当前位置:文档之家› 混合动力汽车中锂离子动力电池参数辨识与状态估计

混合动力汽车中锂离子动力电池参数辨识与状态估计

混合动力汽车中锂离子动力电池参数辨识与状态估计
混合动力汽车中锂离子动力电池参数辨识与状态估计

更多电动汽车相关资料论文可联系jijimaoioy@https://www.doczj.com/doc/2d19035096.html,,与同行共同探讨

混合动力汽车中锂离子动力电池参数辨识与状态估计

魏学哲,孙泽昌,田佳卿

(同济大学汽车学院,上海,200092)

摘要:本文从锂离子动力电池的“电流激励-电压响应”出发,通过实验分析了FreedomCar电池模型存在的不足之处,对其提出了改进,并证明了改进模型在混合动力工况下的可行性。根据该线性模型提出了基于最小二乘法的参数辨识的方法,并根据混合动力汽车的具体应用条件提出了并实现了基于“电流-时间窗口”的SOC校准方法。关键词:锂离子动力电池蓄电池管理系统电池模型荷电状态参数辨识

一、引言

能源危机已经初露端倪,而全球范围内要求减少污染改善环保走可持续发展道路的呼声也日益高涨。一方面,能源消耗与环境污染与汽车工业有着最直接的关系,而另一方面汽车工业由于涉及产业链很长,又常常是一个国家的支柱产业,面对这样的形势,整个汽车业又重新把目光投回到电动汽车上,并把开发电动汽车作为今后汽车工业发展的必然方向。

由于目前电池的能量密度与汽油相比还相差甚远,所以工程师们开发了混合动力汽车(HEV-Hybrid Electric V ehicle)。无论对于“机电”混合动力汽车或者“电电”混合动力汽车,作为辅助动力源的蓄电池组都是整车动力系统中的一个重要部分,作用是辅助汽车主动力源,在汽车行驶中有大功率需求时及时响应提供动力,并吸收汽车制动回馈的能量。由此,蓄电池组的工作特点是,在一定的荷电状态(SOC-State of Charge或DOD-Depth of Discharge)范围内工作(通常是30% ~ 70%),在瞬时提供或者吸收较大功率,承受较大的充放电电流,但由于充放电的持续时间不长,因而充放电深度都不大,消耗电池的能量和容量也不大。

锂离子电池以其能量密度和功率密度都较大、无记忆效应、自放电较小及循环寿命较长等特点逐渐受到人们的重视。与之配备的蓄电池组管理系统则必须实时地告诉车辆管理器关于蓄电池组的信息,包括当前电池的荷电状态,电池的充放电能力(最大充放电功率)和电池的老化情况。这些信息必须达到一定的精度要求,因为车辆管理系统将会根据获得的信息,结合整车动力控制策略进行功率和能量的配置,如果蓄电池管理系统提供的信息

不能正确反应电池的实际情况,那将会影响整车的动力性能表现甚至引发严重的安全问题。为获得这些信息,本文建立了锂离子电池的电路模型,在一定电流范围内比较准确地描述电池的电特性响应,并且利用该模型计算了一些能反映电池状态的参量。而所有这些的基础,就是准确地确定了锂离子电池电路模型中的各个参数。

二、蓄电池的电路模型

描述蓄电池电特性的模型有很多,通过对电池的试验及其结果的分析,我们认为由FreedomCAR【1】给出的电池电路模型比较好地描述了电池的电特性,模型如图1所示。

图1 FreedomCAR电池模型

下面结合该模型,对电池试验结果作简要分析。电池试验都是在室温下进行,使用的是Arbin电子负载设备。图2是单体电池的恒流放电特征曲线,曲线的II部分,也就是混合动力汽车上蓄电池组主要工作的荷电状态范围,这一部分的曲线基本呈现直线的状态,类似一个电容,随着电容上电量的减少其两端的电压也相应下降,即对应模型中的电容C0。图3是电池组经受恒流脉冲放电时的电压响应曲线,可以看到,在刚加载上电流以及刚撤除加载电流时,电压值都有一个跳变,类似电流加载到一个纯电阻上后的电压响应,即模型中的R0。而图中两段电压缓慢变化的曲线,则用电流作用在RC并联环节上来描述。使用Matlab/simulink对该模型仿真后的结果如图4所示,仿真曲线与试验数据在形状上相近,但可以看到两者的贴合程度并不理想,故我们对FreedomCAR给出的电路模型上进行适当修正,模型如图5所示,增加一个RC并联环节后的新模型相比原模型,能更准确地描述电池电特性的响应。

图2单体电池恒流充放电特征曲线

331

3323333343353363373383390.00010.00020.00030.00040.00050.00060.00070.00080.00090.000100.000

时间(s )电压(V )331332

333

334

335

336

337

338

339

图3 实际电池组电流脉冲放电电压响应曲线

图4 FreedomCAR 电池模型仿真结果与试验数据比较

图5 基于试验修正的电池电路模型

三、电池电路模型中的参数辨识

锂离子电池充放电的电化学过程十分复杂,且锂离子电池又有非线性和时变性的特点,由理论分析来获得模型中的参数非常困难,所以我们通过对试验曲线的分析,即知道电流输入电压输出的情况下,来计算电池模型中的各个参数,也就是计算出C0、C1、C2、R0、R1和R2的值,再根据计算出的参数值估计电池当前所处的状态,从而做到对电池比较完善的管理,电池模型在整个电池管理系统中的作用如图6所示,其中电流、电压和温度是可以直接测得的一次量,电池管理系统就是要根据这些测得的一次量来估计电池的状态。

图6 电池模型在电池管理系统中的作用

图3所示的电池组电流脉冲放电电压响应的试验曲线包含了丰富的信息。利用该曲线可以计算出模型中的各参数,如下图所示:

图7 电池模型中的参数辨识流程

至此,即可把图1所示的电池电路模型中的C 0、C 1、C 2、R 0、R 1和R 2都计算出来了。整个辨识参数流程可见图7。把这些数值代入后,进行仿真,给电池模型同样加载上20s 的恒流负载,再与实际试验结果进行比较,得到了很好的模拟效果,如图8所示,其中黑色曲线为仿真结果。

图8 电池电路模型仿真结果与试验数据比较 四、基于模型的窗口法SOC 估计:

在实车运行时,SOC 是电池管理系统向整车管理系统(VMS )传输的重要信息之一,对电池本身来说,电池的一些电特性也与其所处的荷电状态有关,因此做到正确地估算蓄电池的SOC 是十分必要的。

估算SOC 值比较简单的方法是电流积分法。其计算公式如下,C idt SOC SOC initial ?+=,其中SOC initial 是每次行车开始前,根据电池的开路电压查SOC-OCV 关系表得到的SOC 初始值,C 是电池的容量,SOC-OCV 关系曲线可以事先在

试验室内做好。该算法存在的缺陷之一是由于采用积分方式,电流测量所引起的误差会逐渐累积起来,由于混合动力汽车电池的容量较小,而对于汽车来说连续行驶3-4小时是很平常的工况,因此较小的电流测量误差会随着时间的积累而变得与电池容量具有相当的可比性了,缺陷之二是电池的容量是随电池的电流变化的,而上述方法没有考虑这一点,因此该方法在行车时电池的SOC 值会变得很不准确,并且难以控制误差。

通过对电池的试验,即对电池作不同次数的来回充放电循环后再分别做出SOC-OCV 对应关系曲线,我们发现新老电池的SOC-OCV 对应关系曲线有很好的重合性,该现象说明开路电压对应的不是电池的绝对容量,而是电池的相对容量,用开路电压来查找对应的SOC 值可以获得比较好的准确度。于是,为了消除电流积分带来的误差累积,在计算SOC 值时,仍旧使用C idt SOC SOC initial ?+=该公式,但可以每隔一定时间就用SOC-OCV 的对应关系来求一次SOC ,相当于每隔一定时间对SOC 作一次校正,即避免了误差的长期积累。OCV 是电池静置足够长时间后电池的端电压(实验表明需大于15min ),但如何在电池有负载情况下,即行车过程中来获得某一时刻电池的OCV 值呢?借助电池的电路模型以及经辨识后的参数,可以找到适用在混合动力工况下的相应处理方法。

图9 UDDS 工况下电池电流

分析“电-电混合”燃料电池轿车上蓄电池组的使用工况,如图9所示,该波形为电池在UDDS 工况下电流波形,由上图可知,电池上真正处于大电流的时段并不多,电池组大部分时间都处在较小电流的充放电状态,分析其他工况也能得出同样的结论,因此,可以比较容易在行车时得到一段在电池上只有较小电流加载的工况,此时电池近似满足线性化模型,可将某个时刻点之后的电压响应看成是在该时刻点的零输入响应与零状态响应的叠加,同时也记录下这段时间的电流输入。将这段电流输入作用在电池模型上,即可以得到针对这段电流的零状态响应:

???? ??+++++-=0

22110111)()()(SC S R S R R s I s U s Vc ττ

I(s)、U(s)可以通过测量得到,R 1、R 2、C 1、C 2可以通过参数辨识得到,进而RC 电路的时

间常数τ=RC 也可以算出,V C(S)就可以算出确定的值。

而用记录下的总电压响应减去计算得到的零状态响应,即可获得了零输入响应,而零输入响应又等于:

2

211011)(ττs U s U OCV s Vc C C ++++= 其中OCV 、U C1、U C2是未知量。因此,只要在设置的电流-时间窗口的任意三个时刻计算相应的零输入响应,即可列出一个三元三次方程组,从而计算出OCV 。再根据SOC-OCV 关系也就得到了该时刻电池的SOC 值。

在离线环境下,按照上述方法对试验数据进行处理。还是对整组蓄电池进行的试验,先用70A 大小的电流对电池组放电,持续10s ,之后即用六个三角波形状的电流对电池组放电,最大电流为10A ,之后即将电流卸除,整个电流加载过程可见图10。相应地,试验结果电压响应与同样电流加载到电池模型上的仿真结果如图11所示。从图中可以看到,在三角波形状电流加载时,由仿真得到的电压响应与实际的电压响应有很好的吻合,但三角波形状电流撤除后的电压响应与实际的电压响应已经出现一些偏移,原因是模型中的参数值是通过对小电流加载辨识得到的,即表明经小电流加载来确定的参数值已经不再适用于大电流加载的情况,也表明了电池具有的非线性性质,但误差仍在0.5V 之内。如果把大电流70A 卸除时刻,即时间为第10s 的时刻之后的电压响应看成总响应,同时认为电池模型在小电流范围内可以足够精确地反映实际电池的电特性,把三角波形状的电流加载到电池模型后获得的电压响应看成是电池的零状态响应,那么将总响应减去零状态响应,即可得到此对应时刻之后的电池的零输入响应。

图10 试验流程中加载的电流波形

图11 电压响应仿真与试验结果比较

上面叙述了用该SOC算法对静态试验数据的处理。同样,在MATLAB/Simulink环境下使用该算法进行仿真,以检验其在动态过程中的计算精度。算法流程大致可以分成四步,如图12所示。首先进行电流判断,辅助动力模式下对电池的小电流加载工况经常发生,因此设置一个电流-时间窗口,假设起始与终止时刻分别为t1和t2,记录下该时间段内的电流电压值,而该时间段内的电流大小的绝对值都小于20A,即认为在小电流情况下,电池模型参数不随电流输入的变化而改变;接着,将记录下的电流值作用到电池模型上,计算得电池的零状态响应,结合记录下的总电压响应,即可得电池在该时间窗口段的零输入响应;然后,用外推法计算电池在t1时刻的OCV,在前一步中虽然已求得电池的自t1时刻起到t2时刻止的零输入电压响应,但由于不可能把时间窗口设得无限长,因此实际上这段时间内的任何一个具体电压值都不能完全代表电池最终的OCV值,然而回到电池电路模型可知,这段时间是电容C1、C2分别在R1、R2上放电的过程,将这段电压扣除由欧姆电阻引起的压降再稍做变形处理后得出的电压响应是满足该放电过程的,故从中可反求得电容C1和C2上的初始电压,再补上先前扣除的欧姆压降,最终计算求得OCV;最后,利用OCV-SOC关

系表查出电池在

t时刻的SOC值。

1

图12 SOC算法流程简图

五、结论

通过上述分析,可以得到以下结论:

(1) 对电池进行测试,通过对试验结果的分析,并应用适当的数学方法,可以计算出

图5所示电池电路模型中的各个参数值,再与实际试验数据比较后,得到了很好的模拟效果;

(2) 实际的锂离子电池是时变非线性系统,根据本文所述的方法计算得到的模型中的

各个参数值,对于较小加载电流是适用的,而对于较大电流则不再适用,即模型的线性化

仅在电流较小的范围内适用,但过小的电流将导致电池端电压变化量过小,不易准确测量;

但在混合动力汽车中应用时,可利用该辨识方法确定电池在给定电流下其内阻及时间常数

随温度和寿命变化。

(3) 在线性模型的基础上,利用混合动力工况下电池存在较长时间小电流的特性,本

文提出了基于模型的窗口法SOC估计,可在条件满足时对积分法进行校准,可很好地控制SOC估计的误差。

参考文献

[1].FreedomCAR Battery Test Manual For Power-Assist Hybrid Electric Vehicles, 2003.10

[2].Suleiman Abu-Sharkh, Dennis Doerffel: Rapid test and non-linear model characterization of solid-state lithium-ion batteries. In: Journal of Power Sources 130(2004) P266-274.

[3].秦曾煌:电工学,1998,高等教育出版社。

[4].薛定宇,陈阳泉:基于MA TLAB/Simulink的系统仿真技术与应用,2002,清华大学出

版社。

li-ion power battery parameter identification and

state estimation in HEV

weixuezhe,sunzechang,tianjiaqing

(college of automotive engineering,tongji university)

Abstract: After analysis of voltage response of constant current pulse discharge, the electric circuit model of FreedomCar is revised, and tests are carried out to verify its validation. Then the dynamic characterization of the battery is analyzed based on inputs and outputs of battery management system in HEV, and methods of

on-line parameters identification are advanced, based on parameter identification and usage condition of HEV, A “current-time window” method of soc estimation is put forward and realized.

Key words: li-ion power battery, battery management system ,battery model , SOC ,parameter identification

混合动力汽车中锂离子动力电池参数辨识与状态估计

混合动力汽车动力系统综述

汽车新动力━━━HEV 综述 戴梦萍1 纪永秋2 (1.山东理工大学机械工程学院,255000;2.山东水利技术学院,255000) 摘要:介绍了混合动力电动汽车(HEV )的概念、HEV 动力总成的组成及型式,阐述了其基本工作原理和驱动模式。 关键词:混合动力电动汽车;串联;并联;混联;驱动模式 随着世界经济的持续增长和世界人口的增加、人民生活水平的提高,人均能源消耗将会高速增加,环境污染会变得更加严重。开发新的替代能源、提高热能转换效率和节约能源被认为是解决或缓解环境污染和保障能源供给的有效办法。汽车燃油发动机是消耗矿石能源和制造环境污染的大户,研发替代燃油发动机的新动力势所必然。替代燃油发动机汽车的方案也越来越多,例如氢能源汽车、燃料电池汽车、混合动力汽车等。但目前最有实用性价值并巳有商业化运转的模式,只有混合动力电动汽车。 根据国际机电委员会下属的电力机动车技术委员会的建议,混合动力电动汽车是指由两种和两种以上的储能器、能源或转换器作驱动能源,其中至少有一种能源提供电能的车辆称为混合动力电动汽车。本文介绍的仅是既有内燃机又有电动机驱动的混合动力电动汽车。混合动力电动汽车的关键是混合动力系统,它的性能直接关系到混合动力汽车整车性能。经过十多年的发展,混合动力系统总成已从原来发动机与电机离散结构向发动机、电机和变速器一体化结构发展,即集成化混合动力总成系统。 1 混合动力电动汽车的组成及种类成 1.1 混合动力总成按照驱动系统能量流和功率流的配置结构关系,可分为串联式(Series hybrid system )(两种)、并联式(Parallel hybrid system )和混联式()等三种。(如图1 (a( (a ) 减(变)速器 车轮 车轮 发动机 发电机 蓄电池 电动机 车轮 车轮 发动机 发电机 蓄电池 电动机 减(变)速器 (a) (b)

电动汽车用动力电池

电动汽车用动力电池 摘要 能源危机和环境恶化已成为传统汽车发展的最大障碍,而发展电动汽车能够很好的解决这些问题.电动汽车不仅能够减少燃油消耗,提高经济性,而且还能降低尾气的排放,提高环境质量.电动汽车的关键技术之一是动力电池,动力电池的好坏一方面决定着电动汽车的成本,另一方面决定着电动汽车的动力性和续驶里程,这2个方面也是电动汽车与传统的燃油汽车竞争的关键所在.能否开发出性价比高的动力电池对电动汽车的未来发展具有至关重要的作用. 关键词:铅酸蓄电池,正负极板,电极,电解液,电子等等。 前言 电池是电动汽车的动力源,是能量的储存装置,也是目前制约电动汽车发展的关键因素。要使电动汽车能与燃油汽车相竞争,关键是开发比能高,比功率大,使用寿命长,成本低的电池...... 电动汽车使用的动力电池可以分为化学电池,物理电池和生物电池三大类。在三大电池当中化学电池又分为:原电池,蓄电池,燃料电池和储备电池,从化石燃料向可再生能源转换的能源革命中蓄电池所起的作用非常大,政府民间都在大力进行研发。物理电池是利用大自然的能量来吸附储存,有太阳能电池,超级电容器,飞轮电池等等。生物电池是利用生物化学反应发电的电池,如微生物电池,酶电池,生物太阳能电池等。 电动汽车用动力电池的性能指标主要是:电压,容量,内阻,能量,功率,输出功率,自放电率,使用寿命等,根据电池种类不同,其性能指标也有所不同。 电动汽车对动力电池的要求是:(1)比能量高:主要是为了提高电动汽车的继驶里程;(2)比功率大:为了能使电动汽车的加速行驶以及负载能力;(3)充放电效率高;(4)相对稳定性好;(5)使用成本低;(6)安全性好等等。 正文 在电池的发展史之中,铅酸蓄电池是最成熟的电动汽车蓄电池。我们常用的铅酸蓄电池主要分为三类,分别为普通蓄电池、干呵蓄电池和免维护蓄电池三种。铅酸蓄电池是蓄电池的一种,主要是采用稀硫酸做电解液,用二氧化铅和绒状铅分别作为电池的正极和负极的一种酸性蓄电池。 基本构造:铅酸蓄电池主要由以下部分构成:1.硬橡胶管 2.负极板 3.正极板4。隔板5.鞍子6.汇流排7.封口胶8.电池槽盖9.连接10.极柱11.排气栓

油电混合动力车电池介绍(一)参数与特性

油电混合动力车电池介绍(一):参数与特性 油电混合动力车电池介绍(一)-参数与特性 以后可能需要研究与电池有关的成组,电池管理,电池充电和电池保护等高压系统的东东,了解一下电池的一些特性还是有必要的,在此把我收集到的一些东西整理一下。 容量:电池容量是衡量电池可以存储能量的指标。电池可以输出的能量数量取决于温度,放电速率,电池老化和电池类型。很难用一个指标来描述电池的容量,主要有三个指标用来确定电池的额定容量: 安时(Ampere-hour): 表示电池能够以恒定速率输出的电流,在超过规定的时间条件下。通常用于汽车的12V电池,标准是20安时,20小时放电。一般规定是在25℃,以恒定电流放电20小时至终止电压(1.75V/单格),用Cn表示。n指几小时放电率,这里为20。有些电池是以10小时放电率计算的,用C10表示。例:100Ah/12V的电池指该电池以5A(0.05C)的电流恒定放电直至终止电压10.5V,可连续放电20小时。 储存能(Reserve Capacity): 时间长度(分钟为单位)表征电池的容量,用来定义电池在无发电机充电的情况下维持汽车运转的时间。 瓦特小时(kWh Capacity): 千瓦时的指标是考虑电池耗尽的能量的指标,是以能量为指标的(伏特*安培*时间)。电池耗尽通常并不是完全放电的电池,一个12伏汽车电池耗尽时,被认为是其电压下降到10. 5V的时候,一个6V的电池耗尽时,通常考虑的电压下降到5.25V。 以上三个指标都不能完整地描述了电池的容量。每一种是在特定条件下的衡量的方法。电池在实际应用的性能可能有很大的差别,这些条件包括不同的放电/充电率,电池老化,循环

《汽车用动力电池编码标准》征求意见稿-编制说明

《汽车用动力电池编码标准》 征求意见稿-编制说明 一、工作简况 1、任务来源 目前国内外没有统一的汽车用动力电池编码的标准,在进行动力电池产业管理、电动汽车关键参数监控以及动力电池回收利用等工作时,电池信息确认的一致性和唯一性无法实现,迫切需要统一的电池编码规则进行支撑,这是本标准制定的整体背景。 行业管理方面,由于动力电池行业没有统一的编码规则,在行业管理执行时,缺乏标准的支撑,这是本标准制定的背景之一。 电动汽车关键参数监控工作方面,由全国汽标委电动车辆分标委组织制定的《电动汽车远程服务与管理系统技术规范》3项系列标准中,明确提出了将可充电储能系统编码作为车辆登入监控系统的数据进行上传,当发生可充电储能系统更换时,新的编码需要重新上传,而国内缺少统一的电池编码标准,该条款的贯彻实施缺少标准支撑,也是本标准制定的背景之一。 动力电池回收利用方面,为了控制和减少新能源汽车动力蓄电池废弃后对环境造成的污染,规范新能源汽车动力蓄电池回收利用,工业和信息化部(以下简称“工信部”)节能与综合利用司(以下简称“节能司”)委托中国汽车技术研究中心数据资源中心(以下简称“数据资源中心”)开展《新能源汽车动力蓄电池回收利用管理暂行办法》(以下简称《暂行办法》)研究工作。动力蓄电池回收利用管理的核心是立足产品全生命周期,通过溯源实现对动力蓄电池从“出生”到“再生”的全面管控。现阶段,国内各企业对动力蓄电池产品的编码规则各异,阻碍了溯源管理的实施,因此研究制定行业统一的编码标准具有必要性。 在此背景下,2016年3月,《暂行办法》研究工作正式开始,动力电池产品编码标准的研究同步启动,并于2016年7月完成国家推荐性标准立项答辩工作,目前标准立项正在进行过程中,考虑到标准需要的迫切性,经工信部同意,标准研究与立项工作同步进行。 2016年8月,根据前期工作的情况,由工信部统筹协调,将动力电池产业

新能源汽车动力电池行业研究报告

新能源汽车动力电池行业研究报告

目录 1 汽车动力电池行业总体概况 (1) 2 汽车动力电池的分类及发展现状 (1) 2.1 铅酸电池 (2) 2.1.1 铅酸电池的特点 (2) 2.1.2 铅酸电池在中国的发展现状 (3) 2.2 镍氢电池发展现状分析 (3) 2.2.1 国内政策的有利支持 (3) 2.2.2 镍氢电池在汽车生产方面的应用 (4) 2.2.3 镍氢电池与锂电池的对比 (4) 2.3 锂电池发展现状分析 (4) 2.3.1 锂电池的特点 (4) 2.3.2 开发锂电池汽车的主要厂商 (5) 2.3.3 锂电池在我国的发展 (5) 2.3.4 锂离子电池发展的瓶颈 (6) 2.3.5 日本在锂电池标准化方面的发展 (6) 3 世界主要动力电池生产国的发展现状 (6) 3.1日本 (7) 3.2 中国 (8) 3.3 韩国 (10) 3.4 美国 (11) 3.5 电池厂商供应对照表 (11) 4 中国新能源汽车的发展分析 (12) 4.1 政策的支撑下的行业发展 (12) 4.2 目前面临的问题 (14) 4.2.1 价格仍然偏高 (14) 4.2.2 尚无完备的充电站等配套设施 (14) 4.3 新能源汽车在中国市场的主要车型 (14) 4.3.1 在售车型 (14) 4.3.2 即将上市的车型 (15) 4.4 动力电池的检测机构 (15)

1 汽车动力电池行业总体概况 新能源汽车是指采用汽油、柴油之外的动力作为动力源的汽车的总称,按动力源的不同,主要有三种:混合动力汽车(Hybrid Electric Vehicle, HEV)、纯电动汽车(Electric Vehicle,EV)和燃料电池电动汽车(Fuel Cell Electric Vehicle,FCEV)。按照是否依赖外部充电,混合动力汽车又可分为普通HEV和插电式混合动力汽车PHEV(Plug-in hybrid)。 新能源电动汽车最主要的部件是动力电池、电动机和能量转换控制系统,而动力电池要实现快速充电、安全等高性能,是技术门槛最高,也是利润最集中的部分。新能源汽车对电池的要求很高, 必须具有高比能量、高比功率、快速充电和深度放电的性能,而且要求成本尽量低,使用寿命尽量长。 从世界范围来看,新能源汽车将朝着“镍氢——锂电——燃料电池”产业化路径发展,短期能够大范围使用的只有镍氢动力电池,不过,未来3-5年,在锂电池技术成熟后,镍氢电池市场将被锂电池逐渐蚕食。再者,近年来燃料电池技术的突飞猛进使得氢能的梦想21 世纪开始变成现实,而以氢为动力的燃料电池汽车得到了世界各国政府和企业的高度重视,并且取得了重大进展,预计在未来的5-10年内燃料电池汽车将正式进入市场。 2 汽车动力电池的分类及发展现状 当前在电动汽车上得到应用的有铅酸电池、镍镉电池、镍氢电池和锂电池。具体分类如下:

现有电动汽车用动力电池及其发展趋势

电动汽车用动力电池分类及其发展趋势 / 、八 1 前言 上个世纪80 年代以来, 随着全球经济的稳步发展, 汽车的产量和保有量急剧增加。这些燃油汽车所排放的废气造成空气质量日趋恶化。环境问题, 特别是大气环境污染问题, 已引起世界各国, 尤其是发达国家的普遍关注。同时, 目前世界石油资源日趋紧张, 石油价格始终居高不下。因此, 各国政府和各大汽车企业都正在加紧开发无排放或低排放、低油耗的清洁汽车。 进入90 年代, 以美欧为主的一些西方国家开始制订并逐步执行严厉的汽车尾气排放标准, 低能耗、无污染的绿色汽车开始成为人们关注的热点。而电动汽车又是能达到这一目标的为数很少的环保型汽车。迫于形势的要求, 各种新材料和新技术在电动汽车上不断被开发应用, 电动汽车的发展异常迅猛。 2 电动汽车用动力电池分类 2.1 铅酸电池 铅酸电池是采用金属铅作为负极,二氧化铅作为正极,用硫酸作为电解液,放电时,铅和二氧化铅都与电解液反应生成硫酸铅。充电时反应过程正好相反。现在比较广泛的采用免维护的阀控式铅酸电池(VRLA)。总体上说,铅酸电池具有可靠性好、原材料易得、价格便宜等优点,比功率也基本上能满足电动汽车的动力性要求。但它有两大缺点;一是比能量低,所占的质量和体积太大,且一次充电行驶里程较短;另一个是使用寿命短,使用成本过高。由于铅酸电池的技术比较成熟,经过进一步改进后的铅酸电池仍将是近期电动汽车的主要电源。 2.2 镍金属电池 镍氢蓄电池正极活性物质采用氢氧化镍,负极活性物质为贮氢合金,电解液为氢氧化钾溶液,电池充电时,正极的氢进入负极贮氢合金中,放电时过程正好相反。在此过程中,正、负极的活性物质都伴随着结构、成分、体积的变化,电解液也发生变化。相对于其他电池,N 12MH 电池的优异特性表现在:高比 能量(衡量电动车一次充电行驶里程)已与锂离子电池水平相当;高比功率(赋予电

混合动力车的混合度优化设计

三、混合动力车的混合度优化设计: 混合动力汽车的主要技术优势之一,就是从根本上解决了传统汽车由于“大马拉小车”而导致的油耗居高不下的问题,而这种技术优势能否得以充分发挥的关键是通过科学合理的选择混合度,实现真正意义上的“车马匹配”。混合度是混合动力汽车的重要设计参数及混合动力汽车特性参数设计的核心内容,其主要任务是合理确定各动力总成如发动机、电动机、电池的功率和容量等特性参数,而所有这些参数设计中,最为重要的是发动机与电动机功率的确定,即混合度的设计。本文提出了在一定的约束条件下混合度的最优确定原则,其主要的约束条件为动力性能与电池电量平衡。因此,与混合度设计相关的研究问题主要为动力系统总功率的设计方法(由动力性约束条件确定)、电池电量平衡策略(由燃油经济性要求确定)及混合度边值条件的研究。 (一)混合度的基本概念 所谓混合度,指的是电系统功率P elec 占总功率P total 的百分比,即: % 100?= P P t o t a l e l e c R (12-1) 对于不同的传动系构型,混合度的定义会略有不同。对于并联式混合动力汽车混合度定义为: %100?+= P P P e m m R (12-2) 对于串联式混合动力汽车,所有动力均由电动机提供,电动机功率也就是动力源总功率需求,它属于电电混合形式,即发动机发电机组输出的电功率和电池输出的电功率混合一起向电动机提供驱动功率,所以混合度定义为电池系统功率与电动机功率的比值: %100?= P P m ess R (12-3) 式中,P e ,P m 为发动机、电动机功率;P ess 为电能存储系统(即电池)功率。 上述动力源功率是指额定功率,它反映动力源的持续最大输出能力。 混合动力按混合度的分类: 从混合度定义可知,混合度越大.说明发动机占的比例越小,越接近纯电动汽车。相 反,混合度越小,相应发动机功率较大,越接近传统汽车。可以认为传统汽车是混合度为0 的混合动力汽车,而纯电动汽车是混合度为l 的混合动力汽车。

电动汽车用动力蓄电池技术要求及试验方法

《电动客车安全要求》 征求意见稿编制说明 一、工作简况 1、任务来源 为引导和规范我国电动客车产业健康可持续发展,提高电动客车安全技术水平,落实工业和信息化部建设符合电动客车特点的整车、电池、电机、高压线束等系统的安全条件及测试评价标准体系的要求,全国汽车标准化技术委员会于2016年8月启动了本强标的立项和编制工作。 2、主要工作过程 根据有关部门对电动客车安全标准制定工作的要求,全国汽车标准化技术委员会电动车辆分技术委员会组织成立“电动客车安全要求工作组”(以下简称工作组),系统开展电动客车安全要求标准的制定工作。 (1)GB《电动客车安全要求》于2016年底完成立项(计划号20160968-Q-339),2016年12月29日在南充电动汽车整车标准工作组会议上组建了标准制定的核心工作组,启动了强标制定工作,并由起草组代表介绍了标准的背景、编制思路、以及与相关标准的协调性关系。 (2) 2017年2月-3月,基于已开始执行的《电动客车安全技术条件》(工信部装[2016]377号,以下简称《条件》)的工作基础,工作组向电动客车行业主要企业、检测机构等16家单位征求《条件》的实施情况反馈与强制性国标制定建议。 (3) 2017年4月18日,工作组在重庆组织召开标准制定讨论会,会议对《条件》制定情况进行了回顾,对收集到的《条件》执行情况进行了分析讨论。根据讨论结果,针对共性问题形成了专项征求意见表。 (4) 2017年5月-6月,工作组根据重庆会议讨论结果向行业进行强标制定专项意见征求意见。 (5) 2017年6月6日,在株洲召开工作组会议,会议对专项征求意见期间收集的反馈意见进行研究讨论。 (6)2017年6月-10月,工作组依据意见反馈情况和会议讨论结果进行标

电动汽车用动力电池热特性测试规范

文件编号: 孚能科技有限公司企业标准 XXXXX—XXXX 电动汽车用动力电池 热特性测试规范 Traction battery for electric vehicles- Thermal requirements and test methods XXXX - XX - XX发布XXXX - XX - XX实施

目录 前言........................................................................... III 引言............................................................................ IV 电动汽车用动力电池热特性测试规范.. (1) 1 范围 (1) 2规范性引用文件 (1) 3术语和定义 (1) 4符号和缩略语 (3) 5试验条件 (3) 5.1一般条件 (3) 5.2测量仪器、仪表准确度 (4) 5.3测试过程误差 (4) 5.4数据记录与记录间隔 (4) 6试验准备 (4) 6.1 动力电池包试验准备 (4) 6.2 标准循环 (5) 7 实验方法 (5) 7.1 常温工况测试 (5) 7.2 低温工况测试 (6) 7.3 高温工况测试 (7) 7.4 动力电池系统热平衡测试 (8) 7.5 记录测试过程数据记录 (9) 附录A (数据性附录) (10) 表A.1 动力电池包测试关键参数输入表 (10) 表A.2 动力电池包测试试验数据输出表 (11) 表A.3 动力电池包测试试验数据输出表(过程温度变化) (11) 表A.4 动力电池包测试试验数据输出表(过程电量记录) (11)

新能源汽车各种电池详细解释

随着国家对新能源汽车行业扶植力度的加大,越来越多的新能源汽车走进大众的视野。很多汽车品牌强势进军新能源汽车领域,使得新能源汽车技术不断成熟、供消费者选择的车型也越来越多,加上新能源汽车经济实用、绿色环保的特点,越来越多的家庭和企业将新能源汽车作为买车、换车的第一选择。 新能源汽车江湖有句话:“新能源汽车,得电池者得天下”。动力电池技术成了关乎一台新能源汽车性能的关键,因此本期文章,知科君为大家普及一下新能源电动汽车最重要的核心部件---汽车动力电池 首先我们了解下电池,总称为化学电池,现阶段我们将总类的化学电池可以分为; 一次电池,也称干电池,即不能够再充电的电池,如生活中常用的5号碱性电池; 二次电池,即可充电的电池,这也是汽车动力电池最基本的要求; 燃料电池,指正负极本身不含活性物质,活性材料连续不断从外部加入,如氢燃料电池; 对于新能源汽车动力电池,我们主要关注化学电池中的二次电池和燃料电池,也就是有两条技术路线。一条是以锂电池为主要研究方向的二次电池,目前发展迅速可谓“炙手可热”;另一条是一直被寄予厚望的以氢燃料为主要研究方向的燃料电池, 氢燃料电池,目前与二次电池比起来,有一个很大的优势,就是可以在很快时间(五分钟左右)给电池加满燃料,而不是等上几个小时来充满电。氢燃料电池充入的是氢气,而最终产生水分,也没有废旧电池回收的问题,可以说是真正的新能源汽车,但由于氢的来源问题还未实现大规模量产和工业化应用、以及最重要的安全、储存等方面因素,目前发展还是很大的瓶颈,不如二次电池发展的成熟。

在二次电池中,就目前锂电池无论在能量密度,循环寿命和环保性能上都具有很大的优势,是目前动力电池的首选,动力电池技术成了关乎一台新能源车型性能的关键,因此很多车企纷纷押宝在新能源电池领域。目前市面上主流的新能源电动汽车电池种类大致归为铅酸电池、镍氢电池、钴酸锂、锰酸锂、磷酸铁锂以及三元锂(镍钴锰酸锂)等几大门类。今天知科君就带大家从目前市场上动力电池的主流技术路线。去研究研究关于动力电池中的各种门道,看看这些电池都有什么优缺点!哪种才是适合咱们家用的电池类型。 铅酸电池 优点:成本低、低温性较好,价比高 不足:能量密度低、比功率低、寿命特别短、体积大、安全性差 作为比较成熟的技术,因其成本较低,而且能够高倍率放电,性价比高、依然是可供大批量生产的电动车用电池、如电动自行车、摩托车、低速电动车及老年代步车。但是铅酸电池的比能量、比功率和能量密度及使用寿命都很低,以此为动力源的电动车不可能拥有良好的车速及较高的续航里程、因此一般只能用于低速车的使用。 铅酸图片 镍氢电池 优点:价格低廉、技术成熟、寿命耐用性长

混合动力车的混合度优化设计

三、混合动力车的混合度优化设计 混合动力汽车设计主要指整车特性参数设计.它是在系统构型与总成类型选择的基础上,对总成参数进行合理匹配设计与优化的一系列过程,其主要任务是合理确定各动力总成如发动机、电动机、电池的功率和容量等特性参数,而所有这些参数设计中,最为重要的是发动机与电动机功率的确定,即混合度的设计,因为在确定了发动机功率后,其他特性参数如发动机最高转速、最大转矩和机械传动系参数等都可以按传统汽车的设计方法来进行研究和确定,电池参数可依据电动机参数来进行选择,因此混合动力汽车特性参数设计的核心问题是两动力源之间功率的合理匹配,即混合度的设计。 (一)混合度的基本概念 所谓混合度,指的是电系统功率P elec 占总功率P total 的百分比,即: % 100?= total elec P P H (12-1) 对于不同的传动系构型,混合度的定义会略有不同。对于并联式混合动力汽车混合度定义为: %100?+= e m m P P P H (12-2) 对于串联式混合动力汽车,所有动力均由电动机提供,电动机功率也就是动力源总功率需求,它属于电电混合形式,即发动机发电机组输出的电功率和电池输出的电功率混合一起向电动机提供驱动功率,所以混合度定义为电池系统功率与电动机功率的比值: % 100?= m ess P P H (12-3) 式中,P e ,P m 为发动机、电动机功率;P ess 为电能存储系统(即电池)功率。 上述动力源功率是指额定功率,它反映动力源的持续最大输出能力。 从混合度定义可知,混合度越大.说明发动机占的比例越小,越接近纯电动汽车。相 反,混合度越小,相应发动机功率较大,越接近传统汽车。可以认为传统汽车是混合度为0 的混合动力汽车,而纯电动汽车是混合度为l 的混合动力汽车。 如图12-28所示.不同的混合度代表不同类型的汽车,从传统型到助力型、双模式、续驶里程延伸型.最后到纯电动,混合度是逐渐增大的。从混合动力汽车类型与混合度关系可 以看出,对于双模式型,即电功率与发动机功率基本相同,混合度约为50%。这种类型汽车的主要特点为:既可以充当传统汽车在郊外行驶,也可充当纯电动汽车以零排放模式行驶相当长距离。因此,这种系统的发动机、电动机与电池选择都较大.系统复杂,成本较高。续驶里程延伸型HEV 是在普通电动车辆上增加一附加的车载能源(或原动机)并及时为蓄电池补充充电(或承担部分车辆行驶功率),减小蓄 电池的能量消耗,延长电动车辆的续行里程,其电池组容量通常较大,使整车质量与成本增加,另外,其电机功率通常大于发动机功率.即混合度大于50%。而助力型HEV .发动机

汽车用动力锂离子电池及系统项目环境影响报告书(doc 112页)

汽车用动力锂离子电池及系统项目环境影响报告书建设单位: 编制单位: 证书编号: 编制时间:

南侧园区道路及16栋厂房北侧园区道路及两侧标准厂房东侧园区道路及租赁9、12栋厂房西侧园区道路及10、13栋标准厂房西侧290m柳东新区公租房1#临时污水处理站

概述 1、建设项目特点 上海XXXX(下简称“XX公司”)成立于2010年5月,是由中国汽车技术研究中心(CATARC)、日本英耐时株式会社(ENAX)等共同出资设立的中外合资公司,专业从事动力锂离子电池研发、生产和销售。XX公司位于上海市嘉定工业区,占地万平方米。公司具有国内先进的动力锂离子电池研发技术和生产工艺,研发生产的动力锂离子电池比能量高,比功率高,循环寿命长,安全性好。2015年10月12日,工信部装备司公示符合《汽车动力蓄电池行业规范条件》企业及产品目录(第一批),此次目录共入选10家汽车动力电池企业及36个型号的动力电池产品,除了2家镍氢电池厂家之外,上海卡耐名列8家名单之列。 近年来,我国新能源汽车特别是电动汽车发展迅猛,工业与信息化部2012年“新能源汽车及节能汽车产业发展计划”确定发展以电动汽车(EV)和插电式混合动力车(PHEV)为核心的新能源汽车产业,明确在2020年之前实施千亿投资进行扶持,到2020年实现普及500万辆新能源汽车。目前,新能源汽车用动力电池中,因为锂离子电池具有比能量高,寿命长等优点,成为新型高能汽车动力电池的最佳方案,由于车用锂离子动力电池对一致性、安全性要求较高,因此能否生产出高品质、低成本的锂离子电池将成为发展电动汽车的关键。 在此背景下,上海卡耐新能源在柳州市成立广西卡耐新能源,在柳州市柳东新区通过租赁标准厂房的形式投资建设汽车用动力锂离子电池及系统项目。项目建成后形成年产800万片锂离子电池,用于生产5万套电池系统,可配套5万辆电动轿车使用。 2、环境影响评价的工作过程 本项目为锂离子电池制造产业,属于《产业结构调整指导目录(2011年本)(修正)》的鼓励类“锂离子电池、氢镍电池、新型结构(卷绕式、管式等)密封铅蓄电池等动力电池”项目,柳州市柳东新区管理委员会工业和信息化局以柳东工信函[2016]49号文同意本项目备案,而且建设单位符合《汽车动力蓄电池行业规范条件》,项目建设符合相

新能源汽车各种电池详细解释

新能源汽车各种电池详 细解释 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

随着国家对新能源汽车行业扶植力度的加大,越来越多的新能源汽车走进大众的视野。很多汽车品牌强势进军新能源汽车领域,使得新能源汽车技术不断成熟、供消费者选择的车型也越来越多,加上新能源汽车经济实用、绿色环保的特点,越来越多的家庭和企业将新能源汽车作为买车、换车的第一选择。 新能源汽车江湖有句话:“新能源汽车,得电池者得天下”。动力电池技术成了关乎一台新能源汽车性能的关键,因此本期文章,知科君为大家普及一下新能源电动汽车最重要的核心部件---汽车动力电池 首先我们了解下电池,总称为化学电池,现阶段我们将总类的化学电池可以分为; 一次电池,也称干电池,即不能够再充电的电池,如生活中常用的5号碱性电池; 二次电池,即可充电的电池,这也是汽车动力电池最基本的要求; 燃料电池,指正负极本身不含活性物质,活性材料连续不断从外部加入,如氢燃料电池; 对于新能源汽车动力电池,我们主要关注化学电池中的二次电池和燃料电池,也就是有两条技术路线。一条是以锂电池为主要研究方向的二次电池,目前发展迅速可谓“炙手可热”;另一条是一直被寄予厚望的以氢燃料为主要研究方向的燃料电池,氢燃料电池,目前与二次电池比起来,有一个很大的优势,就是可以在很快时间(五分钟左右)给电池加满燃料,而不是等上几个小时来充满电。氢燃料电池充入的是氢气,而最终产生水分,也没有废旧电池回收的问题,可以说是真正的新能源汽车,但由于氢的来源问题还未实现大规模量产和工业化应用、以及最重要的安全、储存等方面因素,目前发展还是很大的瓶颈,不如二次电池发展的成熟。

特斯拉电动汽车动力电池管理系统解析

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统(Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

混合动力汽车发展现状及趋势修订稿

混合动力汽车发展现状 及趋势 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

混合动力汽车发展现状及趋势 摘要 在能源和环境危机的双重压力之下,汽车行业渐渐从传统地燃油慢慢向新能源汽车转型。其中混合动力汽车在新能源汽车中占有重要的地位。本文主要对混合动力汽车发展的必然性,及其我国在发展中存在的一系列问题进行了分析。指出了混合动力汽车的优缺点,并为其在未来的发展中提出了展望。 关键词:混合动力汽车,存在问题,研究前景 引言 随着全球经济的发展,汽车保有量逐年增加,汽车尾气对空气的污染也日益加重,这对石油资源和生态环境带来极大的挑战。因此汽车行业不得不从传统的耗能模式到节能环保的耗能模式进行转型。近年来,以纯电动汽车、混合动力汽车、燃料电池汽车为代表的新能源汽车取得了重大的进展。但是由于现阶段作为纯电动汽车和燃料电池汽车的关键部件之一的电池存在能量密度低、寿命较短、价格较高和电池本身的污染等问题,使得电动汽车的发展进度和产业化受到的比较严重的限制。其性价比也无法与传统的内燃机汽车相抗衡。此时混合动力汽车就很好的弥补了电动汽车的缺点。所谓混合动力就是将电动机和辅助动力单元组合作为驱动力,辅助动力单元实际上是一台小型燃料发机或动力发电机组。这样既利用了发动机持续工作时间长,动力性好的优点,又可以发挥电动机无污染、低噪声的好处。在现阶段,混合动力有很好的发展前景。 1.国内外发展现状 国外发展现状 20世纪90年代以来,世界许多着名汽车生产厂商已将研究的重点转向了可实施性较强的混合动力电动汽车,目前世界上生产、研发HEV的国家主要有日本、美国和欧洲汽车强国。其中日本的实力最雄厚。 丰田公司1997年8月推出其第一款混合动力汽车Toyota Coaster Hybrid EV minibus,同年12月,推出Toyota Prius(普锐斯)这是世界第一款大量生产的混合动力汽车。自第一代Prius开始销售以来,截止到中Prius标准型每升汽油可行驶公里。到2010年7月31日,累计销量已超过268万辆。目前市场上正热销的两款

纯电动汽车用动力电池的分类及应用的研究

纯电动汽车用动力电池的分类及应用的研究 发表时间:2017-10-20T13:34:18.647Z 来源:《防护工程》2017年第16期作者:李永光 [导读] 作为电动汽车特别是纯电动汽车动力源的动力电池,其相应特性必须满足电动汽车行驶。 中国汽车技术研究中心排放节能部耐久试验室天津东丽区 300300 摘要:随着全世界石油被大量开采,能源危机越来越严重,同时,大量消耗石油所带来的环境问题也逐渐成为了各国,各类人群所关心的重大课题。因此,开发替代石油的、零污染或低污染的交通工具成为各国追求的目标,而电动汽车的无低污染优点,正迎合汽车发展的主要方向。动力电池技术是电动汽车的核心技术之一,动力电池性能的好坏与发展电动汽车的前景息息相关。鉴于此,文章重点就纯电动汽车用动力电池的分类及其应用进行探究。 关键词:纯电动汽车;动力电池;分类;应用 作为电动汽车特别是纯电动汽车动力源的动力电池,其相应特性必须满足电动汽车行驶、安全性能要求电池热管理系统的设计对电池温度、电压均衡,电池系统性能有重要影响,继而影响动力电池的安全、一致和耐久性能。因此,开展纯电动汽车动力电池分类及应用研究十分重要。 一、纯电动汽车的主要特点 纯电动汽车相对于传统燃油汽车而言,主要差别在于个大部件驱动电机,控制器,动力电池和充电器,纯电动汽车的性能也与大部件的选用配置直接相关。纯电动汽车时速快慢和启动速度取决于驱动电机的功率和性能,纯电动汽车的驱动电机目前有直流有刷、无刷、永磁、电磁之分,再有交流步进电机等,另外,驱动电机的调速控制也分有级调速和无级调速,有采用电子调速控制器和不用调速控制器之分。电动机有轮毅电机、轮边电机、单电机、多电机和组合电机驱动等纯电动汽车续驶里程长短和安全性取决于动力电池容量和性能,动力电池的重量通常会占到整车重量的五分之一到六分之一,其性能取决于选用何种动力电池,如铅酸、镍氢、铿离子等,不同类型的动力电池其比功率,比能量,循环寿命等特性亦不相同。电动汽车控制器通过总线获得电机和电池系统的相关信息,进行分析和运算,通过总线给出电机控制和电池管理指令,实现整车驱动控制、能量优化控制和制动回馈控制。充电器是采用高频电源技术,运用先进的智能动态调整充电技术。一般充电机采用恒流、恒压、小恒流智能个阶段充电方式,充电机自身还具有反接、过载、短路、过热等多重保护功能及延时启动,软启动、断电记忆自启动功能等,能实现科学的充电控制技术,全自动充电机能在蓄电池充足后自动关机,确保蓄电池不过充,不欠充,延长蓄电池寿命。 二、纯电动汽车蓄电池的种类 (一)铅酸电池 铅酸电池是采用金属铅作为负极,二氧化铅作为正极,用硫酸作为电解液,放电时,铅和二氧化铅都与电解液反应生成硫酸铅。充电时反应过程正好相反。现在比较广泛的采用免维护的阀控式铅酸电池。总体上说,铅酸电池具有可靠性好、原材料易得、价格便宜等优点,比功率也基本上能满足电动汽车的动力性要求。但它有两大缺点;一是比能量低,所占的质量和体积太大,且一次充电行驶里程较短;另一个是使用寿命短,使用成本过高。由于铅酸电池的技术比较成熟,经过进一步改进后的铅酸电池仍将是近期电动汽车的主要电源。 (二)镍金属电池 镍氢蓄电池正极活性物质采用氢氧化镍,负极活性物质为贮氢合金,电解液为氢氧化钾溶液,电池充电时,正极的氢进入负极贮氢合金中,放电时过程正好相反。在此过程中,正、负极的活性物质都伴随着结构、成分、体积的变化,电解液也发生变化。相对于其他电池,Ni2MH电池的优异特性表现在:高比能量(衡量电动车一次充电行驶里程)已与锂离子电池水平相当;高比功率(赋予电动车良好的启动、加速、爬坡性能)其性能已高于锂离子电池;长寿命特性(赋予电池良好的经济性)平均寿命300~600次;安全性能高,无污染物,被誉为“绿色电源”。但是目前阻碍其应用的一个重要问题是初始成本太高,而且还有记忆效应和充电发热等问题,充电发热会引发安全问题,因此,要求发展相应可靠的能量管理系统。 (三)锂离子蓄电池 锂离子电池使用锂碳化合物作负极,锂化过渡金属氧化物作正极,液体有机溶液或固体聚合物作为电解液。在充放电过程中,锂离子在电池正极和负极之间往返流动。放电时,锂离子由电池负极通过电解液流向正极并被吸收,充电时,过程正好相反。锂离子电池基本上解决了蓄电池的2个技术难题,即安全性差和充放电寿命短的问题。同时锂离子电池具有高电池单体电压、高比能量和能量密度,可以说是当前比能量最高的电池,工作稳定。它的性能指标都可以满足USABC制定的电动车中期目。缺点是自放电率高,初始成本较高。 (四)锂聚合物电池 锂聚合物电池又称高分子锂电池,它也是锂离子电池的一种,但是与液锂电池相比具有能量密度高、更小型化、超薄化、轻量化以及高安全性和低成本等多种明显优势。在形状上,锂聚合物电池具有超薄化特征,可以配合各种产品的需要,制作成任何形状与容量的电池。聚合物锂离子电池所用的正负极材料与液态锂离子都是相同的,电池的工作原理也基本一致。它们的主要区别在于电解质的不同,锂离子电池使用的是液体电解质,而聚合物锂离子电池则以固体聚合物电解质来代替,这种聚合物可以是“干态”的,也可以是“胶态”的,目前大部分采用聚合物胶体电解质。聚合物锂离子电池可以采用高分子作正极材料,其质量比能量将会比目前的液态锂离子电池提高50%以上。此外,聚合物锂离子电池在工作电压、充放电循环寿命等方面都比锂离子电池有所提高。基于以上优点,聚合物锂离子电池被誉为下一代锂离子电池。 三、纯电动汽车充电电池的常用类型 目前电动汽车一般采用铅酸电池、镍氢电池或者锂离子电池等充电电池。铅酸电池技术成熟、价格便宜,但其污染严重,比能量低,一般应用于大型不间断供电电源以及电动自行车;镍氢电池安全性高、耐过充过放性能好,但其比能量低、低温性能差、自放电率高,一般应用于混合电动汽车以及电动工具;锂离子电池相比以上2种电池具有比能量高、循环寿命长、充电功率范围宽、倍率放电性能好、污染

动力电池种类及新能源汽车

电池 ———新能源汽车电池(battery)指盛有电解质溶液和金属电极以产生电流的杯、槽或其他容器或复合容器的部分空间。随着科技的进步,电池泛指能产生电能的小型装臵。如太阳能电池。电池的性能参数主要有电动势、容量、比能量和电阻。 电池原理 在化学电池中,化学能直接转变为电能是靠电池内部自发进行氧化、还原等 化学反应的结果,这种反应分别在两个电 极上进行。负极活性物质由电位较负并在 电解质中稳定的还原剂组成,如锌、镉、 铅等活泼金属和氢或碳氢化合物等。正极 活性物质由电位较正并在电解质中稳定 的氧化剂组成,如二氧化锰、二氧化铅、 氧化镍等金属氧化物,氧或空气,卤素及 其盐类,含氧酸及其盐类等。电解质则是 具有良好离子导电性的材料,如酸、碱、 盐的水溶液,有机或无机非水溶液、熔融 盐或固体电解质等。当外电路断开时,两极之间虽然有电位差(开路电压),但没有电流,存储在电池中的化学能并不转换为电能。当外电路闭合时,在两电极电位差的作用下即有电流流过外电路。同时在电池内部,由于电解质中不存在自由电子,电荷的传递必然伴随两极活性物质

与电解质界面的氧化或还原反应,以及反应物和反应产物的物质迁移。电荷在电解质中的传递也要由离子的迁移来完成。因此,电池内部正常的电荷传递和物质传递过程是保证正常输出电能的必要条件。充电时,电池内部的传电和传质过程的方向恰与放电相反;电极反应必须是可逆的,才能保证反方向传质与传电过程的正常进行。因此,电极反应可逆是构成蓄电池的必要条件。G为吉布斯反应自由能增量(焦);F为法拉第常数=96500库=26.8安〃小时;n为电池反应的当量数。这是电池电动势与电池反应之间的基本热力学关系式,也是计算电池能量转换效率的基本热力学方程式。实际上,当电流流过电极时,电极电势都要偏离热力学平衡的电极电势,这种现象称为极化。电流密度(单位电极面积上通过的电流)越大,极化越严重。极化现象是造成电池能量损失的重要原因之一。极化的原因有三:①由电池中各部分电阻造成的极化称为欧姆极化;②由电极-电解质界面层中电荷传递过程的阻滞造成的极化称为活化极化;③由电极-电解质界面层中传质过程迟缓而造成的极化称为浓差极化。减小极化的方法是增大电极反应面积、减小电流密度、提高反应温度以及改善电极表面的催化活性。 2012年4月18日国务院总理温家宝主持召开国务院常务会议,研究部署今年政府信息公开重点工作,讨论通过《节能与新能源汽车产业发展规划(2012—2020年)》,会议指出,加快培育和发展节能与新能源汽车产业,对于缓解能源和环境压力,推动汽车产 业转型升级,培育新的经济增长点,具有重要意义。要以纯电驱动为汽车工业转型的 主要战略取向,当前重点推进纯电动汽车和插电式混合动力汽车产业化,推广普及非 插电式混合动力汽车、节能内燃机汽车,提升我国汽车产业整体技术水平。争取到2015年,纯电动汽车和插电式混合动力汽车累计产销量达到50万辆,到2020年超过500万辆;2015年当年生产的乘用车平均燃料消耗量降至每百公里6.9升,到2020年降至5.0升;新能源汽车、动力电池及关键零部件技术整体上达到国际先进水平

混合动力汽车参数优化

混合动力汽车动力系统参数的优化方法 混合动力汽车各动力元件参数及控制策略参数对汽车性能有着很大的影响。对系统参数的优化研究已经成为现代汽车设计的一个重要环节,其主要思想是借助计算机工具,以重要的系统参数或控制参数为设计变量,确定目标函数及约束函数,建立系统匹配数学模型,结合可靠的汽车仿真工具软件,选择优化算法进行求解,得到一组最优解或近似最优解来指导汽车后续设计,从而达到系统最佳匹配。提高燃油经济性,减少排放,并且满足一定的动力性要求。[1] 1.优化算法 HEV 的系统优化是一个多变量多目标的非线性约束优化问题, 其一般形式可表示为 一般处理此类优化问题的优化算法按需不需要计算函数的导数信息分为基于梯度的算法和非梯度算法两大类。 基于梯度的算法, 需要计算函数的导数信息, 其中SQP算法是求解约束优化问题最有效的解法之一。其基本思想是:在每一迭代步通过求解一个二次规划子问题来确定一个下降方向,以减少价值函数来取得步长,重复这些步骤直到求的原问题的解[2]。matlab非线性规划工具箱中的FMINCON函数使用了这一算法。 但是混合动力汽车系统比较复杂,其函数导数信息不易计算,而错误的导数信息将会影响最优解的搜索方向以及收敛性, 从而陷入局部最优。图1是一个两变量的HEV优化决策空间,可以看出含有多个局部最优解,因此在这里基于梯度的算法往往会失效。

图1 非梯度算法不需要计算函数的导数信息,因此可以收敛到全局最优。目前应用于HEV 系统优化的非梯度算法有Complex, DIRECT 等, 都具有较好的效果。 DIRECT算法是一种确定性全局优化算法,特别适用于具有确定变量空间的函数寻优。在DIRECT 算法中,对取值范围进行归一化,从而将变量空间变成一个n维超立方。该算法首先计算变量空间中心点处函数值,然后不断分割变量空间并比较分割出的子空间中心点处函数值,最终获得全局最优函数值[3]如文献3中就是采用DIRECT进行参数的优化。 随着现代最优化技术的发展,现代优化算法如模拟退火、遗传算法、粒子群算法等也逐渐应用于混合动力汽车系统参数的优化。 在HEV 中应用较多的是遗传算法( GA) 。遗传算法是模拟自然界遗传机制和生物进化论而形成的一种过程搜索全局最优解的算法[4].文献5中就是采用遗传算法进行参数的优化。遗传算法能实现多目标优化,因此具有很大的研究和应用价值,是国内外优化算法研究的重要方向。 但是基本遗传算法(Simple Genetic Algorithm ,SGA)难以兼顾多样性和收敛性的问题,容易出现早熟现象(即很快收敛到局部最优而非全局最优)、后期收敛速度慢、遗传漂移现象、局部寻优能力较弱、进化速度缓慢等问题,因此可以结合其他算法的优点对基本遗传算法进行改进,构成混合遗传算法(Hybrid Genetic Algorithm)[6]。混合遗传算法的实现主要有两类[7]:一是对遗传算法本身做进一步改进,如基于小生境的遗传算法(Niched Genetic Algorithm,NGA)和自适应遗传算法 (Real-coded Adaptive Genetic Algorithm , RAGA)[8]等;二是将遗传算法与其他优化算法结合(如SQP、模拟退火算法[9]等),从而提高局部寻优能力。 DIRECT和遗传算法的运算速度都比较慢,文献10中的运算时间达到了86个小时。而文献13中利用DIRECT和GA-SQP算法优化单目标函数则分别用了144h和121h,尽管如此仍未得到全局最优解。 粒子群算法(Particle Swarm Optimization,PSO)与遗传算法类似,也是一种模拟自然规律的优化算法。系统初始化为一组随机解,通过迭代搜寻最优值。但是它没有遗传算法用的交叉(crossover)以及变异(mutation),而是粒子在解空间追随最优的粒子进行搜索。同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域。如文献11中就是采用粒子群算法进行参数的优化。理论上粒子群算法也可以应用于多目标优化问题,但是其不像遗传算法那样已经相对比较成熟,仍停留于研究的初步阶段。

相关主题
文本预览
相关文档 最新文档