当前位置:文档之家› 实验十五 偶极矩的测定

实验十五 偶极矩的测定

实验十五  偶极矩的测定
实验十五  偶极矩的测定

实验十五偶极矩的测定

一、实验目的

1.测定正丁醇的偶极矩,了解偶极矩与分子电性质的关系。

2.掌握溶液法测定偶极矩的原理和方法。

二、预习要求

1.了解溶液法测定偶极矩的原理、方法和计算。

2.熟悉小电容仪、折射仪和比重瓶的使用。

三、实验原理

1.偶极矩与极化度

分子呈电中性,但因空间构型的不同,正负电荷中心可能重合,也可能不重合,前者为非极性分子,后者称为极性分子,分子极性大小用偶极矩μ来度量,其定义为

μ=gd(1)

式中,g为正、负电荷中心所带的电荷量;d是正、负电荷中心间的距离。偶极矩的SI单位是库[仑]米(C·m)。而过去习惯使用的单位是德拜(D),

1D=3.338×10-30C·m。

若将极性分子置于均匀的外电场中,分子将沿电场方向转动,同时还会发生电子云对分子骨架的相对移动和分子骨架的变形,称为极化。极化的程度用摩尔

极化度P来度量。P是转向极化度(P

转向)、电子极化度(P

电子

)和原子极化度(P

原子

)

之和,

P =P转向+ P电子+ P原子(2)

其中,

(3)

式中,N A为阿佛加德罗(Avogadro)常数;K为玻耳兹曼(Boltzmann)常数;T为热力学温度。

由于P

原子在P中所占的比例很小,所以在不很精确的测量中可以忽略P

原子

(2)式可写成

P = P转向+ P电子(4)

只要在低频电场(ν<1010s-1)或静电场中测得P;在ν≈1015s-1的高频电场(紫外可见

光)中,由于极性分子的转向和分子骨架变形跟不上电场的变化,故P

转向=0,P

子=0,所以测得的是P

电子

。这样由(4)式可求得P

转向

,再由(3)式计算μ。

通过测定偶极矩,可以了解分子中电子云的分布和分子对称性,判断几何异

构体和分子的立体结构。

2.溶液法测定偶极矩

所谓溶液法就是将极性待测物溶于非极性溶剂中进行测定,然后外推到无限稀释。因为在无限稀的溶液中,极性溶质分子所处的状态与它在气相时十分相近,此时分子的偶极矩可按下式计算:

(5)

式中,P∞2和R∞2分别表示无限稀时极性分子的摩尔极化度和摩尔折射度(习惯上用摩尔折射度表示折射法测定的P

电子

);T是热力学温度。

本实验是将正丁醇溶于非极性的环己烷中形成稀溶液,然后在低频电场中测量溶液的介电常数和溶液的密度求得P∞2;在可见光下测定溶液的R∞2,然后由(5)式计算正丁醇的偶极矩。

(1)极化度的测定

无限稀时,溶质的摩尔极化度P∞2的公式为

(6)

式中,ε1、ρ1、M1分别是溶剂的介电常数、密度和相对分子质量,其中密度的单位是g·cm-3;M2为溶质的相对分子质量;α和β为常数,可通过稀溶液的近似公式求得:

(7)

(8)

式中,ε

溶和ρ

分别是溶液的介电常数和密度;x2是溶质的摩尔分数。

无限稀释时,溶质的摩尔折射度R∞2的公式为

(9)

式中,n1为溶剂的折射率;γ为常数,可由稀溶液的近似公式求得:

(10)

式中,n溶是溶液的折射率。

(2)介电常数的测定

介电常数ε可通过测量电容来求算,因为

ε = C/C0 (11)

式中,C0为电容器在真空时的电容;C为充满待测液时的电容,由于空气的电容非常接近于C0,故(11)式改写成

ε=C/C空(12)

图1 电容电桥示意图

本实验利用电桥法测定电容,其桥路为变压器比例臂电桥,如图1所示,电桥平衡的条件是

式中,C′为电容池两极间的电容;C S为标准差动电器的电容。调节差动电容器,当C′=C S时,u S=u X,此时指示放大器的输出趋近于零。C S可从刻度盘上读出,这样C′即可测得。由于整个测试系统存在分布电容,所以实测的电容C′是样品电容C和分布电容C d之和,即

C′= C + C d(13)

显然,为了求C首先就要确定C d值,方法是:先测定无样品时空气的电空C′空,则有

C′空= C空+ C d (14)

)的标准物质的电容C′标,则有

再测定一已知介电常数(ε

C′标= C标+C d =ε标C空+ C d (15)

由(14)和(15)式可得:

(16)

将C d代入(13)和(14)式即可求得C溶和C空。这样就可计算待测液的介电常数。

四、仪器与药品

1.仪器

小电容测量仪1台;阿贝折射仪1台;超级恒温槽两台;电吹风1只;比重瓶(10mL)1只;滴瓶5只;滴管1只。

2.药品

环己烷(分析纯);正丁醇摩尔分数分别为0.04,0.06,0.08,0.10和0.12的五种正丁醇—环己烷溶液。

五、实验步骤

方法一:用小电容测量仪测偶极矩

1.折射率的测定

在(25.0±0.1)℃条件下,用阿贝折射仪分别测定环己烷和五份溶液的折射率。

2.密度的测定

在(25.0±0.1)℃条件下,用比重瓶分别测定环己烷和五份溶液的密度。

3.电容的测定

(1)空气C′空的测定

图2 小电容测量仪外型图

小电容测量仪的面板图如图2所示。测定前,先调节恒温槽(以油为介质)温度为(25.0±0.1)℃。用电吹风的冷风将电容池的样品室吹干,盖上池盖。将电容池的下插头( 连接内电极)插入电容仪的m插口,电缆插头插入a插口。测量时,将电源旋钮转向“检查”档,此时表头指针偏转应超过红线(表示电源电压正常,否则应更换新电池)。然后将旋钮转向“测试”档,倍率旋钮置于“1”档。调节灵敏度旋钮,使指针有一定偏转(一开始不可将灵敏度调的太高)旋转差动电容器旋钮,寻找电桥的平衡位置(即指针向左偏转到最小点)。逐渐增大灵敏度,同时调节差动电容器旋钮和损耗旋钮,直至指针偏转到最小。电桥平衡后读取电容值。重复调节三次,三次电容读数的平均值为C′空。

(2)标准物质C′标的测定

用干洁滴管吸取环己烷加入电容池样品室中,溶液要盖过外电极,盖上池盖。用测量C'空相同的步骤测定环己烷的C′标

已知环己烷的介电常数ε

与摄氏温度t的关系,即

ε标= 2.023 - 0.0016(t-20) (17)

(3)正丁醇—环己烷溶液C′溶的测定

将环己烷倒入回收瓶中。用冷风将样品室吹干后再测C′空,与前面所测的C′空值相差应小于0.05pF,否则表明样品室存有残液,应继续吹干。然后装入溶液,同法测定五份溶液的C′溶。

方法二:用精密电容测量仪测偶极矩

1.折射率的测定

同方法一。

2.电容的测定

(1)将PCM1A精密电容测量仪通电,预热20min。

(2)将电容仪与电容池连接线先接一根(只接电容仪,不接电容池),调节零电位器使数字表头指示为零。

(3)将两根连接线都与电容池接好,此时数字表头上所示值既为C′空值。

(4)用1mL移液管移取1mL环己烷加入到电容池中,盖好,数字表头上所示

值既为C′

标已知环己烷的介电常数与温度t的关系式为:ε

=2.023-0.0016(t-20)

(5)将环己烷倒入回收瓶中,用冷风将样品室吹干后再测C′空值,与前面所测的C′空值应小于0.05pF,否则表明样品室有残液,应继续吹干,然后装入溶液(每次装入量严格相同,样品过多会腐蚀密封材料渗入恒温腔,实验无法正常进行),同样方法测定五份溶液的C′

六、数据处理

1.将所测数据列表。

2.根据(17)式计算ε标。

3.根据(16)和(14)计算C d和C空。

4.根据(13)和(12)式计算C溶和ε溶。

5.分别作ε溶—x2图,ρ溶—x2图和n溶—x2图,由各图的斜率求α,β,γ。

6.根据(6)和(9)式分别计P∞2和R∞2.

7.最后由(5)式求算正丁醇的μ。

七、注意事项

1.每次测定前要用冷风将电容池吹干,并重测C′空,与原来的C′空值相差应小于0.01PF。严禁用热风吹样品室。

2.测C′溶时,操作应迅速,池盖要盖紧,防止样品挥发和吸收空气中极性较大的水汽。装样品的滴瓶也要随时盖严。

3.要反复练习差动电容器旋钮、灵敏度旋钮和损耗旋钮的配合使用和调节,在能够正确寻找电桥平衡位置后,再开始测定样品的电容。

4.注意不要用力扭曲电容仪连接电容池的电缆线,以免损坏。

【思考问题】

1.本实验测定偶极矩时做了哪些近似处理?

2.准确测定溶质的摩尔极化度和摩尔折射度时,为何要外推到无限稀释?

3.试分析实验中误差的主要来源,如何改进?

3 溶液法测定极性分子的偶极矩

实验3 溶液法测定极性分子的偶极矩 1 目的要求 (1) 用溶液法测定乙酸乙酯的偶极矩。 (2) 了解偶极矩与分子电性质的关系。 (3) 掌握溶液法测定偶极矩的主要实验技术。 2 基本原理 (1) 偶极矩与极化度:分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。由于其空间构型的不同,其正负电荷中心可以是重合的,也可以不 重合。前者称为非极性分子,后者称为极性分子。 图18-1电偶极矩示意图 图18-2极性分子在电场作用下的定向 1912年德拜提出“偶极矩” μ 的概念来度量分子极性的大小,如图18-1所示, 其定义是 d q ?=μ (1-1) 式中,q 是正负电荷中心所带的电量; d 为正负电荷中心之间的距离;μ 是一个 向量,其方向规定为从正到负。因分子中原子间的距离的数量级为10-10m ,电荷的数量级为10-20C ,所以偶极矩的数量级是10-30C ·m 。 通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,如图Ⅱ-29-2所示趋向电场方向排列。这时我们称这些分子被极化了。极化的程度可用摩尔转向极化度P 转向来衡量。 转向 P 与永久偶极矩2μ的值成正比,与绝对温度T 成反比。 kT N P 3432μπ ?=转向 kT N μ π ?=9 4 (1-2) 式中:k 为玻兹曼常数,N 为阿伏加德罗常数。

在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。这称为诱导极化或变形极化。用摩尔诱导极化度P 诱 导 来衡量。显然P 诱导可分为二项,即电子极化度P 电子和原子极化度P 原子,因此P 诱导=P 电子 +P 原子。P 诱导与外电场强度成正比,与温度无关。 如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。当处于频率 小于1010s -1的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和。 原子电子转向P P P P ++= (1-3) 当频率增加到1012~1014的中频(红外频率)时,电子的交变周期小于分子偶极矩的松弛时间,极性分子的转向运动跟不上电场的变化,即极性分子来不及沿电场方向定向,故转向P =0,此时极性分子的摩尔极化度等于摩尔诱导极化度诱导P 。当交变电场的频率进一步增加到>1015秒-1的高频(可见光和紫外频率)时,极向分子的转向运动和分子骨架变形都跟不上电场的变化。此时极性分子的摩尔极化度等于电子极化度电子 P 。 因此,原则上只要在低频电场下测得极性分子的摩尔极化度P ,在红外频率下测得极性分子的摩尔诱导极化度诱导P ,两者相减得到极性分子摩尔转向极化度转向P ,然后代入(18-2)式就可算出极性分子的永久偶极矩μ来。 (2) 极化度的测定:克劳修斯、莫索和德拜从电磁场理论得到了摩尔极化度P 与介电常数ε之间的关系式: ρ εεM P ?+-= 21 (1-4) 式中,M 为被测物质的分子量;ρ为该物质在TK 下的密度;ε可以通过实验测定。 但(1-4)式是假定分子与分子间无相互作用而推导得到的。所以它只适用于温度不太低的气相体系,对某些物质甚至根本无法获得气相状态。因此后来提出了用一种溶液来解决这一困难。溶液法的基本想法是,在无限稀释的非极性溶剂的溶液中,溶质分子所处的状态和气相时相近,于是无限稀释溶液中溶质的摩尔极化度∞2P ,就可以看作为(1-4)式中的P 。 海台斯纳特首先利用稀释溶液的近似公式。

接触角的测定实验报告

—、实验目的 1. 了解液体在固体表面的润湿过程以及接触角的含义与应用。 2. 掌握用JC2000C1静滴接触角/界面张力测量仪测定接触角和表面张力的方 法。 二、实验原理 润湿是自然界和生产过程中常见的现象。通常将固-气界面被固?液界面所取 代的过程称为润湿。将液体滴在固体表面上,由于性质不同,有的会铺展开来, 有的则粘附在表面上成为平凸透镜状,这种现象称为润湿作用。前者称为铺展润 湿,后者称为粘附润湿。如水滴在干净玻璃板上可以产生铺展润湿。如果液体不 粘附而保持椭球状,则称为不润湿。如汞滴到玻璃板上或水滴到防水布上的情况。 此外,如果是能被液体润湿的固体完全浸入液体之中,则称为浸湿。上述各种类 型示于图仁 图1各种类型的润湿 当液体与固体接触后,体系的自山能降低。因此,液体在固体上润湿程度的 大小可用这一过程自由能降低的多少来衡量。在恒温恒压下,当一液滴放置在固 体平面上时,液滴能自动地在固体表面铺展开来,或以与固体表面成一定接触角 的液滴存在,如图2所示。 图2接触角 铺展润湿 粘附湿润 不银润 浸湿

假定不同的界面间力可用作用在界面方向的界面张力来表示,则当液滴在固体平面上处于平衡位置时,这些界面张力在水平方向上的分力之和应等于零,这个平衡关系就是著名的Young方程,即 yso- ySL= yLG-COS0 (1) 式中ysG, yi_G,ysi.分别为固?气、液?气和固?液界面张力;8是在固、气、液三 相交界处,自固体界面经液体内部到气液界面的夹角,称为接触角,在0°-180°之间。接触角是反应物质与液体润湿性关系的重要尺度。 在恒温恒压下,粘附润湿、铺展润湿过程发生的热力学条件分别是: 粘附润湿Wa = ySG - ySL + yLG zO (2) 铺展润湿S = ysG?ysL?yLG >0 (3) 式中Wa, S分别为粘附润湿、铺展润湿过程的粘附功、铺展系数。 若将(1)式代入公式(2)、(3),得到下面结果: Wa二ysG+yLG -ySL=yLG(1+COS0) (4) S=ySG-ySL-yLG=yLG(COS0-1) (5) 以上方程说明,只要测定了液体的表面张力和接触角,便可以计算出粘附功、铺展系数,进而可以据此来判断各种润湿现象。还可以看到,接触角的数据也能作为判别润湿情况的依据。通常把8=90。作为润湿与否的界限,当8>90°,称为不润湿,当0<90°时,称为润湿,8越小润湿性能越好;当8角等于零时,液体在固体表面上铺展,固体被完全润湿。 接触角是表征液体在固体表面润湿性的重要参数之一,由它可了解液体在一定固体表面的润湿程度。接触角测定在矿物浮选、注水采油、洗涤、印染、焊接等方面

固体表面动态接触角的测定

固体表面动态接触角的测定 一.目的与要求 1.了解固体表面接触角的测量及表面能的计算原理。 2.掌握润湿周长、接触角、表面能的实验测试方法及实验操作。 二.仪器与药品 DCA-150界面分析仪 正己烷(A.R.);无水乙醇(A.R.);二次蒸馏水;聚苯乙烯(Pst)样品 三.基本原理 接触角是表征固体物质润湿性最基本的参数之一,据测量的原理的不同,接触角又可分成平衡接触角和动态接触角(dynamic contact angle),动态接触角(包括前进接触角(advancing contact angle)和后退接触角(receding contact angle)两种。 早在20世纪初期,Wilhelmy测试液体表面张力及接触角的方法:将一定的待测液体装在特定容器中,尽可能垂直固定悬挂的铂金板,升起液面至刚好与铂金板的下边缘相接触,此时铂金板受到液面向下的拉力即为液体的表面张力r r = F w / (L·cosθ) (1) r-液体表面张力(Dyn /cm);F w —吊片所受的力(Dyn);L—润湿周长(cm);θ—接触角(°); 由于绝大多数的液体对于°铂金是完全润湿的,即接触角θ为0°,所以只要知道润湿周长,就可从(1)式很方便计算得到液体的表面张力 1.平衡接触角 又叫静态接触角,根据Wilhelmy理论,只要将待测固体加工成规定尺寸的片状样品,然后垂直悬挂与已知表面张力的液面接触,同样可以依据(1)计算得到液体在固体表面的平衡接触角。 2.动态接触角 Wilhelmy法:如图2依据Wilhelmy理论,把样品板插入到液体中然后抽出来,通过测量样品板受力变化计算得到液体在固体表面的动态接触角的大小。

偶极矩的测定

偶极矩的测定 XXX 中国科学技术大学材料科学与工程系,合肥 联系人Email :XXX 摘要:本实验通过溶液法测定正丁醇偶极矩。通过测定不同浓度正丁醇的环己烷稀溶液的折射率、密度、介电常数,利用外推法得到一系列数据,从而计算得到正丁醇分子的偶极矩。 关键词: 偶极矩溶液法外推法正丁醇极性分子 ABSTRACT:In this experiment,we determined the dipole moment of Butanol by usingsolution method.Wemeasuredthe density, dielectric constantand refractive index of Butanol cyclohexane solution. Then we used extrapolation to determine the relative value which help calculate the dipole moment of Butanol. Key word: Dipole momentButanol Solution method extrapolation Polar molecule 前言 偶极矩是分子结构的重要参数, 在无机化学、分析化学、有机化学、物理化学中都有涉及。它对判断分子的空间结构, 了解分子中的电荷分布、极性、对称性有重要作用。 分子结构可以被看成是由电子和分子骨架所构成。由于其空间构型不同其正负电荷中心可以重合,也可以不重合,前者称为非极性分子,后者称为极性分子,分子的极性可用偶极矩μ=q?r 来表示。式中r是两个电荷中心间距矢量,方向是从正电荷指向负电荷。q为电荷量,一个电子的电荷为4.8×10-10CGSE,而分子中原子核间距为1? = 10-8cm的量级,所以偶极矩的量级为:μ = 4.8×10-10×10-8 = 4.8×10-18 CGSE×cm = 4.8 Debye,即1 Debye = 10-18 CGSE×cm。电介质分子处于电场中,电场会使非极性分子的正负电荷中心发生相对位移而变得不重合,电场也会使极性分子的正负电荷中心间距增大这样会使分子产生附加的偶极矩(诱导偶极矩)。这种现象称为分子的变形极化。 如将电介质置于交变电场中,则其极化和电场变化的频率有关。交变电场的频率小于1010秒-1时,极性分子的摩尔极化度P中包含了电子原子和取向的贡献。当频率增加到1012-1014秒-1时,电场的交变周期小于分子偶极矩的松弛时间,极性分子的取向运动跟不上电场的变 化,这时极性分子来不及沿电场取向,故P O = 0。当交变电场的频率进一步增加到大于1015 秒-1高频场时,分子的取向和分子骨架的变形都跟不上电场的变化,这时的摩尔极化度称为摩尔折射度R。 这样我们用交变频率为1000HZ的交流电桥测出电容池中各浓度下溶液的电容,用此电容除以真空下电容池的电容即得介电常数。用阿贝折射仪测出可见光下各溶液的折射率,再用分析天平测出各溶液的密度,可定出α、β、γ,而后算出P∞和R∞,进而算出分子的永久偶 极矩μ。 1实验部分 (i)试剂. 正丁醇(分析纯,国药集团化学试剂有限公司) 环已烷(分析纯,国药集团化学试剂有限公司) (ii)仪器. 2W AJ型阿贝折射仪(上海申光仪器仪表有限公司) PCM-1A型精密电容测量仪(南京南大万和科技有限公司)

用拉脱法测定液体表面张力系数物理实验报告

用拉脱法测定液体表面张力系数 液体表层厚度约m 10 10 -内的分子所处的条件与液体内部不同,液体内部每一分子被周 围其它分子所包围,分子所受的作用力合力为零。由于液体表面上方接触的气体分子,其密 度远小于液体分子密度,因此液面每一分子受到向外的引力比向内的引力要小得多,也就是说所受的合力不为零,力的方向是垂直与液面并指向液体内部,该力使液体表面收缩,直至达到动态平衡。因此,在宏观上,液体具有尽量缩小其表面积的趋势,液体表面好象一张拉紧了的橡皮膜。这种沿着液体表面的、收缩表面的力称为表面张力。表面张力能说明液体的许多现象,例如润湿现象、毛细管现象及泡沫的形成等。在工业生产和科学研究中常常要涉及到液体特有的性质和现象。比如化工生产中液体的传输过程、药物制备过程及生物工程研究领域中关于动、植物体内液体的运动与平衡等问题。因此,了解液体表面性质和现象,掌握测定液体表面张力系数的方法是具有重要实际意义的。测定液体表面张力系数的方法通常有:拉脱法、毛细管升高法和液滴测重法等。本实验仅介绍拉脱法。拉脱法是一种直接测定法。 【实验目的】 1.了解326FB 型液体的表面张力系数测定仪的基本结构,掌握用标准砝码对测量仪进行 定标的方法,计算该传感器的灵敏度。 2.观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。 3.掌握用拉脱法测定纯水的表面张力系数及用逐差法处理数据。 【实验原理】 如果将一洁净的圆筒形吊环浸入液体中,然后缓慢地提起吊环,圆筒形吊环将带起一 层液膜。使液面收缩的表面张力f 沿液面的切线方向,角?称为湿润角(或接触角)。当继续提起圆筒形吊环时,?角逐渐变小而接近为零,这时所拉出的液膜的里、外两个表面的张力f 均垂直向下,设拉起液膜破 裂时的拉力为F ,则有 f g m m F 2)(0++= (1) 式中,m 为粘附在吊环上的液体的质量,0m 为吊环质量,因表面张力的大小与接触面周边界长度成正比,则有 απ?+=)(2外内D D f (2) 比例系数α称为表面张力系数,单位是m N /。α在数值上等于单位长度上的表面张力。式中l 为圆筒形吊环内、外圆环的周长之和。 ) ()(0外内D D g m m F ++-= πα (3) 由于金属膜很薄,被拉起的液膜也很薄,m 很小可以忽略,于是公式简化为:

偶极矩的测定

偶极矩的测定 一、实验目的: 1.用溶液法测定CHCl 3的偶极矩 2.了解介电常数法测定偶极矩的原理 3.掌握测定液体介电常数的实验技术 二、基本原理: 1. 偶极矩与极化度 分子结构可近似地被看成是由电子云和分子骨架(原子核及内层电子)所构成的,分子本身呈电中性,但由于空间构型的不同,正、负电荷中心可重合也可不重合,前者称为非极性分子,后者称为极性分子。分子极性大小常用偶极矩来度量,其定义为: qd =μ (1) 其中q 是正负电荷中心所带的电荷,d 为正、负电荷中心间距离,μ 为向量,其方向规定为从正到负。因分子中原子间距离的数量级为10-10m ,电荷数量级为10-20C ,所以偶极矩的数量级为10-30C ·m 。 极性分子具有永久偶极矩。若将极性分子置于均匀的外电场中,则偶极矩在电场的作用下会趋向电场方向排列。这时我们称这些分子被极化了。极化的程度可用摩尔定向极化度P u 来衡量。P u 与永久偶极矩平方成正比,与热力学温度T 成反比 kT N kT L P A 2 294334μπμπμ==(A N kTP πμμ49=) (2) 式中k 为玻尔兹曼常数,N A 为阿伏加德罗常数。 在外电场作用下,不论是极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生变形,这种现象称为诱导极化或变形极化,用摩尔诱导极化度P 诱导来衡量。显然,P 诱导可分为两项,为电子极化和原子极化之和,分别记为P e 和P a ,则摩尔极化度为: P m = Pe + Pa + P μ (3) 对于非极性分子,因μ=0,所以P= Pe + Pa 外电场若是交变电场,则极性分子的极化与交变电场的频率有关。当电场的频率小于1010s -1 的低频电场或静电场下,极性分子产生的摩尔极化度P m 是定向极化、电子极化和原子极化的总和,即P m = Pe + Pa + P μ。而在电场频率为1012s -1~1014 s -1的中频电场下(红外光区),因为电场的交变周期小,使得极性分子的定向运动跟不上电场变化,即极性分子无法沿电场方向定向,则P μ= 0。此时分子的摩尔极化度P m = P e + P a 。当交变电场的频率大于1015s -1(即可见光和紫外光区),极性分子的定向运动和分子骨架变形都跟不上电场的变化,此时Pm = Pe 。 因此,原则上只要在低频电场下测得极性分子的摩尔极化度P m ,在红外频率下测得极性分子的摩尔诱导极化度P 诱导,两者相减得到极性分子的摩尔定向极化度P u ,带入(2)式,即可算出其永久偶极矩μ。 因为Pa 只占P 诱导中5%~15%,而实验时由于条件的限制,一般总是用高频电场来代替中频电场。所以通常近似的把高频电场下测得的摩尔极化度当作摩尔诱导偶极矩。 2.极化度和偶极矩的测定 对于分子间相互作用很小的体系,Clausius-Mosotti-Debye 从电磁理论推得摩尔极化度P 于介电常数ε之间的关系为 d M P ?+-= 21εε (4) 式中:M 为摩尔质量,d 为密度。 上式是假定分子间无相互作用而推导出的,只适用于温度不太低的气相体系。但测定气相介电常数和密度在实验上困难较大,所以提出溶液法来解决这一问题。溶液法的基本思想是:在无限稀释的非极性溶剂的溶液中,溶质分子所处的状态和气相时相近,于是无限稀释溶液中溶质的摩尔极化度∞ P 就可看作为上式中的P ,即:

测接触角实验方案

测试接触角实验申请 实验内容:主要测定水、乙二醇、二碘甲烷在石墨、石英、绢云母、柴油上的接触角。 实验目的:通过测定水在石墨、绢云母、石英的接触角,以表征石墨、绢云母、石英的疏水亲水性;通过测定水、乙二醇、二碘甲烷在石墨、石英、绢云母、柴油上的接触角,可以用来石墨、石英、绢云母的表面能的计算和隐石墨浮选体系中矿物与水、捕收剂与水、矿物与气泡、矿物与捕收剂之间等一系列界面相互作用自由能的计算,进而对各界面之间的范德华力、疏水引力、水化斥力等界面热力学行为进行研究。 样品加工:采用压片机对辉钼矿样品进行压片,制各样品。压片时样品质量为10g,压片压力为2.45×104kPa,压片直径为20mm,压片表面平整光滑。采用“浸渍法”制备捕收剂表面膜,剪取尺寸为20mmx20mm的空白铜板纸,浸入捕收剂纯液中,浸渍时间1min,置于硅胶干燥器内干燥24h,备用。 采用GBX润湿角测量仪测量液体在崮体表面上的接触角。测量时,按照测量接触角的步骤、小心地滴加在固体表面,形成液滴,取10次读数的接触角平均值作为该座滴的接触角。所有测量均在室温(25℃)进行。 实验方法 测量接触角步骤( 自动滴管, 自动平台) 1. 打开计算机 2. 打开接触角仪器的开关 3. 在计算机“桌面”上, 点选GBX digidrop 的快捷方式, 打开接触角的测量与分析软件 4. 选择新的测试选单 5. 选择“Surface Energy Menu” 6. 将滴管针头申到镜头所能看到的范围之内 7. 利用仪器上左下角的旋钮, 将镜头聚焦在滴管之上(通常是滴管最清析, 最大的位置) 8. 在操作软件上的右上角, 点选MVT, 叫出操作选单 9. 选择液滴的大小(VOL) 10. 选择连续摄影模式 11. 将开始拍照录像的时间改成0ms 12. 请点选使用自动成滴系统 13. 请点选“single”, 开始一次的测试 14. 等待仪器自动滴水, 桌面自动升降, 自动在桌面上形成液滴 15. 选择左方的分析功能, 得到你的接触角角度(一共有七种方法, 根据需要选择) 16. 得到你所需要的接触角值 分析表面/界面自由能步骤 ( 在进行本实验之前?Zisman 至少必需准备两种以上的液体, 其它公式必需准备三种以上的液体, 需要极性还是非极性的液体, 请参考)

稀溶液法测定偶极矩实验报告(华南师范大学物化实验)

稀溶液法测定偶极矩 一、实验目的 (1)掌握溶液法测定偶极矩的主要实验技术 (2)了解偶极矩与分子电性质的关系 (3)测定正丁醇的偶极矩 二、实验原理 2.1偶极矩与极化度 分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。前者称为非极性分子,后者称为极性分子。 1912年,德拜提出“偶极矩”的概念来度量分子极性的大小,其定义是 qd → μ (1) 式中,q 是正负电荷中心所带的电量;d 为正负电荷中心之间的距离;→ μ是一个矢量,其方向规定为从正到负,的数量级是10-30C ·m 。 通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,趋向电场方向排列。这时称这些分子被极化了。极化的程度可以用摩尔转向极化度P μ来衡量。P μ与永久偶极矩μ的平方成正比,与绝对温度T 成反比。

kT 9μ πN 4P A μ= (2) 式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;μ为分子的永久偶极矩。 在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。这称为诱导极化或变形极化。用摩尔诱导极化度P 诱导来衡量。显然,P 诱导可分为两项,即电子极化度P e 和原子极化度P a ,因此 P 诱导 = P e + P a (3) 如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。当处于频率小于1010H Z 的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和。 P = P μ+ P e +P a (4) 介电常数实际上是在107H Z 一下的频率测定的,测得的极化度为 P μ+ P e +P a 。若把频率提高到红外范围,分子已经来不及转向,此时测得的极化度只有P e 和P a 的贡献了。所以从按介电常数计算的P 中减去红外线频率范围测得的极化,就等于P μ,在实验上,若把频率提高到可见光范围,则原子极化也可以忽略,则在可见光范围: P μ =P -( P e +P a ) ≈ P - P e (5) 2.2 摩尔极化度的计算 摩尔极化度P 与介电常数 ε 之间的关系式。 ρM × +2ε-1ε= P (6)

偶极矩的测定--用小电容测量仪测偶极矩(带思考题答案)

用小电容测量仪测偶极矩 【实验目的】 1. 掌握溶液法测定偶极矩的原理、方法和计算。 2. 熟悉小电容仪、折射仪的使用。 3. 用溶液法测定正丁醇的偶极矩,了解偶极矩与分子电性质的关系。 【实验原理】 1.偶极矩与极化度 分子呈电中性,但因空间构型的不同,正负电荷中心可能重合,也可能不重合,前者为非极性分子,后者称为极性分子,分子极性大小用偶极矩μ来度量,其定义为 μ=gd(1) 式中,g为正、负电荷中心所带的电荷量;d是正、负电荷中心间的距离。偶极矩的SI单位是库米(C·m)。而过去习惯使用的单位是德拜(D),1D=×10-30C·m。 若将极性分子置于均匀的外电场中,分子将沿电场方向转动,同时还会发生电子云对分子骨架的相对移动和分子骨架的变形,称为极化。极化的程度用摩尔极化度P来度量。P是转向极化度(P转向)、电子极化度(P电子)和原子极化度(P原子)之和, P =P转向+ P电子+ P原子(2) 其 中, (3) 式中,N A为阿佛加德罗(Avogadro)常数;K为玻耳兹曼(Boltzmann)常数;T为热力学温度。 由于P原子在P中所占的比例很小,所以在不很精确的测量中可以忽略P原子,(2)式可写成 P = P转向 + P电子 (4) 只要在低频电场(ν<1010s-1)或静电场中测得P;在ν≈1015s-1的高频电场(紫外可见光)中,由于极性分子的转向和分子骨架变形跟不上电场的变化,故P转向=0,P原子=0,所以测得的是P电子。这样由(4)式可求得P转向,再由(3)式计算μ。 通过测定偶极矩,可以了解分子中电子云的分布和分子对称性,判断几何异构体和分子的立体结构。 2.溶液法测定偶极矩 所谓溶液法就是将极性待测物溶于非极性溶剂中进行测定,然后外推到无限稀释。因为在无限稀的溶液中,极性溶质分子所处的状态与它在气相时十分相近,此时分子的偶极矩可按下式计算: (5) 式中,P∞2和R∞2分别表示无限稀时极性分子的摩尔极化度和摩尔折射度(习惯上用摩尔折射度表示折射法测定的P电子);T是热力学温度。 本实验是将正丁醇溶于非极性的环己烷中形成稀溶液,然后在低频电场中测量溶液的介电常数和溶液的密度求得P∞2;在可见光下测定溶液的R∞2,然后由(5)式计算正丁醇的偶极矩。 (1)极化度的测定 无限稀时,溶质的摩尔极化度P∞2的公式为

29 偶极矩的测定

实验二十九 偶极矩的测定 1 目的要求 (1) 用溶液法测定乙酸乙酯的偶极矩。 (2) 了解偶极矩与分子电性质的关系。 (3) 掌握溶液法测定偶极矩的主要实验技术。 2 基本原理 (1) 偶极矩与极化度:分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。由于其空间构型的不同,其正负电荷中心可以是重合的,也可以不重合。前者称为非极性分子,后者称为极性分子。 图18-1电偶极矩示意图 图18-2极性分子在电场作用下的定向 1912年德拜提出“偶极矩” μ的概念来度量分子极性的大小,如图18-1所示,其 定义是 (18-1) 式中,q 是正负电荷中心所带的电量; 为正负电荷中心之间的距离;μ? 是一个向量,其方向规定为从正到负。因分子中原子间的距离的数量级为10-10m ,电荷的数量级为10-20C ,所以偶极矩的数量级是10-30C ·m 。 通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,如图Ⅱ-29-2所示趋向电场方向排列。这时我们称这些分子被极化了。极化的程度可用摩尔转向极化度P 转向来衡量。 与永久偶极矩 的值成正比,与绝对温度T 成反比。 KT N P 3432 μπ??=转向 KT N μ π? ? =94 (18-2) 式中:K 为玻兹曼常数,N 为阿伏加德罗常数。 在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。这称为诱导极化或变形极化。用摩尔诱导极化度P 诱导来衡量。显然P 诱导可分为二项,即电子极化度P 电子和原子极化度P 原子,因此P 诱导=P 电子+P 原子。P 诱导与外电场强度成正比,与温度无关。 如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。当处于频率小于1010s -1的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和。 d q ?=μ? d 转向P 2μp

接触角的测定实验报告

液-固界面接触角的测量实验报告 一、实验目的 1. 了解液体在固体表面的润湿过程以及接触角的含义与应用。 2. 掌握用JC2000C1静滴接触角/界面力测量仪测定接触角和表面力的方法。 二、实验原理 润湿是自然界和生产过程中常见的现象。通常将固-气界面被固-液界面所取代的过程称为润湿。将液体滴在固体表面上,由于性质不同,有的会铺展开来,有的则粘附在表面上成为平凸透镜状,这种现象称为润湿作用。前者称为铺展润湿,后者称为粘附润湿。如水滴在干净玻璃板上可以产生铺展润湿。如果液体不粘附而保持椭球状,则称为不润湿。如汞滴到玻璃板上或水滴到防水布上的情况。此外,如果是能被液体润湿的固体完全浸入液体之中,则称为浸湿。上述各种类型示于图1。 图1 各种类型的润湿 当液体与固体接触后,体系的自由能降低。因此,液体在固体上润湿程度的大小可用这一过程自由能降低的多少来衡量。在恒温恒压下,当一液滴放置在固体平面上时,液滴能自动地在固体表面铺展开来,或以与固体表面成一定接触角的液滴存在,如图2所示。

图2 接触角 假定不同的界面间力可用作用在界面方向的界面力来表示,则当液滴在固体平面上处于平衡位置时,这些界面力在水平方向上的分力之和应等于零,这个平衡关系就是著名的Young方程,即 γSG- γSL= γLG·cosθ(1) 式中γSG,γLG,γSL分别为固-气、液-气和固-液界面力;θ是在固、气、液三相交界处,自固体界面经液体部到气液界面的夹角,称为接触角,在0o-180o之间。接触角是反应物质与液体润湿性关系的重要尺度。 在恒温恒压下,粘附润湿、铺展润湿过程发生的热力学条件分别是: 粘附润湿W a=γSG-γSL+γLG≥0(2) 铺展润湿S=γSG-γSL-γLG≥0 (3) 式中W a,S分别为粘附润湿、铺展润湿过程的粘附功、铺展系数。 若将(1)式代入公式(2)、(3),得到下面结果: W a=γSG+γLG-γSL=γLG(1+cosθ)(4) S=γSG-γSL-γLG=γLG(cosθ-1) (5)以上方程说明,只要测定了液体的表面力和接触角,便可以计算出粘附功、铺展系数,进而可以据此来判断各种润湿现象。还可以看到,接触角的数据也能作为判别润湿情况的依据。通常把θ=90°作为润湿与否的界限,当θ>90°,

稀溶液法测定偶极矩实验报告

结构化学实验报告 题目:稀溶液法测定偶极矩 报告作者: 学号: 班级: 指导老师: 实验时间:2016年11月21日

稀溶液法测定偶极矩 一、【实验目的】 1. 掌握溶液法测定偶极矩的主要实验技术 2. 了解偶极矩与分子电性质的关系 3. 测定乙酸乙酯的偶极矩 二、【实验原理】 1.偶极矩与极化度 分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。前者称为非极性分子,后者称为极性分子。 1912年德拜提出“偶极矩”的概念来度量分子极性的大小,其定义式为 qd =→ μ ① 式中,q 是正负电荷中心所带的电量;d 为正负电荷中心之间的距离;→ μ是一个矢量,其方向规定为从正到负。因分子中原子间的距离的数量级为10-10m ,电荷的数量级为10-20C ,所以偶极矩的数量级是10-30C ·m 。 通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,趋向电场方向排列。这时称这些分子被极化了。极化的程度可以用摩尔转向极化度P μ来衡量。P μ与永久偶极矩μ的平方成正比,与绝对温度T 成反比。 kT 9μ πN 4P A μ= ② 式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;μ为分子的永久偶极矩。 在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。这称为诱导极化或变形极化。用摩尔诱导极化度P 诱导来衡量。显然,P 诱导可分为两项,即电子极化度P e 和原子极化度P a ,因此 P 诱导 = P e + P a ③ 如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。当处于频率小于1010H Z 的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和。 P = P μ+ P e +P a ④ 如何从测得的摩尔极化度P 中分别出P μ的贡献呢?介电常数实际上是在107H Z 一下的频率测定的,测得的极化度为 P μ+ P e +P a 。若把频率提高到红外范围,分子已经来不及转向,此时测得的极化度只有P e 和P a 的贡献了。所以从按介电常数计算的P 中减去红外线频率范围测得的极化,就等于P μ,在实验上,若把频率提高到可见光范围,则原子极化也可以忽略,则在可见光范围:

液体表面张力系数测定实验报告

液体表面张力系数的测量 【实验目的】 1、 掌握用砝码对硅压阻式力敏传感器定标的方法,并计算该传感 器的灵敏度 2、 了解拉脱法测液体表面张力系数测定仪的结构、测量原理和使 用方法,并用它测量纯水表面张力系数。 3、 观察拉脱法测量液体表面张力系数的物理过程和物理现象,并 用物理学概念和定律进行分析研究,加深对物理规律的认识 4、 掌握读数显微镜的结构、原理及使用方法,学会用毛细管测定 液体的表面张力系数。 5、 利用现有的仪器,综合应用物理知识,自行设计新的实验内容。 【实验原理】 一、拉脱法测量液体的表面张力系数 把金属片弯成如图 1(a )所示的圆环状,并将该圆环吊挂在灵敏的测力计上,如图 1(b )所示,然后把它浸到待测液体中。当缓缓提起测力计(或降低盛液体的器皿)时,金属圆环就会拉出一层与液体相连的液膜,由于表面张力的作用,测力计的读数逐渐达到一个最大值 F (当超过此值时,液膜即破裂),则 F 应是金属圆环重力 mg 与液膜拉引金属圆环的表面张力之和。由于液膜有两个表面,若每个表面的力为f L a = (L 为圆形液膜的周长),则有 2F mg L s =+ (2) 所以 2F mg L s -= (3)

圆形液膜的周长L 与金属圆环的平均周长,L 相当,若圆环的内、外直径分别为1,2D D 。则圆形液膜的周长 L ≈L ’=p (D 1+D 2)/2 (4) 将(4)式代入(3)式得() 12F mg D D s p -=- (5) 硅压阻式力敏传感器由弹性梁和贴在梁上的传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥。当外界压力作用于金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压大小与所加外力成正比。即U K F D =D (6) 式中,ΔF 为外力的大小;K 为硅压阻式力敏传感器的灵敏度,单位为 V/N ;ΔU 为传感器输出电压的大小。 二、毛细管升高法测液体的表面张力系数 1一只两端开口的均匀细管(称为毛细管)插入液体,当液体与该管润湿且接触角小于90°时,液体会在管内上升一定高度。而当接触角大于 90°时,液体在管内就会下降。这种现象被称为毛细现象。 本实验研究玻璃毛细管插入水中的情形。如图 2 所示,f 为 表面张力,其方向沿着凹球面的切线方向,大小为 2 f r p s =,其中

偶极矩实验测定

【数据处理】 1.实验数据 室温T=22.9℃大气压P=101.93kpa 盐酸浓度=1.869mol/l 碘溶液浓度=0.01888mol/l 丙酮溶液浓度=2.0807mol/l [30.0℃] T 碘溶液 = 45.2% 时间t 0 2 4 6 8 10 12 14 透光率T1 % 52.4 54.7 56.9 59.2 61.9 64.4 66.8 70.1 lgT1-0.2807 -0.2620 -0.2449 -0.2277 -0.2083 -0.1911 -0.1752 -0.1543 16 18 20 22 24 26 28 30 32 72.6 75.5 78.9 82.2 85.7 89.0 92.4 96.3 100.0 -0.1391 -0.1221 -0.1029 -0.0851 -0.0670 -0.0506 -0.0343 -0.0164 0.0000 [35.0℃] T 碘溶液 = 45.6% 时间t 0 1 2 3 4 5 6 7 8 9 10 11 透光率T2 % 50.9 53.3 54.3 55.0 56.8 57.7 59.6 61.6 63.6 65.7 67.8 69.9 lgT2-0.29 33 -0.27 36 -0.26 49 -0.25 96 -0.24 59 -0.23 88 -0.22 51 -0.21 04 -0.1 967 -0.18 24 -0.16 87 -0.15 55 12 13 14 15 16 17 18 19 20 21 72.1 75.3 77.7 80.2 82.8 86.1 88.9 91.9 94.8 97.8 -0.1418 -0.1232 -0.1095 -0.0958 -0.0821 -0.0650 -0.0513 -0.0367 -0.0230 -0.0097 2.将lgT对t作图,求反应速率常数

实验五-接触角测量仪测定聚合物膜的亲水性实验

实验五接触角测量仪测定聚合物膜的亲水性实验 一、实验目的 1.了解液体在固体表面的润湿过程以及接触角的含义与应用。 2.掌握用JCY-2滴接触角测量仪测定接触角的方法。 二、实验原理 润湿是自然界和生产过程中常见的现象。通常将固-气界面被固-液界面所取代的过程称为润湿。将液体滴在固体表面上,由于性质不同,有的会铺展开来,有的则粘附在表面上成为平凸透镜状,这种现象称为润湿作用。前者称为铺展润湿,后者称为粘附润湿。如水滴在干净玻璃板上可以产生铺展润湿。如果液体不粘附而保持椭球状,则称为不润湿。如汞滴到玻璃板上或水滴到防水布上的情况。此外,如果是能被液体润湿的固体完全浸入液体之中,则称为浸湿。上述各种类型示于图1。 图1 各种类型的润湿 当液体与固体接触后,体系的自由能降低。因此,液体在固体上润湿程度的大小可用这一过程自由能降低的多少来衡量。在恒温恒压下,当一液滴放置在固体平面上时,液滴能自动地在固体表面铺展开来,或以与固体表面成一定接触角的液滴存在,如图2所示。 图2 接触角 假定不同的界面间力可用作用在界面方向的界面张力来表示,则当液滴在固

体平面上处于平衡位置时,这些界面张力在水平方向上的分力之和应等于零,这个平衡关系就是著名的Young方程,即 (1) 式中γSG,γLG,γSL分别为固-气、液-气和固-液界面张力;θ是在固、气、液三相交界处,自固体界面经液体内部到气液界面的夹角,称为接触角,在0o-180o之间。接触角是反应物质与液体润湿性关系的重要尺度。通常把θ=90°作为润湿与否的界限,当θ>90°,称为不润湿,当θ<90°时,称为润湿,θ越小润湿性能越好;当θ角等于零时,液体在固体表面上铺展,固体被完全润湿。 接触角是表征液体在固体表面润湿性的重要参数之一,由它可了解液体在一定固体表面的润湿程度。接触角测定在矿物浮选、注水采油、洗涤、印染、焊接等方面有广泛的应用。决定和影响润湿作用和接触角的因素很多。如,固体和液体的性质及杂质、添加物的影响,固体表面的粗糙程度、不均匀性的影响,表面污染等。原则上说,极性固体易为极性液体所润湿,而非极性固体易为非极性液体所润湿。玻璃是一种极性固体,故易为水所润湿。对于一定的固体表面,在液相中加入表面活性物质常可改善润湿性质,并且随着液体和固体表面接触时间的延长,接触角有逐渐变小趋于定值的趋势,这是由于表面活性物质在各界面上吸附的结果。 接触角的测定方法很多,根据直接测定的物理量分为四大类:角度测量法、长度测量法、力测量法,透射测量法。其中,液滴角度测量法是最常用的,也是最直截了当的一类方法。它是在平整的固体表面上滴一滴小液滴,直接测量接触角的大小。为此,可用低倍显微镜中装有的量角器测量,也可将液滴图像投影到屏幕上或拍摄图像再用量角器测量,这类方法都无法避免人为作切线的误差。本实验所用的仪器JCY-2接触角测量仪就可采取量角法进行接触角的测定。 三、仪器与药品 仪器:JCY-2接触角测量仪,微量注射器 试剂:蒸馏水,PVDF膜,PE膜 四、实验步骤 1.打开接触角测量仪和电脑开关,打开软件进入测量界面;

实验8 接触角法测定固体的表面润湿性 操作步骤

实验8接触角法测定固体的表面润湿性 仪器和药品 仪器:SL-200B标准型光学接触角测定仪(示意图见图1) 药品:去离子水;玻璃片;有机玻璃片;细砂纸 图1. 接触角测定仪示意图 实验步骤 1、测试前,需要按图1熟悉仪器的各个部件,并拧开镜头盖,放在仪器底板上。 2、测试前,将接触角测定仪的三个平面调整好水平位置。具体为: (1)将水泡放于接触角测定仪的底座上,通过调整接触角测定仪主机四个垫脚的螺丝,使水泡处于中间位置,校正仪器主机水平。(已校好,勿动!) (2)将水泡放于样品台上,通过调整样品台下面的二维校正螺丝,使水泡处于中间位置。(已校好,勿动!) (3)方法同上,校正镜头水平。 3、若进样针内已有去离子水,且内无气泡,可直接使用。检查进样针左侧的白色塑料螺丝, 是否把针体固定(不要拧太紧,以防断裂!);检查进样针顶部的白色塑料螺丝,将进样针杆固定。 4、若进样针内去离子水不多,需重新吸入去离子水。将进样针的左侧两个螺丝和顶部螺丝 拧松,从左侧小心取出进样针。将干净的进样器在测试液体(去离子水)中反复多次抽拉,以排出进样器中的空气。抽拉进样器要轻缓,以免造成拉杆弯折。针头不能触碰容器边缘或底部,避免针头弯曲。取样之后用滤纸吸除针头周围的液体。逆时针旋转进样针右侧的银色进样泵,使2个黑色凹槽间的距离与进样针匹配,然后用刚才拧下的三个螺丝,将进样针固定到黑色固定架上。 5、插入程序专用U盘,双击电脑桌面上的“动静态接触角、表面自由能接触角分析系统” 图标,出现图2界面。点击“测试向导”,出现图3界面。选择“普通接触角”,“下一步”,出现图4界面。

图2 图3 图4 6、在图4界面中选择下拉菜单中的“uEye capture device 1”,并调节仪器主机左前方的 “光源调节钮”,如果进样针位置适当,可观察到屏幕上针头的黑色影像(图5)。点击“下一步”。出现图6界面。

偶极矩的测定

偶极矩的测定 一、实验目的: 1.用溶液法测定CHCl 3的偶极矩 2.了解介电常数法测定偶极矩的原理 3.掌握测定液体介电常数的实验技术 二、基本原理: 1. 偶极矩与极化度 分子结构可近似地被看成是由电子云和分子骨架(原子核及内层电子)所构成的,分子本身呈电中性,但由于空间构型的不同,正、负电荷中心可重合也可不重合,前者称为非极性分子,后者称为极性分子。分子极性大小常用偶极矩来度量,其定义为: qd =μ (1) 其中q 是正负电荷中心所带的电荷,d 为正、负电荷中心间距离,μ 为向量,其方向规定为从正到负。因分子中原子间距离的数量级为10-10m ,电荷数量级为10-20C ,所以偶极矩的数量级为10-30C ·m 。 极性分子具有永久偶极矩。若将极性分子置于均匀的外电场中,则偶极矩在电场的作用下会趋向电场方向排列。这时我们称这些分子被极化了。极化的程度可用摩尔定向极化度P u 来衡量。P u 与永久偶极矩平方成正比,与热力学温度T 成反比 kT N kT L P A 2294334μπμπμ==(A N kTP πμμ49=) (2) 式中k 为玻尔兹曼常数,N A 为阿伏加德罗常数。 在外电场作用下,不论是极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生变形,这种现象称为诱导极化或变形极化,用摩尔诱导极化度P 诱导来衡量。显然,P 诱导可分为两项,为电子极化和原子极化之和,分别记为P e 和P a ,则摩尔极化度为: P m = Pe + Pa + P μ (3) 对于非极性分子,因μ=0,所以P= Pe + Pa 外电场若是交变电场,则极性分子的极化与交变电场的频率有关。当电场的频率小于1010s -1的低频电场或静电场下,极性分子产生的摩尔极化度P m 是定向极化、电子极化和原子极化的总和,即P m = Pe + Pa + P μ。而在电场频率为1012s -1~1014 s -1的中频电场下(红外光区),因为电场的交变周期小,使得极性分子的定向运动跟不上电场变化,即极性分子无法沿电场方向定向,则P μ= 0。此时分子的摩尔极化度P m = P e + P a 。当交变电场的频率大于1015s -1(即可见光和紫外光区),极性分子的定向运动和分子骨架变形都跟不上电场的变化,此时Pm = Pe 。 因此,原则上只要在低频电场下测得极性分子的摩尔极化度P m ,在红外频率下测得极性分子的摩尔诱导极化度P 诱导,两者相减得到极性分子的摩尔定向极化度P u ,带入(2)式,即可算出其永久偶极矩μ。 因为Pa 只占P 诱导中5%~15%,而实验时由于条件的限制,一般总是用高频电场来代替中频电场。所以通常近似的把高频电场下测得的摩尔极化度当作摩尔诱导偶极矩。 2.极化度和偶极矩的测定 对于分子间相互作用很小的体系,Clausius-Mosotti-Debye 从电磁理论推得摩尔极化度P 于介电常数ε之间的关系为 d M P ?+-=21εε (4) 式中:M 为摩尔质量,d 为密度。 上式是假定分子间无相互作用而推导出的,只适用于温度不太低的气相体系。但测定气相介电常数和密度在实验上困难较大,所以提出溶液法来解决这一问题。溶液法的基本思想是:在无限稀释的非极性溶剂的溶液中,溶质分子所处的状态和气相时相近,于是无限稀释溶液中溶质的摩尔极化度∞ 2P 就可看作为上式中的P ,即:

相关主题
文本预览
相关文档 最新文档