当前位置:文档之家› 精讲精练:因式分解方法分类总结-培优(含答案)

精讲精练:因式分解方法分类总结-培优(含答案)

精讲精练:因式分解方法分类总结-培优(含答案)
精讲精练:因式分解方法分类总结-培优(含答案)

因式分解·提公因式法

【知识精读】

如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。

提公因式法是因式分解的最基本也是最常用的方法。它的理论依据就是乘法分配律。多项式的公因式的确定方法是:

(1)当多项式有相同字母时,取相同字母的最低次幂。

(2)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。

下面我们通过例题进一步学习用提公因式法因式分解 【分类解析】

1. 把下列各式因式分解 (1)-+--+++a x

abx acx ax m m m m 2

2

13

(2)a a b a b a ab b a ()()()-+---3

2

2

22

分析:(1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号。 解:-+--=--+++++a x

abx acx ax ax ax bx c x m m m m m 2

2

1323()

(2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n 为自然数时,()

()()()a b b a a b b a n

n n n -=--=----222121;,

是在因式分解过程中常用的因式变换。

解:a a b a b a ab b a ()()()-+---32222

)

243)((]

2)(2))[(()

(2)(2)(222

223b b ab a b a a b b a a b a b a a b a ab b a a b a a ++--=+-+--=-+-+-=

2. 利用提公因式法简化计算过程

例:计算1368

987

521136898745613689872681368987123?+?+?+? 分析:算式中每一项都含有987

1368

,可以把它看成公因式提取出来,再算出结

果。

解:原式)521456268123(1368987

+++?= =

?=987

1368

1368987

3. 在多项式恒等变形中的应用 例:不解方程组23

532

x y x y +=-=-???,求代数式()()()22332x y x y x x y +-++的

值。

分析:不要求解方程组,我们可以把2x y +和53x y -看成整体,它们的值分别是3和-2,观察代数式,发现每一项都含有2x y +,利用提公因式法把代数式恒等变形,化为含有2x y +和53x y -的式子,即可求出结果。 解

()()()()()()()223322233253x y x y x x y x y x y x x y x y +-++=+-+=+-

把2x y +和53x y -分别为3和-2带入上式,求得代数式的值是-6。

4. 在代数证明题中的应用

例:证明:对于任意自然数n ,3

2322

2n n n n ++-+-一定是10的倍数。

分析:首先利用因式分解把代数式恒等变形,接着只需证明每一项都是10的倍数即可。 3

23233222

222n n n n n n n n ++++-+-=+--

=+-+=?-?33122110352

22n n n n

()()

对任意自然数n ,103?n

和52?n

都是10的倍数。 ∴-+-++32

322

2

n n n n

一定是10的倍数

5、中考点拨:

例1。因式分解322x x x ()()--- 解:322x x x ()()---

=-+-=-+322231x x x x x ()()

()()

说明:因式分解时,应先观察有没有公因式,若没有,看是否能通过变形转换得到。

例2.分解因式:412132q p p ()()-+- 解:412132q p p ()()-+-

=-+-=--+=--+4121212112122132

2

2q p p p q p p q pq ()()()[()]()()

说明:在用提公因式法分解因式前,必须对原式进行变形得到公因式,同时一定要注意符号,提取公因式后,剩下的因式应注意化简。

题型展示:

例1. 计算:200020012001200120002000?-? 精析与解答:

设2000=a ,则20011=+a

∴?-?200020012001200120002000

=+++-++=+?-+?=+?-=a a a a a a a a a a a a [()()]()()()()()()1000011110000110001110001110001100010

说明:此题是一个有规律的大数字的运算,若直接计算,运算量必然很大。其中2000、2001重复出现,又有200120001=+的特点,可通过设未知数,将复杂数字间的运算转化为代数式,再利用多项式的因式分解化简求值,从而简化计算。

例2. 已知:x bx c 2

++(b 、c 为整数)是x x 4

2

625++及34285

4

2

x x x +++

的公因式,求b 、c 的值。

分析:常规解法是分别将两个多项式分解因式,求得公因式后可求b 、c ,但比较麻烦。注意到x bx c 2++是362542()x x ++及3428542

x x x +++的因式。因而也是-+++()3428542x x x 的因式,所求问题即可转化为求这个多项式的二次因式。

解: x bx c 2

++是36254

2

()x x ++及342854

2

x x x +++的公因式 ∴也是多项式3625342854242()()x x x x x ++-+++的二次因式 而362534285142542422()()()x x x x x x x ++-+++=-+ b 、c 为整数

得:x bx c x x 2

2

25++=-+

∴=-=b c 25,

说明:这是对原命题进行演绎推理后,转化为解多项式1428702

x x -+,从而简便求得x bx c 2

++。

例3. 设x 为整数,试判断1052+++x x x ()是质数还是合数,请说明理由。 解:1052+++x x x ()

=+++=++52225()()()()

x x x x x

x x ++25,都是大于1的自然数 ∴++()()x x 25是合数

说明:在大于1的正数中,除了1和这个数本身,还能被其它正整数整除的数叫合数。只能被1和本身整除的数叫质数。

【实战模拟】 1. 分解因式:

(1)-+-41222

3

3

2

m n m n mn (2)a x

abx acx adx n n n n 2

211++-+--(n 为正整数)

(3)a a b a b a ab b a ()()()-+---3

2

2

2

22

2. 计算:()

()-+-2211

10的结果是( )

A. 2

100

B. -210

C. -2

D. -1

3. 已知x 、y 都是正整数,且x x y y y x ()()---=12,求x 、y 。

4. 证明:812797

9

13

--能被45整除。

5. 化简:11112

1995

+++++++x x x x x x x ()()()…,且当x =0时,求原式

的值。

试题答案

1. 分析与解答:

(1)-+-41222

3

3

2

m n m n mn =--+226122mn mn m n () (2)a x abx

acx adx

n n n

n 2

21

1

++-+--

=+---ax

ax bx cx d n 1

3

2

()

(3)原式=-+---a a b a a b ab a b ()()()322222

=--+-=--=-a a b a b a b a a b a b a a b ()[()]

()()

()2

2

2

22333

注意:结果多项因式要化简,同时要分解彻底。 2. B

3. x x y y y x ()()---=12 ∴-+=()()x y x y 12 x y 、是正整数

∴12分解成1122634???,,

又 x y -与x y +奇偶性相同,且x y x y -<+

∴-=+=??

?∴==??

?x y x y x y 2642

说明:求不定方程的整数解,经常运用因式分解来解决。

4. 证明: 812797913

--

=--=--=?=??=?33339313

5

335

345

2827262626

24224()

∴--812797

9

13

能被45整除

5. 解:逐次分解:原式=++++++()()()()

11112

1995

x x x x x x …

=++++=++++++==+()()()()()()()()1111111121995

3419951996

x x x x x x x x x x x …………

∴当x =0时,原式=1

因式分解·公式法

【知识精读】

把乘法公式反过来,就可以得到因式分解的公式。 主要有:平方差公式 a b a b a b 22-=+-()() 完全平方公式

a a

b b a b 2222±+=±()

立方和、立方差公式 a b a b a ab b 3

3

2

2

±=±?+()() 补充:欧拉公式:

a b c abc a b c a b c ab bc ca 3

3

3

2

2

2

3++-=++++---()()

=++-+-+-12

222

()[()()()]a b c a b b c c a

特别地:(1)当a b c ++=0时,有a b c abc 333

3++= (2)当c =0时,欧拉公式变为两数立方和公式。

运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。但有时需要经过适当的组合、变形后,方可使用公式。

用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。

下面我们就来学习用公式法进行因式分解 【分类解析】

1. 把a a b b 2

2

22+--分解因式的结果是( )

A. ()()()a b a b -++22

B. ()()a b a b -++2

C. ()()a b a b -++2

D. ()()a b b a 2222--

分析:a a b b a a b b a b 22222222212111+--=++---=+-+()()。 再利用平方差公式进行分解,最后得到()()a b a b -++2,故选择B 。

说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。同时要注意分解一定要彻底。

2. 在简便计算、求代数式的值、解方程、判断多项式的整除等方面的应用 例:已知多项式23

2

x x m -+有一个因式是21x +,求m 的值。

分析:由整式的乘法与因式分解互为逆运算,可假设另一个因式,再用待定系数法即可求出m 的值。

解:根据已知条件,设2213

2

2

x x m x x ax b -+=+++()() 则222123

2

3

2

x x m x a x a b x b -+=+++++()()

由此可得211120

23a a b m b

+=-+==????

???()()()

由(1)得a =-1

把a =-1代入(2),得b =

1

2

把b =

12代入(3),得m =12

3. 在几何题中的应用。 例:已知

a b c 、、是?ABC

的三条边,且满足

a b c ab bc ac 2220++---=,试判断?ABC 的形状。

分析:因为题中有a b ab 22

、、-,考虑到要用完全平方公式,首先要把-ab 转成-2ab 。所以两边同乘以2,然后拆开搭配得完全平方公式之和为0,从而得解。 解: a b c ab bc ac 2

2

2

0++---= ∴++---=22222202

2

2

a b c ab bc ac

∴-++-++-+=()()()a ab b b bc c c ac a 2

2

2

2

2

2

2220 ∴-+-+-=()()()a b b c c a 2

2

2

0 ()()()a b b c c a -≥-≥-≥2

2

2

000,, ∴-=-=-=a b b c c a 000,, ∴==a b c

∴?ABC 为等边三角形。

4. 在代数证明题中应用

例:两个连续奇数的平方差一定是8的倍数。

分析:先根据已知条件把奇数表示出来,然后进行变形和讨论。

解:设这两个连续奇数分别为2123n n ++,(n 为整数) 则()()232122n n +-+

=++++--=+=+()()

()

()

2321232124481n n n n n n

由此可见,()()23212

2

n n +-+一定是8的倍数。

5、中考点拨:

例1:因式分解:x xy 3

2

4-=________。

解:x xy x x y x x y x y 3

2

2

2

4422-=-=+-()()()

说明:因式分解时,先看有没有公因式。此题应先提取公因式,再用平方差公式分解彻底。

例2:分解因式:2883

2

2

3

x y x y xy ++=_________。

解:2882443

2

2

3

2

2

x y x y xy xy x xy y ++=++()=+222

xy x y () 说明:先提取公因式,再用完全平方公式分解彻底。

题型展示:

例1. 已知:a m b m c m =

+=+=+1211221

2

3,,, 求a ab b ac c bc 2

2

2

222++-+-的值。 解:a ab b ac c bc 2

2

2

222++-+- =+-++()()a b c a b c 2

2

2 =+-()a b c 2 a m b m c m =

+=+=+1211221

2

3,, ∴原式=+-()a b c 2

=+++-+??????

=()()()12112212314

2

2

m m m m

说明:本题属于条件求值问题,解题时没有把条件直接代入代数式求值,而是把代数式因式分解,变形后再把条件带入,从而简化计算过程。

例2. 已知a b c a b c ++=++=00333

,, 求证:a b c 5

5

5

0++=

证明: a b c abc a b c a b c ab bc ca 333

2

2

2

3++-=++++---()() ∴把a b c a b c ++=++=003

3

3

,代入上式,

可得abc =0,即a =0或b =0或c =0 若a =0,则b c =-, ∴++=a b c 5

5

5

若b =0或c =0,同理也有a b c 555

0++=

说明:利用补充公式确定a b c ,,的值,命题得证。

例3. 若x y x xy y 3322279+=-+=,,求x y 22

+的值。 解: x y x y x xy y 3322

27+=+-+=()()

且x xy y 22

9-+=

)1(9232

2

=++=+∴y xy x y x , 又x xy y 2

292-+=()

两式相减得xy =0 所以x y 2

2

9+=

说明:按常规需求出x y ,的值,此路行不通。用因式分解变形已知条件,简化计算过程。

【实战模拟】

1. (1)()()a a +--23122

解:原式=++-+--[()()][()()]a a a a 231231 =+-+()()4123a a =-+-()()4123a a

说明:把a a +-231,看成整体,利用平方差公式分解。 (2)(2)x x y x y x 5

2

22()()-+- 解:原式=---x x y x x y 5

2

22()() =--x x y x 2

3

21()()

=--++x x y x x x 2

2

211()()() (3)(3)a x y a x y x y 2

2

3

4

2()()()-+-+- 解:原式=-+-+-()[()()]x y a a x y x y 2

2

2

2 =-+-()()x y a x y 2

2

2. 已知:x x +=-13,求x x 4

41+的值。

解: ()x x x x +=++12122

2

∴+=+-=--=x x

x x 2222

112327()()

∴+=∴++=()x x x x 222441491249, ∴+=x x

4

4147

3. 若a b c ,,是三角形的三条边,求证:a b c bc 222

20---<

分析与解答:由于对三角形而言,需满足两边之差小于第三边,因此要证明结论就需要把问题转化为两边差小于第三边求得证明。 证明: a b c bc 2

2

2

2---

=-++=-+=++--a b bc c a b c a b c a b c 22222

2()

()()()

a b c ,,是三角形三边 ∴++>a b c 0且a b c <+ ∴++--<()()a b c a b c 0 即a b c bc 2

2

2

20---< 4. 已知:ωω2

10++=,求ω2001

的值。

解 ωω2

10++=

∴+++=()()ωωω1102

,即ω3

10-=

∴=∴==ωωω3

200136671

1()

5. 已知a b c ,,是不全相等的实数,且abc a b c abc ≠++=033

3

3

,,试求 (1)a b c ++的值;(2)a b c b c a c a b

()()()1

11111

+++

++的值。

分析与解答:(1)由因式分解可知

a b c abc a b c 3333++-=++()?++---()a b c ab bc ca 222

故需考虑a b c ab bc ca 222

++---值的情况,

(2)所求代数式较复杂,考虑恒等变形。 解:(1) a b c abc 3

3

3

3++= ∴++-=a b c abc 3

3

330 又 a b c abc 3

3

3

3++-

=++++---()()a b c a b c ab bc ca 222

∴++++---=()()a b c a b c ab bc ca 222

0 而a b c ab bc ca a b b c c a 222

2221

2

++---=-+-+-[()()()] a b c ,,不全相等

∴++--->a b c ab bc ca 2

2

2

0 ∴++=a b c 0

(2) abc ≠0 ∴原式=

+++++1

222abc

a b c b c a c a b [()()()] 而a b c ++=0,即a b c =-+() ∴原式=

+--1

333abc

b c b c [()] =

+1

3abc

bc b c [()]

=

-=-1

33

abc abc ()

说明:因式分解与配方法是在代数式的化简与求值中常用的方法。

因式分解·分组分解法

【知识精读】

分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。使用这种方法的关键在于分组适当,而在分组时,必须有预见性。能预见到下一步能继续分解。而“预见”源于细致的“观察”,分析多项式的特点,恰当的分组是分组分解法的关键。

应用分组分解法因式分解,不仅可以考察提公因式法,公式法,同时它在代数式的化简,求值及一元二次方程,函数等学习中也有重要作用。 下面我们就来学习用分组分解法进行因式分解。 【分类解析】

1. 在数学计算、化简、证明题中的应用

例1. 把多项式2112

4

2

a a a a a ()+++++分解因式,所得的结果为( )

A a a

B a a

C a a

D a a .().().()

.()

22222

2

2

2

1111+--+++--

分析:先去括号,合并同类项,然后分组搭配,继续用公式法分解彻底。 解:原式=+++++211242a a a a a (()

=++++=+++++=++++=++a a a a a a a a a a a a a a a 43243222

2

2

22

2321

2221211()()()()()

故选择C

例2. 分解因式x x x x x 54321-+-+-

分析:这是一个六项式,很显然要先进行分组,此题可把x x x x x 54321-+-+-和分别看成一组,此时六项式变成二项式,提取公因式后,

再进一步分解;此题也可把x x 54-,x x x 321--和分别看作一组,此时的六项式变成三项式,提取公因式后再进行分解。 解法1:

原式=-+--+=--+=-++-+()()

()()

()()()

x x x x x x x x x x x x x 54323222111111

解法2:

原式=-+-+-=-+-+-=-++=-++-=-++-+()()()

()()()

()()()[()]()()()

x x x x x x x x x x x x x x x x x x x x x x 5432424242222111111121111

2. 在几何学中的应用

例:已知三条线段长分别为a 、b 、c ,且满足a b a c b ac >+<+,2222 证明:以a 、b 、c 为三边能构成三角形

分析:构成三角形的条件,即三边关系定理,是“两边之和大于第三边,两边之差小于第三边”

证明: a c b ac 2222+<+

∴+--<∴-+-<--<∴-+--<-+>--∴-+>--<∴+>-<-<<+∴a c b ac a ac c b a c b a c b a c b a c b a c b a c b a c b a b c a b c a b c a b

a b c 2222222220

200000,即又,,即以、、为三边能构成三角形

()()()

3. 在方程中的应用

例:求方程x y xy -=的整数解

分析:这是一道求不定方程的整数解问题,直接求解有困难,因等式两边都含有x 与y ,故可考虑借助因式分解求解 解: x y xy -=

∴-+=∴-+-=--+-=-∴-+=-∴+=-=-???+=--=??

?xy x y xy x y x y y y x x y x y x y 011111

111

11111111

即是整数

或()()()(), ∴==???=-=??

?x y x y 0022

4、中考点拨

例1.分解因式:1222--+=m n mn _____________。 解:1222--+m n mn

=--+=--=+--+12111222

()

()()()

m mn n m n m n m n

说明:观察此题是四项式,应采用分组分解法,中间两项虽符合平方差公式,但搭配在一起不能分解到底,应把后三项结合在一起,再应用完全平方公式和平方差公式。

例2.分解因式:x y x y 22--+=____________ 解:x y x y 22--+=()()x y x y 22---

=+---=-+-()()()()()

x y x y x y x y x y 1

说明:前两项符合平方差公式,把后两项结合,看成整体提取公因式。

例3. 分解因式:x x x 323412+--=____________ 解:x x x 323412+--=x x x 324312-+-

=-+-=++-x x x x x x ()()()()()

22434322

说明:分组的目的是能够继续分解。

5、题型展示:

例1. 分解因式:m n mn n 222141()-+-+ 解:m n mn n 222141()-+-+

=-+-+=++---=+--=-+++-+m n m mn n m n mn m mn n mn m n mn m n mn m n 2222222222

41

212111()()()()()()

说明:观察此题,直接分解比较困难,不妨先去括号,再分组,把4mn 分成2mn 和2mn ,配成完全平方和平方差公式。

例2. 已知:a b c d ac bd 2222110+=+=+=,,且,求ab+cd 的值。 解:ab+cd=ab cd ?+?11

=+++=+++=+++=+++=++ab c d cd a b abc abd cda cdb abc cdb abd cda bc ac bd ad bd ac ac bd bc ad ()()()()()()()()

22222222

2222

ac bd +=∴=00

原式

说明:首先要充分利用已知条件a b c d 222211+=+=,中的1(任何数乘以1,其值不变),其次利用分解因式将式子变形成含有ac+bd 因式乘积的形式,由ac+bd=0可算出结果。

例3. 分解因式:x x 323+-

分析:此题无法用常规思路分解,需拆添项。观察多项式发现当x=1时,它的值为0,这就意味着x x x -+-1233

是的一个因式,因此变形的目的是凑x -1这个因式。

解一(拆项):

x x x x x 333233322+-=--+

=-++--=-++3112113222

()()()()()

x x x x x x x x

解二(添项):

x x x x x x x x x x x x x 3322222323

11313+-=-++-=-+-+=-++()()()()()

说明:拆添项法也是分解因式的一种常见方法,请同学们试拆一次项和常数项,看看是否可解?

【实战模拟】

1. 填空题:

()分解因式:()分解因式:()分解因式:13322444311222233a a b b x x xy y y mn mn m n --+=

--++=

---=

()

(1)解:原式=---()()a b a b 223

=+---=-+-()()()()()

a b a b a b a b a b 33

(2)解:原式=-+--()()x xy y x y 224422

=---=---()()()()

x y x y x y x y 2222222

(3)解:原式=-+-12233mn m n m n

=-+-=-+()()()()

1111222

2

mn m n mn mn m n

2. 已知:a b c a a c abc b c b ++=+-++03223,求的值。

解:原式=+-++-+()()()a b a ab b c a ab b 2222 ))((22c b a b ab a +++-=

a b c ++=∴=00

原式 说明:因式分解是一种重要的恒等变形,在代数式求值中有很大作用。 3. 分解因式:15

++a a 解:a a 51++

=-+++=-+++=-+++++=++-+a a a a a a a a a a a a a a a a a a 5222

3

2

22223211111111()()

()()()()()

4. 已知:

x y z A x y z x y z x y x z A 2223330--=--=--,是一个关于的一次多项式,且,,()(),

试求A 的表达式 解: x y z 2220--=

∴=-=-∴--=--?=-++--=-++-+=--+-+-=--+++=--++y x z z x y x y z x y z z x y x x y y z x y x y x x y y z x y x y x x z y x z x z x y x z x y x z x y x z x y z 222222

333332

22222

2

222,()()()()()[()]()[()()()]()()()()()()

∴=++A x y z 2

5. 证明:()()()()()a b ab a b ab a b +-+-+-=--22111222 证明:()()()a b ab a b ab +-+-+-2212

=+-++---++-+=+----+++=+++++-+-+a ab a ab b b a b ab ab ab a b a b a b a b ab ab a b a ab b a b ab a b a b ab 222222

222222

22222222224122222412212222()()()()

=+++-++=+-+=-+-()()()()

[()()]()a b ab a b ab a b ab a ab b 222

2

12111

=--=--()()()()

a b a b 1111222

2

因式分解·十字相乘法

【知识精读】

对于首项系数是1的二次三项式的十字相乘法,重点是运用公式

()()x a b x ab x a x b 2+++=++()进行因式分解。

掌握这种方法的关键是确定适合条件的两个数,即把常数项分解成两个数的积,且其和等于一次项系数。 对于二次三项ax bx c 2

++(a 、b 、c 都是整数,且a ≠0)来说,如果存在四个整数a c a c 1122,,,满足a a a c c c 1212==,,并且a c a c b 1221+=,那么二次三项式ax bx c 2++即()a a x a c a c x c c 122122112+++可以分解为

()()a x c a x c 1122++。这里要确定四个常数a c a c 1122,,,,分析和尝试都要比

首项系数是1的类型复杂,因此一般要借助画十字交叉线的办法来确定。

下面我们一起来学习用十字相乘法因式分解。

【分类解析】

1. 在方程、不等式中的应用

例1. 已知:x x 2

11240-+>,求x 的取值范围。

分析:本题为二次不等式,可以应用因式分解化二次为一次,即可求解。 解: x x 2

11240-+>

()()∴-->∴->->???-<-

8083

或或

例2. 如果x x mx mx 432

22-+--能分解成两个整数系数的二次因式的积,试求m 的值,并把这个多项式分解因式。

分析:应当把x 4

分成x x 2

2

?,而对于常数项-2,可能分解成()-?12,或者

分解成()-?21,由此分为两种情况进行讨论。

解:(1)设原式分解为()()

x ax x bx 2212+-++,其中a 、b 为整数,去括号,得:

()()x a b x x a b x 43222++++-- 将它与原式的各项系数进行对比,得: a b m a b m +=-=-=-1122,, 解得:a b m =-==101,, 此时,原式()()

=+--x x x 2221

(2)设原式分解为()()

x cx x dx 2221+-++,其中c 、d 为整数,去括号,得:

()()x c d x x c d x 4

3

2

22++-+--

将它与原式的各项系数进行对比,得: c d m c d m +=-=--=-1122,, 解得:c d m ==-=-011,, 此时,原式()()

=--+x x x 2221

2. 在几何学中的应用

例. 已知:长方形的长、宽为x 、y ,周长为16cm ,且满足

x y x xy y --+-+=22220,求长方形的面积。

分析:要求长方形的面积,需借助题目中的条件求出长方形的长和宽。 解: x y x xy y --+-+=22220

()()()()()∴-+---=∴----=∴---+=x xy y x y x y x y x y x y 222

220

20

210()

∴--=x y 20或x y -+=10 又 x y +=8

∴--=+=???-+=+=??

?x y x y x y x y 208108

或 解得:x y ==??

?53或x y ==???

35

45.. ∴长方形的面积为15cm 2或634

2

cm 3、在代数证明题中的应用

例. 证明:若4x y -是7的倍数,其中x ,y 都是整数,则810322

x xy y +-是

49的倍数。 分析:要证明原式是49的倍数,必将原式分解成49与一个整数的乘积的形式。 证明一:()()81032342

2

x xy y x y x y +-=+-

()2234647x y x y x y y +=+=-+

∵4x y -是7的倍数,7y 也是7的倍数(y 是整数) ∴()223x y +是7的倍数

而2与7互质,因此,23x y +是7的倍数,所以810322x xy y +-是49的倍数。

证明二:∵4x y -是7的倍数,设47x y m -=(m 是整数) 则y x m =-47

又∵()()810323422x xy y x y x y +-=+-

()()()()∴+--+=-=-21221447714214923x x m x x m m x m m x m

∵x ,m 是整数,∴()m x m 23-也是整数 所以,810322x xy y +-是49的倍数。

4、中考点拨

例1.把2

2

2

2

4

954y y x y x --分解因式的结果是________________。 解:2

2

2

2

4

954y y x y x --

()

()(

)

()()()

=--=-+=++-y x x y x x y x

x x 2422

2

2

2

2

459491

12323

说明:多项式有公因式,提取后又符合十字相乘法和公式法,继续分解彻底。

例2.:因式分解:6752

x x --=_______________ 解:()()67521352

x x x x --=+-

说明:分解系数时一定要注意符号,否则由于不慎将造成错误。

5、题型展示

例1. 若x y mx y 2256-++-能分解为两个一次因式的积,则m 的值为( ) A. 1

B. -1

C. ±1

D. 2

解:()()x y mx y x y x y mx y 225656-++-=+-++- -6可分解成()-?23或()-?32,因此,存在两种情况:

(1)x +y -2 (2)x +y

-3

x-y 3 x-y 2 由(1)可得:m =1,由(1)可得:m =-1 故选择C 。

说明:对二元二次多项式分解因式时,要先观察其二次项能否分解成两个一次式乘积,再通过待定系数法确定其系数,这是一种常用的方法。

例2. 已知:a 、b 、c 为互不相等的数,且满足()()()a c b a c b -=--2

4。 求证:a b b c -=-

证明:()()() a c b a c b -=--2

4

()()()()()()∴----=∴-+-+-+=∴+-++=∴+-=∴+-=∴-=-a c b a c b a ac c bc ac ab b a c b a c b a c b a c b a b b c

2

2

2

2

2

2

2

40

244440

4402020

说明:抓住已知条件,应用因式分解使命题得证。

例3. 若x x x a 32

57+++有一因式x +1。求a ,并将原式因式分解。

解: x x x a 3

2

57+++有一因式x +1

∴当x +=10,即x =-1时,x x x a 3

2

570+++= ∴=a 3

()()()()()

()()()()()

x x x x x x x x x x x x x x x x x x x x x 3232222

2

573

4433

1413114311313+++=+++++=+++++=+++=+++=++

说明:由条件知,x =-1时多项式的值为零,代入求得a ,再利用原式有一个因式是x +1,分解时尽量出现x +1,从而分解彻底。 【实战模拟】 1. 分解因式:

(1)a b ab 2

2

1639++ (2)15742122

x x y y n n n n +-++

(3)(

)

()x x

x x 2

2

2322372+-++

2. 在多项式x x x x x x x x x ++++-+-++1232321232

2

2

,,,,,,哪

些是多项式(

)

()x x

x x 2

4

22

21029+-++的因式?

3. 已知多项式2133

2

x x x k --+有一个因式,求k 的值,并把原式分解因式。 4. 分解因式:352942

2

x xy y x y +-++-

5. 已知:x y x y +=+=05

312..,,求312922

x xy y ++的值。

【试题答案】

1. (1)解:原式()()()=++=++ab ab ab ab 2

1639313 (2)解:原式()()

=-+++35411x y x y n n n n

(3)解:原式()()

()()()()=+-+-=+-+-x x x x x x x x 22343184163 2. 解:(

)

() x x

x x 2

4

22

21029+-++

()[]()[]

()()()()

()()()()()

=+-+-=+++-+++-=+++-++-x x x x x x x x x x x x x x x x x x x 2

2

2

2

22222

2

2

2921

232321212331121

∴其中x x x x x x +++++-1323212

2

,,,是多项式

()()x

x x x 2

4

22

21029+-++的因式。

说明:先正确分解,再判断。

3. 解:设()()

21321322x x x k x x ax b --+=+++ 则()()21322123

2

3

2

x x x k x a x a b x b --+=+++++

∴+=-+=-=???

??211213a a b b k

解得:a b k =-=-=-???

?

?166

∴=-k 6且

()()()()()21362162132322x x x x x x x x x ---=---=--+

说明:待定系数法是处理多项式问题的一个重要办法,所给多项式是三次式,已知有一个一次因式,则另一个因式为二次式,由多项式乘法法则可知其二次项系数为1。

4. 解:简析:由于项数多,直接分解的难度较大,可利用待定系数法。 设3529422x xy y x y +-++-

()()

()()=-+++=+-+++-+32352322

2

x y m x y n x xy y m n x m n y mn

比较同类项系数,得:m n m n mn +=-==-???

?

?31294

解得:m n ==-??

?4

1

()()∴+-++-=-+--35294342122x xy y x y x y x y 5. 解:31292

2

x xy y ++

()()()

=++=++3433322x xy y x y x y

x y x y +=+=∴=??=0531********..

...

,原式

说明:用因式分解可简化计算。

初中数学因式分解的常用方法(精华例题详解)

初中阶段因式分解的常用方法(例题详解) 因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。 1.因式分解的对象是多项式; 2.因式分解的结果一定是整式乘积的形式; 3.分解因式,必须进行到每一个因式都不能再分解为止; 4.公式中的字母可以表示单项式,也可以表示多项式; 5.结果如有相同因式,应写成幂的形式; 6.题目中没有指定数的范围,一般指在有理数范围内分解; 7.因式分解的一般步骤是: (1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解; (2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法. 因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下: 一、提公因式法. 如多项式am+bm+cm=m(a+b+c), 其中m叫做这个多项式各项的公因式,m既可以是一个单项式,也可以是一个多项式. 二、运用公式法. 运用公式法,即用 a2-b2=(a+b)(a-b), a2±2ab+b2=(a±b)2, a3±b3=(a±b)(a2ab+b2) 写出结果. 三、分组分解法. (一)分组后能直接提公因式 例1、分解因式:am+an+bm+bn 分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑 两组之间的联系。 解:原式=(am+an)+(bm+bn) =a(m+n)+b(m+n)每组之间还有公因式! =(m+n)(a+b) 思考:此题还可以怎样分组? 此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。 例2、分解因式:2ax-10ay+5by-bx 解法一:第一、二项为一组;解法二:第一、四项为一组; 第三、四项为一组。第二、三项为一组。 解:原式=(2ax-10ay)+(5by-bx)原式=(2ax-bx)+(-10ay+5by) =2a(x-5y)-b(x-5y)=x(2a-b)-5y(2a-b) =(x-5y)(2a-b)=(2a-b)(x-5y) 练习:分解因式1、a2-ab+ac-bc2、xy-x-y+1

精讲精练:因式分解方法分类总结-培优(含答案)

因式分解·提公因式法 【知识精读】 如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。 提公因式法是因式分解的最基本也是最常用的方法。它的理论依据就是乘法分配律。多项式的公因式的确定方法是: (1)当多项式有相同字母时,取相同字母的最低次幂。 (2)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。 下面我们通过例题进一步学习用提公因式法因式分解 【分类解析】 1. 把下列各式因式分解 (1)-+--+++a x abx acx ax m m m m 2 2 13 (2)a a b a b a ab b a ()()()-+---3 2 2 22 分析:(1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号。 解:-+--=--+++++a x abx acx ax ax ax bx c x m m m m m 2 2 1323() (2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n 为自然数时,() ()()()a b b a a b b a n n n n -=--=----222121;,是在因式分解过 程中常用的因式变换。 解:a a b a b a ab b a ()()()-+---322 22 ) 243)((] 2)(2))[(() (2)(2)(222 223b b ab a b a a b b a a b a b a a b a ab b a a b a a ++--=+-+--=-+-+-= 2. 利用提公因式法简化计算过程 例:计算1368 987 521136898745613689872681368987123? +?+?+? 分析:算式中每一项都含有987 1368 ,可以把它看成公因式提取出来,再算出结 果。 解:原式)521456268123(1368987 +++?= =?=987 1368 1368987 3. 在多项式恒等变形中的应用 例:不解方程组23 532 x y x y +=-=-???,求代数式()()()22332x y x y x x y +-++的 值。 分析:不要求解方程组,我们可以把2x y +和53x y -看成整体,它们的值分别是3和-2,观察代数式,发现每一项都含有2x y +,利用提公因式法把代数式恒等变形,化为含有2x y +和53x y -的式子,即可求出结果。 解 :

因式分解培优训练

因式分解强化训练 因式分解常用方法: 1、 提公因法 ::ma+mb+mc=m(a+b+c) 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、 分解因式x -2x –x 解: x -2x -x=x(x -2x-1) 2、运用公式法. 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1) (a+b)(a -b) = a 2-b 2 ---------a 2-b 2=(a+b)(a -b); (2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2; 下面再补充两个常用的公式: (3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2); (4) (a -b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a -b)(a 2+ab+b 2). (5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2; (6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca); 例2、已知a b c ,,是ABC ?的三边,且222a b c ab bc ca ++=++,则ABC ?的形状是( ) A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222 222222a b c ab bc ca a b c ab bc ca ++=++?++=++ 222()()()0a b b c c a a b c ?-+-+-=?== 3、分组分解法 (一)分组后能直接提公因式 例2、分解因式:bx by ay ax -+-5102 解法一:第一、二项为一组; 解法二:第一、四项为一组; 第三、四项为一组。 第二、三项为一组。 解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+- =)5()5(2y x b y x a --- =)2(5)2(b a y b a x --- =)2)(5(b a y x -- =)5)(2(y x b a -- 练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy (二)分组后能直接运用公式 例3、分解因式:ay ax y x ++-22 分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。 解:原式=)()(22ay ax y x ++- =)())((y x a y x y x ++-+ =))((a y x y x +-+ 练习:分解因式3、y y x x 3922--- 4、yz z y x 2222--- 综合练习:(1)3 223y xy y x x --+ (2)b a ax bx bx ax -+-+-22 (3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++- (5)92234-+-a a a (6)y b x b y a x a 222244+--

因式分解常用的六种方法详解

因式分解常用的六种方法详解 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式. 例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)

初中数学之因式分解知识点汇总

初中数学之因式分解知识点汇总 因式分解 1. 因式分解的概念: 把一个多项式化成几个整式的积的形式,这样的式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。 2. 因式分解与整式乘法的关系 因式分解与整式乘法都是整式变形,两者互为逆变形。因式分解是将“和差”的形式化为“积”的形式,而整式乘法是将“积”化为“和差”的形式。 注:分解因式必须进行到每一个多项式的因式都不能再分解为止,即分解因式要彻底。 3. 公因式 多项式的各项都含有的公共因式叫做这个多项式各项的公因式。 系数——取各项系数的最大公约数; 字母——取各项都含有的字母; 指数——取相同字母的最低次幂。 例如:多项式pa+pb+pc 中因式p 即为多项式各项的公因式。 因式分解九大方法: (一)运用公式法: 我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有: a2-b2=(a+b)(a-b) a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2 如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。 (二)平方差公式 1.平方差公式 (1)式子:a2-b2=(a+b)(a-b) (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。 (三)因式分解 1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。 2.因式分解,必须进行到每一个多项式因式不能再分解为止。 (四)完全平方公式 (1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到: a2+2ab+b2 =(a+b)2 a2-2ab+b2 =(a-b)2 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。 把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。 上面两个公式叫完全平方公式。 (2)完全平方式的形式和特点 ①项数:三项

因式分解培优练习题及答案

因式分解专题过关 1.将下列各式分解因式 22+8x+8 2x2)((1)3p﹣6pq 2.将下列各式分解因式 3322.﹣6a b+3ab2 ()3a )(1x y﹣xy .分解因式32 22222)﹣4x y)﹣)1()a(x﹣y+16(yx)(2(x+y 4.分解因式:22( 2 2x(1)﹣x )16x﹣1 3 2 2 2 ()yx+9yx4+12﹣﹣6xy3()9xyy4)(﹣)(﹣ 5.因式分解:2 223﹣2am1()8a y+xy+4x4x)2( .将下列各式分解因式:6. 322222 yx﹣+y4x)(2)(1()3x﹣12x 223 22 y﹣2xy)+y﹣2)(x+2y(7.因式分解:(1)xy 8.对下列代数式分解因式: 2(m﹣2)﹣n(2﹣m)(2)(x﹣1)((1)nx﹣3)+1

2222﹣ba2a+1 ﹣a10﹣4a+4﹣b.分解因式:.分解因式:9 11.把下列各式分解因式: 42422 a﹣2)x+2ax+1+x (x﹣7x +1 (1) 22242432+2x+1 x+3x+2x (4(1﹣y+x))(1﹣y)1+y(3)()2x﹣ 12.把下列各式分解因式: 32222224445+x+1;x ) b +2ac(+2bc3﹣a﹣b﹣c ;2a2 ;4x1()﹣31x+15 () 32432.a+2﹣6a﹣a﹣2a)5(;9﹣+3x+5xx)4(. 2﹣6pq=3p(p﹣2q1)3p),解答:解:(222.(x+2x)+4x+4),=2(2)2x+8x+8,=2( 2.将下列各式分解因式 3322.6a (2)3ab+3ab﹣(1)x y﹣xy 分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可; (2)首先提取公因式3a,再利用完全平方公式进行二次分解即可. 2﹣1)=xy(x+1)(x﹣解:(1)原式=xy(x1);解答:222.﹣b))=3a((2)原式=3a(aa﹣2ab+b 3.分解因式 222222.)y﹣(2)(x4x+y﹣y)+16(y﹣x);(1)a (x 22﹣16),=(x﹣y)(a+4)(a﹣4()+16y﹣x),=(x﹣y)(a);解答:解:(1)a (x﹣y22222222222.)(x﹣2xy+y),﹣4x=y(,=(xx+y+2xy+y))((2)(xx+yy)﹣ 4.分解因式: 222232.)(x﹣y4+12(x﹣)6xyy﹣9x)y﹣y+9;(4(1)2x16x﹣x;(2))﹣1;(3 2﹣x=x(2x﹣1(1)2x);解答:解:2﹣1=(4x+1)(16x4x﹣1);(2)223222;﹣y),)=﹣yy,=﹣y(9x(﹣6xy+y(3)6xy3x﹣9xy﹣222.﹣3y+2),=(3x﹣y)﹣,=[2+3(xy)]((4)4+12x﹣y)+9(x 5.因式分解: 2322 y+xy+4x (2)4x (1)2am ﹣8a; 22﹣4)=2a(m+2)(8a=2a(mm﹣2);解答:解:(1)2am﹣322222.),=x4x,=x((+4xy+y (2)4x2x+y+4x)y+xy 6.将下列各式分解因式: 322222.y(x﹣+y4x)(2)(1)3x﹣12x 32)=3x(1+2x)(1﹣2x)1()3x﹣12x;=3x(1﹣4x 解答:解:22222222222.)y (x+y﹣﹣2xy)(x)+y)=﹣4x(y(=xx+y+yx+2xy)()(2

因式分解地常用方法(方法最全最详细)

因式分解的常用方法 第一部分:方法介绍 因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等 因式分解的一般步骤是: (1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解; (2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。 注意:将一个多项式进行因式分解应分解到不能再分解为止。 一、提公因式法.:ma+mb+mc=m(a+b+c) 二、运用公式法. 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1) (a+b)(a-b) = a 2-b 2 -----------a 2-b 2 =(a+b)(a-b); (2) (a ±b)2 = a 2±2ab+b 2 ---------a 2±2ab+b 2=(a ±b)2 ; (3) (a+b)(a 2-ab+b 2) =a 3+b 3---------a 3+b 3=(a+b)(a 2-ab+b 2 ); (4) (a-b)(a 2+ab+b 2) = a 3-b 3 --------a 3-b 3=(a-b)(a 2+ab+b 2 ). 下面再补充两个常用的公式: (5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2 ; (6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2 -ab-bc-ca); 例.已知a b c ,,是ABC ?的三边,且222 a b c ab bc ca ++=++, 则ABC ?的形状是( ) A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:2 2 2 2 2 2 222222a b c ab bc ca a b c ab bc ca ++=++?++=++ 222()()()0a b b c c a a b c ?-+-+-=?==

初中因式分解的常用方法

初中因式分解的常见方法 因式分解的概念与原则 1、定义:把一个多项式化为几个最简整式的乘积的形式,这种恒等变换叫做因式分解,也叫作分解因式。 2、原则: (1)分解必须要彻底(即分解之后的因式均不能再做分解); (2)结果最后只留下小括号; (3)结果的多项式是首项为正,为负时提出负号; (4)结果个因式的多项式为最简整式,还可以化简的要化简; (5)如有单项式和多项式相乘,应把单项式提到多项式前; (6)相同因式的乘积写成幂的形式; (7)如无特殊要求,一般在有理数范围内分解。如另有要求,在要求的范围内分解。 因式分解的一般步骤 (1)如果多项式的各项有公因式,那么先提公因式; (2)如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; (3)如果用上述方法不能分解,那么可以尝试用分组、拆项法来分解; (4)检查各因式是否进行到每一个因式的多项式都不能再分解。 也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要相对合适。” 因式分解的常用方法 因式分解与整式乘法是互逆的运算,是学好代数的基础之一,希望同学给以足够的重视。因式分解的每一步都必须是恒等变形,必须进行到每一个多项式因式都不能再分解为止。常见的方法有:①提取公因式法;②公式法;③提公因式法与公式法的综合运用。在对一个多项式因式分解时,首先应考虑提取公因式法,然后考虑公式法,对于某些多项式,如果从整体上不能利用上述方法因式分解,还要考虑对其进行分组、拆项、换元等。下面通过例题一一介绍。 一.提取公因式法 (一)公因式是单项式的因式分解 1.分解因式 确定公因式的方法 ①系数:取各项系数的最大公因数;②字母(或多项式):取各项都含有的字母(或多项式); ③指数:取相同字母(或多项式)的最低次幂. 注意:公因式可以是单独的一个数或字母,也可以是多项式,当第一项是负数时可先提负号,当公因式与多项式某一项相同时,提公因式后剩余项是1,不要漏项. 解:原式=一4m2n(m2一4m+7). (二)公因式是多项式的因式分解 2.因式分解

(完整版)因式分解培优题(超全面、详细分类)

因式分解专题培优 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下: 因式分解的一般方法及考虑顺序: 1、基本方法:提公因式法、公式法、十字相乘法、分组分解法. 2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法. 3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法. 一、运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1),其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式. 例题1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7.

因式分解培优复习进程

因式分解培优

分解因式 一、分解因式的定义:(关键:看等号右边是否为几个整式的积的形式) 二、分解因式一般步骤:一提、二套、三分、四查 三、分解因式常用方法: Ⅰ、提公因式法:(关键:确定公因式) ma +mb +mc = 。 Ⅱ、运用公式法:(关键:确定a 、b ) ①平方差公式:22a b -= ②完全平方公式: 22 2a ab b ±+= 。 (一)将下列多项式因式分解(填空) 1、 _______________________2、322363x x y xy -+=___________________ 3、=__________________4、 =________________ 5、= ___________________ 6、= (二)分解因式(写出详细过程) 1、)()()(23m n n m n m +--+ 2、 3、 4、2222224)(b a b a c --- (三)已知x 、y 都是正整数,且,求x 、y 。 (四)化简:,且当时,求原式的值。

Ⅲ、十字相乘法: (一)二次项系数为1的二次三项式:))(()(2 q x p x pq x q p x ++=+++ 特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。 1、分解因式:(1)652++x x (2)276m m -+ (3)1522--y y (4)245a a +- 2、分解因式(1)2 223y xy x +- (2)2286n mn m +- (3)226b ab a -- (4)221288b ab a -- (5)10)(3)(2 -+-+y x y x (二)二次项系数不为1的二次三项式:c bx ax ++2=))((2211c x a c x a ++ 条件:(1)21a a a = 1a 1c (2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b += 1、分解因式:(1)6752-+x x (2)2732+-x x (3)317102+-x x (4)101162++-y y 2、分解因式(1)17836--x x (2)8622+-ax x a (3)2 2151112y xy x --

因式分解的9种方法

因式分解的多种方法——--知识延伸,向竞赛过度 1. 提取公因式:这种方法比较常规、简单,必须掌握.常用的公式:完全平方公式、平方差公式 例一:0322 =-x x 解:x(2x-3)=0, x1=0,x2=3/2这是一类利用因式分解的方程. 总结:要发现一个规律:当一个方程有一个解x=a 时,该式分解后必有一个(x —a )因式,这对我们后面的学习有帮助。 2. 公式法 常用的公式:完全平方公式、平方差公式。注意:使用公式法前,部分题目先提取公因式。 例二:42-x 分解因式 分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a —b) 2解:原式=(x+2)(x —2) 3. 十字相乘法 是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。注意:它不难。 这种方法的关键是把二次项系数a 分解成两个因数a1,a2的积a1?a2,把常数项c 分解成两个因数c1,c2的积c1?c2,并使a1c2+a2c1正好是一次项b ,那么可以直接写成结果 例三: 把3722+-x x 分解因式. 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数。 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(—3). 用画十字交叉线方法表示下列四种情况: 经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7. 解 原式=(x —3)(2x —1). 总结:对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a 可以分解成两个因数之积,即a=a1a2,常数项c 可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下: a1 c1 ╳ a2 c2 a1c2+a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c 的一次项系数b,即a1c2+a2c1=b ,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即

因式分解的多种方法(初中版)

因式分解的方法(初中版) 因式分解是初中一个重点,它牵涉到分式方程,一元二次方程,所以很有必要学会一些基本的因式分解的方法。下面列举了九种方法,希望对大家的学习能有所帮助。 1】提取公因式 这种方法比较常规、简单,必须掌握。 常用的公式有:完全平方公式、平方差公式等 例一:2 2x -3x=0 解:x(2x-3)=0 1x =0,2x =3/2 这是一类利用因式分解的方程。 总结:要发现一个规律就是:当一个方程有一个解x=a 时,该式分解后必有一个(x-a)因式 这对我们后面的学习有帮助。 2】公式法 将式子利用公式来分解,也是比较简单的方法。 常用的公式有:完全平方公式、平方差公式等 注意:使用公式法前,建议先提取公因式。 例二:2x -4分解因式 分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a-b) 2 解:原式=(x+2)(x-2) 3】十字相乘法 是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。注意:它不难。 这种方法的关键是把二次项系数a 分解成两个因数21.a a 的积21.a a ,把常数项c 分解成两个因数21.c c 的积21.c c ,并使1221c a c a 正好是一次项b ,那么可以直接写成结果 例三: 把2 2x -7x+3分解因式. 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数. 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项:

3=1×3=3×1=(-3)×(-1)=(-1)×(-3). 用画十字交叉线方法表示下列四种情况: 1 1 ╳ 2 3 1×3+2×1 =5 1 3 ╳ 2 1 1×1+2×3 =7 1 -1 ╳ 2 -3 1×(-3)+2×(-1) =-5 1 -3 ╳ 2 -1 1×(-1)+2×(-3) =-7 经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7. 解 原式=(x-3)(2x-1). 总结:对于二次三项式2 ax +bx+c(a≠0),如果二次项系数a 可以分解成两个因数之积,即a=21.a a ,常数项c 可以分解成两个因数之积,即c=21.c c ,把2121,,,c c a a ,排列如下: 1a 1c ╳ 2a 2c 1221c a c a

培优专题3_用分组分解法进行因式分解(含答案)

3、用分组分解法进行因式分解 【知识精读】 分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。使用这种方法的关键在于分组适当,而在分组时,必须有预见性。能预见到下一步能继续分解。而“预见”源于细致的“观察”,分析多项式的特点,恰当的分组是分组分解法的关键。 应用分组分解法因式分解,不仅可以考察提公因式法,公式法,同时它在代数式的化简,求值及一元二次方程,函数等学习中也有重要作用。 下面我们就来学习用分组分解法进行因式分解。 【分类解析】 1. 在数学计算、化简、证明题中的应用 例1. 把多项式211242a a a a a ()+++++分解因式,所得的结果为( ) A a a B a a C a a D a a .().().().()22 2222221111+--+++-- 分析:先去括号,合并同类项,然后分组搭配,继续用公式法分解彻底。 解:原式=+++++211242a a a a a (() =++++=+++++=++++=++a a a a a a a a a a a a a a a 4324322222222321 2221 21 1()()()()() 故选择C 例2. 分解因式x x x x x 54321-+-+- 分析:这是一个六项式,很显然要先进行分组,此题可把x x x x x 54321-+-+-和分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;此题也可把x x 54-,x x x 321--和分别看作一组,此时的六项式变成三项式,提取公因式后再进行分解。 解法1: 原式=-+--+=--+=-++-+()() ()() ()()()x x x x x x x x x x x x x 54323222111111 解法2:

新浙教版数学七年级(下册)第四章《因式分解》培优题

新浙教版数学七年级下册第四章《因式分解》培优题 一.选择题(共6小题) 1.下列各式,能直接运用完全平方公式进行因式分解的是() A.4x2+8x+1 B.x2y2﹣xy+1 C.x2﹣4x+16 D.x2﹣6xy﹣9y2 2.已知x2+ax﹣12能分解成两个整数系数的一次因式的积,则整数a的个数有() A.0 B.2 C.4 D.6 3.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q(p≤q)称为正整数n的最佳分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则. 那么以下结论中:①;②;③若n是一个完全平方数,则F(n)=1;④若n是一个完全立方数(即n=a3,a是正整数),则.正确的个数为() A.1个B.2个C.3个D.4个 4.已知二次三项式x2﹣4x+m有一个因式是x+3,求另一个因式以及m的值时,可以设另一个因式为x+n,则x2﹣4x+m=(x+3)(x+n). 即x2﹣4x+m=x2+(n+3)x+3n. ∴解得,n=﹣7,m=﹣21, ∴另一个因式为x﹣7,m的值为﹣21. 类似地,二次三项式2x2+3x﹣k有一个因式是2x﹣5,则它的另一个因式以及k 的值为() A.x﹣1,5 B.x+4,20 C.x,D.x+4,﹣4 5.现有一列式子:①552﹣452;②5552﹣4452;③55552﹣44452…则第⑧个式子的计算结果用科学记数法可表示为() A.1.1111111×1016B.1.1111111×1027 C.1.111111×1056D.1.1111111×1017

6.设a、b、c是三角形的三边长,且a2+b2+c2=ab+bc+ca,关于此三角形的形状有以下判断:①是等腰三角形;②是等边三角形;③是锐角三角形;④是斜三角形.其中正确的说法的个数是() A.4个B.3个C.2个D.1个 二.填空题(共7小题) 7.已知x+y=10,xy=16,则x2y+xy2的值为. 8.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9);另一位同学因看错了常数项分解成2(x﹣2)(x﹣4),请你将原多项式因式分解正确的结果写出来:. 9.2m+2007+2m+1(m是正整数)的个位数字是. 10.若多项式x2+mx+4能用完全平方公式分解因式,则m的值是. 11.若a+b=5,ab=,则a2﹣b2= . 12.定义运算a★b=(1﹣a)b,下面给出了关于这种运算的四个结论: ①2★(﹣2)=3 ②a★b=b★a ③若a+b=0,则(a★a)+(b★b)=2ab ④若a★b=0,则a=1或b=0. 其中正确结论的序号是(填上你认为正确的所有结论的序号). 13.若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为.

《因式分解-提公因式法》知识点归纳

《因式分解-提公因式法》知识点归纳★★ 知识体系梳理 ◆ 因式分解------把一个多项式变成几个整式的积的形式;(化和为积) 注意: 、因式分解对象是多项式; 2、因式分解必须进行到每一个多项式因式不能再分解为止; 3、可运用因式分解与整式乘法的互逆关系检验因式分解的正确性; ◆ 分解因式的作用 分解因式是一种重要的代数恒等变形,它有着广泛的应用,常见的用途有化简多项式和进行简便运算,恰当的运用分解因式,常可以使计算化繁为简。 ◆ 分解因式的一些原则 (1)提公因式优先的原则.即一个多项式的各项若有公因式,分解时应首先提取公因式。 (2)分解彻底的原则.即分解因式必须进行到每一个

多项式因式都再不能分解为止。 (3)首项为负的添括号原则.即如果多项式的首项系数为负,应先添上带“-”号的括号,并遵循添括号法则。 ◆ 因式分解的首要方法—提公因式法 、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。 2、提公因式法:如果一个多项式的各项含有公因式,可以逆用乘法分配律,把各项共有的 因式提出以分解因式的方法,叫做提公因式法。 3、使用提取公因式法应注意几点: (1)提取的“公因式”可以是数、单项式,也可以是一个多项式,是一个整体。 (2)公因式必须是多项式的每一项都有的因式,在提取公因式时,要把这些公共的因式全部找出来,并提到括号外面去,才算完成了提取公因式。(找最高公因式)(3)对多项式中的每一项的数字系数,在提取时要提出这些数字系数的最大公约数,各项都含有相同的字母,要提取相同字母的指数的最低指数。 ◆ 提公因式法分解因式的关键: 、确定最高公因式;(各项系数的最大公约数与相同因

因式分解培优专题

把下列各式因式分解 2 m2 m 1 a x abx a(a b)3 2a 2(b m m3 acx ax a)2 2ab(b a) (1)若多项式的第一项系数是负数,一般要提出“一”号,使括号内的第 2.利用提公因式法简化计算过程 例? 计算 987 987 例:计算123 268 - 1368 1368 分析:算式中每一项都含有 竺 1368 987 521 1368 ,可以把它看成公因式提取出来,再算出结果。 456 987 1368 解: 说明:在用提公因式法分解因式前,必须对原式进行变形得到公因式,同时一定要 注意符号,提取公因式后,剩下的因式应注意化简。 举一反三: 1、分解因式: (1) 4m 2n 3 12m 3n 22mn 3. 在多项式恒等变形中的应用 例:不解方程组 2x y 3 , 5x 3y 2 求代数式(2x y)(2x 3y) 3x(2x y)的值。 (2) a 2x n 2 abx n 1 acx n adx n 1(n 为正整数) 初三数学因式分解培优专题(一) 一、用提公因式法把多项式进行因式分解 【知识精读】 如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括 号外面,将多项式写成因式乘积的形式。 提公因式法是因式分解的最基本也是最常用的方法。它的理论依据就是乘法分配 律。多项式的公因式的确定方法是: (1) 当多项式有相同字母时,取相同字母的最低次幕。 (2) 系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。 下面我们通过例题进一步学习用提公因式法因式分解 【分类解 析】 1. (1) (2) 分析: 分析:不要求解方程组,我们可以把 2x y 和5x 3y 看成整体,它们的值分别是 3 和2,观察代数式,发现每一项都含有2x y ,利用提公因式法把代数式恒等变形, 化为含有2x y 和5x 3y 的式子,即可求出结果。 解: 4. 在代数证明题中的应用 例:证明:对于任意自然数 n , 3n 22n 23n 2n 一定是10的倍数。 分析:首先利用因式分解把代数式恒等变形,接着只需证明每一项都是 10的倍数 即可。 解: 一项系数是正数,在提出“―”号后,多项式的各项都要变号。 解: (2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当 n 为自 然数时,(a b)2n (b a)2n ; (a b)2n 1 (b a)2n 1,是在因式分解过程中 常用的因式变换。 解: 5、中考点拨: 例1。因式分解3x(x 2) (2 x) 解: 说明:因式分解时,应先观察有没有公因式,若没有,看是否能通过变形转换得 到。 例 2 .分解因式:4q(1 p)3 2( p 1)2 解:

初中数学因式分解培优训练

第一讲:因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强, 学习这些方法与技巧,不仅是掌握因式分解内容所必 需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-c a); (7)a n-b n=(a-b)(an-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)an-bn=(a+b)(an-1-a n-2b+a n-3b2-…+abn-2-bn-1),其中n为偶数; (9)an+b n=(a+b)(an-1-a n-2b+a n-3b2-…-abn-2+bn-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式. 例1 分解因式: (1)-2x5n-1y n+4x3n-1yn+2-2x n-1yn+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; 752257 =-2xn-1yn[(x2n)2-2x2ny2+(y2)2] =-2xn-1yn(x2n-y2)2 =-2x n-1yn(xn-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下: 原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 (4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5) =(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4) 例2 分解因式:a3+b3+c3-3abc. 本题实际上就是用因式分解的方法证明前面给出的公式(6). 分析我们已经知道公式 (a+b)3=a3+3a2b+3ab2+b3 的正确性,现将此公式变形为 a3+b3=(a+b)3-3ab(a+b). 这个式也是一个常用的公式,本题就借助于它来推导. 解原式=(a+b)3-3ab(a+b)+c3-3abc =[(a+b)3+c3]-3ab(a+b+c) =(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c) =(a+b+c)(a2+b2+c2-ab-bc-ca). 说明公式(6)是一个应用极广的公式,用它可以推

因式分解常用方法总结

因式分解常用方法总结 【知识回顾】 分式方程的解法及注意(增根问题) 例1、已知关于x 的分式方程a x a =++1 12无解,试求a 的值(提示:先把x 求出来,即用a 来表示x ) 【新知识讲解】 一、分解因式与整式乘法的关系. 因式分解的特点:它与整式乘法在整式变形过程中的相反关系. 例: 由(a +b )(a -b )=a 2-b 2可知,左边是整式乘法,右边是一个多项式; 由a 2-b 2=(a +b )(a -b )来看,左边是一个多项式,右边是整式的乘积形式,所以这 两个过 程正好相反. 二、分解因式常用的方法. 1、找公因式的一般步骤. (1)若各项系数是整系数,取系数的最大公约数; (2)取相同的字母,字母的指数取较低的; (3)取相同的多项式,多项式的指数取较低的. (4)所有这些因式的乘积即为公因式. 例2:993-99能被100整除吗?还能被那些数整除? 2、公式法: (1)平方差:a 2—b 2=(a +b )(a —b ) 例3:1)25-16x 2; 2)9a 2-4 1b 2. 3)9(m +n )2-(m -n )2 4)2x 3 -8x . (2)完全平方和:(a +b )2=a 2+2ab +b 2 (3)完全平方差:(a —b )2=a 2—2ab +b 2

三、十字相乘法分解因式:利用十字交叉来分解系数,把二次三项式分解因式的方法叫做十字相乘法。 例4、在多项式232++x x 分解时,也可以借助画十字交叉线来分解。2x 分解为x x ?,常数项2分解12?,把它们用交叉线来表示: 所以)2)(1(232++=++x x x x 同样:q px x ++2=))(()(2b x a x ab x b a x ++=+++可以用交叉线来表示: 其中ab q =,b a p += 例5:用十字相乘法分解因式: (1)1272+-x x (2)1242--x x (3)1282++x x (4)12112--x x 四、用分组分解法分解因式 (1)定义:分组分解法,适用于四项以上的多项式,例如22a b a b -+-没有公因式,又不能直接利 用分式法分解, 但是如果将前两项和后两项分别结合,把原多项式分成两组。再提公因式,即可达到分解因式的目的。例如: 22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++, 这种利用分组来分解因式的方法叫分组分解法。 (2)原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解。 (3)有些多项式在用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多项式正确分解即可。 例6 把下列各式分解因式 (1)bc ac ab a -+-2 (2)bx by ay ax -+-5102 (3)n mn m m 552+-- (4)bx ay by ax 3443+++ x x +2 +1 x x +a +b

相关主题
文本预览
相关文档 最新文档