当前位置:文档之家› 电力拖动 课程设计 题目

电力拖动 课程设计 题目

电力拖动 课程设计 题目
电力拖动 课程设计 题目

一、技术数据:直流电动机:额定功率60KW 、额定电压220V 、额定电流308A 、额定转速1000r/min 、电动势系数Ce=0.196V ·min/r ;主回路总电阻0.18欧姆;电磁时间常数T l =0.012s ;机电时间常数T m =0.12s ,电流反馈滤波时间常数0.0025s ;转速反馈滤波时间常数0.015s ;额定转速时的给定电压为10V ,

调节器ASR 、ACR 饱和输出电压*8, 6.5im cm U V U V ==

晶闸管整流电源:采用三相零式晶闸管整流电路,触发整流环节的放大倍数Ks=35。

二、系统设计的静、动态指标:稳态无静差;调速范围D=10,电流超调量小于5%,空载启动到额定转速的转速超调量小于10%,(按退饱和超调计算)

三、设计内容:

1.根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图

2.调速系统主电路元部件的确定及其参数计算(包括有变压器、电力电子器件、平波电抗器与保护电路等)

3.动态设计计算与实现:根据技术要求,对系统进行动态校正,确定ASR 调节器与ACR 调节器的结构型式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求。 调速系统控制电路元部件的确定及其参数计算。

4、完成直流电机转速、电流控制系统设计。

a .设计控制系统主机、过程通道模板电路,包括元器件选择。

b.画出系统控制图。

c.控制系统软件设计。转速、电流控制均采用PI 控制算法,设计位置式PI 控制算法。绘出程序流程图,设计算法程序。

5、学习并掌握MATLAB/Silmulink 直流调速系统仿真方法,给出典型的双闭环直流调速系统的转速和电流仿真波形。并对波形进行简单的分析。

6.绘制V-M 双闭环直流不可逆调速系统的电气原理总图(要求计算机绘图)

7.整理设计数据资料,课程设计总结,撰写设计计算说明书

一、技术数据:直流电动机:额定功率555KW 、额定电压750V 、额定电流760A 、额定转速375r/min 、电动势系数Ce=1.82V · min/r ;电枢回路总电阻0.14欧姆;允许电流过载系数为1.5。电磁时间常数T l =0.031s ;机电时间常数T m =0.112s ,电流反馈滤波时间常数0.002s ;转速反馈滤波时间常数0.02s ;设调节器ASR 、ACR 输入输出电压**10nm im cm U U U V ===, 晶闸管整流电源:采用三相桥式晶闸管整流电路,触发整流环节的放大倍数Ks=75。

二、系统设计的静、动态指标:稳态无静差;调速范围D=10,电流超调量小于5%,空载启动到额定转速的转速超调量小于10%,(按退饱和超调计算)

三.设计内容:

1.根据题目的技术要求,确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图

2.调速系统主电路元部件的确定及其参数计算(包括有变压器、电力电子器件、平波电抗器与保护电路等)

3.动态设计计算与实现:根据技术要求,对系统进行动态校正,确定ASR 调节器与ACR 调节器的结构型式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求。

4、完成直流电机转速、电流控制系统设计。(调速系统控制电路元部件的确定及其参数计算),可以是模拟控制也可以实现数字控制;

a .设计控制系统主机、过程通道模板电路,包括元器件选择。

b.画出系统控制图。

c.控制系统软件设计。转速、电流控制均采用PI 控制算法,设计位置式PI 控制算法。绘出程序流程图,设计算法程序。

5、学习并掌握MATLAB/Silmulink 直流调速系统仿真方法,给出典型的双闭环直流调速系统的转速和电流仿真波形。并对波形进行简单的分析。

6.绘制V-M 双闭环直流不可逆调速系统的电气原理总图(要求计算机绘图)

7.整理设计数据资料,课程设计总结,撰写设计计算说明书

题目3 :10KW直流电动机不可逆调速系统的设计(1人)

技术数据:直流电动机:型号:Z3-71、额定功率10KW、额定电压220V、额定电流55A、额定转速1000r/min、磁极对数2p=4、电枢电阻0.5欧姆、电枢电感7mH、Ld、励磁电压220v、励磁电流1.6A。

要求:调速范围D=10、S小于等于15%,电流脉动系数Si小于等于10%

设计要求:

1、主回路方案确定

2、控制回路选择:给定器、触发器、稳压电源、电流截止环节、调节器及限幅电路、电流、电压检测环节等,需要画出以上环节的线路图

3、主要电气设备的计算和选择

4、绘制V-M直流不可逆调速系统的电气原理总图(要求计算机绘图)

5.整理设计数据资料,课程设计总结,撰写设计计算说明书

主电路选择与参数计算:

1、主电路选择原则:一般整流器功率在4kw一下采用单向整流电路,4kw以上采用三相整

流。

2、参数计算包括:整流变压器的参数计算、整流晶闸管型号的选择、保护电路的说明、参

数计算与原件选择、平波电抗器电感量的计算。

题目4、带电流截止负反馈的转速单闭环V-M 直流调速系统设计 (2人)

技术数据:直流电动机:额定功率18KW 、额定电压220V 、额定电流94A 、额定转速1000r/min 、电动势系数Ce=1.82V · min/r ;电枢回路电阻Ra=0。15Ω;整流装置内阻R rec =0.3Ω;允许电流过载系数为1.5。电磁时间常数T l =0.031s ;机电时间常数T m =0.112s ,设调节器ASR 的最大给定电压*15nm U V ,晶闸管触发整流环节的放大倍数Ks=40。

二、系统设计的静、动态指标:稳态无静差;调速范围D=10,

三.设计内容:

1.根据题目的技术要求,确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图

2.调速系统主电路元部件的确定及其参数计算(包括有变压器、电力电子器件、平波电抗器、电流截止负反馈环节与保护电路等)

3、根据技术要求,确定调节器的结构型式及进行参数计算,使调速系统工作稳定,

4、完成直流电机转速控制系统设计。(调速系统控制电路元部件的确定及其参数计算),可以是模拟控制也可以实现数字控制;

5、学习并掌握MATLAB/Silmulink 直流调速系统仿真方法,给出典型的单闭环直流调速系统的转速仿真波形。并对波形进行简单的分析。

设计要求:

1、主回路方案确定

2、控制回路选择:给定器、触发器、稳压电源、电流截止环节、调节器及限幅电路、电流、电压检测环节等,需要画出以上环节的线路图

3、主要电气设备的计算和选择

4、绘制V-M 单闭环直流不可逆调速系统的电气原理总图(要求计算机绘图)

5.整理设计数据资料,课程设计总结,撰写设计计算说明书

题目6 :3KW直流电动机双闭环V-M调速系统的设计(2人)

已知条件及控制对象的基本参数:

直流电动机:额定功率3KW、额定电压220V、额定电流17.5A、额定转速1500r/min、电枢绕组电阻1.25欧姆、电枢电感8mH、Ld、GD2=3.53 N.m,过载系数1.5.

晶闸管整流电源:采用三相全控式桥式整流电路,整流装置内阻1.3欧姆,平波电抗器电阻0.3欧姆,整流回路总电感200mh

固有参数的设计计算:

给定电压最大值10v

ASR调节器限幅输出电压8v

ACR调节器限幅输出电压8v

堵转电流2.1倍额定电流,临界截至电流2倍额定电流

2、系统设计的性能指标:调速范围D=20、S小于等于10%,电流超调量小于5%,空载启动到额定转速的转速超调量小于10%,调整时间小于05s

3、设计任务

①设计双闭环调速系统原理图

②整流电路的设计

③电流环的设计及其特性分析

④转速环的设计及其特性分析

⑤控制电路的设计与实现(模拟或数字电路)

⑥系统动态结构图及其Matlab仿真分析

4、应完成的技术文件

设计说明书、计算书、系统原理图

题目7、V-M双闭环不可逆直流调速系统设计(2人)

一.题目:V-M双闭环不可逆直流调速系统设计

二.技术要求:

1.该调速系统能进行平滑的速度调节,负载电机不可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作

2.系统静特性良好,无静差(静差率s≤2%)

3.动态性能指标:转速超调量σn<8%,电流超调量σi<5%,动态速降Δn≤8-10%,调速系统的过渡过程时间(调节时间)ts≤1s

4.系统在5%负载以上变化的运行范围内电流连续

5.调速系统中设置有过电压、过电流等保护,并且有制动措施

三.设计内容:

1.根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图

2.调速系统主电路元部件的确定及其参数计算(包括有变压器、电力电子器件、平波电抗器与保护电路等)

3.动态设计计算与实现:根据技术要求,对系统进行动态校正,确定ASR调节器与ACR 调节器的结构型式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求4.绘制V-M双闭环直流不可逆调速系统的电气原理总图(要求计算机绘图)

5、学习并掌握MATLAB/Silmulink直流调速系统仿真方法,给出典型的双闭环直流调速系统的转速和电流仿真波形。并对波形进行简单的分析。

6、整理设计数据资料,课程设计总结,撰写设计计算说明书

四.技术数据:

晶闸管整流装置:Rrec=0.5Ω,Ks=40。

负载电机额定数据:P N=8.5KW,U N=230V,I N=37A,n N=1450r/min,Ra=1.0Ω,Ifn=1.14A,GD2=5.49N㎡;系统主电路:T m=0.07s,T l=0.017s

五:技术指标

1、稳态指标:无静差(静差率s≤2%)

2、动态指标:电流超调量:≤5%,起动到额定转速时的超调量:≤8%,(按退饱和方式计算)

题目11 :双极式PWM调速系统的设计与仿真(2人)

1、设计任务

已知直流电机参数:P N=10 KW,U N=220 V,I N=55 A,n N=1000 r/min,Ra=0.5Ω,电枢电感L d =7mH;直流它励励磁电压220V,电流1.6A;PWM装置放大系数Ks=40;电流反馈滤波时间常数0.0025s;转速反馈滤波时间常数0.015s 时间常数T m=0.1s,T l=0.03s;允许电流过载倍数1.8,电枢回路电磁时间常数T l = 0.025s,机电时间常数T m = 0.08s,给定转速的电压最大值和ASR, ACR的输出限幅值均为10V,电动势系数C e=0.0696 V.min/r,选用D202电力晶体管作功放用开关管,已知D202的参数如下:T ce=0.159sμ, t r=0.103sμ, t f=0.061sμ。

2、设计要求:

按工程设计方法设计计算,设计的性能指标要求:

稳态指标:稳态无静差。

动态指标:电流超调量

i %5%

σ≤。

空载起动到额定转速时的转速超调量

n %10%

σ≤。

动态过渡过程时间

s 0.5

t≤s

三.设计内容:

1.根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图

2.调速系统主电路元部件的确定及其参数计算(包括有变压器、电力电子器件、平波电抗器与保护电路等)

3.动态设计计算与实现:根据技术要求,对系统进行动态校正,确定ASR调节器与ACR 调节器的结构型式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求4.绘制PWM双闭环直流调速系统的电气原理总图(要求计算机绘图)

5、学习并掌握MATLAB/Silmulink直流调速系统仿真方法,给出典型的双闭环直流调速系统的转速和电流仿真波形。并对波形进行简单的分析。

6.整理设计数据资料,课程设计总结,撰写设计计算说明书

电力拖动课程设计

辽宁工程技术大学 《电机与拖动》课程设计 设计题目:他励直流电动机调速系统设计院(系、部):电气与控制工程学院 专业班级:电气12-4 姓名:高明 学号:1205040404 指导教师:刘春喜荣德生王继强李国华日期:2014-6-26

电气工程系课程设计标准评分模板

摘要 直流电动机是人类最早发明的和应用的一种电机,是生产和使用直流电能的机电能量转换机械,直流电动机具有调速性能好、启动和制动转矩大、过载能力强等优点,因此广泛应用于启动和调速要求的机械上。直流发电机可以作为各种直流电源。随着电子技术的发展, 可控硅整流电源在生产上的应用越来越广泛,大有取代直流发电机的趋势。反过来,由于利用了可控硅整流电源,使直流电源机的应用增加了一个有利因素,而配合直流电动机组成的调速系统也正在迅速发展。本文主要介绍他励直流电动机调速的有关方法及其参数设计。 关键字:直流电机调速串电阻参数设计

目录 1 引言 (1) 2 直流电动机的基本结构和工作原理 (2) 2.1 直流电动机的基本结构 (2) 2.1.1 定子(磁极) (2) 2.1.2 转子(电枢) (2) 2.2直流电机的励磁方式 (2) 2.3 直流电动机的工作原理 (3) 3 直流电动机的机械特性 (3) 3.1 固有机械特性 (3) 3.2 人为机械特性 (4) 4 他励直流电动机的调速 (4) 4.1 他励直流电动机电枢串电阻调速 (4) 4.2 他励直流电动机改变电枢电压调速 (5) 4.3 他励直流电动机改变励磁电流调速 (6) 5 直流电动机调速设计内容 (7) 6 结论 (9) 参考文献 (10)

电力电子装置及系统设计课程设计

《电力电子装置及系统》 课程设计 题目:基于UC3842的单端反激 开关电源的设计 学院电力学院 专业电子科学与技术 姓名 学号 指导教师 完成时间2016.11.25

目录 摘要 (1) 第一章:开关电源的概述 1.1:开关电源的发展历史 (2) 1.2:开关稳压电源的优点 (2) 1.2.1:内部功率损耗小,转换效率高 (2) 1.2.2:体积小,重量轻 (3) 1.2.3:稳压范围宽 (3) 1.2.4:滤波效率大为提高,滤波电容的容量和体积大为减小 (3) 1.2.5:电路形式灵活多样,选择余地大 (3) 1.3:开关稳压电源的缺点 (3) 1.3.1:开关稳压电源存在着较为严重的开关噪声和干扰 (4) 1.3.2:电路结构复杂,不便于维修 (4) 1.3.3:成本高,可靠性低 (4) 第二章:UC3842的原理及技术参数 2.1:UC3842的工作原理 (5) 2.2:UC3842的引脚及技术参数 (6) 第三章:单端反激开关电源 3.1:单端反激开关电源的原理 (7) 3.2:反激式开关电源设计 (9) 3.2.1:输出直流电压隔离取样反馈外回路 (9) 3.2.2:初级线圈充磁峰值电流取样反馈内回路 (11) 总结 (13) 参考文献 (13)

基于UC3842的单端反激开关电源的设计 摘要 开关电源是一种利用现代电子技术,控制开关晶体管和关断的时间比率,维持稳定输出电压的一种电源,也是一种效率很高的电源变换电路,开关电源一般由脉冲宽度调制(PWM)和MOSFET构成。具有高频率,高功率密度,高可靠性等优点。 本文主要介绍一种以UC3842作为控制核心,根据UC3842的应用特点,设计了一种基于UC3842为控制芯片,实现输出电压可调的开关稳压电源电路。 关键词:开关电源脉冲宽度调制 UC3842

电力电子课设(参考版)

一总体方案设计级总体框图 1、1总体方案设计 根据任务湖中的,本次设计的是dcdc降压变换器。DC-DC变换 器有两类:一类由两级电路组成DC-AC-DC变换,第一级为逆变,实现DC-AC变换,第二级为整流,实现AC-DC变换。另一类变 换器由晶体管和二极管开关组合成PWM开关,将输入直流电 压斩波后,再经滤波后输出。由于第一类比较复杂,方针起来 比较麻烦。第二类简单方便,比较贴合课本中的知识。第二类 dcdc降压电路有以下几种: BUCK PWM变换器在CCM下的工作原理(如图2-2):一个开 关周期内,开关晶体管的开,关过程将直流输入电压斩波,形 成脉宽为onT的方波脉冲(onT为开关管导通时间)。当开关晶 体管导通时,二极管关断,输入端直流电流电源Vi将功率传送 到负载,并使用电感储能(电感电流上升):当开关晶体管关断 时,二极管导通,续流,电感储能向负载释放(电感电流下降)。 一个开关周期内,电感电流的平均值等于负载电流OI(忽略滤 波电容C的ESR)。根据原理和电路拓扑可以推导出工作在CCM 下的DC-DC PWM变换器的输出-输入电压变换比: DVi Vo (2-1)

占空比D总是小于1的,所以BUCK变换器是一种降压变换器。 升降压型BUCK-BOOST技术 图2-4 升降压反极性(BUCK-BOOST)变换器电路拓扑 如图2-4所示,极性反转型(BUCK-BOOST)变换器主电路如用 元器件与BUCK,BOOST变换器相同,由开关管,储能电感,整 流二极管及滤波电容等元器件组成。这种电路具有BUCK变换 器降压和BOOST变换器升压的双重作用。升压还是降压取决与 PWM驱动脉冲的占空比D。虽然输入与输出共用一个连接端,但输出电压的极性与输入电压是相反的,故称为降压反极性变 换器。,根据我们的设计要求,是要求把12-18V的直流电压转 换到5V的直流电压,那么分析后可得降压型BUCK转换技术最 适合这次设计。 1、2总体框图设计

电机与拖动 课程设计

一直流电机的简介及结构 (一)直流电机简介 直流电机是生产和使用直流电能的机电能量转换装置。将机械能转换为直流电能的,称为直流发电机;将电能追安环为机械能的,称为直流电动机。直流电动机具有调速性能好、启动和制动转矩大、过载能力强等优点,因此广泛应用于启动和调速要求较高的机械上。例如:轧钢机、机床、电车、电器轨道牵引、挖掘机械、纺织机械等。直流发电机可以作为各种直流电源。例如直流电动机的电源、同步电机的励磁电源、以及化学工业方面用于电解电镀的抵押大电流直流电源等。在本次设计中只介绍和说明直流电动机,不介绍直流发电机。 与交流电机相比,直流电机的主要缺点是换向问题,它限制了直流电机的极限容量,又使得直流电机的结构复杂,消耗较多的有色金属,维护比较麻烦,致使直流电机的应用受到一定的限制。不过,虽然如此,可是随着电子技术的发展,可控硅整流电源在生产上的应用越来越广泛,虽然使直流发电机的受到威胁,可是却会使直流电动机在应用中更为广泛。 (二)直流电机的结构 直流电机由静止的钉子和旋转的转子两大部分组成。定转子之间有一定的空隙,称为气隙。定子的作用是产生磁场和对电机的机械支撑,主要由主磁极、换向极、机座、端盖、电刷装置等部件组成。转子的作用是产生电枢感应电动势或电磁转矩,主要由电磁铁芯、电枢绕组、换向器、转轴和风扇等部件组成。如下图1-2所示: 图1-1 直流电机装配结构图 1—换向器 2—电刷装置 3—机座 4—主磁极 5—换向极 6—端盖 7—风扇 8—电枢绕组 9—电枢铁心 1 定子部分 ①主磁极(简称主极) 主磁极用来产生气隙磁场并且在电枢表面外的气隙空间里产生一定形状分布的气息磁密。主磁极由主机铁芯和励磁线圈组成,主极铁芯和由1—1.5mm厚的低碳钢板冲成一定

电力拖动课程设计报告

电力拖动课程设计报告 为适应时代对宽口径、创新型人才的需求,同时为了配合高等教育向大众教育的转变,我们在电力拖动课程的教学内容和教学体系上一直在寻求创新,以适应培养现代化人才的需要。在课程的讲解上做到“授之以渔”,把好的学习方法传授给学生,使学生做到融会贯通。下面是小编整理的电力拖动课程设计报告,欢迎来参考! 电力拖动课程是中等职业学校电工电子专业的一门专业课,它的应用性和实践性要求都很高。由于新知识的不断积累增加、课时的相对减少,以前的教学方法不太适用现在的素质教育的要求。以前的教学方式存在的主要弊端有:第一理论学习内容乏味,难以激发学生的学习热情。学生对理论知识只是死记硬背,很难达到活学活用的要求,难以提高学生的学习积极性;第二,学生做理论习题不能达到提高专业水平的目的。学生做作业没有实践操作的机会,缺乏实际感受,很难提高思维和实践创新能力;第三,实习教学落伍,使理论与实践的脱节。传统教学方法是理论教学和实习教学要独立自主进行,学生理论学习不全面,到实习时不能很好利用理论知识,也就不可能用理论来辅助实习训练。 1.在课堂教学中,加强与学生的互动 实施教学目标是课堂教学的关键。需要做到以下几方面:

第一,确立上课要点。上课时,教师将所授课教学要点,采取适当方式传达给学生,使学生带着明确的学习任务有目的地听课;第二,引导学生达标。这是教学目标实施的关键。首先要能完整地将教学目标具体化、情境化。然后对教学重点知识点,教师精讲,安排学生多练,并引导学生质疑,增强反馈信息能力。 2.通过实践操作,提高学生的理解能力 教学活动中的做也要适当利用讨论、练习等方法。只是要把这些方法结合到实践上来,要求教和学要与实践相辅相成,要与实际生活有联系。在具体措施上,我们鼓励激发学生的兴趣,主张学生多提问题,注重教学中的讨论,让学生积极学习,多给学生自己动手的机会。学生一般具有猎奇心理,奇特的东西、生活中常出现的自己又不能理解的问题,经过老师适当引导后,往往会引发其强烈求知欲,这就要求教师挖掘教学内容的创新点、寻找相关课题的例题,使之有新鲜感。 首先为学生做好心理调节,重视教学的生动性。非智力因素对学生电力拖动课程的学习以及考试影响非常大,故需老师极其重视学生的心理调节。不同时期,学生所蕴含的心情是不相同的:复习伊始,学生满怀热情,自信满满,尽力约束自己的行为,向自己提出了较苛刻目标。维持学生的学

电力电子课程设计单相交流调压电路

电力电子课程设计单相交流调压电路电力电子 课程设计说明书 题目: 单相交流调压电路课程设计 院系: 水能 专业班级: 学号: 学生姓名: 摘要 交流调压电路广泛用于灯光控制(如调光灯和舞台灯光控制)及异步电动机的软启动,也用于异步电动机调速。在电力系统中,这种电路还常用于对无功功率的连续调节。此外,在高电压小电流或低电压大电流直流电源中,也常采用交流调压电路调节变压器一次电压。在这些电源中如采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联;同样,低电压大电流直流电源需要很多晶闸管并联。这都是十分不合理的。采用交流调压电路在变压器一次侧调压,其电压、电流值都比较适中,在变压器二次侧只要用二极管整流就可以了。这样的电路体积小、成本低、易于设计制造。单相交流调压电路是对单相交流电的电压进行调节的电路。用在电热制、交流电动机速度控制、灯光控制和交流稳压器等合。与自耦变压器调压方法相比,交流调压电路控制简便,调节速度快,装置的重量轻、体积小,有色金属耗也少。 目录

1、电路设计的目的及任 务 .................................................................... 1 1.1课程设计的目的与要 求 (1) 1.2课程设计的内 容 ..................................................................... (1) 1.3仿真软件的使 用 ..................................................................... (2) 1.4设计方案选 择 ..................................................................... ....... 2 2、单相交流调压主电路设计及分 析 (3) 2.1 电阻性负 载 ..................................................................... (3) 2.1.1 电阻性负载的交流调压器的原理分析 (3) 2.1.2 结果分 析 ..................................................................... (6)

电力电子技术课程设计范例

电力电子技术课程设计 题目:直流降压斩波电路的设计 专业:电气自动化 班级:14电气 姓名:周方舟 学号: 指导教师:喻丽丽

目录 一设计要求与方案 (4) 二设计原理分析 (4) 2.1总体结构分分析 (4) 2.2直流电源设计 (5) 2.3主电路工作原理 (6) 2.4触发电路设计 (10) 2.5过压过流保护原理与设计 (15) 三仿真分析与调试 (17) 3.1M a t l a b仿真图 (17) 3.2仿真结果 (18) 3.3仿真实验结论 (24) 元器件列表 (24) 设计心得 (25) 参考文献 (25) 致 (26) 一.设计要求与方案 供电方案有两种选择。一,线性直流电源。线性电源(Linear power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。要达到高精度的直流电压,必须经过稳压电源进行稳压。线性电源体积重量大,很难实现小型化、损耗大、效率低、输出与输入之间有公共端,不易实现隔离,只能降压,不能升压。二,升压斩波电路。由脉宽调制芯片TL494为控制器构成BOOST原理的,实现升压型DC-DC变换器,输出电压的可调整与稳压控制的开关源是借助晶体管的开/关实现的。因此选择方案二。 设计要求:设计要求是输出电压Uo=220V可调的DC/DC变换器,这里为升压斩波电路。由于这些电路中都需要直流电源,所以这部分由以前所学模拟电路知识可以由整流器解决。MOSFET的通断用PWM控制,用PWM方式来控制MOSFET的通断需要使用脉宽调制器TL494来产生

电力拖动课程设计汇本

中北大学 课程设计说明书 学生:海椿学号:0905054236 学院:信息与通信工程学院 专业:自动化 题目:交流电动机工作特性仿真 ——转速特性 指导教师:王建萍职称: 工程师

2011 年12 月31 日 中北大学 课程设计任务书 11/12 学年第 1 学期 学院:信息与通信工程学院 专业:自动化 学生姓名:海椿学号:0905054236 课程设计题目:交流电动机工作特性仿真分析 ——转速特性 起迄日期:12 月31日~01月06日 课程设计地点:校

指导教师:王建萍 系主任:王忠庆 下达任务书日期: 2011 年12月31日课程设计任务书

一、原理阐述 感应电动机是一类重要的交流电机。它在正常电动运行时主要是通过定子对转子之间的电磁感应,使转子获得进行正常运行所需的电流和转矩。众所周知,交流电的一个重要指标是交流电的频率,一般来讲,感应电动机的转速与供给它进行工作的交流电的频率不保持同步的关系。因此,从这个意义上讲,交流感应

电动机又常常被称作异步电动机。 三相异步电机是重要的异步电动机。三相定子绕组通过三相交流电产生旋转磁场,转子导体切割磁力线产生感应电动势与感应电流,进而产生电磁转矩使转子旋转。 三相感应电动机在空载运行时,转子的转速接近于电机同步转速n 1。随着 负载的增大,必须输出较大的转矩以维持电机的稳定运行,这样,就会使转子转速度略有降低。经试验测试和分析后,可以得出输出功率2P 的增大与转子的转速n 的降低近似为线性关系)(2f n P =。 三相感应电动机的旋转磁场的旋转速度(又称同步转速) n 1为: p f 60n 1=r/min f —三相交流电的频率; P —三相电动机的定子极对数。 磁场转速n 1和转子速度n 之差与n 1的比值称为转差率S : %100n n -n s 00?= 异步电动机启动时n=0,s=1;n=n 0时,s=0; 额定工况下一般s=1.5~6% 转子角速度?为: s /rad 60n 2π=Ω 电动机转矩T 为:

江苏大学电力电子课程设计

电力电子课程设计 学院:电气信息工程学院 专业: 学号: 姓名:

一. 设计要求 (1)根据给定的参数范围,设计BOOST 电路的参数; (2)根据给定的参数范围,设计CUK 电路的参数; (3)利用MATLAB 对上述电路图仿真实验得出波形; (4)在实验室平台上试验,观测数据与波形,并与仿真图形进行比对; (5)撰写实验报告; 二. 电路设计 1.电路工作原理 (1)Boost 电路 Boost 电路原理图 基本原理 假设L ,C 值很大。当可控开关V 处于通态的时候,电源E 向电感L 充电,充电的电流基本恒定不变I 1,同时电容C 向负载R 放电。因为C 很大,基本保持输出电压U 0不变。当可控开关处于断态的时候,E 和电感L 上积蓄的能量共同向电容C 充电并向负载R 提供能量。当电路工作处于稳态时,一个周期T 中电感L 积蓄的 能量与释放的能量相等,即: 化简得: ()off o on t I E U t EI 11-=E t T E t t t U off off off on o =+=

基本数值计算: 输出电压U 0与输入电压E 关系: 01 1 1U E E βα==- 输出电流I0与输入电流I1的关系: 01021U I I E E β== 输出电流I0与输出电压U0的关系: 001U E I R R β== (2)Cuk 电路 Cuk 电路原理图 基本原理 当可控开关V 处于通态的时候,E-L1-V 回路和R-L2-C-V 回路分别流过电流。当V 处于断态的时候,E-L1-C-VD 回路和R-L1-VD 回路分别流过电流。输出电压的极性与电源电压极性相反。

电力电子课程设计模板

电气工程学院 电力电子课程设计 设计题目:MOSFET降压斩波电路设计专业班级:电气0907 学号:09291210 姓名:李岳 同组人:刘遥(09291212 ) 指导教师: 设计时间:2012年6月25日-29日 设计地点:电气学院实验中心

电力电子课程设计成绩评定表 指导教师签字: 年月日

电力电子课程设计任务书 学生姓名:李岳,刘遥专业班级电气0907 指导教师: 一、课程设计题目: MOSFET降压斩波电路设计(纯电阻负载) 设计条件:1、输入直流电压:U d=100V 2、输出功率:300W 3、开关频率5KHz 4、占空比10%~90% 5、输出电压脉率:小于10% 二、课程设计要求 1. 根据具体设计课题的技术指标和给定条件,能独立而正确地进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整; 2. 查阅有关参考资料和手册,并能正确选择有关元器件和参数,对设计方案进行仿真; 3. 完成预习报告,报告中要有设计方案,还要有仿真结果; 4. 进实验室进行电路调试,边调试边修正方案; 5. 撰写课程设计报告——画出主电路、控制电路原理图,说明主电路的工作原理、选择元器件参数,说明控制电路的工作原理、绘出主电路典型波形(比较实际波形与理论波形),绘出触发信号(驱动信号)波形,说明调试过程中遇到的问题和解决问题的方法。 三、进度安排

2.执行要求 电力电子课程设计共6个选题,每组不得超过2人,要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。严禁抄袭,严禁两篇设计报告雷同,甚至完全一样。 四、课程设计参考资料 [1]王兆安,黄俊.电力电子技术(第四版).北京:机械工业出版社,2001 [2]王文郁.电力电子技术应用电路.北京:机械工业出版社,2001 [3]李宏.电力电子设备用器件与集成电路应用指南.北京:机械工业出版社,2001 [4] 石玉、栗书贤、王文郁.电力电子技术题例与电路设计指导. 北京:机械工业出版社,1999 [5] 赵同贺等.新型开关电源典型电路设计与应用.北京:机械工业出版社,2010 摘要 关键词:整流、无源逆变、晶闸管

直流电动机调速课程设计

《电力拖动技术课程设计》报告书 直流电动机调速设计 专业:电气自动化 学生姓名: 班级: 09电气自动化大专 指导老师: 提交日期: 2012 年 3 月

前言 在电机的发展史上,直流电动机有着光辉的历史和经历,皮克西、西门子、格拉姆、爱迪生、戈登等世界上著名的科学家都为直流电机的发展和生存作出了极其巨大的贡献,这些直流电机的鼻祖中尤其是以发明擅长的发明大王爱迪生却只对直流电机感兴趣,现而今直流电机仍然成为人类生存和发展极其重要的一部分,因而有必要说明对直流电机的研究很有必要。 早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工效率。

电力拖动课程设计

中北大学 课程设计说明书学生姓名:谢海椿学号: 学院:信息与通信工程学院 专业:自动化 题目:交流电动机工作特性仿真 ——转速特性 指导教师:王建萍职称: 工程师 2011 年 12 月 31 日 中北大学 课程设计任务书 11/12 学年第 1 学期 学院:信息与通信工程学院 专业:自动化 学生姓名:谢海椿学号:

课程设计题目:交流电动机工作特性仿真分析 ——转速特性 起迄日期: 12 月31日~ 01月 06日 课程设计地点:校内 指导教师:王建萍 系主任:王忠庆 下达任务书日期: 2011 年12月31日 课程设计任务书

一、原理阐述 感应电动机是一类重要的交流电机。它在正常电动运行时主要是通过定子对转子之间的电磁感应,使转子获得进行正常运行所需的电流和转矩。众所周知,交流电的一个重要指标是交流电的频率,一般来讲,感应电动机的转速与供给它进行工作的交流电的频率不保持同步的关系。因此,从这个意义上讲,交流感应电动机又常常被称作异步电动机。 三相异步电机是重要的异步电动机。三相定子绕组通过三相交流电产生旋转磁场,转子导体切割磁力线产生感应电动势与感应电流,进而产生电磁转矩使转子旋转。 三相感应电动机在空载运行时,转子的转速接近于电机同步转速n 1。随着负载的增大,

必须输出较大的转矩以维持电机的稳定运行,这样,就会使转子转速度略有降低。经试验测试和分析后,可以得出输出功率2P 的增大与转子的转速n 的降低近似为线性关系 ) (2f n P =。 三相感应电动机的旋转磁场的旋转速度(又称同步转速) n 1为: p f 60n 1= r/min f —三相交流电的频率; P —三相电动机的定子极对数。 磁场转速n 1和转子速度n 之差与n 1的比值称为转差率S : 异步电动机启动时n=0,s=1;n=n 0时,s=0; 额定工况下一般s=1.5~6% 转子角速度?为: 电动机转矩T 为: 转子端电磁功率m P 为: 转子端电磁功率与输出功率之间的关系为: 所以输出功率2P 为: 由以上式子可以得输出功率2P 与转速n 的关系)(2f n P =。

电力电子技术课程设计题目

电气与自动化专业仿真指导丛书 电力电子技术仿真 第三至七章 课 题 湖南科技大学电气工程系 2015

一、题目 1、单相桥式全控整流电路仿真(输出电压48V,电流10A) 2、单相桥式半控整流电路仿真(输出电压24V,电流3A) 3、单相全波整流电路仿真(输出电压15V,电流1A) 4、三相半波可控整流电路仿真(输出电压64V,电流20A) 5、三相桥式全控整流电路仿真(输出电压110V,电流50A) 6、三相桥式半控整流电路仿真(输出电压110V,电流200A) 7、单相桥式全控有源逆变电路仿真(输出电压48V,电流5A) 8、单相全波有源逆变电路仿真(输出电压36V,电流6A) 9、三相半波有源逆变电路仿真(输出电压110V,电流10A) 10、三相桥式有源逆变电路仿真(输出电压110V,电流300A) 11、基于集成电路的降压斩波器仿真(电源:110V;输出:50V, 100A,IGBT) 12基于单片机的降压斩波器仿真(电源:110V;输出:60V, 200A,IGBT) 13、基于集成电路的电流可逆斩波电路仿真(电源:220V;电机:110V, 10A,IGBT) 14、基于单片机的电流可逆斩波电路仿真(电源:220V;电机:48V, 4A,IGBT) 15、基于单片机集成电路的桥式可逆斩波电路仿真(电源:220V;电机:48V, 4A,IGBT) 16、基于集成电路的桥式可逆斩波电路仿真(电源:220V;电机:48V, 4A,IGBT) 17、基于集成电路的降压斩波器仿真(电源:1200V;输出:400V, 1000A,GTO) 18、基于单片机的降压斩波器仿真(电源:1200V;输出:600V, 2000A,GTO) 19、基于集成电路的电流可逆斩波电路仿真(电源:1000V;电机:660V, 800A,GTO) 20、基于单片机的电流可逆斩波电路仿真(电源:2200V;电机:480V, 400A,GTO) 21、基于集成电路的桥式可逆斩波电路仿真(电源:1000V;电机:220V, 600A,GTO) 22、基于单片机的桥式可逆斩波电路仿真(电源:1400V;电机:240V, 300A,GTO) 23、基于集成电路的升降压斩波器仿真(电源:110V;输出:50V, 50A,IGBT) 24、基于单片机的升降压斩波器仿真(电源:110V;输出:60V, 200A,IGBT) 25、基于集成电路的升降压斩波器仿真(电源:50V;输出:20V, 2A,电力场效应管) 26、基于单片机的升降压斩波器仿真(电源:50V;输出:20V, 2A,电力场效应管) 27、基于集成电路的Cuk斩波器仿真(电源:110V;输出:50V, 100A,IGBT)

电力电子技术课程设计报告

电力电子课程设计报告题目三相桥式全控整流电路设计 学院:电子与电气工程学院 年级专业:2015级电气工程及其自动化 姓名: 学号: 指导教师:高婷婷,林建华 成绩:

摘要 整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要同时也是应用得最为广泛的电路,不仅用于一般工业,也广泛应用于交通运输、电力系统、通信系统,能源系统及其他领域,因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用,因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。 关键词:电力电子,三相,整流

目录 1 设计的目的和意义………………………………………1 2 设计任务与要求 (1) 3 设计方案 (1) ?3.1三相全控整流电路设计 (1) 3.1.1三相全控整流电路图原理分析 (2) ?3.1.2整流变压器的设计 (2) ?3.1.3晶闸管的选择 (3) 3.2 保护电路的设计 (4) 3.2.1变压器二次侧过压保护 (4) ?3.2.2 晶闸管的过压保护………………………………………………4 3.2.3 晶闸管的过流保护………………………………………………5 3.3 触发电路的选择设计 (5) 4 实验调试与分析 (6) 4.1三相桥式全控整流电路的仿真模型 (6)

4.2仿真结果及其分析……………………………………………7 5 设计总结 (8) 6 参考文献 (9)

1 设计的目的和意义 本课程设计属于《电力电子技术》课程的延续,通过设计实践,进一步学习掌握《电力电子技术》,更进一步的掌握和了解他三相桥式全控整流电路。通过设计基本技能的训练,培养学生具备一定的工程实践能力。通过反复调试、训练、便于学生掌握规范系统的电子电力方面的知识,同时也提高了学生的动手能力。 2 设计任务与要求 三相桥式全控整流电路要求输入交流电压2150,10,0.5U V R L H ==Ω=为阻 感性负载。 1.写出三相桥式全控整流电路阻感性负载的移相范围,并计算出直流电压的变化范围 2.计算α=60°时,负载两端电压和电流,晶闸管平均电流和有效电流。 3.画出α=60°时,负载两端 d U 和晶闸管两端 1 VT U 波形。 4.分析纯电阻负载和大电感负载以及加续流二极管电路的区别。 5.晶闸管的型号选择。 3 设计方案 3.1三相全控整流电路设计

电力拖动课程设计

辽宁工程技术大学 课程设计成绩评定表 学期2009-2010学年第二学期姓名 专业电气与控制工程班级自动化08-1 课程名称电机与拖动 论文题目他励直流电动机的调速 评定标准 评定指标分值得分 知识创新性20 理论正确性20 内容难易性15 结合实际性10 知识掌握程度15 书写规范性10 工作量10 总成绩100 评语: 任课教师时间年月日备注

课程设计任务书 一、设计题目 他励直流电动机的调速 二、设计任务 一台他励直流电动机,参数如下: Un=220V ,, In=68.6A , kw P n 13= , min /1500 r n N =, Ω=076.0L R 1.用其拖动通风机负载运行,若采用电枢串电阻调速时,要使转速降低至1200r/min,试设计电枢电路中的调速电阻。 2.用其拖动恒转矩负载运行,负载转矩等于电动机的额定转矩,采用改变电枢电压调速时,要使转速降止1000r/min,试设计电枢电压值。 3.用其拖动恒功率负载运行,采用改变励磁电流调速,要使转速增止1800r/min,试设计Ce Ф的值。 三、设计计划 电机与拖动课程设计共计1周内完成。第1~2天查资料,熟悉题目;第3~5天设计方案分析,具体按照步骤进行设计以及整理设计说明书;第6天准备答辩;第7天答辩 四、设计要求 1.设计工作量为按照要求完成设计说明书一份; 2. 设计必须根据进度计划按期完成; 3. 设计说明书必须经指导老师审查签字方可答辩。 指 导 教 师:李国华 王巍 王继强 董衲 教研室主任:仲伟堂 时 间:2010年7月12日

电动机,俗称马达,是一种将电能转化为机械能,并可再使用机械能产生动能使用来驱动其他装置的电气设备。按运动方式分两种类型。一种是旋转式电动机,一种是线性电动机。按使用电源不同分为直流电动机和交流电动机。而直流电动机是应用最早的,但不如交流电动机应用广泛,它有优良的起动,调速和制动性能。但直流电动机结构复杂,体积庞大,价格较贵,维护困难。直流电动机的类型主要分四类:1,他励支流电动机,2:并励直流电动机,3:串励直流电动机,4:复励直流电动机。他励直流电动机应用最广泛。 关键词:直流电动机;电能;机械能;

电力拖动课程设计.

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位:自动化学院 题目: 脉宽调制双闭环调速系统的设计 初始条件: =48V,Ia=3.7A,Nn=2000r/min,电枢电阻Ra=6.5Ω,电枢回路总电阻 u N R=8Ω,电磁时间常数T =5ms,电源电压为60V。稳态无静差。 L 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1.系统原理图设计; 2.调速系统电路设计; 3.过程分析,参数设计计算与校验; 4.根据开通时间和开关频率计算调速范围。 5.按规范格式撰写设计报告(参考文献不少于5篇)打印 时间安排:(10天) 6月2日-6月3日查阅资料 6月4日-6月7日方案设计 6月8日-6月10日馔写程设计报告 6月11日提交报告,答辩 指导教师签名: 2014年 6月1日 系主任(或责任教师)签名:年月日

摘要 变压调速是直流调速系统的主要调速方法,系统的硬件结构至少包含了两个部分:能够调节直流电动机电枢电压的直流电源盒产生被调转速的直流电动机。随着电力电子技术的发展,可控直流电源主要有两大类,第一类是相控整流,它把交流电源直接转换成可控的直流电源;第二类是直流脉宽变换器,它先用不可控整流把交流电变换成直流,然后用PWM脉宽调制方式输出的直流电压。当用可控直流电源盒直流电动机组成一个直流调速系统时,它们所表现出来的性能指标和人们的期望值总是存在差距的,解决此问题的方法是设计具有转速反馈控制的直流调速系统。由于只带有转速反馈的控制系统的控制对象是转速,没有控制电流,该系统需要实施限流保护。此外增加电流反馈能提高系统的动态和稳态性能指标。 关键字:变压调速转速反馈电流反馈

电力电子技术课程设计题目选题表

《电力电子技术》课程设计题目 序号 1 班级 专业 题目 直流稳压电源的设计 考核要求 1.设计主电路及电气控制电路,建议主电路为三相桥式全控整流电路; 2.选择主电路所有图列元件,并给出清单; 3.选择触发电路及其同步信号; 4.绘制装置总体电路原理图,绘制电路所有点电压、电流及元器件(晶闸管等)两端电压波 形(汇总绘制,注意对应关系); 5.编制设计说明书。 设计要求 装置输入电源为三相U L=380V工频交流电源,输出直流电压0~200V,输出电流100A,当电流降为5A时电流开始断续,L B=1mH。 学号 (限12人选择) 姓名

《电力电子技术》课程设计题目 序号 2 班级 专业 题目 直流开关电源的设计 考核要求 1.设计主电路,建议主电路为:整流部分是桥式二极管整流,大电容滤波,DC/DC部分采 用半桥变换器,主功率管用MOSFET; 2.选择主电路所有图列元件,并给出清单; 3.设计MOSFET驱动电路及控制电路; 4.绘制装置总体电路原理图,绘制:①单相桥式整流电路各点电压波形;②MOSFET驱动电 压、全桥电路中各元件的电压、电流以及输出电压波形(将①②波形分别汇总绘制,注意对应关系); 5.编制设计说明书、设计小结。 控制要求 装置输入电源为单相工频交流电源(220V+20%),输出电压Vo=24V,输出电流Io=5A,最大输出纹波电压50mV,工作频率f=100kHz。 学号 (限12人选择) 姓名

序号 3 班级 专业 题目 直流变换器的设计-降压 考核要求 1.设计主电路,建议主电路为:采用BUCK变换器,主功率管用MOSFET; 2.选择主电路所有图列元件,并给出清单; 3.设计MOSFET驱动电路及控制电路; 4.绘制装置总体电路原理图,绘制: MOSFET驱动电压、BUCK电路中各元件的电压、电流 以及输出电压波形(波形汇总绘制,注意对应关系); 5.编制设计说明书、设计小结。 控制要求 输入直流电压Vin=42V,输出电压Vo=12V,输出电流Io=3A,最大输出纹波电压30mV,工作频率f=100kHz。 学号 (限6人选择) 姓名

电力电子专业技术课程设计任务大全

电力电子技术课程设计任务大全

————————————————————————————————作者:————————————————————————————————日期:

《电力电子技术》课程设计任务书(一) 小功率晶闸管整流电路设计 一、设计的技术数据及要求 1、电路输出的直流电压和电流应满足负载要求; 2、电路应具有一定的稳压和保护功能,同时还具有较高的防止过电压和过电流的抗干扰能力; 3、触发电路满足要求; 4、电网供电电压:三相380V,电动机负载,工作于电动状态。 直流电机参数: 型号额定功率 (KW) 额定电压 (V) 额定电流 (A) 额定转速 (r/min) 电枢回路电感 (mH) Z3-52 7.5 220 40.8 1500 4.42 二、设计内容及要求 1、方案论证及选择; 2、主电路设计(包括整流变压器电压及容量计算,晶闸管元件选择,电 抗器容量等计算); 3、控制电路设计(触发电路的选择与设计); 4、保护电路设计(包括过流和过压保护等); 5、总结及心得体会; 6、参考文献设计; 7、完成电路原理图1份。 《电力电子技术》课程设计任务书(二) 小功率晶闸管整流电路设计 一、设计的技术数据及要求 1、电路输出的直流电压和电流应满足负载要求; 2、电路应具有一定的稳压和保护功能,同时还具有较高的防止过电压和过电流的抗干扰能力; 3、触发电路满足要求。 4、电网供电电压:单相220V,电动机负载,工作于电动状态。 直流电机参数: 型号额定功率 (KW) 额定电压 (V) 额定电流 (A) 额定转速 (r/min) 电枢回路电感 (mH) Z3-52 3 220 17.4 750 17.69

电动机双重联锁电力拖动实训报告

桂林电子科技大学职业技术学院三相异步电动机接触器和按钮双重联锁正反转控制 学院(系):ccccccccccccc 专业:cccccccccccccccc 学号: ccccccccccc 学生姓名: cccccc 指导教师: ccccccc

摘要 近几十年来,随着电力电子技术、微电子技术以及现代控制理论的发展,小功率电动机具有极其广泛的应用。三相异步电动机是世界上最常见的电动马达。它的流行是因其坚固耐用,结构简单,易保护,尺寸规范并且成本较低。三相异步电动机的种类很多,但各类三相异步电动机的基本结构是相同的,它们都由定子和转子这两大基本部分组成,在定子和转子之间具有一定的气隙。其转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而产生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。 本实验采取三相异步电动机接触器和按钮双重联锁正反转控制。由于采取了接触器常闭辅助触头的联锁功能,有采用了按钮联锁的功能,故电路具有双重连锁功能。这种控制线路集中了接触器联锁和按钮联锁的两种正反转电路的优点,此电路不仅具有操作简单方便的特点,而且能安全可靠地实现正反转运行,是机床电气控制中经常采用的线路 关键词:三相异步电动机;正反转;按钮联锁;触点联锁;双重连锁;

目录 摘要 (1) 引言 (2) 1. 三相异步电机的概述 (2) 1.1 三相异步电机的工作原理 (2) 1.2 三相异步电机的结构 (3) 1.3三相异步电机的分类 (4) 2.三相电机的正反转控制 (4) 2.1 方案选择 (5) 2.2 三相电动机的正反转控制线路 (7) 2.3 启动时应注意的问题 (7) 3、实训心得 (8) 4、参考文献 (8) 5、谢辞 (8)

电力电子课程设计定稿版

电力电子课程设计 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

本科课程设计专用封面 设计题目: Cuk 变换器的设计与仿真 所修课程名称: 电力电子技术课程设计 修课程时间: 2013 年 06 月 17 日至 6 月 23 日 完成设计日期: 2013 年 06 月 23 日 评阅成绩: 评阅意见: 评阅教师签名: 年 月 日 ________学院____专业 姓名_____ 学号_____ ………………………………(密)………………………………(封)………………………………(线)………………………………

Cuk 变换器的设计与仿真 一.设计要求 1)完成Cuk 变换器的设计、仿真; 2)设计要求: 输入:DC100V ; 输出:DC50~150V 二.题目分析 Cuk 电路是一种可升降压的直流变换器电路,它基本可看成是升压电路和降压电路相结合产生的一种开关电路,其电原理图如图1所示 图1 Cuk 主电路图 基本工作原理为: 当控制开关VT 处于通态时,E —L 1—V 回路和R —L 2—C —V 回路分别流过电流。 当控制开关VT 处于断态 时,E —L 1—C —VD 回路和R —L 2—VD 回路分别流过电流。 输出电压的极性与电源电压极性相反。 稳态时电容C 的电流在一周期内的平均值应为零,也就是其对时间的积分为零,即 在书P127页的等效电路中,开关S 合向B 点时间即V 处于通态的时间t on ,则电容电流和时间的乘积为I 2t on 。开关S 合向A 点的时间为V 处于断态的时间t off ,则电容电流和时间的乘积为I 1 t off 。由此可得 off 1on 2t I t I

电机与电力拖动基础课程设计知识分享

一、设计题目: 提升机主电路的设计: 图1—提升机电力拖动系统原理图 图2—提升机电力拖动系统速度图 1.加速阶段t1: 以最大加速度加速,速度由0增加到v1,当v=v1时,电机工作在固有特性上。 2.等速阶段t2: 以v1速度匀速运行。 3.调速阶段t3: 以v2速度匀速运行,v2 =0.7v1。 4.减速阶段t4: 以最大减加速度减速,速度由v2减小0。 二、课程设计的目的

将损坏拖动系统的传动机构。 图3他励直流电动机直接启动接线图 2)降低电源电压启动:将励磁绕组接通电源,并将励磁电流调到额定值,然后从低向高调节电枢回路电压的启动方法称为降低电源电压启动; 要限制启动电流,首先考虑的是降低电动机输入电压,在直流电 动机启动瞬问,给电动机加上较低的电压,以后随着电动机转速 的升高,逐步增加直流电压的数值,直到电动机启动完毕,加在 电动机上的电压即是电动机的额定电压 特点:缩短启动时间,启动过程中能量损耗小,启动平稳,便于实现自动化。需要一套可调的直流电源启动设备,增加初投资。 用减压启动的方法启动并励电动机时必须注意:启动时必须加上 额定的励磁电压,使磁通一开始就有额定值,否则电动机的启动 电流虽然比较大,但启动转矩较小,电动机仍无法启动。 图4降低电源电压启动接线图 3)电枢回路串电阻启动:电枢回路中串接启动电阻以限制启动电流的启动方法称为电枢回路串电阻启动。电枢回路串电阻启动即启动时在电枢回 路串入电阻,以减小启动电流I ,电动机启动后,再逐渐切除电阻, s 以保证足够的启动转矩。

在分级启动过程中,若忽略电枢回路电感,并合理的选择每次切 除的电阻值就能做到每切除一段启动电阻,电枢电流就瞬间增大 到最大启动电流1I 。此后,随着转速上升,电枢电流逐渐下降。 每当电枢电流下降到某以数值2I 时就切除一段电阻,电枢电流就 又突增到最大电流1I 。这样,在启动过程就可以把电枢电流限制 在1I 和2I 之间。2I 称为切换电流。启动电阻分段数目越少,启动 过程中电流变化范围大,转矩脉动大,加速不均匀,而且平均启 动转矩小,启动时间长。 特 点:电枢回路串电阻启动方法所需设备较简单,价格较低,但在启动 过程中在启动电阻上有能量损耗。而降低电源电压启动则所需设 备复杂,价格较贵,但在启动过程中基本上不损耗能量。对于小 直流电动机一般用串电阻启动,容量稍大但不需经常启动的电动 机也可用串电阻启动,而需经常启动的电动机能耗较大,不宜用 于启动的大、中型,可用于小型电机启动 图5电枢回路串电阻启动接线图 选 择:综合分析上述三种启动方法,采用电枢串电阻启动方式。这种方法比较简 单启动,过程中基本上不损耗能量,可以将启动电流限制在容许的范围内。 参数计算: 串接在电枢回路中用以限制启动电流的电阻称为启动电阻,以R s 表示。 为了把启动电流限制在最大允许值s a N R R U I +=1之内,电枢回路中应串入的启 动电阻值为: a N s R I U R -=1 启动后如果仍把s R 串在电枢回路中,则电动机就会在电枢串电阻s R 的认为

相关主题
文本预览
相关文档 最新文档