当前位置:文档之家› 110kV变电站接地变压器保护误动原因分析与解决措施

110kV变电站接地变压器保护误动原因分析与解决措施

110kV变电站接地变压器保护误动原因分析与解决措施
110kV变电站接地变压器保护误动原因分析与解决措施

110kV变电站接地变压器保护误动原因分析与解决措施

摘要:近年来,福建某地区电网中多次发生110kV变电站接地变压器保护误动事故,严重影响了该地区电网的稳定运行,为了找出问题的所在,分析了引起接地变压器保护误动的原因,并采取相应的措施,阻止类似事故的再次发生,并为其他地区电网提供借鉴。

关键词:110kV变电站;接地变压器保护;误动原因分析;措施

目前110kV变电站10kV馈线越来越多地采用电缆出线,以致10 kV系统单相对地电容电流大幅度增加。为抑制单相接地时产生的过电压幅值,110kV变电站10kV电网系统开始加装接地变压器,构成低阻接地接线方式,形成一条零序电流的通道,以便当10 kV系统发生接地时,根据接地点所在位置,由相应零序保护有选择性动作将接地故障隔离,以防电弧重燃引发过电压,保证电网设备安全供电。

某地区电网,于2008年开始将110kV变电站10kV电网系统改造为低阻接地接线方式,加装了接地变压器和接地变压器保护设备,实现了10kV系统任意馈线发生接地故障时,能快速切除故障,减少了对电网的影响。然而,近段时间,该地区电网有五个110kV变电站先后发生了多次接地变压器保护误动事故,造成变电站停电,严重影响了该地区电网的稳定运行, 因此,为了阻止类似事故的再次发生,维护地区电网的安全稳定,找出原因,采取措施是非常必要的。

1接地变压器保护误动原因分析

10kV馈线发生接地短路故障时,安装在110kV变电站的故障线路零序保护首先启动,切除故障线路,当不能正确切除时,由接地变压器的零序保护越级切除母联开关和主变压器两侧开关,从而隔离故障对系统的影响。所以防止接地变压器保护误动,10kV馈线保护及开关的动作正确性是保证电网安全至关重要的,从该地区电网五个110kV变电站发生的接地变压器保护误动事故统计分析,引起接地变压器保护误动的主要原因也是10kV馈线不能正确切除接地故障所引起的。

10kV馈线零序保护的构成原理:馈线零序CT采样→馈线保护启动→开关动作跳闸,从10kV馈线零序保护的构成原理可以看出,零序CT、馈线保护、开关是保护正确动作的关键元件,下面就从这几个方面分析引起接地变压器保护误动的原因。

①零序CT误差引起接地变压器保护误动。当10KV馈线发生接地短路故障时,故障线路零序CT检测到故障电流,对应的馈线零序保护首先启动切除故障线路,同时接地变压器的零序CT也检测到故障电流,保护启动,为了遵循选择性的原则,实现10kV馈线保护优先动作,10kV馈线零序保护电流和时间整定值要比接地

配电变压器的保护措施及其注意事项(2021新版)

配电变压器的保护措施及其注意事项(2021新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0166

配电变压器的保护措施及其注意事项 (2021新版) 配电变压器是配电系统中根据电磁感应定律变换交流电压和电流而传输交流电能的一种静止电器。通常安装在电线杆、台架或配电所中,一般将6~10千伏电压降至400伏左右输入用户。变压器运行是否正常直接影响用户生产和生活用电,并关系到用电设备的安全。为了保证用户用上优质、安全电,必须保证配变运行正常。因此我们有必要从保护配置技术角度和日常运行管理两大方面来谈谈配电变压器的保护措施及其注意事项: 一、保护配置技术方面 1、装设避雷器保护,防止雷击过电压:配变的防雷保护,采用装设无间隙金属氧化物避雷器作为过电压保护,以防止由高低压线路侵入的高压雷电波所引起的变压器内部绝缘击穿,造成短路,杜

绝发生雷击破坏事故。采用避雷器保护配变时,一是要通过正常渠道采购合格产品,安装投运前经过严格的试验达到运行要求再投运;二是对运行中的设备定期进行预防性试验,对于泄漏电流值超过标准值的不合格产品及时加以更换;三是定期进行变压器接地电阻检测,对100KVA及以上的配电变压器要求接地电阻必须在4Ω以内,对100KVA以下的配电变压器,要求接地电阻必须在10Ω以内。如果测试值不在规定范围内,应采取延伸接地线,增加接地体及物理、化学等措施使其达到规定值,每年的4月份和7月份进行两次接地电阻的复测,防止焊接点脱焊、环境及其它因素导致接地电阻超标。如果变压器接地电阻超标,雷击时雷电流不能流入大地,反而通过接地线将雷电压加在配电变压器低压侧再反向升压为高电压,将配变烧毁;四是安装位置选择应适当,高压避雷器安装在靠配变高压套管最近的引线处,尽量减小雷电直接侵入配变的机会,低压避雷器装在靠配变最近的低压套管处,以保证雷电波侵入配变前的正确动作,按电气设备安装规范标准要求安装,防止盲目安装而失去保护的意义。

110kV变电站接地网降阻解决方案及应用

110kV变电站接地网降阻解决方案及应用 发表时间:2019-11-29T15:47:19.137Z 来源:《中国电业》2019年16期作者:杨敏 [导读] 经济的发展,城市化进程的加快,人们对电能的要求也逐渐增加。 摘要:经济的发展,城市化进程的加快,人们对电能的要求也逐渐增加。用电量大幅提升,对电网的安全运行要求大幅提高,接地网系统安全问题日益显著。接地系统是变电站的重要组成部分,接地电阻是接地网的重要指标,以及判断变电站接地系统是否安全的重要依据。当电力系统发生接地短路故障时,约有0.5倍短路电流流入接地网中,使得接地网电位升高,这会严重威胁变电站运维人员的安全。所以有效的降低变电站接地网电阻,并对接地网进行优化设计,具有重要意义。本文就110kV变电站接地网降阻解决方案及应用展开探讨。 关键词:变电站;接地电阻;降阻 引言 变电站接地系统是保证变电站安全、可靠运行的重要系统,对变电站接地电阻值的要求也比较高。近年来,由于接地阻值不能满足要求而造成的系统事故逐年增多,为避免由于接地网反击电压对计算机监控系统、微机保护、自动控制装置的干扰,必须将变电站的工频接地电阻降低到0.5Ω以下。变电站接地是否合理是直接决定人身安全以及电气设备和过电压保护装置正常工作的一个重要条件。变电站接地装置为电气设备提供一个公共的参考地,在出现接地或相间短路系统故障时,将故障电流迅速释放掉,从而防止变电站地电位升高,保证人身和设备安全。因此,变电站接地网接地电阻是电力安全生产及鉴定接地系统是否符合规程要求的重要指标。 1、110kV变电站主接地网型式 目前,110kV变电站采用的接地网型式为水平敷设的接地干线为主,垂直接地极为辅联合构成的复合式人工接地装置。水平接地体的材料多为镀锌扁钢,针对全户内变电站,由于地网面积小,经地质勘测确认强碱性土壤地区或对钢制材料有严重腐蚀的中性土壤站址应采用铜排,其具有电阻率低、导电性好,抗腐蚀性强的特点;垂直接地极采用镀锌角钢,也可采用镀铜钢钎。 2、接地电阻的要求 为使变电站安全运行,接地网接地电阻需低于规定值,DJ8-79电力设备接地设计技术规程指出,对于中性点直接接地系统,当I>4kA 时,可采用R≤0.5Ω,同时根据《交流电气装置的接地》,一般情况下,接地电阻应符合R≤2000/I,此时可通过技术及经济的比较来增大接地电阻值,但需不高于5Ω,同时应对转移点位、跨步电压及接触电压等进行控制。这样即放宽了电阻值的要求,但由于现阶段没有充足的理论依据来对转移电位、跨步电压及接触电压等的控制提出具体措施,因此在设计中更青睐于采用R≤0.5Ω的要求。 3、有效降阻措施 3.1常用降阻方案 土壤电阻率过高是造成接地电阻不满足要求的主要原因,大量工程也是针对这点进行降阻改造,针对土壤电阻率的主要降阻措施有以下几种方法:(1)外引接地。外引接地是将变电站主接地网与变电站附近土壤低电阻率的辅接地网进行相连,这样可以降低接地系统的接地电阻。采用该方法时要注意变电站主接地网和辅助接地网之间存在电位差。(2)井式或深钻式接地极。当地下较深处的土壤电阻率较低时,可采用井式或深钻式接地极。采用钻机钻孔(也可利用勘探钻孔),把钢管接地极打入井孔内,并向钢管内和井内灌满泥浆。(3)增加接地网面积。接地网面积的平方根与接地电阻值成反比,因此适当的增加接地网的面积,能够有效的减少接地电阻,但应用此方法要充分考虑变电站地形以及征地面积。(4)换土法。在接地体周围1~4m范围内,换上比原来土壤电阻率小得多的土壤,可以是黏土、泥炭、黑土等,必要时也可以使用焦炭粉和碎木炭。换土后,接地电阻可以减小到原来的2/3~2/5。这种方法,其土壤电阻率受外界压力和温度的影响变化较大,在地下水位高、水分渗入多的地区使用效果较好,但在石质地层则难以取得较满意效果。(5)降阻剂法。降阻剂又分为化学降阻剂和物理降阻剂;化学降阻剂主要有离子棒、高分子吸水材料、电子导电材料、盐类等,但这些降阻剂与接地体结合起来均会因原电池效应而加剧接地体的腐蚀,化学降阻剂已经禁止使用。而物理降阻剂是指膨润土和碳类降阻剂,该类型的降阻剂对接地体没有腐蚀效应,可以采用。(6)敷设水下接地网。充分利用水工建筑物(水井、水池等)以及其他与水接触的混凝土体内的金属体作为自然接地极,可在水下钢筋混凝土结构内绑扎成许多钢筋网中,选择一些纵横交叉点加以焊接,并与接地网连接起来。当利用水工建筑物作为自然接地极仍不能满足要求,或利用水工建筑物作为自然接地极有困难时,应优先在就近的水中敷设外引接地极。该接地极应敷设在水流速不大处或静水中,并要回填一些大石块加以固定。利用自然接地体和采用深井接地都是从接地网立体深度上对接地电阻进行改造,均有着非常好的效果。增加接地网面积则是最为直接的降阻手段,但其涉及征地等额外成本,实施起来经济性较差,如本站想降到0.5Ω,需将接地网扩大为原来的4倍,因此该方法需针对实际情况进行综合分析来决定是否采用。 3.2案例应用 某110kV变电站接地深井降阻方式的应用。某110kV变电站,采用全户内布置,占地面积约为4570m2,本站的接地网采用水平敷设的接地干线为主,垂直接地极为辅联合构成的复合式人工接地装置,水平接地体埋深0.8m,采用规格为-30×4mm的紫铜排,垂直接地体采用规格为准16mm×2500mm的镀铜钢钎。主接地网接地电阻计算值约为2.27Ω。本站单相短路电流有效值约为4.76kA,考虑到避雷线分流50%左右,全站入地短路电流约为2.38kA。根据规程,变电站接地电阻应小于2000/I,即0.84Ω。如不能满足,可适当放宽至5000/I,即2.1Ω。校核接触电压所要求的最大接地电阻R=1.42Ω,跨步电压所要求的最大接地电阻R=6.84Ω。本站需降阻至1.42Ω以满足接触电势的要求。工程地网部分施工完成后,经测试,主接地网电阻为1.21Ω,可以满足要求。本站采用接地深井降阻方式,降阻部分投资约17万元,达到降阻要求,在规划区域无法采用扩大地网面积等其他方式降阻的前提下,该方案经济合理。 结语 变电站发生系统故障时,短路等故障电流将通过接地网排入大地,接地电阻值偏大的话,将产生很大的电位差,甚至局部电位会超过安全值,对人身及设备造成严重危害,因此变电站的设计中对接地网的电阻值有着严格的要求。降低变电站中接地电网电阻值至要求值以下,是保证变电站工作人员及设备安全性的重要方法。变电站接地网电阻受到变电站占地面积、土壤电阻率、施工工艺等条件的影响,应依据工程实际情况对接地网进行设计,选择合理高效的降阻措施具有非常重要的意义。 参考文献 [1]马绍明,肖隆君,罗洪文,等.高土壤电阻率条件下永陵变电站接地网的改进措施及建议[J].农村电气化,2017(2):14-15. [2]马力.季节性冻土地区变电站接地系统安全分析及降阻措施研究[D].西南交通大学,2018.

110kV变电站调试送电方案

XXXXXXXXXXXX110KV变电站系统调试送电方案

目录 一、简介 二、110KV系统调试 三、主变压器调试 四、10KV系统调试 五、110KV、10KV主变压器保护试验 六、110KV、10KV主变压器系统受电

一、变电站简介 建设规模: 本次新建的XXXXXXX110kV变电站作为企业用电的末端站考虑。 主变压器:容量为2×16MVA,电压等级110/10.5kV。 110kV侧:电气主接线规划为双母线接线;110kV出线规划8回。 10kV侧:电气主接线按单母线分段设计,10kV出线规划39回。 10kV无功补偿装置:电容器最终按每台主变容量的30%进行配置,每台主变按4800kvar,分别接在10kV的两段母线上。 中性点:110kV侧中性点按直接接地设计,10kV中性点经过消弧线圈接地设计。 变电站总体规划按最终规模布置。 变电所位于电石厂区,其中占地面积1065平方米,主建筑面积为1473平方米,分上、下两层,框架防震结构, 主变压器选用新疆升晟变压器股份公司生产的两圈有载调压、风冷节能型变压器。 110KV设备选开关厂生产的SF6全封闭组合电器(GIS),10KV设备选用四达电控有限公司生产的绝缘金属铠装封闭式开关柜。110KV主接线为双母线、10KV系统主接线均为单线分段,微机保护及综合自动化。 110KV、10KV、主变压器系统的保护均采用南瑞继保公司生产的继电器保护综合自动控制系统。由昌吉电力设计院完成设计、安装、调试。由山东天昊工程项目管理有限公司负责现场监理。 二、 110KV系统调试 110KV系统(图1)设备经过正确的安装后,应做如下的检查和测试: 1、外观检查:装配状态,零件松动情况,接地端子配置,气体管路和电缆台架有无损坏等。

变压器差动保护误动分析及对策(一)

变压器差动保护误动分析及对策(一) 要:文章对微机型变压器差动保护动作的原因,从事件的形成以及保护的原理给予了详细地分析。对新建的、运行的或设备更新改造的发电厂和变电站的变压器差动保护误动提出了对策。 关键词:差动保护误动动作特性电流互感器 0引言 电力变压器是电力系统中最关键的主设备之一,它承担着电压变换,电能分配和传输,并提供电力服务。因此,变压器的正常运行是对电力系统安全、可靠、优质、经济运行的重要保证。作为主设备主保护的微机型纵联差动(简称纵差或差动)保护,虽然经过不断的改进,但是还存在一些误动作的情况,这将造成变压器的非正常停运,影响电力系统的发供电,甚至是造成系统振荡,对电力系统发供电的稳定运行是很不利的。因此对新建或设备更新改造的发电厂和变电站的变压器差动保护误动原因进行分析,并提出了防止变压器差动误动的对策。 1变压器差动保护 变压器差动保护一般包括:差动速断保护、比率差动保护、二次(五次)谐波制动的比率差动保护,不管哪种保护功能的差动保护,其差动电流都是通过变压器各侧电流的向量和得到,在变压器正常运行或者保护区外部故障时,该差动电流近似为零,当出现保护区内故障时,该差动电流增大。现以双绕组变压器为例进行说明。

1.1比率差动保护的动作特性比率差动保护的动作特性见图1。当变压器轻微故障时,例如匝间短路的圈数很少时,不带制动量,使保护在变压器轻微故障时具有较高的灵敏度。而在较严重的区外故障时,有较大的制动量,提高保护的可靠性。 二次谐波制动主要区别是故障电流还是励磁涌流,因为变压器空载投运时会产生比较大的励磁涌流,并伴随有二次谐波分量,为了使变压器不误动,采用谐波制动原理。通过判断二次谐波分量,是否达到设定值来确定是变压器故障还是变压器空载投运,从而决定比率差动保护是否动作。二次谐波制动比一般取0.12~0.18。对于有些大型的变压器,为了增加保护的可靠性,也有采用五次谐波的制动原理。 1.2差动速断保护的作用差动速断保护是在较严重的区内故障情况下,快速跳开变压器各侧断路器,切除故障点。差动速断的定值是按躲过变压器的励磁涌流,和最大运行方式下穿越性故障引起的不平衡电流,两者中的较大者。定值一般取(4~14)Ie。 2变压器差动保护误动作原因分析 根据变压器差动保护误动作可能性的大小,大致分为新建发电厂和变电站、运行中发电厂和变电站、设备更新改造的发电厂和变电站三个方面进行说明,这种分类方法并不是绝对相互区别,只是为了便于在分析问题时优先考虑现实问题。 2.1新建发电厂和变电站变压器差动保护误动作原因分析新建变电站的变压器差动保护误动作,在变压器差动保护误动作中占了较大的比

变压器安全防护措施标准版本

文件编号:RHD-QB-K7070 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 变压器安全防护措施标 准版本

变压器安全防护措施标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 一、编制依据 1、《建筑施工安全检查标准》 2、施工组织设计及施工图纸等。 二、工程概况 本工程为生活辅助楼,该楼建筑面积5555平方米,使用一台QTZ40塔机垂直运输,临时施工的变压器及供电线路均在该塔机工作半径。变电器靠近围墙在生活辅助楼与侯工楼之间位置,供电线路总长72米,线高10.5米。 三、防护材料 杉木竿:12根,每根12米长,8根作为变压器

四周的立竿,4根作为斜支撑。 木方:50根,每根4米长,用于变压器四周及上口横竿。 竹胶板:50块,每块尺寸为 1220mm*2440mm,用于变压器上口水平方向及周围的防护。并在靠近东侧处制作木门,方便进入检查维修。 竹竿462根,每根8米长,320根作为供电线路,剩余作为斜撑和横担。 竹片:880块,每块尺寸为 1000mm*1000mm,线路上方采用双层布置总计使用480块,剩余作为东侧里面的防护。 五、安全防护施工方法 在变压器未通电之前,我们提前先将变压器进行防护,在距变压器四周1.5米的地方立8根杉木竿,

杉木竿的埋地深度不得小于1米,地面以上10米。立竿埋好后,变压器四周水平方向用木方设置横竿,横竿用铁钉固定在四周的立竿上,横竿与横竿之间的间距为0.8米。横竿设置完毕后,在变压器相邻边用竹胶板进行封闭,竹胶板用铁钉固定在横竿上,板与板之间不得留有空隙,要做到全封闭。其它三面用竹片固定在横竿上,固定时必须牢固、可靠。变压器上口采用双层竹胶板进行水平方向全封闭防护,竹胶板用铁钉固定在横竿上,水平方向防护层上下两道,间距为500mm。 为了防护体的整体稳固性,在防护体四角必须加设4根斜支撑,以免防止防护体造成倾斜的可能。 在靠近东侧处制作木门,方便进入检查维修,悬挂警示标志。 供电线路采用内双外单的3排竹竿防护架,竹

变压器励磁涌流引起的保护误动

摘要:电力系统中变压器存在励磁涌流,通过合理的调节补偿装置,防止变压器励磁涌流对差动继电器的影响。 关键词:励磁涌流;引起;保护误动 印江县供电局甘金桥水电站主变进行大修后空载试验,主变低压侧断路器合闸时,出现合闸瞬间就跳闸,经多次操作仍出现此情况。在认真检查变压器后,断路器还出现一合闸即跳闸的现象,后对变压器进行分析,是由于励磁涌流的影响,差动保护的速饱和变流器差动线圈调整不合理,引起保护误动,致使断路器无法合闸,经过处理,故障消除。 1 励滋涌流 对变压器切除外部故障后进行空载合闸,电压突然恢复的过程中,变压器可能产生很大的冲击电流,其数值可达额定电流的6~8倍,将这个电流称之为励磁涌流。 产生励磁涌流的原因是变压器铁芯的严重饱和和励磁阻抗的 大幅度降低。 2 励磁涌流的特点 励磁涌流数值很大,可达额定电流的6~8倍。 励磁涌流中含有大量的直流分量及高次谐波分量,其波形偏向时间轴一侧。 励磁涌流具有衰减特性,开始部分衰减得很快,一般经过0.5~1s后,其值通常不超过0.25~0.5倍的额定电流,对于大容量变压器,其全部衰减时间可能达到几十秒。

3 消除励磁涌流影响所采取的补偿措施 励磁涌流的产生会对变压器的差动保护造成误动作,从而使变压器空载合闸无法进行,为了消除励磁涌流对保护的影响,一般可以采用接入速饱和变流器的补偿措施。 3.1 接入速饱和变流器 接入速饱和变流器阻止励磁涌流传递到差动继电器中,如图1。当励磁涌流进入差动回路时,由于速饱和变流器的铁芯具有极易饱和的特性,其中很大的非周期分量使速饱和变流器的铁芯迅速严重饱和,励磁阻抗锐减,使得励磁涌流中几乎全部非周期分量及部分周期分量电流从速饱和变流器的一次侧绕组通过,变换到二次侧绕组的电流就很小,差动保护就不会动作。只要合理调节速饱和变流器一二次侧绕组匝数,就可以更好的消除励磁涌流对差动保护的影响。 图1 接入速饱和变流器

电力变压器的防火防爆措施详细版

文件编号:GD/FS-4997 (解决方案范本系列) 电力变压器的防火防爆措 施详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

电力变压器的防火防爆措施详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 电力变压器是电力系统中输配电力的主要设备。电力变压器主要是将电网的高压电降低为可以直接使用的6000伏(V)或380伏(V)电压,给用电设备供电。如变压器内部发生过载或短路,绝缘材料或绝缘油就会因高温或电火花作用而分解,膨胀以至气化,使变压器内部压力急剧增加,可能引起变压器外壳爆炸,大量绝缘油喷出燃烧,油流又会进一步扩大火灾危险。 运行中防火爆炸要注意: (1)不能过载运行:长期过载运行,会引起线圈发热,使绝缘逐渐老化,造成短路。 (2)经常检验绝缘油质:油质应定期化验,不合

格油应及时更换,或采取其它措施。 (3)防止变压器铁芯绝缘老化损坏,铁芯长期发热造成绝缘老化。 (4)防止因检修不慎破坏绝缘,如果发现擦破损伤,就及时处理。 (5)保证导线接触良好,接触不良产生局部过热。 (6)防止雷击,变压器会因击穿绝缘而烧毁。 (7)短路保护:变压器线圈或负载发生短路,如果保护系统失灵或保护定值过大,就可能烧毁变压器。为此要安装可靠的短路保护。 (8)保护良好的接地。 (9)通风和冷却:如果变压器线圈导线是A级绝缘,其绝缘体以纸和棉纱为主。温度每升高8℃其绝缘寿命要减少一半左右;变压器正常温度90℃以下运

电力变压器保护毕业设计

毕业设计 设计题目电力变压器保护设计系(部)电力工程系 学科专业供用电技术 班级 姓名 学号 指导教师 二〇一六年四月二十三日

工程学院毕业设计任务书

工程学院毕业设计成绩表

摘要 电力变压器是电力系统中不可缺少的重要设备,他的故障给供电可靠性和系统的正常运行带来严重的后果,同时大容量变压器也是非常贵重的元件,因此,必须根据变压器的容量和重要程度装设性能良好的、动作可靠的保护元件。 本文是笔者在阅读了大量专业资料、咨询了很多的专家和老师的前提下,按照指导老师所给的原始资料,通过系统的原理分析、精确的整定计算。做出的一套电力变压器保护方案。 关键词电力系统故障,变压器,继电保护,整定计算

ABSTRACT The transformer is the essential equipment in the electrical power system.Its breakdown might bring the serious influence to the power supply reliability and the system safely operation.At the same time the large capacity power transformer is the extremely precious equipment.Therefore.We must install the reliable relay protection installment according to the transformer capacity rankand the important degree. The article is about the relay protection of the transformer.I had consulted many experts and teachers before I finished the article.At the same time the massive specialized materials was consulted by me. It is not diffcult to understand the logical organiztion of the article for readers.And the article will bring the usful help to the comrades who is working as a electrical engineer. Keywords Power System Fault Condition, Power Transformer, Relay

变压器差动保护误动原因分析

变压器差动保护误动原因分析 前言国内35kv及以下的变电所中,普遍采用的保护是以分立式继电器构成的。其最大的特点是二次回路构成简单、直观明了、经济、可靠。当电力系统发生故障时,就会伴随着电流突增、电压突降以及电流与电压间相位差角发生变化,这些基本特点就构成了各种不同原理的继电保护装置[1]。作为变压器主保护的纵联差动(简称差动)保护,正确动作率始终在50%一60%徘徊,这对变压器的安全和系统的稳定运行很不利。造成“原因不明”的变压器不正确动作是多方面的,设计研究、制造、安装调试和运行维护部门都有或多或少的责任,虽然实际工作中各个相关的制造厂家都在不断的改进技术提高动作的可靠性,但是变压器差动误动事例仍然为数不少[2]。本文的目的在于总结自己的经验并与同行交流讨论,共同为提高变压器差动保护装置运行水平而努力。 2 差动保护误动的原因分析 2.1 励磁涌流引起变压器差动保护误动 变压器励磁涌流的特点是正常运行情况下其值很小,一般不超过变压器额定电流的3%一5%,变压器工作在磁通的线性段OS,如图1。铁芯未饱和,其相对导磁率μ很大,变压器绕组的励磁电感也很大。当发生外部短路时,由于电压下降,励磁电流更小,因此这些情况下对励磁电流的影响一般可以不考虑[3]。 图1 Φ= f (I) 和 u = f (I) 的关系曲线 当变压器空投或故障切除后电压恢复时,由于变压器铁心中的磁通急剧增大,使铁心瞬间饱和, 相对导磁率接近1,变压器绕组电感降低,伴随出现数值很大的励磁涌流,包含有很大成分的非周期分量和高次谐波分量,并以二次谐波为主,其数值可以达到额定电流的6~8倍以上,出现尖顶形状的励磁涌流,如图2,在起始瞬间励磁涌流衰减很快,对于一般中小型变压器,经0.5 ~1s后,其值不超过额定电流的0.25~0.5倍,大型变压器励磁涌流的衰减速度较慢,衰减到上述值要2~3s,既变压器的容量越大衰减越慢,同时励磁涌流波形出现间断,有间断角,此电流流入差动继电器,可能引起保护装置误动[4]。 浪涌电流和变压器的激磁涌流一样,只流过变压器一侧,在变压器空投合闸或切除外部短路的电压恢复过程中,全部激磁涌流都将流入差动回路,势必造成变压器差动保护的误动作。且在一台变压器产生激磁涌流的同时,与其并联运行的变

电力变压器继电保护设计

1 引言 继电保护是保障电力设备安全和防止及限制电力系统长时间大面积停电的最基本、最重要、最有效的技术手段。许多实例表明,继电保护装置一旦不能正确动作,就会扩大事故,酿成严重后果。因此,加强继电保护的设计和整定计算,是保证电网安全稳定运行的重要工作。实现继电保护功能的设备称为继电保护装置。本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。其中短路电流的计算和电气设备的选择是本设计的重点。通过分析,找到符合电网要求的继电保护方案。 继电保护技术的不断发展和安全稳定运行,给国民经济和社会发展带来了巨大动力和效益。但是,电力系统一旦发生自然或人为故障,如果不能及时有效控制,就会失去稳定运行,使电网瓦解,并造成大面积停电,给社会带来灾难性的后果。因此电网继电保护和安全自动装置应符合可靠性、安全性、灵敏性、速动性的要求。要结合具体条件和要求,本设计从装置的选型、配置、整定、实验等方面采取综合措施,突出重点,统筹兼顾,妥善处理,以达到保证电网安全经济运行的目的。 在电力系统发生故障中,继电保护装置能够及时地将故障部分从系统中切除,从而保证电力设备安全和限制故障波及范围,最大限度地减少电力元件本身的损坏,降低对电力系统安全供电的影响,从而满足电力系统稳定性的要求,改善继电保护装置的性能,提高电力系统的安全水平。 2 课程设计任务和要求

通过本课程设计,巩固和加深在《电力系统基础》、《电力系统分析》和《电力 系统继电保护与自动化装置》课程中所学的理论知识,基本掌握电力系统继电保护设计的一般方法,提高电气设计的设计能力,为今后从事生产和科研工作打下一定的基础。 要求完成的主要任务: 要求根据所给条件确定变电所整定继电保护设计方案,最后按要求写出设计说明书,绘出设计图样。 设计基本资料: 某变电所的电气主接线如图所示。已知两台变压器均为三绕组、油浸式、强迫风冷、分级绝缘,其参数:MVA S N 5.31=,电压:kV 11/%5.225.38/%5.24110?±?±,接线:)1211//(//011--?y Y d y Y N 。短路电压:5.10(%)=HM U ; 6(%);17(%),==ML L H U U 。两台变压器同时运行,110kV 侧的中性点只有一台接地; 若只有一台运行,则运行变压器中性点必须接地,其余参数如图所示。(请把图中的L1的参数改为L1=20km ) ~ 图2.1变电所的电气主接线图

某电力变压器继电保护设计(继电保护)

1 继电保护相关理论知识 1.1 继电保护的概述 研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。 1.2.1 继电保护的任务 当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。 1.2.2继电保护基本原理和保护装置的组成 继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“内部故障”,以实现继电保护的功能。因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。依据反映的物理量的不同,保护装置可以构成下述各种原理的保护:(1)反映电气量的保护 电力系统发生故障时,通常伴有电流增大、电压降低以及电流与电压的比值(阻抗)和它们之间的相位角改变等现象。因此,在被保护元件的一端装没的种种变换器可以检测、比较并鉴别出发生故障时这些基本参数与正常运行时的差别.就可以构成各种不同原理的继电保护装置。 例如:反映电流增大构成过电流保护; 反映电压降低(或升高)构成低电压(或过电压)保护; 反映电流与电压间的相位角变化构成方向保护; 反映电压与电流的比值的变化构成距离保护。 除此以外.还可根据在被保护元件内部和外部短路时,被保护元件两端电流相位或功率方向的差别,分别构成差动保护、高频保护等。 同理,由于序分量保护灵敏度高,也得到广泛应用。 新出现的反映故障分量、突变量以及自适应原理的保护也在应用中。

110KV变电站接地工程整改方案

110KV变电站接地工程设计方案

目录 一、公司简介 (3) 二、设计依据 (4) 三、建设方接地现状 (5) 四、建设方接地现状分析 (6) 五、接地实施措施 (13) 六、工程实施计划 (16) 七、工程人员组织 (17) 八、工程质量控制 (18) 九、服务承诺 (19) 十、部分客户名单 (20) 十一、产品介绍 (21) 十二、工程造价 十三、附图

一、公司简介 某安全防护技术有限公司坐落于某光谷·东湖新技术开发区。公司致力于建筑智能化、防雷、消防、安防、计算机信息系统集成等工程设计、施工业务。 某安全防护技术有限公司取得了中国气象局颁发的《防雷工程专业设计资质证》和《防雷工程专业施工资质证》双项资质,是湖北省气象学会的会员;是湖北省安全技术防范行业协会会员,具有安全防范资质。公司有一支经验丰富、技术过硬的设计、施工队伍,具备承接全国各地通信、气象、铁路、金融、广播电视、电力、航天航空、军事、石化等大型防雷工程、安防工程、消防项目的勘测、设计、施工能力。 某安全防护技术有限公司崇尚科学的管理理念,致力于打造出一流的公司品牌。在安全防护领域,某公司是开拓者,也是技术前沿的先行者,我们拥有一批工作多年的资深专家,也有一批年富力强的新一代高科技人才。我们扎实的理论功底和丰富的实践经验,以不断学习不断充实完善自己和精益求精,开拓进取的敬业精神为发展的原动力。我们对每一个工程项目的质量进行严格管理。一流的检测队伍,全面的检测手段,加上先进的施工设施和工艺流程使我们每做一个工程都具有卓越的品质保证。 我公司始终坚持以质量为根本,按照ISO9001国际质量管理标准建立质量保证体系进行质量控制,全面贯彻 “科技为本质量第一诚信服务持续改进” 的质量方针,热忱欢迎广大客户、同仁到本公司合作和指导工作。 “诚信为本、与时俱进、合作共赢”是我们永恒的理念

变压器保护误动分析

变压器保护误动分析

浅谈变压器励磁涌流引起的保护误动 印江县供电局甘金桥水电站主变进行大修后 空载试验,主变低压侧断路器合闸时,出现合闸瞬间就跳闸,经多次操作仍出现此情况。在认真检查变压器后,断路器还出现一合闸即跳闸的现象,后对变压器进行分析,是由于励磁涌流的影响,差动保护的速饱和变流器差动线圈调整不合理,引起保护误动,致使断路器无法合闸,经过处理,故障消除。 1 励滋涌流 对变压器切除外部故障后进行空载合闸,电压突然恢复的过程中,变压器可能产生很大的冲击电流,其数值可达额定电流的6~8倍,将这个电流称之为励磁涌流。 产生励磁涌流的原因是变压器铁芯的严重饱 和和励磁阻抗的大幅度降低。 2 励磁涌流的特点 励磁涌流数值很大,可达额定电流的6~8倍。

励磁涌流中含有大量的直流分量及高次谐波 分量,其波形偏向时间轴一侧。 励磁涌流具有衰减特性,开始部分衰减得很快,一般经过0.5~1s后,其值通常不超过0.25~0.5倍的额定电流,对于大容量变压器,其全部衰减时间可能达到几十秒。 3 消除励磁涌流影响所采取的补偿措施 励磁涌流的产生会对变压器的差动保护造成 误动作,从而使变压器空载合闸无法进行,为了消除励磁涌流对保护的影响,一般可以采用接入速饱和变流器的补偿措施。 3.1 接入速饱和变流器 接入速饱和变流器阻止励磁涌流传递到差动 继电器中,如图1。当励磁涌流进入差动回路时,由于速饱和变流器的铁芯具有极易饱和的特性,其中很大的非周期分量使速饱和变流器的铁芯 迅速严重饱和,励磁阻抗锐减,使得励磁涌流中几乎全部非周期分量及部分周期分量电流从速 饱和变流器的一次侧绕组通过,变换到二次侧绕组的电流就很小,差动保护就不会动作。只要合

110KV变电站全厂接地装置安装施工组织设计

1、工程概况及工程量 1.1工程概况及工程量 江苏盛川材料科技有限公司110K V变电站工程,主要包括110K V开关站、二次设备室、10KV 开关室。接地装置安装由电气专业公司负责施工。 工程量包括:镀锌扁钢60*8 2000 米, 镀锌扁钢80*8 800 米, 角钢接地极 / 63*6 36根 1.2施工图、厂家技术文件名称 设计院图纸:B2191S-D0105 1.3执行技术规范、标准 1.3.1《电气装置安装工程接地装置施工及验收规范》GB50169-2006 1.3.2《电气装置安装工程质量检验及评定规程》DL/T 5161-2002 1.3.3《电力建设安全健康与环境管理工作规定》2002-01-21 1.3.4《职业安全健康与环境管理各项管理制度》 1.3.5《职业安全健康与环境管理程序文件》 1.3.6《电力建设安全工作规程》DL5009.1-2002 1.3.7 国家标准GB5016—2006 第 3.1.1、3.1.3、3.1.4、3. 2.4、 3.2.5、3.2.9、3.3.1、3.3.3、 3.3.4、3.3.5、3.3.11、3.3.12 等强制性条文 2、作业准备情况及条件 2.1设备、材料和加工配制情况 接地镀锌扁钢、镀锌角钢已到现场,接地螺栓、电焊条、油漆、毛刷、锯条、膨胀螺栓等消材准备齐全。

2.3劳动力组织 要求施工人员经过培训或经过多次实践具备一定经验的人来参加,统一指挥全面彻底的完成好此次的施工任务。 3、工程项目作业进度安排 2012年6月1日?2011年7月10日 4、施工技术措施及施工程序方法 4.1接地极的制作及安装 4.1.1选取63*6的热镀锌角钢,长2500mm加工成尖状,尖部的垂直距离为100mm 4.1.2在已加工完成的接地极上套好事先加工好的管帽,按图纸标出的位置使用铁锤将接地极打入地下,与建筑物距离大于0.5-1米,其顶部埋设深度应不小于设计标高0.7米。 4.1.3垂直接地极间距不小于5米,尽量利用地形地势,避开硬的岩石层将接地极按图示位置逐一打入土层。 4.2屋外接地母线安装 4.2.1根据图纸要求地点开挖土层,依设计标高标示深度不应小于0.7米,宽度以利于开挖 能放入接地母线为宜。 4.2.2放入接地母线,接地母线与接地极的连接采用焊接,扁钢弯成Q形状,在扁钢的弧形接触面上三面焊接,接地母线与接地母线搭接紧密,保证接触面焊接长度大于扁钢宽度的 2 倍,接地母线外缘闭合角呈圆弧形。 4.2.3接地母线通过公路、铁路、管道等交叉处及可能遭机械损伤处穿钢管保护。 4.2.4接地母线通过电缆沟隧道、沟道应沿沟壁弯成合适形状,与沟壁紧靠,并与电缆沟内 桥架接地母线牢固焊接。

110KV变电站年度预防性试验项目(风电公司)

2013年度变电站预防 性试验项目 批准: 审核: 编写:谢泽波 中国新能源风电场 编制:安生部日期:2013年11月27日

目的 为了发现运行设备中的隐患,预防发生事故或设备损坏。华能饶平大埕风电站自2012年5月17日投运,设备运行已满一年,按照电力设备预防性试验规程(DLT956-1996)及南方电网公司电气设备预防性试验规程规定,需对运行中的电气设备定期做年度预防性试验。 一、试验范围 110KV升压站全站的一次及二次电气设备。 二、试验内容 序号项目名称单位工程量备注 一110kV设备 1 110kV主变台 2 带有载调压分接开关,含中性点接地保护装置 2 110kV GIS设备套 1 含1个110kV线路出线间隔、2个主变出线开关间隔、1个母线间隔、1个PT间隔、一个只带隔离开关和一个地刀的备用 间隔 二35kV设备 1 35kV高压开关柜设 备 台18 7个馈线柜、2个主变变 低柜、2个PT消弧柜、4 个无功补偿柜、1个站用 变柜、1个母联开关柜、 1个母联隔离柜 2 35kV共箱母线组 2 3 35kV油浸变压器台 1 4 35kV FC电容器补偿 装置 套 2

5 35kV SVG无功补偿 设备 套 2 2套SVG连接变、2个补 偿柜 三其他设备 1 10kV备用油浸变压 器 套 1 2 低压馈线柜套 1 5面380V低压馈线柜 3 综自屏柜套 1 故障录波屏、110kV#1主变保护屏、110kV#主变保护屏、110kV线路保护屏、110kV母线保护屏、110kV 线路测控屏、110kV #1主变测控屏、110kV#2主变测控屏各1台 4 直流系统套 1 蓄电池(108*2V)、直流充电屏、#1直流馈线屏、#2 直流馈线屏 5 避雷针座 3 6 变电站接地网个 1 7 PT柜 三、具体试验项目内容及要求 根据《GB26860-2011 电力安全工作规程发电厂和变电站电气部分》、《Q/CSG10007—2004电力设备预防性试验规程》(Q/CSG10007—2004未明确要求按《DL/T 596电力设备预防性试验规程》执行)、《Q/CSG10008-2004继电保护及安全自动装置检验条例》、《Q/CSG10703-2007接地装置运行维护规程》、原设备厂家说明书与规程、行业相关强制规定等要求对所列电力设备进行预防性试验、检查、清扫,对站内设备有脱漆和锈蚀现象的进行全面清洁防腐上漆;更换主变、35kV站用变、10kV备用变的干燥剂。其中预防项目包含但不限于所列条目: (一)、GIS的预防性试验 1、SF6气体微水测试及气体的泄漏测试

一起变压器差动保护误动事故的原因及处理

一54一扣渗C鬈MENT2009.No.3 ●●■————■——●———■●●——————————●———————■■———■鼬礴鞠礴鲻礴蝌瞄穗霸嘲蝴 一起变压器差动保护误动事故的原因及处理 李思宏,张振峰 (鲁南中联水泥有限公司,山东滕州277531) 中图分类号:TM307.3文献标识码:B文章编号:1002—9877(2009)03—0054--02 在实际生产中。有时会发生“原冈不明”的变压器 差动保护误动的情况,现将我公司变压器差动保护误 动的原因总结如下,旨在总结自己的经验教训并与同 行进行突流讨论,以便采取相应的措施,提高变压器 差动保护的町靠性,避免主变压器在运行中差动保护 的误动作。 1供配电线路及事故介绍 我公司总降压变电站始建于1987年,变电站一 次接线采用内桥式,变压器型号为SFZ7—20000/110,容量为20000kVA,两条l10kV电源进线(北水线、杜 水线)一条常用、一条热备用,运行方式为北水线 带l号和2号丰变,供6kV的I、Ⅱ段母线分列运 行,为3条生产线及办公、生活供电。供配电线路示意 见图1。 2008年年初,利用水泥销售的淡季,公司组织实 施了l号窑系统的中修,利用生产设备检修期间牛产 负荷较小的机会,联系地方电业部fJ对总降压变电 站110kV设备轮流进行例行的年度检修维护。检修 工作完毕后,值班人员按要求解除所有安全保护措 施,准备将2号主变压器投入运行,恢复正常运行方 式。当在后台机操作110kV母联开关00DI.合闸对2 号主变送电时,1号主变差动保护A、B两相出口动 作,主变二侧开关跳闸造成全厂停电。值班人员迅速 对l号、2号主变本体及三侧CT范围内进行仔细检杳,未发现任何异常,判断为蔗动保护误动。于是决定对1号、2号主变进行试送电合闸,两台主变充电后 均运行正常,最后逐步恢复各路送电,生产恢复正常。 110kV北水线110kV杜水线 图l供配电线路示意 事故发生后,我公司立即组织工程技术人员对此次事故进行分析,同时联系地方电业部门以及差动保护装置生产厂家从多方面多角度分析原因。 艇:牛搴斗e斗e*辜牛∈舛e斗搴斗g—e斗e斗搴斗e斗e斗e斗皇艇!牛辜斗辜斗鲁斗e斗g斗窜 2)这种传感器不含过载和短路保护装置,因此,须配备0.4A的速熔丝与负载(接触器)串联。 3)为防止测速装置检测的脉冲数目不均匀或者内部电位器凋整不好导致测速装置误动作,对现场到DCS控制系统的信号加3~5s的闪跳延时。 4)对于坡度大于300胶带输送机,为了防止皮带抱闸出现问题时倒料而撞坏测速装置,测速开关最好不安装在从动轮上,应安装在加配重处的摆动轮上。4结束语 2007年8月,我们应用该接近开关对全厂长度 大于10m的65条胶带输送机进行了失速保护改造。 使用一年多来,多次失速开关保护跳车,现场检查发现皮带压死或者跑偏严重,多次避免了胶带事故的进一步扩大。一年多来胶带没有再出现过拉断、撕裂现象。没有发现失速开关误报现象,同时失速开关无一个损坏,非常经济耐用。(编辑孙卫星)

电力变压器保护设计规范说明

电力变压器保护设计规范说明 电力变压器保护设计规范(GB/T50062—2008) 4·0·1电压为3~110kV,容量为63MV·A及以下的电力变压器,对下列故障及异常运行方式,应装设相应的保护装置: 1,绕组及其引出线的相问短路和在中性点直接接地或经小电阻接地侧的单相接地短路。2,绕组的匝间短路。 3,外部相间短路引起的过电流。 4,中性点直接接地或经小电阻接地的电力网中外部接地短路引起的过电流及中性点过电压。5,过负荷。 6,油面降低。 7,变压器油温过高、绕组温度过高、油箱压力过高、产生瓦斯或冷却系统故障。 4.0.2容量为0.4MV·A及以上的车间内油浸式变压器、容量为0.8MV·A及以上的油浸式变压器,以及带负荷调压变压器的充油调压开关均应装设瓦斯保护,当壳内故障产生轻微瓦斯或油面下降时,应瞬时动作于信号;当产生大量瓦斯时,应动作于断开变压器各侧断路器。 瓦斯保护应采取防止因震动、瓦斯继电器的引线故障等引起瓦斯保护误动作的措施。当变压器安装处电源侧无断路器或短路开关时,保护动作后应作用于信号并发出远跳命令,同时应断开线路对侧断路器。 4.0.3对变压器引出线、套管及内部的短路故障,应装设下列保护作为主保护,且应瞬时动作于断开变压器的各侧断路器,并应符合下列规定: 1,电压为10kV及以下、容量为10MV·A以下单独运行的变压器,应采用电流速断保护。 2,电压为10kV以上、容量为10MV·A及以上单独运行的变压器,以及容量为6.3MV·A及以上并列运行的变压器,应采用纵联差动保护。 3,容量为10MV·A以下单独运行的重要变压器,可装设纵联差动保护。 4,电压为10kV的重要变压器或容量为2MV·A及以上的变压器,当电流速断保护灵敏度不符合要求时,宜采用纵联差动保护。 5,容量为0.4MV·A及以上、一次电压为10kV及以下,且绕组为三角一星形连接的变压器,可采用两相三继电器式的电流速断保护。 4.0.4变压器的纵联差动保护应符合下列要求: 1,应能躲过励磁涌流和外部短路产生的不平衡电流。 2,应具有电流回路断线的判别功能,并应能选择报警或允许差动保护动作跳闸。 3,差动保护范围应包括变压器套管及其引出线,如不能包括引出线时,应采取快速切除故障的辅助措施。但在63kV或110kV电压等级的终端变电站和分支变电站,以及具有旁路母线的变电站在变压器断路器退出工作由旁路断路器代替时,纵联差动保护可短时利用变压器套管内的电流互感器,此时套管和引线故障可由后备保护动作切除;如电网安全稳定运行有要求时,应将纵联差动保护切至旁路断路器的电流互感器。 4.0.5对由外部相间短路引起的变压器过电流,应装设下列保护作为后备保护,并应带时限动作于断开相应的断路器,同时应符合下列规定: 1,过电流保护宜用于降压变压器。 2,复合电压启动的过电流保护或低电压闭锁的过电流保护,宜用于升压变压器、系统联络变压器和过电流保护不符合灵敏性要求的降压变压器。 4.0.6外部相间短路保护应符合下列规定:

相关主题
文本预览
相关文档 最新文档