当前位置:文档之家› 光致变色薄膜功能的制备与光色性质实验研究_王丽华

光致变色薄膜功能的制备与光色性质实验研究_王丽华

光致变色薄膜功能的制备与光色性质实验研究_王丽华
光致变色薄膜功能的制备与光色性质实验研究_王丽华

光致变色薄膜功能的制备与光色

性质实验研究

王丽华1汪青梅2肖伟洪3

(1.江西科技师范学院应用物理系330013

2.江西省环境保护科学研究院330006

3江西省有机功能分子重点实验室330013)

摘要:采用旋涂法在不同介质上制备了含二芳烯类光致变色化合物聚乙烯吡咯烷酮(PVP)薄膜。使用Perki nElmer lambda900紫外可见近红外光谱仪对薄膜的光致变色性质进行了研究。结果表明:在365n m紫外光照射下,该薄膜从无色变为蓝色,并在530-700nm波长区域出现一个很强的宽吸收光谱峰,其最大吸收波长为611n m,在适当波长(550nm)的可见光照射下,薄膜又从蓝色变为无色。同时,该膜可溶于水。

关键词:光致变色紫外一可见光谱二芳烯/聚乙烯吡咯烷酮(PVP)

1876年MEE首先报道了二硝基甲烷的钾盐在光照下发生颜色变化。1900年,MARCK-W ALD观察到有机化合物苯并叉(Benzo)1-Naphthrlidine)以及四氯代一2萘酮在日光或其他强光源照射下能从五色变成紫色,放回暗处后又恢复成原色,确认此现象为光诱导热力学可逆光色互变(phototropy)反应。1958年,Hirsh-bery称此现象为光致变色现象(Photpehromism)。光致变色材料可分为两大类:一、有机化合物类;二、无机化合物类。有机化合物类化合物很复杂,据已有的研究报道,有螺吡喃、螺噻喃、螺嗪、六苯基双咪唑、水杨醛缩苯胺类、周萘靛兰类染料、偶氮化合物、稠环芳香化合物、四氰代二甲苯醌银、四氰代二甲苯醌铜等化合物[1];1988年,日本科学家M.Irie在光致变色化合物二苯乙烯(Stilbene)的基础上,首次设计合成了一类新型的光致变色化合物一二芳基乙烯化合物分子(Diarylethenes)[2、3]。二芳烯分子不仅具有非常好的热稳定性和化学稳定性,而且还有很好的灵敏度和抗疲劳性,因此二芳基乙烯化合物在光致变色领域具有重要应用前景,成为国内外研究热点。本文旨利用聚乙烯吡咯烷酮(PVP)[4]极好的透光性、成膜性和溶解性能,在紫外线变色染发应用方面提供实验依据。

1.二芳基乙烯的光致变色特性由图1简单所示:

二芳烯类化合物

开环态

UV

Vis

二芳烯类化合物

闭环态

图1二芳烯化合物的光致变色反应示意图

(点线:开环态,虚线,闭环成)

在适当波长的紫外光作用下,二芳基乙烯化合物发生光环化反应,由开环态转变为闭环态;在适当波长的可见光作用下,闭环态又会发生开环反应重新回到开环态,从而完成一次光致变色的可逆循环。

将二芳基乙烯化合物和PVP 混匀后,用旋涂法在相关介质上成薄膜,测定其在紫外光照射前后的UV-ViS 吸收光谱,结果如图2)所示,图中的点线为开环态的吸收光谱,虚线为闭环态吸收光谱。当用365nm 紫外光的照射无色的开环态薄膜,立即变成蓝色,并在530-700nm 波长区域出现一个很强的宽吸收光谱峰,其最大吸收波长为611nm 。闭环态在光稳定态的吸收光谱与闭环态的光谱几乎完全相同,表明当用365nm 紫外光进行激发,无色开环态向闭环态的转化具有很高的转化效率。在波长大于500nm 的可见光作用下,薄膜颜色又逐渐从蓝色变为无色,同时闭环态在可见光区域的特征宽吸收峰也完全消失,闭环态重新返回到开环态,其最大吸收波长为325nm 。

图3在紫外光照射下的时间分辨光谱。用

适当波长的紫外光辐照该溶液,随着辐照时间的延长,生成的闭环态浓度逐渐增大,从而使得吸光度也随之增大;随着光照时间的进一步延长,反应最终达到光稳定态而使得吸光度不再增加。记录光照时间(t)和最大吸收波长处的吸光度(A)并作图,即可获得吸光度和光照时

间的关系曲线A-t 曲线。(图4)

2.材料与方法2.1主要材料与设备

石英比色皿,上海SAIL B RAND 载玻片,透明聚酯薄膜,美国PerkinElmer la mbda900紫外可见近红外光谱仪,KW-4型台式匀胶机,电热恒温水浴锅,分析天平。

2.2.实验方法

2.2.1旋涂法(Spin-c oating)制备工艺[5]将50mg 聚乙烯吡略烷酮(P VP)超声溶解于5mL 三氯甲烷中,称取适量自制二芳基乙烯

化合物(5~50mg)混合到该溶液中,经超声使之成为均相胶液,旋涂过程在KW-4型台式匀胶机上进行,将介质置于匀胶机上调节转速为500转/分,设置时间3秒;然后将转快速增至3000转/分,设置时间50秒。滴在基片中心的胶液在离心力的作用下铺展成薄膜,多余的胶液将从介质基片边缘甩出,设置时间后自动停止转动,膜上溶剂全部挥发,获得一定厚度的均匀薄膜。

2.2.2透明度测定

将待测样品在611nm下测定透光率(%),以透光率大小间接表示膜透明度。

2.1.3成膜介质的选择

在30e下溶解,分别涂于石英比色皿、载玻片、透明聚酯薄膜上40e干燥成膜,对比在几种不同介质上所成膜的外观性质。由表一可知在三种介质中,成膜性均好。

表1

成膜介质成膜性能

石英比色皿膜均匀

载玻片膜均匀

透明聚酯薄膜膜均匀

3.讨论

目前使用的染发药剂多为氧化变色化合物,对人体存在极人的毒性,特别是不能满足一部分人用于暂时性后可水洗染发需要,由N-乙烯吡咯烷酮(NVP)聚合而成的聚乙烯吡咯烷酮(PVP)是一种绿色高分子产品,是重要的水溶性酰胺类精细化学品,这种功能高分子化学品已有近70年的发展历史,产品包括NVP的均聚物、共聚物和交联聚合物三大类。本研究利用PVP具有优异的溶解性、低毒性、成膜性、化学稳定性、生理惰性、粘接能力性能,结合光致变色化合物应用特点,为染发新产品开发提供了实验依据。

参考文献

1.唐光克光致变色化合物的用途和性能浙江化工[J]2002, (33):(2)

2.1rie M,Mohri M.Thermally i rreversible photochromic s ys te ms.Re-versible photocycli zati on of diarylethene derivati https://www.doczj.com/doc/3e149471.html,.Chem. 1988,53:803)808.

3.Nakamura S,lrie M.Thermally irreveraible photochromic systems.A theore tical s https://www.doczj.com/doc/3e149471.html,.Che m.1988,53:6136-6138

4.马婷芳史铁钧聚乙烯吡咯烷酮的性能、合成及应用应用化工[J]2002V01.31No.3P16)19

5.陈光华邓金祥新型电子薄膜材料化学工业出版社[M]2002年9月第一版P417-419

Preparation of Photochromic functional Films and

Investigation of Their Properties

Lihua Wang1,Qingmei Wang2and Weihong Xiao3

(1.Applied physics De p artment Jiangxi Normal University o f Science&Technology,Nanchang330013

2.Institute o f Jiangxi Environment Science and Protection,Nanchang330006

3.Jiangxi Key Laboratory o f Functional Organic molecules Nanchang330013)

Abstract:The functional films of photochromic diaryle thene/PVP were prepared by spin coating method on different substrates,and their photochromic properties were investigated by using PerkinElmer La mbda900UV/ VIS/NIR spectrometer.The results showed that all of the m had good photochromic properties.Upon irradiation with365nm UV light,the c olorless diarylethene/PVP film turned blue,and the broad absorption band from 530nm to700nm was appeared and the maximum absorption peak was observed at611nm.The blue colored film returned colorless on irradiation with appropriate visible light(入>550nm).In addition,these func-tional films can be dissolved in wa ter.

Keywords:Photochromic UV-vis Diarylethene/PVP

液晶玻璃与电致变色玻璃的区别资料

液晶玻璃与电致变色玻璃的区别: 1)液晶玻璃在正常情况下是不透明的,只有在一定的电压作用下才能 从不透明变为透明;电致变色玻璃本身可以为透明。 2)液晶玻璃需要不断地施加电压才能保持透明,属于能耗产品,不过 能耗比较低;电致变色玻璃具有双稳态的性能,只需在电压作用下调节玻 璃的透光率,除去电压后玻璃的状态能在一段时间内继续保持。 3)普通的液晶玻璃一般只能在透明和不透明两种状态之间进行调整; 电致变色玻璃一般能在不同电压作用下调节到不同级别的透光率。 4)液晶玻璃的主要原理是根据液晶分子在电压作用下的取向来达到调 光的目的;电致变色玻璃的主要原理是电致变色材料在电压作用下发生氧 化还原反应,进而发生颜色和透明度的变化,达到调光的目的。 电致变色器件 电致变色是指材料的光学属性(反射率、透过率、吸收率等)在外加 电场的作用下发生稳定、可逆的颜色变化的现象,在外观上表现为颜色和 透明度的可逆变化。具有电致变色性能的材料称为电致变色材料,用电致变色材料做成的器件称为电致变色器件。 目前,已经产业化的电致变色器件有一下几类:电致变色智能调光玻 璃、电致变色显示器、汽车自动防眩目后视镜。 电致变色智能玻璃在电场作用下具有光吸收透过的可调节性,可选择 性地吸收或反射外界的热辐射和内部的热的扩散,减少办公大楼和民用住 宅在夏季保持凉爽和冬季保持温暖而必须消耗的大量能源。同时起到改善 自然光照程度、防窥的目的。解决现代不断恶化的城市光污染问题。是节 能建筑材料的一个发展方向。 电致变色材料具有双稳态的性能,用电致变色材料做成的电致变色显 示器件不仅不需要背光灯,而且显示静态图象后,只要显示内容不变化, 就不会耗电,达到节能的目的。电致变色显示器与其它显示器相比具有无 视盲角、对比度高等优点。 用电致变色材料制备的自动防眩目后视镜,可以通过电子感应系统, 根据外来光的强度调节反射光的强度,达到防眩目的作用,使驾驶更加安 全。 电致变色智能玻璃能以较低的电压(2-5V)和较低的功率调节汽车、飞机内部的光线强度,使旅途更加舒适。目前,电致变色调光玻璃已经在一些高档轿车和飞机上得到应用。

电致变色材料研究进展

电致变色材料研究进展 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

电致变色材料研究进展摘要电致变色材料是目前公认的最有发展前途的智能材料之一。本文简述 了电致变色机理及特点,简要介绍了无机电致变色材料(WO3)和有机电致变色 材料(氧化还原型化合物、金属有机螯合物、导电聚合物)这两种不同类型的变 色材料,电致变色材料的应用前景和发展方向及其研究现状。 关键词电致变色无机电致变色材料有机电致变色材料应用现状 变色现象是指物质在外界环境的影响下,而产生的一种对光的反应的改变。 这种现象普遍存在于自然界中,比如变色龙,它的体色会随着周围环境的变化而 改变。人们感兴趣的是一类具有可逆变色现象的物质,即可利用一定的外界条件 将它们的颜色进行改变并且在另外一种条件下将其还原。目前发现的变色现象主 要有4 类: 电致变色、光致变色、热致变色和压致变色,其中又以电致变色研究得最为深入。 电致变色是指在外接电压或者电流的驱动下,物质发生电化学氧化还原反应 而引起颜色变化的现象。即在外加电场作用下,物质的化学性能(透射率、反射 率等)在可见光范围内产生稳定的可逆变化。其主要特点有以下几点:( 1) 电 致变色材料中电荷的注入与抽出可以通过外界电压或电流的改变而方便地实现, 注入或抽出电荷的多少直接决定了材料的致色程度,调节外界电压或电流可以控 制电致变色材料的致色程度; ( 2) 通过改变电压的极性可以方便地实现着色或 消色; ( 3) 已着色的材料在切断电流而不发生氧化还原反应的情况下,可以保 持着色状态,即具有记忆功能。因此,电致变色材料应满足以下各个方面的要求: (1) 具有良好的电化学氧化还原可逆性; (2) 颜色变化的响应时间快; (3) 颜色 的变化是可逆的; (4) 颜色变化的灵敏度高; (5) 有较高的循环寿命; (6) 有一

光学薄膜应用及实例

光学薄膜应用及实例 光学薄膜是利用薄膜对光的作用而工作的一种功能薄膜,光学薄膜在改变光强方面可以实现分光透射、分光反射、分光吸收以及光的减反、增反、分束、高通、低通、窄带滤波等功能。光学薄膜的种类有很多,这些薄膜赋予光学元件各种使用性能,在实现光学仪器的功能和影响光学仪器的质量方面起着重要的或者决定性的作用。 传统的光学薄膜是现代光学仪器和各种光学器件的重要组 成部分,通过在各种光学材料的表面镀制一层或多层薄膜,利用光的干涉效应来改变透射光或反射光的光强、偏振状态和相位变化。薄膜可以被镀制在光学玻璃、塑料、光纤、晶体等各种材料表面上。它的厚度可从几个nm 到几十、上百个μm。光学薄膜可以得到很好的牢固性、光学稳定性,成本又比较低,几乎不增加材料的体积和重量,因此是改变系统光学参数的首选方法,甚至可以说没有光学薄膜就没有现代的光学仪器和各种光学器件。在两百多年的发展过程中,光学薄膜形成了一套完整的光学理论—薄膜光学。光学薄膜已广泛应用于各种光学器件(如激光谐振腔、干涉滤波片、光学镜头等),不仅如此它在光电领域中的重要作用亦逐渐为人们所认识。光学薄膜是TFT-LCD面板制造的关键材料,它们为液晶显示提供一个均匀,明亮且饱满的面光源系统。(光

行天下配图) 减反射膜 假定光线垂直入射在表面上,这时表面的反射光强度与入射光的强度比值(反射率)只决定于相邻介质的折射率的比值: 折射率为1.52 的冕牌玻璃每个表面的反射约为4.2%左右.折射率较高的火石玻璃则表面反射更为显著。这种表面反射造成了两个严重的后果:光能量损失使象的亮度降低;表面反射光经过多次反射或漫射,有一部分成为杂散光,最后也到达象平面使象的衬度降低图象质量,特别是电视、电影摄影镜头等复杂系统都包含了很多个与空气相邻的表面,如不镀上增透膜其性能就会大大降低。应用于可见光谱区的光学仪器非常多,就其产量来说占据了减反射膜的绝大部分,几乎在所有的光学器件上都要进行减反处理。 单层减反膜是应用非常广泛的薄膜,也是最简单的膜系。考虑垂直入射的情况,即i = 0,并令 这时基片表面反射率完全被消除。在入射介质为空气的情况下,n0 =1,则在可见光区使用得最普遍的是折射率为1.52 左右的冕脾玻璃。理想的增透膜的折射率为1.23,但是至今能利用的薄膜的最低折射率是1.38( 氯化镁)。这虽然不很理想但也得到了相当的改进。当ns=1.52,nf=1.38,n0=1.0 时,由式(3)可得最低反射率为1.3%,即镀单层氟化镁后中心波 长的反射率从4.2%降至l.3%左右,整个可见光区平均反射

光学薄膜的研究进展和应用

光学薄膜的研究进展和应用 【摘要】本文介绍了光学薄膜的工作原理,并对光学薄膜的传统光学领域的应用做了简要的概述。又简要说明现代光学薄膜典型应用,对光学薄膜的制备加以介绍,最后介绍了光学薄膜的发展前景。 【关键词】光学薄膜;薄膜应用;薄膜制造; 1.光学薄膜原理简述 所谓光学薄膜是指其厚度能够光的波长相比拟,其次要能对透过其上的光产生作用。具体在于其上下表面对光的反射与透射的作用。光学薄膜的定义是:涉及光在传播路径过程中,附著在光学器件表面的厚度薄而均匀的介质膜层,通过分层介质膜层时的反射、透(折)射和偏振等特性,以达到我们想要的在某一或是多个波段范围内的光的全部透过或光的全部反射或是光的偏振分离等各特殊 形态的光。 光学薄膜的特点是:表面光滑,膜层之间的界面呈几何分割;膜层的折射率在界面上可以发生跃变,但在膜层内是连续的;可以是透明介质,也可以是吸收介质;可以是法向均匀的,也可以是法向不均匀的。实际应用的薄膜要比理想薄膜复杂得多。这是因为:制备时,薄膜的光学性质和物理性质偏离大块材料,其表面和界面是粗糙的,从而导致光束的漫散射;膜层之间的相互渗透形成扩散界面;由于膜层的生长、结构、应力等原因,形成了薄膜的各向异性;膜层具有复杂的时间效应。不同物质对光有不同的反射、吸收、透射性能,光学薄膜就是利用材料对光的这种性能,并根据实际需要制造的。 2.光学薄膜的传统应用 光学薄膜按应用分为反射膜、增透膜、滤光膜、光学保护膜、偏振膜、分光膜和位相膜。减反射膜,是应用最广泛的光学薄膜,它可以减少光学表面的反射率而提高其透射率。对于单一波长,理论上的反射率可以降到零,透射率为100%;对于可见光谱段,反射率可以降低到0.5%,甚至更低,以保证一个由多个镜片组成的复杂系统有足够的透射率和极低的杂散光。现代光学装置没有一个是不经过减反射处理的。由于其具有极低的反射率和鲜艳的表面颜色,现代人们日常生活中的眼镜普遍都镀有减反射膜。 高反射膜,能将绝大多数入射光能量反射回去。当选用介质膜堆时,由于薄膜的损耗极低,随着膜层数的不断增加,其反射率可以不断地增加(趋近于100%)。这种高反射膜在激光器的制造和激光应用中都是必不可少的。 能量分光膜,可将入射光能量的一部分透射,另一部分反射分成两束光,最

电致变色材料研究进展

电致变色材料研究进展 摘要电致变色材料是目前公认的最有发展前途的智能材料之一。本文简述了电致变色机理及特点,简要介绍了无机电致变色材料(WO3)和有机电致变色材料(氧化还原型化合物、金属有机螯合物、导电聚合物)这两种不同类型的变色材料,电致变色材料的应用前景和发展方向及其研究现状。 关键词电致变色无机电致变色材料有机电致变色材料应用现状 变色现象是指物质在外界环境的影响下,而产生的一种对光的反应的改变。这种现象普遍存在于自然界中,比如变色龙,它的体色会随着周围环境的变化而改变。人们感兴趣的是一类具有可逆变色现象的物质,即可利用一定的外界条件将它们的颜色进行改变并且在另外一种条件下将其还原。目前发现的变色现象主要有4 类: 电致变色、光致变色、热致变色和压致变色,其中又以电致变色研究得最为深入。 电致变色是指在外接电压或者电流的驱动下,物质发生电化学氧化还原反应而引起颜色变化的现象。即在外加电场作用下,物质的化学性能(透射率、反射率等)在可见光范围内产生稳定的可逆变化。其主要特点有以下几点:( 1) 电致变色材料中电荷的注入与抽出可以通过外界电压或电流的改变而方便地实现,注入或抽出电荷的多少直接决定了材料的致色程度,调节外界电压或电流可以控制电致变色材料的致色程度; ( 2) 通过改变电压的极性可以方便地实现着色或消色; ( 3) 已着色的材料在切断电流而不发生氧化还原反应的情况下,可以保持着色状态,即具有记忆功能。因此,电致变色材料应满足以下各个方面的要求: (1) 具有良好的电化学氧化还原可逆性; (2) 颜色变化的响应时间快; (3) 颜色的变化是可逆的; (4) 颜色变化的灵敏度高; (5) 有较高的循环寿命; (6) 有一定的记忆存贮功能; (7) 有高的机械性能和化学稳定性; (8) 有合适的微观结构。 自1969 年Deb 发现非晶WO3薄膜具有电致变色效应以来,电致变色薄膜材料以其特殊的性能成为了材料研究的热点之一,并且取得了一定的成果。70 年代电致变色器件的问世,80 年代美国科学家研究的“灵巧窗”都是在电致变色材料研究领域的重大突破。此后,人们又逐渐发现了其它一些电致变色材料,可以分为无机电致变色材料和有机电致变色材料。无机电致变色材料的性能稳定, 其光吸收变化是由于离子和电子的双注入和双抽出而引起的。有机电致变色材料的色彩丰富, 易进行分子设计, 其光吸收变化来自氧化还原反应。 无机电致变色材料 无机电致变色材料多为过渡金属氧化物或其衍生物。这是由于过渡金属元素在d 轨道有未成对的单电子存在。过渡金属元素离子一般易于着色, 且基态与激发态能量差较小。氧化物中金属的电子层结构不稳定, 在一定的条件下价态发生可逆转变, 形成混合价态的离子共存状态, 其颜色随离子价态和浓度的变化而变化。依据变色特性, 又可分为阴极电致变色材料和阳极电致变色材料。 1、阴极电致变色材料 在高价氧化状态无色, 在低价还原状态着色的电致变色材料称为阴极电致变色材料, 主要包括?B 族的WO3、MoO3 及其混合材料, 以及V2O5、Nb2O5、TiO2、BiO3等。其中,最典型的就是WO3,它是最早被发现具有电致变色特性的,也是研究得最为广泛和深入的一

光学薄膜技术及其应用

光学薄膜技术及其应用 张三1409074201 摘要:介绍了传统光学薄膜的原理,根据薄膜干涉的基本原理及其特点,介绍了光学薄膜的性能、制备技术,研究了光学薄膜在的应用和今后的发展趋势。 关键词:光学薄膜、薄膜干涉、应用、薄膜制备 引言: 光学薄膜是指在光学玻璃、光学塑料、光纤、晶体等各种材料的表面上镀制一层或多层薄膜,基于薄膜内光的干涉效应来改变透射光或反射光的强度、偏振状态和相位变化的光学元件,是现代光学仪器和光学器件的重要组成部分。 光学薄膜技术的发展对促进和推动科学技术现代化和仪器微型化起着十分重要的作用,光学薄膜在各个新兴科学技术中都得到了广泛的应用。 本文在简单叙述薄膜干涉的一些相关原理的基础上,介绍了光学薄膜常见的几种制备方法,研究了光学薄膜技术的相关应用,并且展望了光学薄膜研究的广阔前景。 正文: 1.光学薄膜的原理 光学薄膜的直接理论基础是薄膜光学, 它是建立在光的干涉效应基础上的、论述光在分层介质中传播行为。一列光波照射到透明薄膜上,从膜的前、后表面或上、下表面分别反射出两列光波,这两列相干光波相遇后叠加产生干涉。该理论可以比较准确地描述光在数十微米层、纳米层甚至原子层厚的薄膜中的传播行为,由此设计出不同波长、不同性能、适应不同要求的光学薄膜元件。 2.光学薄膜的性质及功能 光学薄膜最基本的功能是反射、减反射和光谱调控。依靠反射功能, 它可以把光束按不同的要求折转到空间各个方位;依靠减反射功能,它可以将光束在元件表面或界面的损耗减少到极致, 完美地实现现代光学仪器和光学系统的设计功能;依靠它的光谱调控功能, 实现光学系统中的色度变换, 获得五彩缤纷的颜色世界。 不仅如此, 光学薄膜又是光学系统中的偏振调控、相位调控以及光电、光热和光声等功能调控元件, 光学薄膜的这些功能, 在激光技术、光电子技术、光通信技术、光显示技术和光存储技术等现代光学技术中得到充分的应用, 促进了相关技术和学科的发展。 3.传统光学薄膜和新型光学薄膜 3.1传统光学薄膜 传统的光学薄膜是以光的干涉为基础。光波是一种电磁波,根据其波长的不同可分成红外线、可见光和紫外线等,当光波投射到物体上时,有一部分在它表面上被反射,其余部分经折射进入到该物体中,其中有一部分被吸收变为热能,剩的部分透射。不同的物质对光有不同的反射、吸收、透射性能,光学薄膜就是利用材料对光的这种性能,并根据实际需要制造的。 传统光学薄膜就是利用材料的这种特性,对光线产生特异性行为。传统光学薄膜有反射膜、增透膜、滤光膜、纳米光学薄膜、偏振膜、分光膜、和位相膜等。 3.2新型光学薄膜 现代科学技术特别是激光技术和信息光学的发展,光学薄膜不仅用于纯光学器件,在光电器件、光通信器件上也得到广泛的应用。近代信息光学、光电子技术及光子技术的发展,对光学薄膜产品的长寿命、高可靠性及高强度的要求越来越高,从而发展了一系列新型光学薄膜及其制备技术,并为解决光学薄膜产业化面临的问题提供了全面的解决方案,包括高强度激光器、金刚石及类金刚石膜、软X射线多层膜、太阳能选择性吸收膜和光通信用光学膜等。

LiNbO3薄膜光学特性

C轴取向的LiNbO3薄膜的光学特性 Swati Shandilya a, Anjali Sharma a, Monika Tomar b, Vinay Gupta a,* a 物理和天铁物理系,德里大学,德里-110007,印度 b米兰达女子学院,德里大学,德里 110007,印度 摘要 C-轴取向铌酸锂(LiNbO3晶体)薄膜被沉积到外延匹配(001)蓝宝石基 板采用脉冲激光沉积技术。的薄膜的结构和光学特性已分别使用的X-射线衍(XRD)和紫外 - 可见光谱研究。拉曼光谱已被用来研究的c轴取向LiNbO3薄膜的光学声子模和缺陷电影。 XRD分析表明在所生长的LiNbO3薄膜,这是由 于压力的存在铌酸锂晶体和蓝宝石之间的晶格失配小。折射率(n =2.13在640 nm处)(006)铌酸锂晶体薄膜的要稍低一些相应的体积值(N =2.28)。各个负责在从相应的(006)LiNbO3薄膜的折射率的偏差的因素散装讨论和值的偏 差的主要原因是,由于存在晶格收缩沉积膜中的应力。 关键词光学特性脉冲激光沉积薄膜铌酸锂 1.引言 铌酸锂(LiNbO3) 铌酸锂(LiNbO3晶体)是一个巨大的技术材料光学器件的利息。大量的文献可在铌酸锂单晶等领域的基础研究和应用研究,其优异的光学性能的晶体沿观察c轴[1-3]。铌酸锂单晶的已知表现出通用的非线性光学性质,因此它继续是一个极好的材料,各种光子的应用,如频率转换器,光开关,光调制器,多路复用器等人[4-7]。在他们的薄膜是有利的批量对应不同的设备应用程序。了解是众所周知的发挥了重要的作用的薄膜的折射率实现的光学设备,并且即使一个小的变化在其值会影响其应用。铌酸锂晶体薄膜的折射率通过各种工人使用紫外可见光谱进行了测量和光导波技术。对于声光和电光器件的制造,这是非常重要的研究的光学与c轴取向的LiNbO3薄膜的性能的。几个报告的c轴取向LiNbO3薄膜的生长电影使用各种沉积技术[8,9],正在努力连续主要集中向增长的各种基板上包括,外延匹配蓝宝石,硅,熔融石英等蓝宝石衬底上已用于LiNbO3薄膜的沉积影片由不同的工人光学器件的应用,因为其低折射率和相似的晶体结构,尽管小晶格失配和较低的热膨胀系数差在比较的LiNbO3 [2]。Shibata等。成长外延铌酸锂晶体薄膜的(001)和(110)蓝宝石晶体脉冲激 光沉积法[10]。他们报告说,化学计量从李丰富的铌酸锂薄膜只能存放中得到的目标(与Li / Nb的= 2),和李缺陷相asdeposited陶瓷靶,铌酸锂薄膜的制备Li/Nbb2。高频(460-810 MHz)的表面声波(SAW)器件,已经实现了利 用LiNbO3/sapphire层状结构[10]。笕等。 [11]已经报道了外延生长的铌酸锂晶体薄膜的α-Al2O3衬底上用脉冲激光沉积技术。氧自由基的量的控制由改变激光能量密度的源,其影响Li浓度的沉积铌酸锂晶体薄膜。光学财产的脉冲激光沉积(0012)织构铌酸锂晶体薄膜(001),研究了SiO2基板使用光导波技术和一个较小的值的折射率(ηTE= 2.144和ηTM= 2.036)散装铌酸锂相比已被报道[12]。 schwyn等。 [1]沉积铌酸锂晶体薄膜的外延匹配的蓝宝石衬底

光学薄膜的应用与实例

光学薄膜的应用与实例 【摘要】光学薄膜是利用薄膜对光的作用而工作的一种功能薄膜,光学薄膜在改变光强方面可以实现分光透射、分光反射、分光吸收以及光的减反、增反、分束、高通、低通、窄带滤波等功能。光学薄膜的种类有很多,这些薄膜赋予光学元件各种使用性能,在实现光学仪器的功能和影响光学仪器的质量方面起着重要的或者决定性的作用。 【关键词】光学薄膜;应用 传统的光学薄膜是现代光学仪器和各种光学器件的重要组成部分,通过在各种光学材料的表面镀制一层或多层薄膜,利用光的干涉效应来改变透射光或反射光的光强、偏振状态和相位变化[1]。薄膜可以被镀制在光学玻璃、塑料、光纤、晶体等各种材料表面上。它的厚度可从几个nm到几十、上百个μm。光学薄膜可以得到很好的牢固性、光学稳定性,成本又比较低,几乎不增加材料的体积和重量,因此是改变系统光学参数的首选方法,甚至可以说没有光学薄膜就没有现代的光学仪器和各种光学器件。在两百多年的发展过程中,光学薄膜形成了一套完整的光学理论—薄膜光学。光学薄膜已广泛应用于各种光学器件(如激光谐振腔、干涉滤波片、光学镜头等),不仅如此它在光电领域中的重要作用亦逐渐为人们所认识。 1. 减反射膜 假定光线垂直入射在表面上,这时表面的反射光强度与入射光的强度比值(反射率)只决定于相邻介质的折射率的比值[1]: (1-1) 折射率为1.52的冕牌玻璃每个表面的反射约为4.2%左右.折射率较高的火石玻璃则表面反射更为显著。这种表面反射造成了两个严重的后果:光能量损失使象的亮度降低;表面反射光经过多次反射或漫射,有一部分成为杂散光,最后也到达象平面使象的衬度降低图象质量,特别是电视、电影摄影镜头等复杂系统都包含了很多个与空气相邻的表面,如不镀上增透膜其性能就会大大降低。 应用于可见光谱区的光学仪器非常多,就其产量来说占据了减反射膜的绝大部分,几乎在所有的光学器件上都要进行减反处理。 单层减反膜是应用非常广泛的薄膜,也是最简单的膜系。考虑垂直入射的情况,即,并令 (1-2) 则(若则不计半波损失),即相位差是180°。

电致变色材料综述

电致变色材料制备技术综述 电致变色材料概述 电致变色是在电流或电场的作用下,材料发生可逆的变色现象。早在本世纪30年代就有关于电致变色的初步报道。60年代,Pkat在研究有机染料时,发现了电致变色现象并进行了研究。1969年,Deb发现在施加电压的情况下,MoO3和WO3具有电致变色效应,Deb 在此基础上进行了深入的研究并研制出了第一个薄膜电致变色器件。电致变色材料因为在智能窗(smart window)、汽车防炫后视镜、电致变色显示器等方向具有巨大的潜在应用价值,正受到越来越多的关注。波音公司最新的波音787梦想客机上就使用了电致变色旋窗设计,电致变色也正在走向产业化,具有广阔的市场前景。 目前电致变色材料主要包括两种,即无机电致变色材料和有机电致变色材料。许多过渡金属氧化物具有电致变色效应。普遍认为无机电致变色材料由于电子和离子的双注入和双抽出发生氧化还原反应而具有电致变色效应。根据材料是在氧化态或者还原态着色可分为还原态着色电致变色材料如W、Mo、V、Nb和Ti的氧化物和氧化态着色电致变色材料如Ir、Rh、Ni和Co等的氧化物。有些材料如V、Co和Rh的氧化物在氧化态和还原态均会呈现不同的颜色。普鲁士蓝也是一种具有多种变色特性的电致变色材料,能在暗蓝色、透明无色(还原时)、淡绿色(氧化时)等颜色之间转变。有机电致变色材料包括氧化还原型化合物如紫罗精,导电聚合物如聚苯胺、聚噻吩和金属有机螯合物如酞花菁等。无机电致变色材料由于化学稳定性好,制备工艺简单等优点,是人们研究的重点,WO3作为最早发现的一种电致变色材料,由于性能优越,价格低廉等优点,是研究最为详细的一种电致变色材料。

薄膜干涉原理

光学薄膜及其应用 目录 一、引言 二、什么是光学薄 膜? 三、光学薄膜干涉 原理 四、光学薄膜的应 用 五、薄膜的制备 六、应用于望远镜 的光学薄膜分 析第三版光学薄膜干涉原理 光是一种电磁波。可以设想光源中的分子或原子被某种原因激励而振动,这种振动导致分子或原子中的电磁场发生电磁振动。可以证明,电场强度与磁场强度两者有单一的对应关系,同时在大多光学现象中电场强度起主导作用,所以我们通常将电场振动称为光振动,这种振动沿空间方向传播出去就形成了电磁波。 电磁波的波长λ、频率f、传播速度v三者之间的关系为: v=λ?f 各种频率的电磁波在真空中的速度都是一样的,即3.0E+8m/s,常用C 表示。但是在不同介质中,传播速率是不一样的。假设某种频率的电磁波在某一介质中的传播速度为v,则C与v的比值称为这种介质对这种频率电磁波的折射率。频率不同的电磁波,它们的波长也不同。波长在 400~760nm这样一段电磁波能引起人们的视觉,称为可见光。普通光源如太阳、白炽灯等内部大量振动中的分子或原子彼此独立,各自有自己的振动方向、振幅及发光的起始时间。每个原子每一次振动所发出的光波只有短短的一列,持续时间约为1.0E-8秒。我们通常观察到的光都是光源内大量分子或原子振动辐射出来的结果,而观察不到其作为一种波动在传播过程中所能表现出来的特征———干涉、衍射和偏振等现象。这是因为实现光的干涉是需要条件的,即只有频率相同、相位差恒定、振动方向一致的两列光波才是相干光波,这样的两列波辐射到同一点上,彼此叠加,产生稳定的干涉抵消(产生暗影)或者干涉加强(产生比两束光能简单相加更强的光斑)图像,才是我们观察到的光的干涉现象。

电致变色~~~

光学中的一道光环--电致变色 摘要 随着现代化进程的高速发展,技术革新在各个领域如雨后春笋般出现。备受瞩目的就是:电致发光、电致发光、太阳能等技术在世界各国勃勃兴起。它的革新除了本行业的进步,也为其它的领域的发展提供了一个重要的契机。近些年电致发光是一项研究很热门的一个领域。电致变色的材料有很多种,可以在材料类型上进行分类,如无机变色材料,有机变色材料。不同的材料在不同的条件下,所表现出来的功能有很大的差异,同时变色材料在一定程度上都有各自的缺陷,我们需要进行更深入的对其探讨、研究,以便做出出色的成果。 本文在参阅国内外对变色材料的研究的文献基础上,对电致变色这一现象进行深入的探讨。了解电致变色的工作机理,材料组成,以及不同材料的优缺点,以便以后对电致变色的研究打下良好的基础。太多 关键字:技术革新,电致发光,电致发光,太阳能,变色材料,应用趋势,工作机理关键词 3-5就可以了

绪论 随着电致变色技术在汽车、建筑、印刷等大领域的广泛应用,我国电致变色技术研究出现了一个空前的热潮,石墨烯纳米材料、透明电极、导电聚合物等高科技产品和物质不断被开发出来。许多的专家对变色材料进行深入的研究,并使许多的材料投入使用,起到巨大的经济效益。而现实中,变色材料体现出他特有的性能,得到广大消费者的青睐。为消费者提供便利的同时,促进了变色材料的新革命。 1电致变色的介绍 1.1电致变色的概念 电致变色(Electrochromism, EC)是指材料在紫外、可见光或(和)近红外区域的光学属性(透射率、反射率或吸收率)在外加电场作用下产生稳定的可逆变化的现象,在外观上表现为颜色和透明度的可逆变化。具有电致变色性能的材料称为电致变色材料。用电致变色材料做成的器件称为电致变色器件。 1.2 电致变色的工作原理 电致变色材料在外加电场作用下发生电化学氧化还原反应,得失电子,使材料的颜色发生变化。器件结构从上到下分别为:玻璃或透明基底材料、透明导电层(如:ITO)、电致变色层、电解质层、离子存储层、透明导电层(如:ITO)、玻璃或透明基底材料器件工作时,在两个透明导电层之间加上一定的电压,电致变色层材料在电压作用下发生氧化还原反应,颜色发生变化;而电解质层则由特殊的导电材料组成,如包含有高氯酸锂、高氯酸纳等的溶液或固体电解质材料;离子存储层在电致变色材料发生氧化还原反应时起到储存相应的反离子,保持整个体系电荷平衡的作用,离子存储层也可以为一种与前面一层电致变色材料变色性能相反的电致变色材料,这样可以起到颜色叠加或互补的作用。如:电致变色层材料采用的是阳极氧化变色材料,则离子存储层可采用阴极还原变色材料。 图1 …图在两个段落中间,不要加在一段话的中间,要有说明

《薄膜原理与技术》

《薄膜原理与技术》 一、目的与任务 本课程是一门专业技术基础课,适合于光学各专业。本课程的目的是通过光学薄膜原理与技术的学习,培养学生薄膜系统的计算、设计能力,了解薄膜系统的制备技术。 本课程的任务是(1)光学薄膜特性计算,包括光学薄膜的设计理论以及膜系的普遍定理;(2)常用光学薄膜器件,如反射镜、分光镜、截止滤光片和带通滤光片;(3)薄膜制备技术,包括制备薄膜设备、材料、方法与监控;(4)薄膜材料及性质,包括薄膜的光学性质测量、力学性质检测等。(5)介绍薄膜技术领域中的一些前沿研究课题。学生通过这门课的学习应该熟悉薄膜原理、特性、制备与检测以及薄膜领域的最新进展。 二、教学内容及学时分配(24学时) 第一章光学薄膜特性的理论计算(6学时) 1. 单色平面电磁波 2. 平面电磁波在单一界面的反射和折射 3. 光学薄膜特性的理论计算 第二章光学薄膜的设计理论(2学时) 1.矢量作图法 2.有效界面法 3.对称膜系的等效层 第三章光学薄膜系统的设计(8学时) 1.减反射膜 2.高反射膜性 3.分束镜 4.干涉截止滤光片 5.带通滤光片 6.薄膜设计软件使用(Filmaster) 第四章薄膜制备技术(4学时) 1.真空淀积工艺 2.光学薄膜材料 3.薄膜厚度监控技术

4.膜层厚度的均匀性 第五章制备条件对薄膜微观结构和成分的影响(4学时) 1.薄膜的形成过程 2.薄膜的微观结构 3.薄膜成分 4.微观结构和成分对薄膜特性的影响 三、考核与成绩评定 考核:大作业。 成绩评定:大作业占70%,平时作业及日常考核质疑等占30%,按百分制给出最终成绩。 四、大纲说明 1. 本大纲是根据我校电子科学与技术(光电子)、光电信息科学与工程、光电信息工程专业培养计划及其知识结构要求,并适当考虑专业特色而制定的。 2. 在保证基本教学要求的前提下,教师可以根据实际情况,对内容进行适当的调整和删节。 3. 本大纲适合光电类相关专业。 五、教材、参考书 选用教材:唐晋发顾培夫刘旭.现代光学薄膜技术[M].浙江大学出版社,2006. 参考书: [1]卢进军刘卫国.光学薄膜技术[M].西安工大学出版社,2005. [2]唐晋发顾培夫刘旭.现代光学薄膜技术[M].浙江大学出版社,2006. [3]林永昌卢维强. 光学薄膜原理[M].国防工业出版社,1990. 编写教师:蒋玉蓉 责任教授签字: 教学院长签字: 英文课程介绍 《Modern Optical Thin Film Technology》

氮化硅薄膜光学性质的研究

氮化硅薄膜光学性质的研究摘要:氮化硅薄膜具有优良的光学性能,常用作太阳能电池表面的减反射材料。采用传统的退火炉和快速热退火炉进行了不同时间和温度下的退火比较,并研究了退火对薄膜光学性能的影响。研究发现:氮化硅薄膜经热处理后厚度降低,折射率先升高后降低。 关键词:太阳能电池;氮化硅薄膜;热处理 引言 由于有着良好的绝缘性,致密性,稳定性和对杂质离子的掩蔽能力,氮化硅薄膜作为一种高效器件表面的钝化层已被广泛应用在半导体工艺中。人们同时发现,在多晶硅太阳电池表面生长高质量氮化硅薄膜不仅可以十分显著地提高多晶硅太阳电池的转换效率,而且还可以降低生产成本。作为一种减反射膜,氮化硅不仅有着极好的光学性能(λ =6 3 2 . 8 n m时折射率在 1 . 8 ~2. 5之间,而最理想的封装太阳电池减反射膜折射率在 2 . 1 ~2. 2 5 之间) 和化学性能,还能对质量较差的硅片起到表面和体内钝化作用,提高电池的短路电流。因此,采用氮化硅薄膜作为晶体硅太阳电池的减反射膜已经成为光伏界的研究热点。 1 . 氮化硅薄膜的光学性质 1 .1实验 本实验采用2cm×2cm×400um的单面抛光的P型<100>Cz硅片,在沈阳科仪中心PECVD400型真空薄膜生长系统中生长氮化硅薄膜。氮化硅薄膜制备过程如下:实验前使用乙醇和丙酮超声清洗样品15min以去除油污,然后用1号液(H20: H202:NH3·H20=5:1:1)和2号液(H 20:H 2 O 2 :HCl=5:1:1)清洗,最后再使用 5%稀氢氟酸(HF)漂洗5min以去除氧化层,去离子水洗净烘干后放人反应室。采用硅烷(10%氮气稀释)和高纯氨气作为反应气体沉积氮化硅薄膜,其中沉积薄膜的生长参数如下:气体流量为硅烷30sccm、氨气60sccm、工作气压30Pa、射频频率 13.5MHz、沉积时间10min。沉积薄膜后,采用传统的退火炉和新兴的快速热退火炉进行了氩气保护下不同时间和温度下的退火比较,并测试了薄膜退火前后的厚度、折射率。 1.2结果和讨论

纳米氧化钨制备及其电致变色性能研究报告

纳米氧化钨制备及其电致变色性能测试 引言 信息传递在快速发展的现代社会中具有举足轻重的地位,除了电子通讯之外,显示功能也是信息传递的重要组成部分,电致变色材料正是一种广泛应用于信息、电子、能源、建筑和国防等方面,有着广阔应用前景的显示功能材料。电致变色材料还可以利用其透过率可控、记忆效应、反应速度快的性能制成智能窗户、防眩晕后视镜及能源节约器件,应用前景十分广泛。 电致变色(eletrochromism)是指材料在交替的高低或正负外电场的作用下,通过注入或抽取电荷(离子或电子),从而在低透射率的着色状态或高透射率的消色状态之间产生可逆变化的一种特殊现象,在外观性能上则表现为颜色及透明度的可逆变化。主流的电致变色材料分为三大类,包括无机类材料、有机小分子材料以及共轭聚合物。无机材料主要是金属氧化物,包括阴极着色材料(如V、Mo、W、Nb、Ti的氧化物)和阳极着色材料(如普鲁士蓝、Ni、Co、Ir的氧化物);有机小分子材料主要为紫罗碱;共轭聚合物电致变色材料包括聚噻吩、聚吡咯、聚苯胺等。 是无机类电致变色材料中科学家研究最早最深入、成果最丰富的材料。 WO 3 由于电致变色材料的透过率可在较大波长围连续变化、调节,工作电压低,功耗较低,节能环保,具有记忆存储功能,并且在使用中受环境因素的影响较小,这些优势使得电致变色材料逐渐成为建筑、汽车行业中越发灿烂的一颗闪亮明珠。 但有关WO 薄膜着色与消色的机理现在仍然不明确。目前,认知程度最高, 3 接受最多的为双注入/双抽出模型。

图1 三氧化钨晶体结构示意图 三氧化钨晶体结构模型图如图1所示,钨原子位于着晶格顶点处,氧原子位于晶格棱中间位置。通常情况下,立方体中心原子A的位置没有原子占据,此时钨呈现+6价,三氧化钨薄膜呈现无色。当立方体中心A位置被阳离子填充的时 薄层转变为蓝紫候,钨原子的价态降低,变为六价与五价的混合体系,此时WO 3 色。其中填充A位置的阳离子一般为H+、Li+、Na+等。三氧化钨薄膜的着色过程为阳离子注入过程,消色过程为阳离子抽出过程。因此薄膜的着色消色速率与阳离子的注入抽出速率有关,而阳离子的注入抽出速率与外加电压、电致变色溶液、薄膜自身微结构和形貌等性质有关。 实验目的 (1)了解电致变色应用领域与发展前景。 (2)了解电致变色原理与相关参数的意义与测试方法 (3)了解电化学工作站的使用方法,学习三电极测试原件组装 (4)学习电致变色测试中阶跃电压、循环伏安模式测量与数据处理。 电致变色材料的发展 理想的电致变色材料一般应具有响应时间短、着色效率高、对比度大、色彩丰富、稳定性好、离子导电性和电子导电性高等特点。遗憾的是目前为止没有文献报道哪一种有机或是无机电致变色材料具有这样的完美性质。因此,近些年来电致变色材料研究主要集中在以下几个方面: (1)有机新材料的合成:有机电致变色材料的最大特点之一就是具有分子可修饰性,通过分子取代或者掺杂等方式获得具有高着色效率、快速响应时间和丰富色彩等优秀性能的新型有机电致变色材料。有机电致变色材料合成的技术手段通常为化学方法和电化学沉积方法。化学方法合成有机电致变色材料比较困难,因为合成条件要求高、周期长、合成路线复杂、污染大等。电沉积的方式虽

物理论文-光学薄膜及其应用方面的研究

光学薄膜及其应用方面的研究 1.引言 光学薄膜是指在光学玻璃、光学塑料、光纤、晶体等各种材料的表面上镀制一层或多层薄膜,基于薄膜内光的干涉效应来改变透射光或反射光的强度、偏振状态和相位变化的光学元件,是现代光学仪器和光学器件的重要组成部分。从20世纪30年代开始,光学薄膜逐渐被应用于日常生活、工业、天文学、军事、宇航、光通信等领域,在国民经济和国防建设中起到了重要作用,因而得到了科学技术工作者的日益重视。而今新兴技术的发展对薄膜技术不断提出新的要求,又进一步促使了光学薄膜技术的蓬勃发展,所以近年来,对光学薄膜的研究及其应用一直是非常活跃的课题。本文在简单叙述薄膜干涉的一些相关原理的基础上,介绍了光学薄膜最常见的几种制备方法,研究了光学薄膜技术的相关应用,并且展望了光学薄膜研究的广阔前景。 2.光学薄膜干涉的原理 一列光波辐射到透明薄膜上,从膜的前、后表面或上下表面或上下表面反射出两列光波,这两列相干光波相遇后叠加产生干涉,设薄膜下方空间的折射率为n3,薄膜的折射率为n2,薄膜上方空间的折射率为n,膜的厚度为d,如图1所示,则上下两表面处获得的反射光束的光程差为δ=2d(n2^2-n1^2sin^i)^-2λ*/2,式中i是入射角,λ/2是由半波损失而引起的附加光程,当δ=kλ,相位差Δφ=±2k∏(k=1、2、3…),干涉加强,形成明纹;当δ=(2k+1)*λ/2,Δφ=±(2k+1)∏(k=0、1、2、3…),干涉减弱,形成暗纹。 图1 薄膜干涉的基本原理 假如取薄膜的光学厚度为n2*d=λ/4,当n1n2;n3>n2时,薄膜上下表面的光学性质不相同,都有λ/2附加光程差,两反射光的光程差δ=λ,两反射光干涉相长,增加了反射光的能量,这种薄膜称为增反膜;当n1n2>n3时,因薄膜上下表面的光学性质相同,上下表面的反射光没有附加光程差,两反射光的光程差δ=λ/2,两反射光干涉相消,增加了透射光的能量,这种薄膜称为增透膜。总之,当(n2-n1)(n2-n3)>0时有增透的作用。

光学薄膜技术第三章薄膜制造技术

第三章薄膜制造技术 光学薄膜可以采用物理汽相沉积( PVD )和化学液相沉积(CLD )两种工艺来获得。CLD 工艺简单,制造成 本低,但膜层厚度不能精确控制, 膜层强度差,较难获得多层膜,废水废气对环境造成污染, 已很少使用。 PVD 需要使用真空镀膜机,制造成本高,但膜层厚度能够精确控制,膜层强度好,目前已广泛使用。 PVD 分为热蒸发、溅射、离子镀、及离子辅助镀等。 制作薄膜所必需的有关真空设备的基础知识 用物理方法制作薄膜,概括起来就是给制作薄膜的物质加上热能或动量,使它分解为原子、分子或少数几 个原子、分子的集合体(从广义来说,就是使其蒸发) ,并使它们在其他位置重新结合或凝聚。 在这个过程中,如果大气与蒸发中的物质同时存在,那就会产生如下一些问题: ① 蒸发物质的直线前进受妨碍而形成雾状微粒,难以制得均匀平整的薄膜; ② 空气分子进入薄膜而形成杂质; ③ 空气中的活性分子与薄膜形成化合物; ④ 蒸发用的加热器及蒸发物质等与空气分子发生反应形成 化合物,从而不能进行正常的蒸发等等。 因此,必须把空气分子从制作薄膜的设备中排除出去, 过程称为抽气。空气压力低于一个大气压的状态称为真空, 而把产生真空的装置叫做真空泵, 抽成真空的容器叫做真空 室,把包括真空泵和真空室在内的设备叫做真空设备。 薄膜最重要的装备是真空设备. 真空设备大致可分为两类:高真空设备和超高真空设备。 者真空度不同,这两种真空设备的抽气系统基本上是相同 的,但所用的真空泵和真空阀不同, 而且用于真空室和抽气 系统的材料也不同, 下图是典型的高真空设备的原理图, 作薄膜所用的高真空设备大多都属于这一类。 下图是超高真空设备的原理图,在原理上,它与高真空设备 没有什么不同,但是,为了稍稍改善抽气时空气的流动 性, 超高真空设备不太使用管子,多数将超高真空用的真空泵直 接与真空室连接,一般还要装上辅助真空泵(如钛吸气泵) 来辅助超高真空泵。 3.1 高真空镀膜机 1.真空系统 现代的光学薄膜制备都是在真空下获得的。普通所说的 真空镀膜,基本都是在高真空中进行的。 这个 制作 袖扩故泵 C l 初真空 低真空 高真空 超高 真空 极侖 真空 其空度 Pa 5 2 10 ? 10 ■1 —R 10 ? 10 -J 3 Cj C J ?加熬 炉 S3 Wa 泵 空 I 马选H 傑崑空亲 !电碣 *— L 低寓空竄 抵真 鬥 I 先进行(1)然后进行(2)。因为所有的(超)高真空泵只有在真空室的压力降低到一定程度时才能进行工作, 而且在高真空泵(如油扩散泵)中,要把空气之类的分子排出,就必须使排气口的气体压力降低到一定程 度。 小型镀膜机的真空系统 低真空机械泵+高真空油扩散泵+低温冷阱

光学薄膜的分类及发展趋势

光学薄膜的发展趋势及分类、关键技术汇总科学的发展正在改变传统的光学薄膜的面貌,其应用也由原来的纯粹为光学仪器服务,逐渐渗透到通信、建筑、防伪、医疗和空间技术等领域。而新工艺、新材料、新技术的采用,或用来提高其性能,或与其他薄膜结合构成新的器件,如与电学膜结合起来的光电子薄膜,与高分子有机材料结合起来的光学有机薄膜。这些薄膜有着潜在而十分广阔的应用前景。新型光学薄膜如高强度激光膜、金刚石及类金刚石膜、软X射线多层膜、太阳能选择性吸收膜和光通信用光学膜的制备及其在器件方面的研究和应用情况。下面就目前及未来几年应用广泛、符合薄膜发展方向的设备及技术进行阐述: 一、磁控溅射设备及工艺技术 在光学薄膜领域,真空蒸发技术占据主导地位已经超过50年,并且一直在不断发展。高性能的电子枪、离子辅助镀膜、低压反应离子镀膜、高精度的监控技术、自动化的镀膜过程等一系列的进展,使得蒸发技术达到了极高的水平,制备出了DWDM、GFF增益平坦滤光片等高性能的薄膜元器件,令人叹为观止。但是,随着蒸发镀膜机性能的不断提高,结构亦愈复杂,目前需要控制的工作参数已经超过30个。并且随着真空室状态的变化,还需要适当修正一些参数,因此使过程十分复杂,成为各种故障的潜在因素,生产中已经感到不便。

磁控溅射的工艺过程简化了许多,需要控制的工作参数约为lo个左右,更容易实现过程自动化。溅射薄膜的高聚集密度使其特性对真空室的初始状态不太敏感,所以溅射薄膜的再现性会有所提高,进行工业化生产具有明显的优势。反应磁控溅射技术目前还不太适宜在弯曲面型的基底上淀积成膜;以时间为监控参数使得各个膜层厚度误差之间互不相关;对于多种膜系及膜料的适应程度不及蒸发技术;上述问题都是磁控溅射的局限性。但是,磁控溅射在光学薄膜领域中的应用将日益广泛,可能会成为一种趋势。 磁控溅射在光学多层介质膜的工业化生产中的发展空间巨大,设备和靶材料的成本将随着应用的广泛而得以降低。在一定范围内,蒸发镀膜将会逐步为磁控溅射镀膜所替代。 近年来,磁控溅射技术的应用日趋广泛,在工业生产和科学研究领域发挥巨大作用。随着对具有各种新型功能的薄膜需求的增加,相应的磁控溅射技术也获得进一步的发展。 研究内容: 1)设备的引进调试及工艺参数优化 2)产品的调研及开发应用 3)靶材的选择及利用率的提高。 二、真空紫外薄膜 真空紫外(VUV)是一种波长范围为100~200nm的不可见光线, 由于真空紫外光波长短、热效应不强等独特特性, 而广泛应

光学薄膜技术第二章课件

典型膜系介绍 根据其作用可以将光学薄膜的类型简单的分为: 1、 减反射膜或者叫增透膜 2、 分束膜 3、 反射膜 4、 滤光片 5、 其他特殊应用的薄膜 一. 减反射膜(增透膜) 在众多的光学系统中,一个相当重要的组成部分是镜片上能降低反射的镀膜。在很多应用领域中,增 透膜是不可缺少的,否则,无法达到应用的要求。 就拿一个由18块透镜组成的35mm 的自动变焦的照 相机来说,假定每个玻璃和空气的界面有 4%的反射,没有增透的镜头光透过率为 23% ,镀有一层膜(剩余 的反射为 1.3%)的镜头光透过率为 6 2.4% ,镀多层膜(剩余的反射为 0.5%)的为8 3.5%。 大功率激光系统要求某些元件有极低的表面反射,以避免敏感元件受到不需要的反射光的破坏。此外, 宽带增透膜可以提高象质量、色平衡和作用距离,而使系统的全部性能增强。 当光线从折射率为 n0的介质射入折射率为 n1的另一介质时,在两介质的分界面上就会产生光的反射, 如果介质没有吸收,分界面是一光学表面,光线又是垂直入射,则反射率 R 为: ( ¥ R= % _山透射率T =1 —R I no +∏ι J 例,折射率为1.52的冕牌玻璃,每个表面的反射约为 4.2%,折射率较高的火石玻璃表面的反射更为显著。 这种表面反射造成了两个严重的后果: ① 光能量损失,使像的亮度降低; ② 表面反射光经过多次反射或漫射,有一部分成为杂散光,最后也达到像平面,使像的 衬度降低,分辨 率下降,从而影响光学系统的成像质量。 减反射膜,又称增透膜,它的主要功能是减少或消除透镜、棱镜、平面镜等光学表面的反射光,从而 增加这些元件的 透光量,减少或消除系统的 杂散光。 A 、— 1 最简单的增透膜是单层膜, 它是镀在光学零件光学表面上的一层折射率较低 ——A 丽— —Ms .FI 的介于空气折射率和光学元件折射率之间的薄膜。 以使某些颜色的单色光在表面 4 ^ 上的反射干涉相消, 增加透射。使用最普遍的介质膜材料为氟化镁, 它的折射率 ------------------- 为 1.38。 减反射膜可由简单的单层膜至二十层以上的多层膜系构成,单层膜能使某一波长的反射率实际为零, 多层膜则在某一波段具有实际为零的反射率。 减反射膜的工作原理是基于薄膜干涉原理 入射光在介质膜两表面反射后得两束相干光,选择折射率适当的介质膜材料,可使两束相干光的振幅 接近相等,再控制薄膜厚度,使两相干光的光程差满足干涉极小条件,此时反射光能量将完全消除或大大 减弱。适当条件下可完全没有反射光或只有很弱的反射光。 1.1单层减反射膜 R= ------------- n 1 - 1 r≡≡l -S8

相关主题
文本预览
相关文档 最新文档