当前位置:文档之家› FLIR LEPTON3 高分辨率微型红外热成像相机 菲力尔

FLIR LEPTON3 高分辨率微型红外热成像相机 菲力尔

FLIR LEPTON3 高分辨率微型红外热成像相机 菲力尔
FLIR LEPTON3 高分辨率微型红外热成像相机 菲力尔

FLIR LEPTON 3?160×120高分辨率微型红外热成像相机

FLIR Lepton 3是FLIR迄今为止推出的分辨率最高的长波红外微型红外热成像相机,具有160×120的热分辨率 — 是之前Lepton版本的4倍。革命性的FLIR L epton是首款完整配置的长波红外相机,尺寸小巧,可轻松集成到智能手机和其它移动设备中使用。全新的FLIR Lepton 3功能强大、紧凑小巧、质量轻盈且分辨率更高,能为用户提供更丰富的图像细节,即可用作热像仪也可用作检测传感器,使其在商业应用环境中拥有更大的用武之地。FLIR Lepton 3质量优异、极其便携,其机身不足一角硬币大小,价格不及传统红外热像仪的十分之一。

增强型红外探测器

其分辨率和灵敏度高于普通的热电堆探测器

? 160×120有效像素

? 热灵敏度<50 mK

? 运行功率较低 — 典型值为140 mW、使用快门期间为650 mW ? 低功率待机模式

微型红外热像仪

使用小型电子元件的非制冷型红外热像仪

? 56°镜头

? 一体式数字热图像处理

? 集成快门

? 成像时间快(<0.5 秒)

轻松集成

简化了热成像设备的开发与生产过程

? 包装尺寸小,仅为11.8×12.7×7.2 mm

? SPI视频接口

? 采用标准的手机兼容电源

? 双线式串行控制接口

? 32针插座接口与连接器相连

技术参数

170828 L e p t o n 3 D a t a s h e e t S C N

超高分辨活细胞成像系统技术

GE超高分辨活细胞成像系统 利用活细胞成像工作站进行细胞和基因的功能研究,是生物医学研究的最新趋势。固定细胞观察仅能提供固定瞬间细胞的静态信息,无法反映细胞在正常生理生化条件下的状态。活细胞观察,对处于正常生理状况下的细胞进行全程扫描和记录,获得其连续、全面、动态过程由于其显示的正常细胞动态的活动过程,很容易发现和确定细胞间相互作用和信号传导的过程,以及在活细胞水平上的生物分子间的相互作用,不仅可以解决长期以来悬而未解的问题,更为未来的研究提出新的问题,指出新的方向。 一、活细胞成像系统原理 目前主流的活细胞成像系统从原理上可以分为两大类: 基于宽场反卷积技术 基于共聚焦技术 两种技术作为目前最流行的活细胞成像技术,均可以实现在维持细胞存活的情况下,快速获取单一焦平面的信号,在具体性能上则各有擅长。 宽场反卷积技术 对光线进行反卷积运算是光学成像领域的成熟技术,最早由美国国家航空航天局开发并成为观察微弱天体信号的标准技术。去卷积和共聚焦技术是光学显微镜领域获得单一焦平面光线的两大主流技术(J.M.Murray, live cell imaging, 2010)。通过将非焦平面的光线还原至焦平面上,大大提高了样品信号的强度以及图像的信噪比。由于去卷积技术设计到大量的后期运算,因此在高性能计算机发明以前,一直受制于运算能力,没有得到大规模的推广。随着近年来计算机性能的大幅提升和价格的下降,去卷积技术逐渐成为光学显微镜的主流技术。一个点光源经过显微镜的光路,由于镜片对光线的衍射和散射,最终呈现在观察者面前的是一个模糊的点,所以点光源变成模糊的点的过程即为卷积。反卷积就是把模糊的点还原成点光源的过程。 以API 公司的DeltaVision系统为例,其反卷积过程经历以下几步: 1)首先通过无数的计算和实验,得到点光源经过显微镜物镜后变模糊的规律,建立模型。 2)选择完美的物镜,保证样品信号经过物镜后变模糊的规律符合步骤一中得到的模型。 3)将通过显微镜光路的所有的光信号进行收集,因为点光源经过显微镜光路后会变成一个空 间中的倒圆锥形,所以在收集信号的时候需要很准确的记录信号的Z 轴信息。 4)对收集到的所有光信号按照步骤一中的模型进行还原,最终将模糊的点还原成清晰的点, 客观反映它在空间的位置和强度。 目前去卷积技术越来越广泛地应用于生物学图像的研究中。 共聚焦技术 共聚焦显微镜它采用点光源(point lightsource) 照射标本,在焦平面上形成了一个轮廓分明 的小的光点(light spot ) ,该点被照射后发出的荧光被物镜收集,并沿原照射光路回送到探测器。探测器前方有一个针孔(pinhole) ,几何尺寸可调。这样,来自焦平面的光,可以会聚在探 测针孔范围之内,而其它来自焦平面上方或下方的散射光,都被挡在探测针孔之外而不能成象。 光束扫描器又分为单光束、多光束或狭缝扫描器几种。其中单光束扫描获得的图像质量最好, 狭缝扫描器虽然产生图像的速率很高(可达实时水平) ,但其图像信噪比低于单光束扫描,这是 因为从狭缝长轴来的漫射光不能被有效遮挡。多光束扫描如碟片式共聚焦是由电动马达驱动

米级车载高分辨率光电成像系统光学设计_刘莹奇

第40卷第8期红外与激光工程2011年8月Vol.40No.8Infrared and Laser Engineering Aug.2011 米级车载高分辨率光电成像系统光学设计 刘莹奇1,2,王志1,刘欣悦1,卫沛峰1 (1.中国科学院长春光学精密机械与物理研究所,吉林长春130033; 2.中国科学院研究生院,北京100049) 摘要:研究了一套能实现机动式布站的米级车载可见光和红外高分辨率光学成像系统新方案。主系统口径1.2m,采用无焦卡塞格林形式,遮拦比1:10;机上中、长波红外成像通道采用共口径光谱分光、二次成像的形式,冷阑匹配效率100%,F数为4;机下成像光学系统焦距47m,F数为39,光学设计满足高分辨率与白天成像的要求,且成像质量达到衍射极限;各通道光学系统结构紧凑。光学设计与分析结果表明:该套光学系统能够用于空中和空间目标的全天时移动式高分辨率可见、红外成像。 关键词:大口径望远镜;高分辨率成像;白天成像;移动式光电跟踪系统;光学设计 中图分类号:TB133文献标志码:A文章编号:1007-2276(2011)08-1512-05 Optical design of vehicle-based high resolution E-O imaging system using meter class telescope Liu Yingqi1,2,Wang Zhi1,Liu Xinyue1,Wei Peifeng1 (1.Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun130033,China; 2.Graduate University of the Chinese Academy of Sciences,Beijing100049,China) Abstract:A set of meter class aperture and vehicle-based optical system including visible,infrared imaging, which was used for motional E-O imaging,was studied.The main system aperture was1.2m,the form of afocal Cassegrain was adopted,and obstruction ratio was1:10.The front aperture of on-vehicle imaging system was shared by MWIR and LWIR,then the spectrum was separately reimaged in the terminal.The F number was4,and100%cold shield efficiency was realized.The focal length of the off-vehicle imaging system was47m and the F number was39.The optical design meet the requiement of high resolution and daylight imaging,and the imaging quality of each channel reached diffraction limit in the off-vehicle imaging system.The optical system configuration of each channel was compact.The design and analysis results indicate that mobile high resolution imaging and all-day imaging of targets in the air and space can be realized with the optical system. Key words:large aperture telescope;high resolution imaging;daylight imaging; mobile E-O tracking system;optical design 收稿日期:2010-12-05;修订日期:2011-01-03 基金项目:中国科学院长春光学精密机械与物理研究所三期创新研究项目专项资金 作者简介:刘莹奇(1984-),男,研究实习员,博士研究生,主要从事新型光学系统设计工作。Email:a1032510210@https://www.doczj.com/doc/2f956095.html, 导师简介:卢振武(1955-),男,研究员,博士生导师,主要从事衍射光学等方面的研究。Email:luzw@https://www.doczj.com/doc/2f956095.html,

高分辨率遥感影像数据一体化测图系统PixelGrid

高分辨率遥感影像数据一体化测图系统PixelGrid 北京四维空间数码科技有限公司 一、概况介绍 高分辨率遥感影像数据一体化测图系统PixelGrid(以下简称“PixelGrid”)是由中国测绘科学研究院自主研发的“十一五”重大科技成果,获得2009年度国家测绘科技进步一等奖。 为将这一重大科技成果实现产业化,2008年开始,由中国测绘科学研究院参股单位北京四维空间数码科技有限公司进行成果转化和产品化,并开展销售。 该软件是我国西部1:5万地形图空白区测图工程以及第二次全国土地调查工程的主力软件, 被誉为国产的“像素工厂”。 PixelGrid以其先进的摄影测量算法、集群分布式并行处理技术、强大的自动化业务化处理能力、高效可靠的作业调度管理方法、友好灵活的用户界面和操作方式,全面实现了对卫星影像数据、航空影像数据以及低空无人机影像数据的快速自动处理,可以完成遥感影像从空中三角测量到各种比例尺的DEM/DSM、DOM等测绘产品的生产任务。 PixelGrid软件主界面。 二、主要特点 PixelGrid系统以现代摄影测量与遥感科学技术理论为基础,融合计算机技术和网络通讯技术,采用基于RFM通用成像模型的大范围遥感影像稀少或无控制区域网平差、基于旋转/缩放不变性特征多影像匹配的高精度航空影像自动空三、基于多基线/多重特征的高精度DEM/DSM自动提取、等高线数据半自动采集及网络分布式编辑、基于地理信息数据库等多源控制信息的高效影像地图制作、基于松散耦合并行服务中间件的集群分布式并行计算等一系列核心关键技术,是中国测绘科学研究院研制的一款类似“像素工厂”(ISTAR PixelFactoryTM)的新一代多源航空航 天遥感数据一体化高效能处理系统。

高分辨率活细胞成像系统

高分辨率活细胞成像系统 一总体要求 ★1满足科研科室要求,凡涉及设备安装及施工由中标方负责,按照科室要求提供交钥匙工程 2投标时要求提供原厂家的检验报告、技术参数表及产品彩页 3投标产品应为国际知名品牌,最先进机型及配置,适用于科研、教学并满足将来科研发展需要。 ★4仪器配备所有软件使用最新版本且终身免费升级,端口免费开发,能够与我院各信息系统无缝对接 5数量:1台 二技术要求 1光源部分 1.1固态激发光源,由不少于7个独立单色激发光源组成,发射端能量22-89mW;包括如下光源 1.1.1381-399nm(DAPI,BFP),能量>50mW 1.1.2426-450nm(CFP,Pacific Blue)能量>80mW 1.1.3461-489nm(GFP,EGFP)能量>50mW 1.1.4505-515nm(YFP)能量>20mW 1.1.5529-556nm(OFP,RFP,DsRed)能量>80mW 1.1.6563-588nm(mCherry)能量>80mW 1.1.7621-643nm(Cy5)能量>40mW 1.2瞬时开关,光源通电至稳定工作间隔时间低于100微秒,非工作时光源自动关闭。光源工作寿命>10000小时 1.3激发光经过光纤传输,通过光强探测器实时监测入射光强变化 2显微镜部分 2.1高性能减震台 2.2研究型倒置显微镜 ★2.3提供科勒照明和临界照明两种照明方式并可根据用户是目镜观察还是成像自动电动切换 2.4物镜配备:60X平场复消色差物镜(油镜),数值孔径>1.42 40X平场半复消色差物镜(油镜),数值孔径>1.3 40X长工作距离(2.7-4mm)半复消色差物镜,数值孔径>0.6 20X长工作距离(6.6-7.8mm)半复消色差物镜,数值孔径>0.45 10X平场复消色差物镜,数值孔径>0.4

相关主题
文本预览
相关文档 最新文档