNA芯片,其宽度只有6.3mm(TB62706的贴片封装芯片宽度为8.2mm),这种窄体封装比较适合在点间距较小的显示屏上使用。需要注意的是,AFNA封装与普通封装的引脚定义不一样(逆时针旋转了90度)。TB62718、TB62719是TOSHIBA针对高端市场推出的驱动芯片,除具有普通恒流源芯片的功能外,还增加了256级灰度产生机制(8位PWM)、内部电流调节、温度过热保护(TSD)及输出开路检测(LOD)等功能。此类芯片适用于高端的LED全彩显示屏,当然其价格也不菲。TB62727为TOSHIBA的新产品,主要是在TB62726基础上增加了电流调节、温度报警及输出开路检测等功能,其市场定位介于TB62719(718)与TB62726之间,计划于2003年10月量产。 TI作为世界级的IC厂商,其产品Xing能自然勿用置疑。但由于先期对中国LED市场的开发不力,市场占有率并不高。主要产品有TLC5921、TLC5930和TLC5911等。TLC5921是具有TSD、LOD功能的高精度16位源驱动芯片,其位间电流误差只有±4%,但其价格一直较高,直到最近才降到与TB72726相当的水平。TLC5930为具有1024级灰度(10位PWM)的12位源芯片,具有64级亮度可调功能。TLC5911是定位于高端市场的驱动芯片,具有1024级灰度、64级亮度可调、TSD、LOD等功能的16位源芯片。在TLC5921和TLC5930芯片下方有金属散热片,实际应用时要注意避开LED灯脚,否则会因漏电造成LED灯变暗。 SONY产品一向定位于高端市场,LED驱动芯片也不例外,主要产品有CXA3281N和CXR3596R。CXA3281N是8位源芯片,具有4096级灰度机制(12位PWM)、256级亮度调节、1024级输出电流调节、TSD、LOD和LSD(输出短路检测)等功能。CXA3281N主要是针对静态驱动方式设计的,其最大输出电流只有40mA。CXA3596R是16位源芯片,功能上继承了CXA3281N的所有特点,主要是提高了输出电流(由40mA增加到80mA)及恒流源输出路数(由8路增加到16路)。目前CXA3281N的单片价格为1美元以上,CXA3596R价格在2美元以上。 MBI(聚积科技)的产品基本上与TOSHIBA的中档产品相对应,引脚及功能也完全兼容,除了恒流源外部设定电阻阻值稍有不同外,基本上都可直接代换使用。该产品的价格比TOSHIBA的要低10~20%,是中档显示屏不错的选择。MBI的MBl5001和MBl5016分别与TB62705和TB62706对应,MBl5168千口MBl5026分另(j与TB62725禾口TB62726对应。另外,还有具有LOD功能的其新产品MBl5169(8位源)、MBl5027(16位源)、64级亮度调节功能的MBl5170(8位源)和MBl5028(16位源)。带有LOD及亮度调节功能的芯片采用MBI公司的Share-I-OTM技术,其芯片引脚完全与不带有这些功能的芯片,如MBl5168和MBl5026兼容。这样,可以在不变更驱动板设计的情况下就可升级到新的功能。

直流电机驱动控制电路_NMosfet

1 引言 长期以来,直流电机以其良好的线性特性、优异的控制性能等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。特别随着计算机在控制领域,高开关频率、全控型第二代电力半导体器件(GTR、GTO、MOSFET、IGBT等)的发展,以及脉宽调制(PWM)直流调速技术的应用,直流电机得到广泛应用。为适应小型直流电机的使用需求,各半导体厂商推出了直流电机控制专用集成电路,构成基于微处理器控制的直流电机伺服系统。但是,专用集成电路构成的直流电机驱动器的输出功率有限,不适合大功率直流电机驱动需求。因此采用N沟道增强型场效应管构建H桥,实现大功率直流电机驱动控制。该驱动电路能够满足各种类型直流电机需求,并具有快速、精确、高效、低功耗等特点,可直接与微处理器接口,可应用PWM技术实现直流电机调速控制。 2 直流电机驱动控制电路总体结构 直流电机驱动控制电路分为光电隔离电路、电机驱动逻辑电路、驱动信号放大电路、电荷泵电路、H桥功率驱动电路等四部分,其电路框图如图一 由图可以看出,电机驱动控制电路的外围接口简单。其主要控制信号有电机运转方向信号Dir电机调速信号PWM及电机制动信号Brake,Vcc为驱动逻辑电路部分提供电源,Vm为电机电源电压,M+、M-为直流电机接口。 在大功率驱动系统中,将驱动回路与控制回路电气隔离,减少驱动控制电路对外部控制电路的干扰。隔离后的控制信号经电机驱动逻辑电路产生电机逻辑控制信号,分别控制H桥的上下臂。由于H桥由大功率N沟道增强型场效应管构成,不能由电机逻辑控制信号直接驱动,必须经驱动信号放大电路和电荷泵电路对控制信号进行放大,然后驱动H桥功率驱动电路来驱动直流电机。 3 H桥功率驱动原理 直流电机驱动使用最广泛的就是H型全桥式电路,这种驱动电路方便地实现直流电机的四象限运行,分别对应正转、正转制动、反转、反转制动。H桥功率驱动原理图如图2所示。

无刷直流电机驱动电路 dsp

基于 DSP 的无刷直流电机控制系统的设计
2010-1-13 22:24:00 来源:
摘 要:介绍了以高性能 TMS320F2812 DSP 芯片为核心的无刷直流电机控制系统的设 计和实现,主要包括系统硬件电路的主要构成,电机的控制策略及软件结构。 实验 表明,该系统结构简单紧凑,控制精度高,具有良好的静态和动态性能。 关键词:无刷直流电机;TMS320F2812;控制系统 Design of Control System of Brushless DC Motor Based on DSP WANG Chen-yang, ZHANG Qi, XIONG Jiu-long Abstract: The design and implementation of brushless DC motor control system based on high performance DSP TMS320F2812 is introduced in this paper, it is made up of three aspects, the main structure of system hardware, the strategy of motor controlling and software structure。 Experimental results show that the system has a simple and compact structure,high control precision and good dynamic and static characteristics. Key Words:brushless DC motor;TMS320F2812;control system 1. 引言 无刷直流电机利用电子换向器取代了传统直流电机中的机械电刷和机械换向器, 因此不仅保留了直流电动机运行效率高和调速性能好等优点, 又具有交流电动机的结 构简单、运行可靠、维护方便等优点。由于不受机械换向限制,易于做到大容量、高 转速,目前在航天、军工、数控、冶金、医疗器械等领域已得到大量应用。 TMSF2812 DSP 是 TI 公司新推出的基于 TMS320C2xx 内核的定点数字信号处理器。器件上集成了 多种先进的外设,具有灵活、可靠的控制和通信模块,完全可以采用单芯片实现电机 控制系统的控制和通信功能,使得电机控制系统简单化、模块化,为电机及其他运动 控制领域应用的实现提供了良好的平台。 本文设计和实现了基于 TI 公司 TMS320F2812 DSP 芯片的无刷直流电机控制系统,整个系统结构紧凑,功能完善。 2. 系统硬件设计 系统的硬件框图如图 1 所示,可以看出基本上包括一个以 TMS320F2812 DSP 为核 心的 DSP 控制板,一块配套的功率驱动板和一台无刷直流电机。

led驱动芯片型号有哪些_十款led驱动芯片电路设计

led驱动芯片型号有哪些_十款led驱动芯片电路设计 怎么选择自己合适的LED驱动IC? 1、市场褒贬不一的LED驱动IC-AMC7150在当时AMC7150还是不错的,我想了想还是提提,它有个很重要的因数就是价格,有不到2元的市场价格,是你采用它的理由。AMC7150目前有几十家可以直接替换的IC型号,价格战会无法避免。 在设计参数要求不高的低压4-25V产品中可以选择它,基本驱动能力在3W以下应用设计。比如1W串3颗或3W1颗LED设计是稳定的。 目前士兰半导体推出新款IC,主要是针对驱动24V驱动6颗LED市场。价格要高于AMC7153优惠于欧美市场IC,适合设计1-6颗LED,输入6-25V输入电压,SOP8封装形式,主要针对目前低端射灯市场。 这个IC驱动1-7颗1WLED。效率可达92%,6-28V电压输入范围降压型驱动应用设计。比前面两款IC最大的优势是封装SOT23大小,线路简介,符合目前多数小体积灯杯设计使用要求。 大阻值范围电流调节,可以电位器宽阻值范围调节亮度,比如设计台灯等产品需要这样时。这颗IC目前市场反应良好,也是SOT23小体积封装,输入7-30V电压降压恒流驱动1-7pscLED,线路简洁实用。设计时Rs要紧靠IC避免供电电压大幅度不动,这样会影响恒流效果。 总体电子物料成本要略高于前款IC。 LM3402市场反映不错,输入电压范围涵盖整个汽车应用领域,内置MOS管最多可以15颗LED,1-3颗LED是感觉有些贵,5颗以上时性价比很不错。目前接触到的客户工程师评价很高,接受领域比较广线路简洁实用,是国半众多LED驱动IC中间佼佼者。 LM3404和LM3402的线路一样,不同的是电流可以达到1A,驱动1-15pcsLED性价比较高。 上面所列IC规格都是内置MOS管,内置MOS管可以简化线路设计,小体积,降低设计综合成本,故障率也会降低。因其目前IC工艺制成、成本等原因大于1A以上的LED驱

有刷直流马达驱动电路

有刷直流马达驱动电路MX612 有刷直流马达驱动电路 MX612 概述 该产品为电池供电的玩具、低压或者电池供电的运动控制应用提供了一种集成的有刷直流马达驱动解决方案。电路内部集成了采用N沟和P沟功率MOSFET设计的H桥驱动电路,适合于驱动有刷直流马达或者驱动步进马达的一个绕组。该电路具备较宽的工作电压范围(从2V到10V),最大持续输出电流达到1.2A,最大峰值输出电流达到2.5A。 该驱动电路内置过热保护电路。通过驱动电路的负载电流远大于电路的最大持续电流时,受封装散热能力限制,电路内部芯片的结温将会迅速升高,一旦超过设定值(典型值150℃),内部电路将立即关断输出功率管,切断负载电流,避免温度持续升高造成塑料封装冒烟、起火等安全隐患。内置的温度迟滞电路,确保电路恢复到安全温度后,才允许重新对电路进行控制。 特性 ●低待机电流(小于0.1uA); ●低静态工作电流; ●集成的H桥驱动电路; ●内置防共态导通电路; ●低导通内阻的功率MOSFET管; ●内置带迟滞效应的过热保护电路(TSD); ●抗静电等级:3KV (HBM)。 典型应用 ● 2-6节AA/AAA干电池供电的玩具马达驱动; ● 2-6节镍-氢/镍-镉充电电池供电的玩具马达驱动; ● 1-2节锂电池供电的马达驱动

引脚排列 引脚定义 功能框图

注:D A JA T A表示电路工作的环境温度,θJA为封装的热阻。150℃表示电路的最高工作结温。 (2)、电路功耗的计算方法: P =I2*R 其中P为电路功耗,I为持续输出电流,R为电路的导通内阻。电路功耗P必须小于最大功耗P D (3)、人体模型,100pF电容通过1.5KΩ 电阻放电。 注:(1)、逻辑控制电源VCC与功率电源VDD内部完全独立,可分别供电。当逻辑控制电源VCC掉电之后,电路将进入待机模式。 (2)、持续输出电流测试条件为:电路贴装在PCB上测试,SOP8封装的测试PCB板尺寸为25mm*15mm。

相关主题
文本预览
相关文档 最新文档