第九讲 分段插值
- 格式:pdf
- 大小:336.82 KB
- 文档页数:25
分段线性插值分段线性插值是一种在机器学习、数学、信号处理等领域中广泛应用的方法。
分段线性插值的主要目的是为漏洞、持续时间等数据展示提供更好的视觉效果,同时也可以使数据更容易进行处理。
在分段线性插值中,每一段数据都可以看作是一条直线段。
通过在相邻数据点之间插入一条直线来实现插值。
每个数据点或任意数段可以称为一个插值区间,插值区间内部的数据点都采用一条直线进行插值,直线的斜率由插值区间上下数据点构成。
例如:在一个区间(x1,y1)和(x2,y2)之间进行插值,其中x1<x<x2。
那么,我们可以使用线性公式y = mx + b来估计数据点的y值。
方程中m是插值区间的斜率,通过公式m = (y2-y1)/(x2-x1)计算。
而b是在插值区间x1和x2之间的截距,通过公式b = y1 - m x1计算。
最后,我们就可以通过已知的数据点,估计同一段中任意点的y值。
下面我们通过一个实例来进一步解释分段线性插值的应用。
比如我们有一组工作时间数据如下:|年份| 工作时间 ||----|----|| 2010 | 6.5 || 2011 | 7.0 || 2013 | 7.5 || 2015 | 8.0 |目前,我们需要在2012年估计工作时间。
首先,我们需要找到分段线性插值的区间。
2012年的数据点在2011年和2013年之间。
因此,我们可以使用2011年和2013年之间的数据点进行插值。
然后,通过计算斜率来确定m和b的值。
斜率可以通过公式m = (y2-y1)/(x2-x1)来计算。
2011年和2013年的工作时间分别是7.0和7.5,年份分别是2011和2013。
因此,斜率为:(7.5-7.0)/(2013年-2011年)= 0.25/2 = 0.125插值区间的y截距b可以通过公式b = y1 - m x1来计算。
这使得我们可以计算出截距:接下来,我们就可以使用斜率和截距来计算2012年的工作时间,这将是我们所需的数据点的估计值:y = mx + b= 0.125 * 2012 + 258.375= 259.875。
1、实验目的:设在区间[a,b]上,给定n+1个插值节点a=X0<X1<X2<。
<Xn=b和相应的函数值y0,y1,y2,。
,yn ,求一个插值函数φ(x),具有下面性质:(1)φ(x)=yj(j=0,1,2,…,n)(2)φ(x)在每一个小区间[xj,yj+1]上是线性函数。
2、算法分析:●分段线性插值的算法思想:分段线性插值需要在每个插值节点上构造分段线性插值基函数,然后再作它们的线性组合。
分段线性插值基函数的特点是在对应的插值节点上函数值取1,其它节点上函数值取0。
插值基函数如下:有了基函数就可以直接写出分段线性插值函数的表达式。
●具体程序设计:for(i=0;i<=20;i++) //选取节点{ax[i]=-1+((2/20.0)*i); //选取上的21个对称的节点ay[i]=1.0/(1+25*ax[i]*ax[i]);}x1=-1;while(x1<=1){m=0;x1=x1+0.00001;for(i=0;i<=20;i++){if(i==0&&x1>=-1&&x1<=-0.9){n=ay[0]*((x1-ax[1])/(ax[0]-ax[1])); //计算并和相应的函数值组合m=n+m;}else{if(x1>=ax[i-1]&&x1<=ax[i]) //计算并和相应的函数值组合{n=ay[i]*((x1-ax[i-1])/(ax[i]-ax[i-1]));m=n+m;}else{if(x1>ax[i]&&x1<=ax[i+1]){n=ay[i]*((x1-ax[i+1])/(ax[i]-ax[i+1]));m=m+n;}else{if(i==19&&x1>ax[19]&&x1<=ax[20]){n=ay[20]*((x1-ax[19])-(ax[20]-ax[19]));//计算并和相应的函数值组合m=n+m;}}}}}}3、实验结果截图:在[-1,1]区间上选取了21个等分节点的分段线性插值函数的图像如下:4、程序代码// SHIYAN456View.cpp : implementation of the CSHIYAN456View class //#include "stdafx.h"#include "SHIYAN456.h"#include "SHIYAN456Doc.h"#include "SHIYAN456View.h"#ifdef _DEBUG#define new DEBUG_NEW#undef THIS_FILEstatic char THIS_FILE[] = __FILE__;#endif/////////////////////////////////////////////////////////////////////////////// CSHIYAN456ViewIMPLEMENT_DYNCREATE(CSHIYAN456View, CView)BEGIN_MESSAGE_MAP(CSHIYAN456View, CView)//{{AFX_MSG_MAP(CSHIYAN456View)ON_COMMAND(ID_FFunction, OnFFunction)ON_COMMAND(ID_Lagrange, OnLagrange)ON_COMMAND(ID_Subsection, OnSubsection)ON_COMMAND(ID_Hermite, OnHermite)//}}AFX_MSG_MAP// Standard printing commandsON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)ON_COMMAND(ID_FILE_PRINT_DIRECT, CView::OnFilePrint)ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview) END_MESSAGE_MAP()/////////////////////////////////////////////////////////////////////////////// CSHIYAN456View construction/destructionCSHIYAN456View::CSHIYAN456View(){// TODO: add construction code here}CSHIYAN456View::~CSHIYAN456View(){}BOOL CSHIYAN456View::PreCreateWindow(CREATESTRUCT& cs)// TODO: Modify the Window class or styles here by modifying // the CREATESTRUCT csreturn CView::PreCreateWindow(cs);}/////////////////////////////////////////////////////////////////////////////// CSHIYAN456View drawingvoid CSHIYAN456View::OnDraw(CDC* pDC){CSHIYAN456Doc* pDoc = GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for native data hereAfxGetMainWnd()->SetWindowText("实验四五六函数图像");for(int k=650;k<=690;k++){pDC->SetPixel(k,55,RGB(255,0,0));pDC->SetPixel(k,85,RGB(0,255,0));pDC->SetPixel(k,115,RGB(0,0,255));pDC->SetPixel(k,145,RGB(0,255,255));}pDC->TextOut(700,50,"原函数图像");pDC->TextOut(700,80,"Lagrange插值函数图像");pDC->TextOut(700,110,"分段线性插值函数图像");pDC->TextOut(700,140,"Hermite插值函数图像");for(int i=6;i<=600;i++)pDC->SetPixel(400,i,RGB(0,0,0));pDC->TextOut(395,4,"y");for(int j=100;j<=700;j++)pDC->SetPixel(j,500,RGB(0,0,0));pDC->TextOut(700,500,"x");//pDC->MoveTo(400,500);}/////////////////////////////////////////////////////////////////////////////// CSHIYAN456View printingBOOL CSHIYAN456View::OnPreparePrinting(CPrintInfo* pInfo){// default preparationreturn DoPreparePrinting(pInfo);}void CSHIYAN456View::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/) {// TODO: add extra initialization before printing}void CSHIYAN456View::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/) {// TODO: add cleanup after printing}/////////////////////////////////////////////////////////////////////////////// CSHIYAN456View diagnostics#ifdef _DEBUGvoid CSHIYAN456View::AssertValid() const{CView::AssertValid();}void CSHIYAN456View::Dump(CDumpContext& dc) const{CView::Dump(dc);}CSHIYAN456Doc* CSHIYAN456View::GetDocument() // non-debug version is inline {ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CSHIYAN456Doc)));return (CSHIYAN456Doc*)m_pDocument;}#endif //_DEBUG/////////////////////////////////////////////////////////////////////////////// CSHIYAN456View message handlersvoid CSHIYAN456View::OnFFunction(){// TODO: Add your command handler code hereCClientDC dr(this);COLORREF rgb=RGB(255,0,0);double x1,y1,x,y;x1=-1.0;y1=1/(1+25*x1*x1);x=x1*200+400;y=-y1*200+500;while(x1<=1){dr.MoveTo(int(x),int(y));x1=x1+0.00001;y1=1/(1+25*x1*x1);x=x1*200+400;y=-y1*200+500;dr.SetPixel(int(x),int(y),rgb);}}void CSHIYAN456View::OnLagrange(){// TODO: Add your command handler code hereCClientDC dr(this);COLORREF rgb=RGB(0,255,0);int i,j;double x1=0,y1=0,x=0,y=0,m=0,n=0,ax[100],ay[100];for(i=0;i<=10;i++){ax[i]=-1+((2/10.0)*i);ay[i]=1.0/(1+25*ax[i]*ax[i]);}x1=-1;y1=1/(1+25*x1*x1);x=x1*200+400;y=-y1*200+500;dr.MoveTo(int(x),int(y));while(x1<=1){m=0;for(i=0;i<=10;i++){n=1;for(j=0;j<=10;j++){if(i!=j)n=((x1-ax[j])/(ax[i]-ax[j]))*n;}m=ay[i]*n+m;}x=x1*200+400;y=-m*200+500;dr.SetPixel(int(x),int(y),rgb);x1=x1+0.00001;}}void CSHIYAN456View::OnSubsection(){// TODO: Add your command handler code hereCClientDC dr(this);COLORREF rgb=RGB(0,0,255);int i;double x1=0,y1=0,x=0,y=0,m=0,n=0,ax[100],ay[100];for(i=0;i<=20;i++){ax[i]=-1+((2/20.0)*i);ay[i]=1.0/(1+25*ax[i]*ax[i]);}x1=-1;y1=1/(1+25*x1*x1);x=x1*200+400;y=-y1*200+500;dr.MoveTo(int(x),int(y));while(x1<=1){m=0;x1=x1+0.00001;for(i=0;i<=20;i++){if(i==0&&x1>=-1&&x1<=-0.9){n=ay[0]*((x1-ax[1])/(ax[0]-ax[1]));m=n+m;}else{if(x1>=ax[i-1]&&x1<=ax[i]){n=ay[i]*((x1-ax[i-1])/(ax[i]-ax[i-1]));m=n+m;}else{if(x1>ax[i]&&x1<=ax[i+1]){n=ay[i]*((x1-ax[i+1])/(ax[i]-ax[i+1]));m=m+n;}else{if(i==19&&x1>ax[19]&&x1<=ax[20]){n=ay[20]*((x1-ax[19])-(ax[20]-ax[19]));m=n+m;}}}}}x=x1*200+400;y=-m*200+500;dr.SetPixel(int(x),int(y),rgb);}}void CSHIYAN456View::OnHermite(){// TODO: Add your command handler code hereCClientDC dr(this);COLORREF rgb=RGB(0,255,255);int i;double x1=0,y1=0,x=0,y=0,m=0,n=0,tt=0,tt1=0,h=0,ax[100],ay[100],a[100];for(i=0;i<=10;i++){ax[i]=-1+((2/10.0)*i);ay[i]=1.0/(1+25*ax[i]*ax[i]);a[i]=(-50*ax[i])/((1+25*ax[i]*ax[i])*(1+25*ax[i]*ax[i]));}x1=-1;y1=1/(1+25*x1*x1);x=x1*200+400;y=-y1*200+500;dr.MoveTo(int(x),int(y));while(x1<=1){m=0;x1=x1+0.00001;for(i=0;i<=10;i++){if(i==0&&x1>=ax[0]&&x1<=ax[1]){n=(1+2*((x1-ax[0])/(ax[1]-ax[0])))*((x1-ax[1])/(ax[0]-ax[1]))*((x1-ax[1])/(ax[0]-ax[1]));tt=ay[0]*n;h=(x1-ax[0])*((x1-ax[1])/(ax[0]-ax[1]))*((x1-ax[1])/(ax[0]-ax[1]));tt1=a[0]*h;m=tt+tt1+m;}else{if(x1>=ax[i-1]&&x1<=ax[i]){n=(1+2*((x1-ax[i])/(ax[i-1]-ax[i])))*((x1-ax[i-1])/(ax[i]-ax[i-1]))*((x1-ax[i-1])/(ax[i]-ax[i-1]));tt=ay[i]*n;h=(x1-ax[i])*((x1-ax[i-1])/(ax[i]-ax[i-1]))*((x1-ax[i-1])/(ax[i]-ax[i-1]));tt1=a[i]*h;m=tt+tt1+m;}else{if(x1>ax[i]&&x1<=ax[i+1]){n=(1+2*((x1-ax[i])/(ax[i+1]-ax[i])))*((x1-ax[i+1])/(ax[i]-ax[i+1]))*((x1-ax[i+1])/(ax[i]-ax[i+1]));tt=ay[i]*n;h=(x1-ax[i])*((x1-ax[i+1])/(ax[i]-ax[i+1]))*((x1-ax[i+1])/(ax[i]-ax[i+1]));tt1=a[i]*h;m=tt+tt1+m;}else{if(i==9&&x1>ax[9]&&x1<=ax[10]){n=(1+2*((x1-ax[10])/(ax[9]-ax[10])))*((x1-ax[9])/(ax[10]-ax[9]))*((x1-ax[9])/(ax[10]-ax[9]));tt=ay[i]*n;h=(x1-ax[10])*((x1-ax[9])/(ax[10]-ax[9]))*((x1-ax[9])/(ax[10]-ax[9]));tt1=a[i]*h;m=tt+tt1+m;}}}}}x=x1*200+400;y=-m*200+500;dr.SetPixel(int(x),int(y),rgb);}}5、总结体会分段线性插值的方法克服了Lagrange插值法当节点不断加密时,构造的插值多项式的次数不断升高,高次多项式虽然是连续的,但是不一定都收敛到相应的被插函数而产生Runge现象。
分段线性插值法求插值摘要本文根据题目的要求,利用分段线性插值法对采样点和样本值进行插值计算。
为了更好的评断模型的优化性,我们同时采用了最近点插值,3次多项式插值和3次样条插值法来处理同样的问题,作为分段线性插值方法的参考模型。
根据插值函数计算区间内任意取样点的函数值。
最后再利用所得函数值画出相应的函数图象,并与原函数g(x)的图象进行对比。
通过对本题四个问题的解答,并观察对比函数图象我们得到了如下两个重要的结论:(1)在同一取样点,利用不同的插值方法可能会得到不同的函数值,所得函数值与原函数的标准函数值的误差大小决定了该插值方法的“好坏”。
而最优化的插值方法往往依赖于被插值函数。
本题中,在函数式g(x)对应X,Y的条件下,可以根据对比函数图象明显看出:分段线性插值方法和3次多项式插值方法优于3次样条插值和最近点插值。
(2)在插值计算中,取样点的多少往往会影响所得插值函数优化程度。
一般情况下,取样点越多所得插值函数越优化,对应的函数值与标准函数值越接近。
通过对本题四个问题相应对比函数图象的观察,我们也明显看出:在区间[-6 6]内,当取样点为21,41时,分段线性插值法进行插值计算得到的函数图象基本上与原函数g(x)吻合。
AbstractIn this article ,we use piecewise linear interpolation to compute the sampling point and sample value according to the request of question. In order to judge the model's quality in a better way, we use nearest interpolation, cubic interpolation and spline interpolation regarded as the model reference of piecewise linear interpolation to deal the question in the same way at the same time. Then draw the function picture by function value of any sampling point in the interval of interpolating function. Finally, we make a comparison between the original function g(x) image and the interpolating function image.At the base of analysing the final result and comparing the constrastive image . We can summarize two items of important conclusion as follows:(1)At the same sampling point , different interpolating method canobtain different function value. Usually , the optimizationalgorithm depends on the size of error between the objectfunction value .(2) When processing interpolating compute , the number of thesampling point will make an effect on the quality of a model.Commonly, the more multitudinous the sampling points wereused ,the more precise the interpolation model will be .目录一.问题的重述 (1)二.问题的分析 (1)三.问题的假设 (1)四.分段线性插值原理 (2)五.问题的求解 (2)六.插值方法的优劣性分析 (5)附录 (6)一.问题的重述已知211)(xx g +=,66≤≤-x 用分段线性插值法求插值,绘出插值结果图形,并观察插值误差。