当前位置:文档之家› 生物体的化学元素及其作用

生物体的化学元素及其作用

生物体的化学元素及其作用
生物体的化学元素及其作用

生物体的化学元素及其作用

存在于生物体(植物和动物)内的元素大致可分为:

(1)必需元素,按其在体内的含量不同,又分为常量元素和微量元素;

(2)非必需元素;

(3)有毒(有害)元素。

人体内大约含30 多种元素,其中有11 种为常量元素,如 C ,H ,O ,N ,S ,P ,Cl ,Ca ,Mg ,Na ,K 等,约占99.95 %,其余的0.05 %为微量元素或超微量元素。

必需元素是指下列几类元素:

(1)生命过程的某一环节(一个或一组反应)需要该元素的参与,即该元素存在于所有健康的组织中;

(2)生物体具有主动摄入并调节其体内分布和水平的元素;

(3)存在于体内的生物活性化合物的有关元素;

(4)缺乏该元素时会引起生化生理变化,当补充后即能恢复。

哪些是构成人体的必需元素?19世纪初,化学家开始分析有机化合物,清楚地认识到活组织主要由C,H,O 和N四种元素组成。仅这四种元素就约占人体体重的96%。此外,体内还有少量P。将人体内这五种元素的化合物挥发后就会留下一些白灰,大部分是骨骼的残留物,这灰乃是无机盐的集合,在灰里可找到普通的食盐(NaCl)。食盐并不仅仅是增进食物味道的调味品,而是人体组织中的一种基本成分。食草动物有时甚至达到要舔吃盐渍地,以便弥补食物中

所缺乏的盐。

在实际研究中,确定某元素是否为必需元素,既与该元素在体内的浓度有关,也与它的存在状态和生物活性密切相关。人体中的每一元素呈现不同的生物效应,而效应的强弱依赖于特定器官或体液中该元素的浓度及其存在的形态。对于每种必需元素,都有一段其相应的最佳健康浓度,有的具有较大的体内恒定值,有的在最佳浓度和中毒浓度之间只有一个狭窄的安全限度。元素浓度和生物功能的相关性可用图表示。

有20 ~30 种普遍存在于组织中的元素,它们的浓度是变化的,而它们的生物效应和作用还未被人们认识,有待于研究,所以称它们为非必需元素。另外一些则是能显著毒害机体的元素。如,血液中非常低浓度的铅、镉或汞,具有有害的作用,就可称为有毒元素,亦称有害元素。

从海水中必需微量元素的含量与人体中主要元素的对比,说明赖以生存的环境中的元素是生物进化的结果。人类在适应生存和进化中,逐渐形成一套摄入、排泄和适应这些元素的保护机制,即人体内的元素,不论是常量或微量,维持平衡状态是经过人类长期进化形成的。许多元素是否是必需还是有害,和摄入量(即在体内的浓度)有关。每一种必需元素在体内都有其合适的浓度范围,超过或不足都不利于人体健康。例如,人们对碘的最小需要量为0.lmg /天,耐受量为1000mg /天,当大于10000mg /天即为中毒量。若人体自身用以维持稳态的调节机制出现障碍,便会发生疾病。有时元素的过量可能比缺乏更

令人担忧,因为某个元素的缺乏易于补充,而过量往往则难以清除,或清除过程中会产生副作用。另外共存元素的相互影响——在生物体内存在协同或拮抗作用,对元素浓度比例的要求就更复杂了。例如锌可以抑制镉的毒性,铜可以促进铁的吸收等。由于元素间的相互作用,当评定某一微量元素对人体健康的影响时,还必须考虑与其有关元素的存在。

表1归纳了主要生物元素及其功能。在生命物质中,除 C ,H ,O ,S 和N 参与各种有机化合物外,其他生物元素各具有一定的化学形态和功能,这些形态包括它们的游离水合离子,与生物大分子或小分子配体形成的配合物,以及构成硬组织的难溶化合物等。

表1 生物元素及其功能

元素功能

H 水,有机化合物的组成成分

B 植物生长必需

C 有机化合物组成成分

N 有机化合物组成成分

O 水,有机化合物的组成成分

F 鼠的生长因素,人骨骼的成长所必需

Na细胞外的阳离子,Na+

Mg酶的激活,叶绿素构成,骨骼的成分

Si 在骨骼、软骨形成的初期阶段所必需

P 含在ATP 等之中,为生物合成与能量代谢所必需

S 蛋白质的组分,组成Fe-S 蛋白质

Cl 细胞外的阴离子,Cl-

K 细胞外的阳离子,K+

钙骨骼、牙齿的主要组分,神经传递和肌肉收缩所必需

V 鼠和绿藻生长因素,促进牙齿的矿化

铬促进葡萄糖的利用,与胰岛素的作用机制有关

锰酶的激活、光合作用中水光解所必需

铁最主要的过渡金属,组成血红蛋白、细胞色素、铁-硫蛋白等

钴红血球形成所必需的维生素Br2 的组分

铜铜蛋白的组分,铁的吸收和利用

Zn 许多酶的活性中心,胰岛素组分

Se与肝功能肌肉代谢有关

Mo黄素氧化酶,醛氧化酶.固氮酶等所必需

Sn鼠发育必需

I 甲状腺素的成分

这些元素在生物体内所起到的生理和生化作用,主要有几个方面。(1)结构材料。无机元素中Ca,P构成硬组织,C,H,O,N,S

构成有机大分子结构材料,如:多糖、蛋白质等。

(2)运载作用。人对某些元素和物质的吸收、输送以及它们在体内的传递等物质和能量的代谢过程往往不是简单的扩散或渗透过程,而需要有载体。金属离子或它们所形成的一些配合物在这个过程中担负重要作用。如含有Fe2+ 的血红蛋白对O2 和CO2 的运载作用等。

(3)组成金属酶或作为酶的激活剂。人体内约有四分之一的酶的活性与金属离子有关。有的金属离子参与酶的固定组成,称为金属酶。有一些酶必需有金属离子存在时才能被激活以发挥它的催化功能,这些酶称为金属激活酶。

(4)调节体液的物理、化学特性。体液主要是由水和溶解于其中的电解质所组成。生物体的大部分生命活动是在体液中进行的。为保证体内正常的生理、生化活动和功能,需要维持体液中水、电解质平衡和酸碱平衡等。存在于体液中的Na+,K+,Cl-等发挥了重要作用。

(5)“信使”作用。生物体需要不断地协调机体内各种生物过程,这就要求有各种传递信息的系统。细胞间的沟通即信号的传递需要有接受器。化学信号的接受器是蛋白质。Ca2+作为细胞中功能最多的信使,它的主要受体是一种由很多氨基酸组成的单肽链蛋白质,称钙媒介蛋白质(分子量为16700)。氨基酸中的竣基可与Ca2+结合。钙媒介蛋白质与Ca2+结合而被激活,活化后的媒介蛋白质可调节多种酶的活力。因此Ca2+起到传递某种生命信息的作用。也有细胞内信使,Ca2+也是细胞内信使。

有些元素可同时在几个方面发挥作用。例如Ca2+ 就有多方面的生物功能。下面仅就Ca ,P ,Na ,K 等的主要生物功能作简要介绍。

钙是骨骼和牙齿的主要成分。调控人体正常肌肉收缩和心肌收缩,同时起细胞信使作用,如图10-3 所示。例如,血液中Ca2+过多,会造成神经传导和肌肉反应的减弱,使人对任何刺激都无反应,但血液中Ca2+太少,又会造成神经和肌肉的超应激性,在这种极度兴奋的情况下,微小的刺激,比如一个响声、咳嗽,就可能使人陷入痉挛性抽搐。

磷,骨骼和牙齿中除了含Ca 外,磷也是一种重要的元素。体内90%的磷是以磷酸根的形式存在,如牙釉质中的主要成分是羟基磷灰石

和少量氟磷灰石,氯磷灰石等。

牙釉质是由不溶性物质所组成,称为羟基磷灰石。使它从牙齿上溶解下来称为去矿化,而形成时称为再矿化。在口腔中存在着这样一种平衡:

健康的牙齿也同样存在这样的平衡。然而,当糖吸附在牙齿上并且发酵

时,产生的H+与OH-结合成H2O以及而扰乱平衡,会引起更多的

溶解,结果使牙齿腐蚀。氟化物通过取代羟基磷灰石中的OH

-有助于防止牙齿腐蚀,由此产生的能抗酸腐蚀。

磷酸可以和有机化合物中的羟基(糖羟基、醇羟基),形成磷酸脂。如ATP 就是三磷酸腺苷,磷脂就是存在细胞膜。ATP 水解时放出高能量,如ATP 的水解与细胞里的一个放热反应(如肌肉收缩或大分子的合成)相配合,则ATP 的水解就可为其他反应提供必要的能量。磷的化学规律控制着核糖、核酸以及氨基酸、蛋白质的化学规律,从而控制着生命的化学进化。身体中磷的主要作用见图10-4 所示。由于磷的分布很广,因此人们日常食品中很少缺少这种元素。

K+,Na+和Cl-在体内的作用是错综复杂而又相互关联的。K+和Na+常以KCl和NaCl的形式存在。K+,Na+,Cl-的首要作用是控制细胞、组织液和血液内的电解质平衡。这种平衡对保持体液的正常流通和控制体内的酸碱平衡都是必要的。Na+和K+(与Ca2+和Mg2+一起)有助于使神经和肌肉保持适当的应激水平。NaCl和KCl的作用还在于使蛋白质大分子保持在溶液之中,并使血液的粘性或稠度调节适当。胃里开始消化某些食物的酸和其他胃液、胰液及胆汁里的助消化的化合物,是由血液里的钠盐和钾盐形成的。另外,视网膜对光脉冲反应的生理过程,也依赖于Na+,k+和Cl-有适当的浓度。显然,人体的许多重要机能对这三种离子都有依赖关系,如下图所示。体内任何一种

离子不平衡,都会对身体产生影响。例如,运动过度,特别是炎热的天气里,会引起大量出汗,汗的成分主要是水,还有许多离子,其中有Na+,K+和Cl-,使汗带咸味。出汗太多使体内这些离子浓度大为降低,就会出现不平衡,使肌肉和神经反应受到影响,导致出现恶心、呕吐、衰竭和肌肉痉挛。因此,运动员在训练或比赛前后,喝特别配制的饮料,用以补充失去的盐分。

当我们仔细观察和研究那些含金属元素生物分子的结构以及它们的生

理功能时,发现人体内的常量元素都是海水中最丰富的元素。人体大部分的组成元素是周期表中的轻元素(原子序数在34 以下),两个较重的元素就是原子序数为42 的Mo 和53 的I 。而由地球表面大气圈、水圈和浅岩石图所组成的生物圈中的元素也主要由这些轻元素所组成,这正是丰度原则的直接结果。因此可以认为生物体发源于水圈。生物体体液中的离子组成和水圈中的离子组成也很相似。生物体正是利用水体中含量最丰富的Na+和K + 来控制体内的离子浓度和渗透压等;又如Ca2+和Sr2+ 在性质上虽然很相似,而自然界绝大多数的生物却是利用钙盐作为构成骨骼的材料,这正是利用了钙有较高的丰度。

人类自身目前仍然处于一个进化的过程之中,与地球的形成、生物体的进化这个漫长的历史进程相比,人类只是这条长河中极其短暂的一段。现代人类

还在不断地随着环境的改变而进化,以适应新的环境。

微量元素在不同体内部位的水平与人体健康关系极大。它与人体健康的关系是很复杂的,其浓度、价态、摄人肌体的途径等对人体健康都有影响,有些疾病的发生和微量元素的平衡失调关系密切。例如我国地方病——克山病——是与缺硒有关的心肌坏死;地方性甲状腺肿、地方性克汀病则是由于严重缺碘引起的等等。微量元素还和人体免疫功能、出生缺陷、肿瘤、血液病、眼疾等有关。如何将微量元素做成药物和食品添加剂等用于医治和疾病的预防是一个重要的专门研究领域。微量元素与人体的关系不是孤立的,微量元素之间,微量元素与蛋白质、酶、脂肪、维生素之间都存在相互作用。如铜和铁在肌体内显示生理协同作用,即铜可促进肌体对铁的吸收;铁可拮抗镉的毒性等。在分析它们的作用时,不能忽略其他因素的影响。人体中也含有非必需微量元素,甚至有害元素如Cd,Hg,Pb 等,这和食物、水质及大气的污染关系甚大。如经口腔、呼吸道吸收的Cd 通过血液转移后,大部分蓄积于肾脏和肝脏中,可引起肌体对有益元素Zn 和Ca 的吸收和利用的紊乱,导致一种以骨骼疾患为特征的骨痛病。Cd 的污染主要是工业污染造成的,采矿、冶炼、合金制造、电镀、油漆颜料制造等工业部门向环境排放的Cd ,污染了大气、水。土壤。人体中Cd 的主要来源是食物。人从环境摄取Cd 的途径及比率大致为:食品约占50 %,饮用水约占1 %,空气约占 1 %,香烟约占46 %。烟草含Cd 量很高,一包香烟含Cd 达30mg ,长期吸烟造成的人体内Cd 积累会对健康带来影响。

压铸铝合金中各元素的作用和影响

?压铸铝合金中各元素的作用和影响 ?发布时间:2009-11-9 16:57:02 来源:互联网文字【大中小】 ?(一)日本ADC12 牌号合金 (二)压铸铝合金中各元素的作用和影响 1. 硅(Si) 硅是大多数压铸铝合金的主要元素。它能改善合金的铸造性能。硅与铝能组成固溶体。在577℃时,硅在铝中的溶解度为1.65%,室温时为0.2%、含硅量至11.7%时,硅与铝形成共晶体。提高合金的高温造型性,减少收缩率,无热裂倾向。二元铝基合金有高的耐蚀性。当合金中含硅量超过共晶成分,而铜、铁等杂质又多时,即出现游离硅的硬质点,使切削加工困难,高硅铝合金对铸件坩埚的熔蚀作用严重。 2. 铜(Cu) 铜和铝组成固溶体,当温度在548℃时,铜在铝中的溶解度应为5.65%,室温时降至0.1%左右,增加含铜量,能提高合金的流动性,抗拉强度和硬度,但降低了耐蚀性和塑性,热裂倾向增大。 3. 镁(Mg) 在高硅铝合金中加入少量(约0.2~0.3%)的镁,可提高强度和屈服极限,提高了合金的切削加工性。含镁8%的铝合金具有优良的耐蚀性,但其铸造性能差,在高温下的强度和塑性都低,冷却时收缩大,故易产生热裂和形成疏松。 4. 锌(Zn) 锌在铝合金中能提高流动性,增加热脆性,降低耐蚀性,故应控制锌的含量在规定范围中。至于含锌量很高的ZL401 铝合金却具有较好的铸造性能和机械性能,切削加工也比较好。 5. 铁(Fe) 在所有铝合金中都含有害杂质。因铝合金中含铁量太高时,铁以FeAl3、Fe2Al7和Al-Si-Fe 的片状或针状组织存在于合金中,降低机械性能,这种组织还会使合金的流动性减低,热裂性增大,

钢材中各元素对性能性的影响

钢材中各元素对性能性的影响 1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和 冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此 用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高 还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀; 此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢 含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就 算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度, 故广泛用于作弹簧钢。在调质结构钢中加入 1.0-1.2%的硅, 强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀 性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具 有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低 钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢 中含锰0.30-0.50%,在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度, 提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点 高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性 能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,

使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求 钢中含磷量小于0.045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降 低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性 能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改 善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐 磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐 腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍 对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但 由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬 钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高 温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发 生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以 抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化 晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18 镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。 10、钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶

组成物质的化学元素

第三节组成物质的化学元素 (第一课时教案) 涟水县教研室李夕九 【教学目标】 (一)知识与技能: 1、了解元素的概念,学会如何表示物质的组成。 2、学会元素符号的书写和记住一些常见的元素符号,并了解元素符号的应用。 3、掌握物质的简单分类及其方法。 (二)过程与方法: 1、通过交流、讨论、活动与探究,进行自主学习。 2、学会运用对比、归纳的方法处理信息,获取知识。 (三)情感态度与价值观: 1、保持对学习化学的浓厚兴趣,培养科学探究精神。 2、逐步积累化学用语,让学生逐步走进化学世界。 【教学重点】 1、规范书写元素符号,了解元素符号有哪些应用。 2、掌握物质的简单分类及其方法。 【教学难点】 1、元素概念的引入,宏观“组成”与微观“构成”的切换与应用。 2、物质的简单分类及其应用。 【教学方法】 自学、讨论、类比、质疑、归纳与总结。 【教学过程】 [导入] 前面我们从微观的角度认识了物质,知道构成物质的微粒有:分子、原子和离子。今天我们换一个角度:从宏观的角度来认识物质。黄金搭档的广告词大家很熟悉吧!(投影商品广告) 老师:“黄金搭档补足钙铁锌硒维生素……”这里的“钙、铁、锌、硒”指的是什么呢? A、分子 B、原子 C、离子 D、元素 学生:元素 老师:“蓝瓶的钙,纯净的钙,好喝的钙”其中含有钙元素,“补锌的,我要蓝瓶的”其中含有锌元素,这就是今天我们要学习的内容“组成物质的化学元素”板书:第三节组成物质的化学元素 一、元素与元素符号 (一)元素 老师:下面请大家先看3幅图:(投影水、氧气、二氧化碳3幅图,问,群答)

老师:水中的氧原子、氧气中的氧原子、二氧化碳中的氧原子是否完全相同呢?学生:相同(或不相同、不一定相同等) 老师:我不清楚。但有一点可以肯定:它们都属氧原子,都属同一类的原子。如同人类一样,有白种人,黑种人,黄种人等等,但他们都属同一类——人类。同 理,H 2、H 2 O 、HCl 、H 2 CO 3 、NH 4 HCO 3 中都含有氢原子,都含有同一类的氢原子。 由此你能给“元素”一个简单的定义吗? 板书: 1、元素:是同一类原子的总称 老师:元素既然是同一类原子的总称,那么元素与原子就应该有区别。(投影“元素与原子的区别”) 板书: 2、元素只讲种类不谈个数;元素用来表示物质的组成。 做【学案】第2题,一名同学板演。 3、原子既讲种类又讲个数;原子用来表示物质的构成。 做【学案】第3题,一名同学板演。 (投影):桌上有三种物质,一个老外看了三只标签他不认识,原来这个老外不懂中文,为了各国间交流方便,元素符号应世界统一。 板书: (二)元素符号 大家朗读:P 73 第三节:“元素符号……” 板书: 1、表示与书写:(投影)拉丁文,一大二小 注意:CO与Co的区别 大家朗读:P 73 第二节:“元素是……” 老师:元素共有110余种,一种元素只有一种符号,一种名称,一种编号;为了便于查找与运用,科学家编制了一张表,叫元素周期表。(投影) 学生看书:P149 板书: 2、元素周期表 (1)元素的分类:金属元素和非金属元素 老师:大家仔细观看各种元素的名称,你发现汉字书写上有何规律?谁来告诉大家?

化学元素对钢材性能的影响

化学元素对钢材性能的影响 钢是含碳量小于2%的铁碳合金,碳大于2%时则为铸铁。钢结构所用的钢材主要为碳素钢中的低碳钢和普通低合金钢。 碳素结构钢由纯铁、碳及杂质元素组成,其中纯铁约占99%,碳及杂质元素约占l%。低合金结构钢中,除上述元素外还加入少量合金元素,后者总量通常不超过3%。碳及其他元素虽然所占比重不大,但对钢材性能却有重要影响。 1)基本元素 ①铁(Fe):铁是钢材中最基本的元素,钢中铁元素含量一般超过97%。对于碳素钢 而言,其铁素体的晶粒越细,钢的性能越好。 ②碳(C):碳是形成钢材强度的主要成分,是仅次于铁的主要元素。碳的含量提高,则钢材强度提高,但同时钢材的塑性、韧性、冷弯性能、可焊性及抗锈蚀能力下降。按碳的含量区分,小于0.25%的为低碳钢,大于0.25%而小于0.6%的为中碳钢,大于0.6%的为高碳钢。钢结构用钢的含碳量一般不大于0.22%,焊接结构为了有良好的可焊性,含碳量应不大于0.2%。所以,建筑钢结构用的钢材基本上都是低碳钢。 2)有益元素 ①锰(Nn):锰能显著提高钢材的强度而不过多地降低塑性和冲击韧性。锰有脱氧作用,是弱脱氧剂。锰还能消除硫对钢材的热脆影响。碳素钢中锰是有益的杂质,在低合金钢中它是合金元素。我国碳素钢中锰的含量在0.3%~0.8%,低合金钢在1.0%~1.7%。但锰会使钢材的可焊性降低,故应限制其含量。 ②硅(si):硅有比锰更强的脱氧作用,是强脱氧剂。硅能使钢材的粒度变细,适量控制可提高强度而不显著影响塑性、韧性、冷弯性及可焊性。硅的含量在碳素镇静钢中为0.12%一0.3%,低合金钢中为0.2%~0.55%,过量时则会恶化可焊性及抗锈蚀性。 ③钒(V)、铌(Nb)、钛(Ti):钒、铌、钛都能使钢材晶粒细化。我国的低合金钢都含有这三种元素,作为锰以外的合金元素,既可提高钢材强度,又能保持良好的塑性、韧性。 ④铝(灿)、铬(cr)、镍(Ni):铝是强脱氧剂,用铝进行补充脱氧,不仅能进一步减少钢材中的有害氧化物,而且能细化晶粒。低合金钢的C,D及E级都规定铝含量不低于0.015%,以保证必要的低温韧性。铬和镍是提高钢材强度的合金元素,用于Q390钢和Q420钢。 3)有害元素 ①硫(s):硫属于杂质,能生成易于熔化的硫化铁,当热加工及焊接使温度达800~1 000℃时,可能出现裂纹,称为热脆。硫还能降低钢的冲击韧性,同时影响疲劳性能与抗锈

各种元素在铝合金中的作用

各种元素在铝合金中的作用 1.合金元素影响 铜元素 铝铜合金富铝部分548时,铜在铝中的最大溶解度为 5.65%,温度降到302时,铜的溶解度为0.45%。铜是重要的合金元素,有一定的固溶强化效果,此外时效析出的CuAl2有着明显的时效强化效果。铝合金中铜含量通常在2.5% ~ 5%,铜含量在4%~6.8%时强化效果最好,所以大部分硬铝合金的含铜量处于这范围。 铝铜合金中可以含有较少的硅、镁、锰、铬、锌、铁等元素。 硅元素 Al—Si合金系富铝部分在共晶温度577时,硅在固溶体中的最大溶解度为1.65%。尽管溶解度随温度降低而减少,介这类合金一般是不能热处理强化的。铝硅合金具有极好的铸造性能和抗蚀性。 若镁和硅同时加入铝中形成铝镁硅系合金,强化相为MgSi。镁和硅的质量比为1.73:1。设计Al-Mg-Si系合金成分时,基体上按此

比例配置镁和硅的含量。有的Al-Mg-Si合金,为了提高强度,加入适量的铜,同时加入适量的铬以抵消铜对抗蚀性的不利影响。 Al-Mg2Si合金系合金平衡相图富铝部分Mg2Si 在铝中的最大溶解度为1.85%,且随温度的降低而减速小。 变形铝合金中,硅单独加入铝中只限于焊接材料,硅加入铝中亦有一定的强化作用。 镁元素 Al-Mg合金系平衡相图富铝部分尽管溶解度曲线表明,镁在铝中的溶解度随温度下降而大大地变小,但是在大部分工业用变形铝合金中,镁的含量均小于6%,而硅含量也低,这类合金是不能热处理强化的,但是可焊性良好,抗蚀性也好,并有中等强度。 镁对铝的强化是明显的,每增加1%镁,抗拉强度大约升高瞻远3 4MPa。如果加入1%以下的锰,可能补充强化作用。因此加锰后可降低镁含量,同时可降低热裂倾向,另外锰还可以使Mg5Al8化合物均匀沉淀,改善抗蚀性和焊接性能。 锰元素

各种化学元素在钢中的作用

本文出自一本很不好买的书,相当全面,偶然整理,希望对大家学习有帮助 —————————————————————— 有几位选手把我给气乐了,话说这段文章来自我爷爷的手抄本(不过现在老人家现在改复印了,挺时髦的),原书我没看到过所以不知道书名(我们有时候还是比较喜欢上世纪的老版书,比较严谨,实验室王老有本金相可是他老人家的宝贝,轻易不示人)。话说我码字是自娱自乐,目标受众也是学材料的同门,你们一帮连论文都没写过的大神忽然跳出来跟我这指责不尊重知识产权,真是好笑。想讨论问题,我欢迎,想骂人,出门左转菜市场。 —————————————————————— 为了改善和提高钢的某些性能和使之获得某些特殊性能而有意在冶炼过程中加入的元素称为合金元素。常用的合金元素有铬,镍,钼,钨,钒,钛,铌,锆,钴,硅,锰,铝,铜,硼,稀土等。磷,硫,氮等在某些情况下也起到合金的作用。 (1)铬(Cr) 铬能增加钢的淬透性并有二次硬化的作用,可提高碳钢的硬度和耐磨性而不使钢变脆。含量超过12%时,使钢有良好的高温抗氧化性和耐氧化性腐蚀的作用,还增加钢的热强性。铬为不锈钢耐酸钢及耐热钢的主要合金元素。 铬能提高碳素钢轧制状态的强度和硬度,降低伸长率和断面收缩率。当铬含量超过15%时,强度和硬度将下降,伸长率和断面收缩率则相应地有所提高。含铬钢的零件经研磨容易获得较高的表面加工质量。 铬在调质结构中的主要作用是提高淬透性,使钢经淬火回火后具有较好的综合力学性能,在渗碳钢中还可以形成含铬的碳化物,从而提高材料表面的耐磨性。 含铬的弹簧钢在热处理时不易脱碳。铬能提高工具钢的耐磨性、硬度和红硬性,有良好的回火稳定性。在电热合金中,铬能提高合金的抗氧化性、电阻和强度。 (2)镍(Ni) 镍在钢中强化铁素体并细化珠光体,总的效果是提高强度,对塑性的影响不显著。一般地讲,对不需调质处理而在轧钢、正火或退火状态使用的低碳钢,一定的含镍量能提高钢的强度而不显著降低其韧性。据统计,每增加1%的镍约可提高强度29.4Pa。随着镍含量的增加,钢的屈服程度比抗拉强度提高的快,因此含镍钢的比可较普通碳素钢高。镍在提高钢强度的同时,对钢的韧性、塑性以及其他工艺的性能的损害较其他合金元素的影响小。对于中碳钢,由于镍降低珠光体转变温度,使珠光体变细;又由于镍降低共析点的含碳量,因而和相同的碳含量的碳素钢比,其珠光体数量较多,使含镍的珠光体铁素体钢的强度较相同碳含量的碳素钢高。反之,若使钢的强度相同,含镍钢的碳含量可以适当降低,因而能使钢的韧性和塑性有所提。镍可以提高钢对疲劳的抗力和减小钢对缺口的敏感性。镍降低钢的低温脆性转变温度,这对低温用钢有极重要的意义。含镍3.5%的钢可在-100℃时使用,含镍9%的钢则可在-196℃时工作。镍不增加钢对蠕变的抗力,因此一般不作为热强钢的强化元素。 镍含量高的铁镍合金,其线胀系数随镍含量增减而显著变化,利用这一特性,可以设计和生产具有极低或一定线胀系数的精密合金、双金属材料等。

化学元素对金属材料性能的影响

化学元素对金属材料性能的影响 C: 碳含量越高,钢的硬度越高,耐磨性越好,但塑性及韧性越差,焊接性能越坏。 钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 Cr: 铬能提高钢的淬透性及耐磨性,改善钢的抗氧化作用,提高钢的抗腐蚀能力。 在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 Mo: 钼可显著提高钢的淬透性,提高热强性,防止回火脆性,提高剩磁和矫顽力。 钼能使钢的晶粒细化,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。 V: 钒能细化钢的晶力组织,提高钢的强度、韧性及耐磨性。当它在高温溶入奥氏体时,可增加钢的淬透性;反之,当它以碳化物形态存在时,会降低钢的淬透性。 钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶粒,提高强度和韧性。钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力。 Ni: 镍能提高钢的强度和韧性,提高淬透性,含量高时,可显著改变钢和合金的一些物理性能,提高钢的抗腐蚀能力。 镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。 Ti: 钛能细化钢的晶粒组织从而提高钢的强度及韧性。在不锈钢中,钛能消除或减轻钢的晶间腐蚀现象。 钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,

C、Mn、Si、S、P、Cr、Mo元素在钢中的作用和热处理时的影响

1、铬(Cr) 铬能增加钢的淬透性并有二次硬化作用。可提高高碳钢的硬度和耐磨性而不使钢变脆;含量超过12%时。使钢有良好的高温抗氧化性和耐氧化性介质腐蚀的作用。还增加钢的热强性,铬为不锈耐酸钢及耐热钢的主要合金元素。 铬能提高碳素钢轧制状态的强度和硬度。降低伸长率和断面收缩率。当铬含量超过15%时,强度和硬度将下降,伸长率和断面收缩率则相应地有所提高。含铬钢的零件经研磨容易获得较高的表面加工质量。 铬在调质结构钢中的主要作用是提高淬透性。使钢经淬火回火后具有较好的综合力学性能,在渗碳钢中还可以形成含铬的碳化物,从而提高材料表面的耐磨性。 含铬的弹簧钢在热处理时不易脱碳。铬能提高工具钢的耐磨性、硬度和红硬性。有良好的回火稳定性。在电热合金中,铬能提高合金的抗氧化性、电阻和强度。 (1) 对钢的显做组织及热处理的作用 A、铬与铁形成连续固溶体,缩小奥氏体相区城。铬与碳形成多种碳化物,与碳的亲和力大于铁和锰而低于钨、钼等.铬与铁可形成金属间化合物σ相(FeCr) B、铬使珠光体中碳的浓度及奥氏体中碳的极限溶解度减少 C、减缓奥氏体的分解速度,显著提高钢的淬透性.但亦增加钢的回火脆性倾向 (2)对钢的力学性能的作用 A、提高钢的强度和硬度.时加入其他合金元素时,效果较显著 B、显著提高钢的脆性转变温度 C、在含铬量高的Fe-Cr合金中,若有σ相析出,冲击韧性急剧下降 (3)对钢的物理、化学及工艺性能的作用 A、提高钢的耐磨性,经研磨,易获得较高的表面光洁度 B、降低钢的电导率,降低电阻温度系数 C、提高钢的矫顽力和剩余磁感.广泛用于制造永磁钢 D、铬促使钢的表面形成钝化膜,当有一定含量的铭时,显著提高钢的耐腐蚀性能(特别是硝酸)。若有铬的碳化物析出时,使钢的耐腐蚀性能下降 E、提高钢的抗氧化性能 F、铬钢中易形成树枝状偏析,降低钢的塑性 G、由于铬使钢的热导率下降,热加工时要缓慢升温,锻、轧后要缓冷 (4)在钢中的应用 A、合金结构钢中主要利用铬提高淬透性,并可在渗碳表面形成含铬碳化物以提高耐磨性 B、弹簧钢中利用铬和共他合金元素一起提供的综合性能 C、轴承钢中主要利用铬的特殊碳化物对耐磨性的贡献及研磨后表面光沽度高的优点 D、工具钢和高速钢中主要利用铬提高耐磨性的作用,并具有一定的回火稳定性和韧性 E、不锈钢、耐热钢中铬常与锰、氮、镍等联合便用,当需形成奥氏体钢时,稳定铁素体的铬与稳定奥氏体的锰、镍之间须有一定比例,如Cr18Ni9等 F、我国铬资源较少.应尽量节省铬的使用 2、钼(Mo) 钼在钢中能提高淬透性和热强性。防止回火脆性,增加剩磁和矫顽力以及在某些介质中的抗蚀性。 在调质钢中,钼能使较大断面的零件淬深、淬透,提高钢的抗回火性或回火稳定性,使零件可以在较高温度下回火,从而更有效地消除(或降低)残余应力,提高塑性。 在渗碳钢中钼除具有上述作用外,还能在渗碳层中降低碳化物在晶界上形成连续网状的

(完整版)铝合金锭中各种元素的作用

铝合金锭中各种元素的作用 由于制作铝锭时需要调整成分已达到想要的型号,因此各种元素对铝锭的影响就好一一掌握,以下我便针对主要的几种元素介绍。 硅(Si)是改善流动性能的主要成份。从共晶到过共晶都能得到最好的流动性。但结晶析出的硅(Si)易形成硬点,使切削性变差,所以一般都不让它超过共晶点。另外,硅(Si)可改善抗拉强度、硬度、切削性以及高温时强度,而使延伸率降低。 铜(Cu)在铝合金中固溶进铜(Cu),机械性能可以提高,切削性变好。不过,耐蚀性降低,容易发生热间裂痕。作为杂质的铜(Cu也是这样。 镁(Mg)铝镁合金的耐蚀性最好,因此ADC5 ADC6是耐蚀性合金,它的凝固范围很大,所以有热脆性,铸件易产生裂纹,难以铸造。作为杂质的镁(Mg),在AL-Cu-S这种材料 中,Mg2Si会使铸件变脆,所以一般标准在0.3%以内。 铁(Fe)杂质的铁(Fe会生成FeAI3的针状结晶,由于压铸是急冷,所以析出的晶体很细,不能说是有害成份。含量低于0.7 %则有不易脱模的现象,所以含铁(Fe)0.8 ~ 1.0 %反而好压铸。含有大量的铁(Fe),会生成金属化合物,形成硬点。并且含铁(Fe量过1.2 %时,降低合金流动性,损害铸件的品质,缩短压铸设备中金属组件的寿命。 镍(Ni)和铜(Cu一样,有增加抗拉强度和硬度的倾向,对耐蚀性影响很大。想要改善高温强度耐热性,有时就加入镍(Ni),但在耐蚀性及热导性方面有降低的影响。 锰(Mn)能改善含铜(Cu),含硅(Si)合金的高温强度。若超过一定限度,易生成Al-Si-Fe- P+o { T*T f;X}Mn四元化合物,容易形成硬点以及降低导热性。锰(Mn)能阻止铝合金的再结晶过程,提高再结晶温度,并能显著细化再结晶晶粒。再结晶晶粒的细化主要是通过MnAl6 化合物弥散质点对再结晶晶粒长大起阻碍作用。MnAl6的另一作用是能溶解杂质铁(Fe), 形成(Fe, Mn)Al6减小铁的有害影响。锰(Mn)是铝合金的重要元素,可以单独加入Al-Mn 二元合金,更多的是和其他合金元素一同加入,因此大多铝合金中均含有锰(Mn)。 锌(Zn)若含有杂质锌(Zn),高温脆性大,但与汞(Hg)形成强化HgZn2对合金产生明显强度作用。JIS中规定在1.0%以内,但外国标准有到3%的,这里所讲的当然不是合金成份的锌(Zn),而是以杂质锌(Zn)的角色来说,它有使铸件产生裂纹的倾向。

钢铁中的元素及作用

各种元素在钢铁中的作用 钢铁是铁与C(碳)、Si(硅)、Mn(锰)、P(磷)、S(硫)以及少量的其他元素所组成的合金。其中除Fe(铁)外,C的含量对钢铁的机械性能起着主要作用,故统称为铁碳合金。它是工程技术中最重要、用量最大的金属材料。 各种元素在钢铁中有什么作用 碳(Carbon) 存在于所有的钢材,是最重要的硬化元素。有助于增加钢材的强度,我们通常希望刀具级别的钢材拥有0.6%以上的碳,也成为高碳钢。 铬(Chromium) 增加耐磨损性,硬度,最重要的是耐腐蚀性,拥有13%以上的认为是不锈钢。尽管这么叫,如果保养不当,所有钢材都会生锈 锰(Manganese) 重要的元素,有助于生成纹理结构,增加坚固性,和强度、及耐磨损性。在热处理和卷压过程中使钢材内部脱氧,出现在大多数的刀剪用钢材中,除了A-2,L-6和CPM 420V。 钼(Molybdenum) 碳化作用剂,防止钢材变脆,在高温时保持钢材的强度,出现在很多钢材中,空气硬化钢(例如A-2,ATS-34)总是包含1%或者更多的钼,这样它们才能在空气中变硬。 镍(Nickle) 保持强度、抗腐蚀性、和韧性。出现在L-6\AUS-6和AUS-8中。 硅(Silicon) 有助于增强强度。和锰一样,硅在钢的生产过程中用于保持钢材的强度。 钨(Tungsten) 增强抗磨损性。将钨和适当比例的铬或锰混合用于制造高速钢。在高速钢M-2中就含有大量的钨。 钒(Vanadium) 增强抗磨损能力和延展性。一种钒的碳化物用于制造条纹钢。在许多种钢材中都含有钒,其中M-2,Vascowear,CPM T440V和420V A含有大量的钒。而BG-42与ATS-34最大的不同就是前者含有钒 按钢的用途分类 一、结构钢 (1)建筑及工程用结构钢简称建造用钢,它是指用于建筑、桥梁、船舶、锅炉或其他工程上制作金属结构件的钢。 (2)机械制造用结构钢--是指用于制造机械设备上结构零件的钢。这类钢基本上都是优质钢或高级优质钢,主要有优质碳素结构钢、合金结构钢、易切结构钢、弹簧钢、滚动轴承钢等 根据含碳量和用途的不同﹐这类钢大致又分为三类﹕ 1. 小于0.25%C为低碳钢﹐其中尤以含碳低于0.10%的08F﹐08Al等﹐由于具有很好的深冲性和焊接性而被广泛地用作深冲件如汽车﹑制罐……等﹐20G则是制造普通锅炉的主要材料﹐此外﹐低碳钢也广泛地作为渗碳钢﹐用于机械制造业﹐ 2. 0.25~0.60%C为中碳钢﹐多在调质状态下使用﹐制作机械制造工业的零件。调质多少22~34HRC,能得到综合机械性能,也便于切削. 3. 大于0.6%C为高碳钢﹐多用于制造弹簧﹑齿轮﹑轧辊等﹐根据含锰量的不同﹐又可

各化学元素对钢材的影响

各化学元素对钢材的影响 1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。

铁元素在铝合金中的作用

铁在铸造铝合金中一直被认为是一种主要的有害杂质,各个国家、专业标准均对其作了明确的限制,各企业标准对其控制更为严格。这主要是由于随铁含量增加,在金相组织中会形成本身硬度很高的针、片状脆性铁相,它的存在割裂了铝合金的基体,降低了合金的力学性能,尤其是韧性,并且使零件机械加工难度增加,刀、刃具磨损严重,尺寸稳定性差等等,但是,低品质铝合金锭中铁含量本身就高,随着合金炉料的回用,生产中铁质坩埚、工具、置预件等的使用使合金增铁在所难免。多年来一直吸引着广大铸造工作者去研究,下面就铁在Al-Si合金中的作用及其减弱消除对策进行讨论。 1铸造Al-Si系合金中铁的作用 1.1铸造Al-Si合金中铁的存在形态 表1是铝硅系合金中铁的存在形态,其中α-AlFeSi和β-AlFeSi是常见的二种形态。而ρ-AlMgFeSi和δ-AlFeSi不是很常见。其中AlFeSi和Al(Fe,Cr)Si的结晶结构特征目前还不甚详细。至于形成什么样的相,除与合金中的含铁量有关外,还与铸件的冷却速度、合金元素的数量、种类等密切相关。汉字状的α-AlFeSi相对Al-Si系合金可提高强度、硬度,对韧性降低不多,而针状的β-AlFeSi相则严惩割裂基体,显著降低合金的韧性,尤其冲击韧性,据报道,当Fe>1%时,可使整个合金本身变脆。 表1Al-Si系合金中铁相形态 类别晶体结构熔化温度/℃形状α-AlFeSi六方晶体860汉字状β-AlFeSi单晶体870针、片状ρ-AlMgFeSi立方晶体δ-AlFeSi四方晶体 1.2铁对铝硅合金机械性能的影响 1.2.1对室温机械性能的影响 对Al-Si二元合金,当Fe>0.5%时,片状β相可提高合金的强度并稍降低其延伸率;当Fe>0.8%时,延伸率开始较大幅度降低,当合金中的Fe从0.4%增加到1.2%时,对强度值的增加是微乎其微的,但却显著降低其延伸率从4%降到1%,对Na变质的Al-Si共晶合金是每增加Fe0.1%可使延伸率降低1%多。 1.2.2对高温性能的影响 铁虽然降低了Al-Si活塞合金的室温机械性能,但却提高了它的高温机械性能,这主要由于高温时基体本身强度随温度升高下降很多,而此时以网状、汉字状和细小针状存在的铁相,它们在316℃左右时基本不变,是稳定的化合物相,正是它的存在提高高温下试样的抗拉强度。对Al-Si-Cu-Mg合金,当Fe>0.95%时,σ300℃为92MPa。 1.2.3对耐磨、耐腐性的影响

组成物质的化学元素.doc

组成物质的化学元素 第三节 [课前准备] [学习任务] 1.认识氢、碳、氧、氮等与人类关系密切的常见元素。 2.记住一些常见元素的名称和符号。 3.知道元素的简单分类。 4.能根据原子序数在元素周期表中找到指定的元素。 5.形成“化学变化过程中元素不变”的观念。 [知识准备] 1.回忆原子、分子概念及本质区别 2.复习回忆常见原子的结构、相对原子质量以及一些常见物质的成分 [物质准备] 准备一些食品、药品、化肥、土壤等实验用品等[课堂练习] [资料查询]现提供若干微量元素的补充来源。请查询它们分别与人体健康的关系如何? 元素名称 来源 铁(fe) 肝、肉、豆类、麦类、菠菜、西红柿、水果等铜(cu) 坚果、豆类、谷类、水果、鱼、肉、蔬菜锌(zn) 谷类、豆类、麸皮、肝、胰脏、乳汁锰(mn) 萝卜缨、小麦、扁豆、大白菜、糙米、茄子碘(i) 海带、海参、紧菜、发菜、蛭子、蚶、蛤、干贝、海蜇硒(se) 大白菜、小麦、玉米、小米、南瓜、红薯干[问题研究] 1.完成课本p70页的填表 2.我们知道原子、分子、离子通过化学反应形成了数以千计的物质。这些物质的基本成分都是元素。什么叫元素?常见的元素有哪些?如何表示呢? 3.完成下列表格(元素与原子的比较) 元素原子

概念 区别 联系 使用范围 举例 4.100余种元素组成了数千万种的物质,这些物质可简单分成下列几类,请完成下表宏观组成 微观构成(由分子构成的物质) 举例 纯净物混合物单质化合物氧化物 [讨论交流] 1.讨论了解下列六类物质的定义并完成填空混合物 :如________ ________ ________等物质按组成物质的种类分金属单质:如___ ___ ___ ___ ___等纯净物单质非金属单质:如__, __, __, __, __, __, __等按组成元素稀有气体单质:如_____ _____ _____等 的种类分氧化物如 ____ ____ ____ ____ ____ ____等 化酸如___ ___ ___ (在老师指导下填写下同) 合碱____ ____ ____ 物盐____ ____ ____ 有机物____ ____ ____ 2.同学之间相互督促默写课本中列出常见元素的名称和符号,同时了解相对原子的质量。 3.判断下列叙述的正误,并说出理由。 (1)二氧化碳是由碳元素和氧元素组成的。

各元素对钢材的影响

( a )碳;含碳量越高,刚的硬度就越高,但是它的可塑性和韧性就越差. ( b )硫;是钢中的有害杂物,含硫较高的钢在高温进行压力加工时,容易脆裂,通常叫作热脆性. ( c )磷;能使钢的可塑性及韧性明显下降,特别的在低温下更为严重,这种现象叫作冷脆性.在优 质钢中,硫和磷要严格控制.但从另方面看,在低碳钢中含有较高的硫和磷,能使其切削易断,对改 善钢的可切削性是有利的. ( d )锰;能提高钢的强度,能消弱和消除硫的不良影响,并能提高钢的淬透性,含锰量很高的高合 金钢(高锰钢)具有良好的耐磨性和其它的物理性能. ( e)硅;它可以提高钢的硬度,但是可塑性和韧性下降,电工用的钢中含有一定量的硅,能改善软 磁性能. ( f)钨;能提高钢的红硬性和热强性,并能提高钢的耐磨性. 冷镦钢成型用钢,冷镦是在室温下采用一次或多次冲击加载,广泛用于生产螺钉,销钉,螺母等标准件.冷镦 工艺可节省原料,降成本,而且通过冷作硬化提高工作的抗拉强度,改善性能,冷镦用钢必须其有良好的冷 顶锻性能,钢中S和P等杂质含量减少,对钢材的表面质量要求严格,经常采用优质碳钢,若钢的含碳钢大 于0.25%,应进行球化退火热处理,以改善钢的冷镦性能. 力学性能要求 1.屈服强度σs及变形抗力尺可能的小,这样可使单位变形力相应减小,以延长模具寿命。 2.钢材的冷变形性能要好,即材料应有较好的塑性,较低的硬度,能在较大的变形程度下不致引起产品开裂。3.钢材的加工硬化敏感性尽可能的低,这样不致使冷镦变形过程中的变形力太大。 二、化学成份要求冷镦钢 1.碳(C)碳是影响钢材冷塑性变形的最主要元素。含碳量越高,钢的强度越高,而塑性越低。实践证明,含碳量每提高0.1%,其屈服强度σs约提高27.4Mpa;抗拉强度σb提高58.8~78.4Mpa;而伸 长率δ则降低4.3%,断面收缩率ψ降低7.3%。由此可见,钢中含碳量对于钢材的冷塑性变形性能的 影响是很大的。在生产实际中,冷镦,冷挤用钢的含碳量大于0.25%时,要求钢材在拉拔前要进行球 化退火。对于变形程度为65%~80%的冷镦件,不经过中间退火而进行三次镦锻变形时,其含碳量不应超过0.4%。2.锰(Mn)锰在钢的冶炼中与氧化铁作用(Mn+FeO→MnO+Fe),主要是为钢脱 氧而加入。锰在钢中硫化铁作用(Mn+FeS→MnS+Fe),能减少硫对钢的有害作用。所形成的硫化锰,可改善钢的切削性能。锰使钢的抗拉强度σb和屈服强度σs有所提高,塑性有所降低,对于钢的冷塑 性变形是不利的。但是锰对变形力的影响仅为碳的1/4左右。所以,除特殊要求外,碳钢的含锰量,不宜超过0.9%。3.硅(Si)硅是钢在冶炼时脱氧剂的残余物。当钢中含硅量增加0.1%时,抗拉 强度σb提高13.7Mpa。经验表明,含硅量超过0.17%且含碳量较高时,对钢材的塑性降低有很大的影响。在钢中适当增加硅的含量,对钢材的综合力学性能,特别是弹性极限有利,还可增加钢的耐蚀性。但是钢中含硅量超过0.15%时,使钢急剧形成非金属夹杂物。高硅钢即使退火,也不会软化,降低钢 的冷塑性变形性能。因此,除了产品有高强度性能要求外,冷镦钢总是尽量要求减少硅的含量。 4.硫(S)硫是有害杂质。钢中的硫在冷镦时会使金属的结晶颗粒彼此分离引起裂纹,硫的存在还促使钢产生热脆和生锈,因此,含硫量应小于0.055%。优质钢应小于0.04%,由于硫、磷和锰的化合物能改善切削性能、冷镦螺母用钢的含硫量可放宽到0.08~0.12%,以有利于攻螺纹。但一般没有专为螺

硅等元素在铝合金中的作用

硅、镁、锰、铜、锌、镍、钛等元素在铝合金中的作用 硅,镁,锰,铜,锌,镍,钛等元素在铝合金(包括:铸铝与变形铝)中的作用? 纯铝的强度低,不宜用来制作承受载荷的结构零件。向铝中加入适量的硅、铜、镁、锰等合金元素,可制成强度较高的铝合金,若在经冷变形强化或热处理,可进一步提高强度。 根据铝合金的成分和生产工艺特点,通常分为形变与铸造铝合金两大类.工业上应用的主要有铝-锰,铝-镁,铝-镁-铜,铝-镁-硅-铜,铝-锌-镁-铜等合金.变形铝合金也叫熟铝合金,据其成分和性能特点又分为防锈铝,硬铝,超硬铝,锻铝和特殊铝等五种. 铝合金是纯铝加入一些合金元素制成的,如铝—锰合金、铝—铜合金、铝—铜—镁系硬铝合金、铝—锌—镁—铜系超硬铝合金。铝合金比纯铝具有更好的物理力学性能:易加工、耐久性高、适用范围广、装饰效果好、花色丰富。铝合金分为防锈铝、硬铝、超硬铝等种类,各种类均有各自的使用范围,并有各自的代号,以供使用者选用。 2A80,原先叫LD-8,化学成分如下: Si: Fe: Cu: Mn: Mg: Ni: Zn: Ti: 其他单个合计 Al:余量 铝合金各元素的含量要看合金的性质的,如上面例子 牌号化学成分(质量分数) /% AL 不小于杂质不大于 Fe Si Cu Ga Mg Zn 其他每种总和 铝合金基本常识 一、分类:展伸材料分非热处理合金及热处理合金 非热处理合金:纯铝─1000系,铝锰系合金─3000系,铝矽系合金─4000系,铝镁系合金─5000系。 热处理合金:铝铜镁系合金─2000系,铝镁矽系合金─6000系,铝锌镁系合金─7000系。 二、合金编号:我国目前通用的是美国铝业协会〈Aluminium Association〉的编号。兹举 例说明如下: 1070-H14(纯铝) 2017-T4(热处理合金) 3004-H32(非热处理合金) 第一位数:表示主要添加合金元素。 1:纯铝 2:主要添加合金元素为铜 3:主要添加合金元素为锰或锰与镁 4:主要添加合金元素为矽 5:主要添加合金元素为镁 6:主要添加合金元素为矽与镁

合金元素在钢中的主要作用

简述几种常见合金元素在钢中的主要作用 为了改善和提高钢的某些性能和使之获得某些特殊性能而有意在冶炼 过程中加入的元素称为合金元素。常用的合金元素有铬,镍,钼,钨,钒,钛,铌,锆,钴,硅,锰,铝,铜,硼,稀土等。磷,硫,氮等在某些情况下也起到合金的作用。 (1)铬(Cr) 铬能增加钢的淬透性并有二次硬化的作用,可提高碳钢的硬度和耐磨性而不使钢变脆。含量超过12%时,使钢有良好的高温抗氧化性和耐氧化性腐蚀的作用,还增加钢的热强性。铬为不锈钢耐酸钢及耐热钢的主要合金元素。 铬能提高碳素钢轧制状态的强度和硬度,降低伸长率和断面收缩率。当铬含量超过15%时,强度和硬度将下降,伸长率和断面收缩率则相应地有所提高。含铬钢的零件经研磨容易获得较高的表面加工质量。 铬在调质结构中的主要作用是提高淬透性,使钢经淬火回火后具有较好的综合力学性能,在渗碳钢中还可以形成含铬的碳化物,从而提高材料表面的耐磨性。 含铬的弹簧钢在热处理时不易脱碳。铬能提高工具钢的耐磨性、硬度和红硬性,有良好的回火稳定性。在电热合金中,铬能提高合金的抗氧化性、电阻和强度。 (2)镍(Ni) 镍在钢中强化铁素体并细化珠光体,总的效果是提高强度,对塑性的影响不显著。一般地讲,对不需调质处理而在轧钢、正火或退火状态使用的低碳钢,一定的含镍量能提高钢的强度而不显著降低其韧性。据统计,每增加1%的镍约可提高强度。随着镍含量的增加,钢的屈服程度比抗拉强度提高的快,因此含镍钢的比可较普通碳素钢高。镍在提高钢强度的同时,对钢的韧性、塑性以及其他工艺的性能的损害较其他合金元素的影响小。对于中碳钢,由于镍降低珠光体转变温度,使珠光体变细;又由于镍降低共析点的含碳量,因而和相同的碳含量的碳素钢比,其珠光体数量较多,使含镍的珠光体铁素体钢的强度较相同碳含量的碳素钢高。反之,若使钢的强度相同,含镍钢的碳含量可以适当降低,因而能使钢的韧性和塑性有所提。镍可以提高钢对疲劳的抗力和减小钢对缺口的敏感性。镍降低钢的低温脆性转变温度,这对低温用钢有极重要的意义。含镍%的钢可在-100℃时使用,含镍9%的钢则可在 -196℃时工作。镍不增加钢对蠕变的抗力,因此一般不作为热强钢的强化元素。 镍含量高的铁镍合金,其线胀系数随镍含量增减而显著变化,利用这一特性,可以设计和生产具有极低或一定线胀系数的精密合金、双金属材料等。 此外,镍加入钢中不仅能耐酸,而且也能抗碱,对大气及盐都有抗蚀能力,镍是不锈耐酸钢中的重要元素之一。 (3)钼(Mo)

《组成物质的化学元素》教学设计

《组成物质的化学元素》教学设计 潞城市微子镇中学李红燕 一、教学内容分析 本节课位于第三章第二节,包括元素与元素符号、自然界中元素的分布、元素与人体健康等知识点。在前两章的学习中,学生已经初步认识了一些常见物质的性质及可能发生的变化;在第一节《构成物质的基本微粒》学习时,已经建立了分子、原子的概念;本节课帮助学生建立元素的概念,形成物质分类的概念,理解如何给物质分类,这些内容的学习可以为后续学习打下坚实的基础,对今后的学习极其重要。 二、学情分析 从知识的掌握上看,学生对“元素”这个概念并不陌生,已经有一定的知识积累。在学习第一章第二节《化学研究些什么》时,知道火柴、蜡烛、葡萄糖、砂糖和面粉中均含有碳元素,当时已经初步建立了“物质是由元素组成的”的观点;在学习第二章第三节《自然界中的水》时,知道水是由氢元素和氧元素组成的。依据已有的生活经验也知道,人体缺少某些元素(如钙、铁、碘等),会影响健康,甚至引起疾病。 从年龄上看,九年级的学生已经具有较强的形象思维能力、初级的逻辑思维能力,所以完全有能力进行粗浅的科学探究活动。 三、学习目标 1、知道元素的定义及其简单分类,掌握常见元素的名称和符号; 2、认识自然界中的常见元素,了解元素摄入量多少与人体健康的关系; 3、掌握单质、化合物、氧化物等基本概念,初步形成物质分类的思想。 4、初步形成化学变化过程中元素不变的观念。 四、教学重点和难点 教学重点: (1)知道元素的定义、常见元素的名称和符号、元素的简单分类; (2)认识自然界中存在的元素、元素与人体健康的关系。 教学难点: (1)掌握单质、化合物、氧化物的概念; (2)掌握化学变化过程中元素不变的思想。 五、设计思路 本课的重要环节有三个:一是通过已学知识和生活经验粗略地认识到元素的概念,进而通 过学案上“自主学习”部分1~3题理解元素的定义及其简单分类,掌握常见元素的名称和符号;二是通过“自主学习”部分第4题,让学生书写比较熟悉的化学式,按照学案要求进行分类,以形成物质分类的思想,掌握单质、化合物、氧化物的概念,这也是本节课的难点所在;三是通过阅读课本结合生活经验,认识自然界中存在的元素、元素与人体健康的关系,领会自然界的物质性,认识到养成良好饮食习惯的重要性。

化学成分对钢材性能的影响

列表整理化学成分对钢材性能的影响 钢是以铁和碳为主要成分的合金,虽然碳和其他元素所占比例甚少,但却左右着钢材的性能。 1、碳 碳时各种钢中的重要元素之一,在碳素结构钢中则是铁以外的最主要元素。碳是形成钢材强度的主要成分,随着含碳量的提高,钢的强度逐渐增高,而塑性和韧性下降,冷弯性能、焊接性能和抗锈性能等也变劣。碳素钢按碳含量区分,小于0.25%的为低碳钢,介于0.25%和0.6%之间的为中碳钢,大于0.6%的为高碳钢。含碳量超过0.3%时,钢材的抗拉强度很高,但却没有明显的屈服点,且塑性很小,含碳量超过0.2%时,钢材的焊接性能开始恶化。因此,规范推荐的钢材,含碳量均不超过0.22%,对于焊接结构则严格控制在0.2%以内。 2、硫 硫是有害元素,常以硫化铁形式夹杂于钢中。当温度达800~1000℃时,硫化铁会熔化使钢材变脆,因而在进行焊接或热加工时,有可能引发热裂纹,称为热脆。此外,硫还会降低钢材的冲击韧性、疲劳强度、抗锈蚀性能和焊接性能等。非金属硫化物夹杂经热轧加工后还会在厚钢板中形成局部分层现象,在采用焊接连接的节点中,沿板厚方向承受拉力时,会发生层状撕裂破坏。因而应严格限制

钢材中的含硫量,随着钢材牌号和质量等级的提高,含硫量的限制值由0.05%依次降至0.025%,厚度方向性能钢板(抗层状撕裂钢板)的含硫量更限制在0.01以下。 3、磷 磷可提高钢的强度和抗锈蚀能力,但却严重地降低钢的塑性、韧性、冷弯性能和焊接性能,特别是在温度较低时促使钢材变脆,称为冷脆。因此,磷的含量也要严格控制,随着钢材牌号和质量等级的提高,含磷量的限值由0.045%依次降至0.025%。但是当采用特殊的冶炼工艺时,磷可作为一种合金元素来制造含磷的低合金钢,此时其含量可达0.12%~0.13%。 4、锰 锰是有益元素,在普通碳素钢中,它是一种弱脱氧剂,可提高钢材强度,消除硫对钢的热脆影响,改善钢的冷脆倾向,同时不显著降低塑性和韧性。锰还是我国低合金钢的主要合金元素,其含量为0.8%~1.8%。但锰对焊接性能不利,因此含量也不宜过多。 5、硅 硅是有益元素,在普通碳素钢中,它是一种强脱氧剂,常与锰共同除氧,生产镇静钢。适量的硅,可以细化晶粒,提高钢的强度,而对塑性、韧性、冷弯性能和焊接性能无显著不良影响。硅的含量在一般镇静钢中为0.12%~0.3%,

相关主题
文本预览
相关文档 最新文档