当前位置:文档之家› 26.路由单区域OSPF协议的配置方法

26.路由单区域OSPF协议的配置方法

将路由器连接起来如下图:

接下来是为路由器添加模块(注意要关电添加):

下面配置路由器A的接口IP:

Router#

Router#config

Configuring from terminal, memory, or network [terminal]? Enter configuration commands, one per line. End with CNTL/Z. Router(config)#in

Router(config)#interface se

Router(config)#interface serial 1/1

Router(config-if)#ip ad

Router(config-if)#ip address 192.168.1.1 255.255.255.0 Router(config-if)#co

Router(config-if)#cl

Router(config-if)#clock ?

rate Configure serial interface clock speed

Router(config-if)#clock ra

Router(config-if)#clock rate 64000

Router(config-if)#no sh

Router(config-if)#no shutdown

%LINK-5-CHANGED: Interface Serial1/1, changed state to down Router(config-if)#

%LINK-5-CHANGED: Interface Serial1/1, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial1/1, changed state to up

00:14:54: %OSPF-5-ADJCHG: Process 2, Nbr 10.10.11.1 on Serial1/1 from LOADING to FULL, Loading Done

Router(config-if)#

下面配置路由器B的接口IP:

Router#config

Configuring from terminal, memory, or network [terminal]?

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#in

Router(config)#interface se 1/0

Router(config-if)#ip ad

Router(config-if)#ip address 192.168.1.2 255.255.255.0

Router(config-if)#no sh

Router(config-if)#no shutdown

%LINK-5-CHANGED: Interface Serial1/0, changed state to up

Router(config-if)#

%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial1/0, changed state to up

01:07:29: %OSPF-5-ADJCHG: Process 2, Nbr 10.10.10.1 on Serial1/0 from LOADING to FULL, Loading Done

Router(config-if)#

接下来进行路由器A环回接口的配置:

Router>en

Router#config

Configuring from terminal, memory, or network [terminal]?

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#in

Router(config)#interface lo

Router(config)#interface loopback ?

<0-2147483647> Loopback interface number

Router(config)#interface loopback 0

%LINK-5-CHANGED: Interface Loopback0, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed state to up

Router(config-if)#ip ad

Router(config-if)#ip address 10.10.10.1 255.255.255.0

Router(config-if)#

下一步进行路由器B环回接口的配置:

Router>en

Router#config

Configuring from terminal, memory, or network [terminal]?

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#in lo 0

%LINK-5-CHANGED: Interface Loopback0, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed state to up Router(config-if)#ip add 10.10.11.1 255.255.255.0

Router(config-if)#

验证路由器A的接口配置:

Router#sh interfaces loopback 0

Loopback0 is up, line protocol is up (connected)

Hardware is Loopback

Internet address is 10.10.10.1/24

MTU 1514 bytes, BW 8000000 Kbit, DLY 5000 usec,

reliability 255/255, txload 1/255, rxload 1/255

Encapsulation LOOPBACK, loopback not set

Last input never, output never, output hang never

Last clearing of "show interface" counters never

Queueing strategy: fifo

Output queue 0/0, 0 drops; input queue 0/75, 0 drops

5 minute input rate 0 bits/sec, 0 packets/sec

5 minute output rate 0 bits/sec, 0 packets/sec

0 packets input, 0 bytes, 0 no buffer

Received 0 broadcasts, 0 runts, 0 giants, 0 throttles

0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort

0 input packets with dribble condition detected

0 packets output, 0 bytes, 0 underruns

0 output errors, 0 collisions, 0 interface resets

0 babbles, 0 late collision, 0 deferred

0 lost carrier, 0 no carrier

0 output buffer failures, 0 output buffers swapped out

Router#

验证路由器B的接口配置:

Router#sh interfaces loopback 0

Loopback0 is up, line protocol is up (connected)

Hardware is Loopback

Internet address is 10.10.11.1/24

MTU 1514 bytes, BW 8000000 Kbit, DLY 5000 usec,

reliability 255/255, txload 1/255, rxload 1/255

Encapsulation LOOPBACK, loopback not set

Last input never, output never, output hang never

Last clearing of "show interface" counters never

Queueing strategy: fifo

Output queue 0/0, 0 drops; input queue 0/75, 0 drops

5 minute input rate 0 bits/sec, 0 packets/sec

5 minute output rate 0 bits/sec, 0 packets/sec

0 packets input, 0 bytes, 0 no buffer

Received 0 broadcasts, 0 runts, 0 giants, 0 throttles

0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort

0 input packets with dribble condition detected

0 packets output, 0 bytes, 0 underruns

0 output errors, 0 collisions, 0 interface resets

0 babbles, 0 late collision, 0 deferred

0 lost carrier, 0 no carrier

0 output buffer failures, 0 output buffers swapped out

Router#

继续进行路由器A的OSPF的配置:

Router#config

Configuring from terminal, memory, or network [terminal]?

Enter configuration commands, one per line. End with CNTL/Z. Router(config)#ro

Router(config)#router osf

Router(config)#router os

Router(config)#router ospf ?

<1-65535> Process ID

Router(config)#router ospf 2

Router(config-router)#net

Router(config-router)#network 10.10.10.0 0.0.0.255 ar

Router(config-router)#network 10.10.10.0 0.0.0.255 area 0

Router(config-router)#network 192.168.1.0 0.0.0.255 area 0

Router(config-router)#

继续进行路由器B的OSPF的配置:

Router#config

Configuring from terminal, memory, or network [terminal]?

Enter configuration commands, one per line. End with CNTL/Z. Router(config)#ro

Router(config)#router os

Router(config)#router ospf

% Incomplete command.

Router(config)#router ospf 2

Router(config-router)#net 10.10.10.11 0.0.0.255 area 0

Router(config-router)#net 192.168.1.0 0.0.0.255 area 0

Router(config-router)#

查看路由器A的路由表:

Router#sh ip ro

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/24 is subnetted, 1 subnets

C 10.10.10.0 is directly connected, Loopback0

C 192.168.1.0/24 is directly connected, Serial1/1

Router#

查看路由器B的路由表:

Router#sh ip ro

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

O 10.10.10.1/32 [110/782] via 192.168.1.1, 00:04:25, Serial1/0 C 10.10.11.0/24 is directly connected, Loopback0

C 192.168.1.0/24 is directly connected, Serial1/0

路由器Aping路由器B:

通。

OSPF路由协议单区域概念及配置

OSPF路由协议单区域概念及配置 知识1:OSPF概述 开放式最短路径优先协议(Open Shortest Path First,OSPF)是基于开放标准的发链路状态路由选择协议 1.OSPF是内部网关路由协议 内部网关路由协议(IGP):用于在单一自治系统(Autonomous System-AS)内决策路由 自制系统(AS):执行统一路由策略的一组网络设备的组合 2.OSPF区域 为了适应大型的网络,OSPF在AS内划分多个区域;一定要划分区域0(骨干区域),其他区域必须和区域0相连。 每个OSPF路由器只维护所在区域的完整的链路状态信息 3.链路状态路由协议 OSPF是链路状态路由协议,链路状态路由协议中的路由器了解OSPF网络内的链路状态信息 链路状态路由协议中,直连的路由器之间建立邻接关系,互相“交流”链路信息,来“画”出完整的网络结构 知识2:Router ID Router ID 是在OSPF区域内唯一标识一台路由器的IP地址。 Router ID选取规则 ???首先,路由器选取它所有loopback接口上数值最高的IP地址 ???如果没有loopback接口,就在所有物理端口中选取一个数值最高的IP地址Router ID 不具备强占性,Router ID 只要选定就不会改变,即使是物理接口关闭,Router ID 也不会变,除非重启路由器或进程。 知识3:OSPF的工作过程 邻居列表 ?列出每台路由器全部已经建立邻接关系的邻居路由器 链路状态数据库(LSDB) ?列出网络中其他路由器的信息,由此显示了全网的网络拓扑 路由表 ?列出通过SPF算法计算出的到达每个相连网络的最佳路径 知识4:OSPF邻接关系 邻接关系的建立过程

CCNA-OSPF协议总结

O S P F协议总结 第一部分 O S P F的一些基本概念 在链路状态路由协议中,路由器和路由器之间交换的是链路状态。而距离矢量路由协议中,路由器与路由器之间交换的是路由表。链路状态路由协议能够识别更多的网络信息,所以选出的路由比距离矢量路由协议选出的路由更优。在O S P F中,一共维护着三个数据库:所有的邻居,区域内所有的路由器(链路状态),到达目的地最佳路径。O S P F是通过链路状态表中整个区域的链路状态来计算出路由表的。 O S P F中的三张表:邻居表(a d j a c e n c y d a t a b a s e),拓扑表,路由表。 O S P F的网络在设计时应该设计为层次性的网络,这是一个强制要求。有两个级别的层次一个为主干区T r a n s i t a r e a(b a c k b o n e o r a r e a0),另一个为非主干区域R e g u l a r a r e a s(n o n b a c k b o n e a r e a s)。可以认为,在区域内部交换的是链路状态,而在区域和区域之间交换的则是路由信息。 O S P F区域的特点: 1.减小路由表的条目; 2.本地化拓扑结构,只在本区域传播,将拓扑变化影响减到最小; 3.详细的L S A的洪泛将终结在区域的边界上; 4.需要层次化的网络设计; 5.一般情况下,所有的非主干区域都应该与主干区域相连,非主干区域之间是不会交换信息的; A B R称为区域边界路由器,作用就是将非主干区域和主干区域连接起来。 链路状态数据结构(邻居表): 1.O S P F通过交换H e l l o包来发现邻居; 2.通过检查H e l l o包中的一些选项或者变量后建立邻居关系的; 3.在点到点的广域网环境中,邻居之间是全互联的; 4.在局域网环境中,所有路由器只与D R和B D R形成邻接关系(a d j a c e n c y),而其他的路由器(D R O T H E R s)之间则只是t w o-w a y的关系; 5.路由更新和拓扑信息之在邻接关系的路由器之间进行传播; 所有的路由更新,以及链路状态信息都是通过网络中的D R和B D R传输的。也就是说,所有的D R O T H E R都会与D R还有B D R建立邻接关系(a d j a c e n c y)。 S P F算法:在每个路由器的链路状态表中都应用D i j k s t r a’s S P F算法。 1.每个路由器上都会有一个链路状态数据库; 2.每个路由器都会先将自己作为一个根,然后建立起一个S P F树; 3.最优路径的计算是到达目的地的所有路径开销的总和; 4.最优路径将被放到路由表中; L S A的操作: 1.首先,与自己的链路状态表对比一下,看看是否在其中; 2.如果没有的话,把它加到自己的链路状态数据库中,同时发出一个确认包; 3.如果有的话,比较顺序号,如果顺序号相同,则忽略。如果小于自己的,则给源发送一个L S U; 4.然后洪泛传输自己的L S A给其他路由器; 5.运行S P F算法,重新计算路由表; P S:L S A传输的时候,每次只能传输一跳。 第二部分 O S P F包的类型 O P S F中几种包的类型: 1.H e l l o包,建立邻居关系; 2.数据库的描述包; 3.链路状态请求;

OSPF协议详解分析

OSPF 学习笔记 OSPF 协议号是89,也就是说在ip 包的protocol 中是89,用ip 包来传送 数据包格式: 在OSPF 路由协议的数据包中,其数据包头长为24 个字节,包含如下8 个字段: * Version number-定义所采用的OSPF 路由协议的版本。 * Type-定义OSPF 数据包类型。OSPF 数据包共有五种: * Hello-用于建立和维护相邻的两个OSPF 路由器的关系,该数据包是周期性地发送的。 * Database Description-用于描述整个数据库,该数据包仅在OSPF 初始化时发送。 * Link state request-用于向相邻的OSPF 路由器请求部分或全部的数据,这种数据包是在当 路由器发现其数据已经过期时才发送的。 * Link state update-这是对link state 请求数据包的响应,即通常所说的LSA 数据包。 * Link state acknowledgment-是对LSA 数据包的响应。 * Packet length-定义整个数据包的长度。 * Router ID-用于描述数据包的源地址,以IP 地址来表示,32bit * Area ID-用于区分OSPF 数据包属于的区域号,所有的OSPF 数据包都属于一个特定 的OSPF 区域。 * Checksum-校验位,用于标记数据包在传递时有无误码。 * Authentication type-定义OSPF 验证类型。 * Authentication-包含OSPF 验证信息,长为8 个字节。 FDDI 或快速以太网的Cost 为1,2M 串行链路的Cost 为48,10M 以太网的Cost 为10 等。 所有路由器会通过一种被称为刷新(Flooding)的方法来交换链路状态数据。Flooding 是指路由器将其LSA 数据包传送给所有与其相邻的OSPF 路由器,相邻路由器根据其接收到的链路状态信息 更新自己的数据库,并将该链路状态信息转送给与其相邻的路由器,直至稳定的一个过程。当路由 器有了一个完整的链路状态数据库时,它就准备好要创建它的路由表以便能够转发数据流。CISCO 路由器上缺省的开销度量是基于网络介质的带宽。要计算到达目的地的最低开销,链路状态型路由选择协议(比如OSPF)采用Dijkstra 算法,OSPF 路由表中最多保存 6 条等开销路由条目以进行负 载均衡,可以通过"maximum-paths" 进行配置。如果链路上出现fapping 翻转,就会使路由器不停 的计算一个新的路由表,就可能导致路由器不能收敛。路由器要重新计算客观存它的路由表之前先 等一段落时间,缺省值为 5 秒。在CISCO 配置命令中"timers spf spf-delay spy-holdtime" 可以对两次连续SPF 计算之间的最短时间(缺省值10 秒)进配置。 路由器初始化时Hello 包是用224.0.0.5 广播给域内所有OSPF 路由器,选出DR 后在用224.0.0.6 和DR,BDR 建立邻接。DR 用224.0.0.5 广播给DRother LSA BDR 也是 DRother 用224.0.0.6 广播LSA 给DR 和BDR DR 是在一个以太网段内选举出来的,如果一个路由器有多个以太网段那么将会有多个 DR 选举;DR 的选择是通过OSPF 的Hello 数据包来完成的,在OSPF 路由协议初始化的过程中,会通过Hello 数据包在一个广播性网段上选出一个ID 最大的路由器作为指定

实验17 OSPF单区域

OSPF单区域1 实验目的: 能够在单区域环境中配置OSPF路由协议。 2 网络拓扑 3 试验环境: 网络中计算机和路由器的IP地址已经如图配置完成。 4 试验要求 ?在Area0配置OSPF。 ?查看路由表。 ?检查OSPF协议的收敛速度。

5 基本配置步骤 5.1在Router2上 Router>en Router#config t Enter configuration commands, one per line. End with CNTL/Z. Router(config)#router ospf 1 Router(config-router)#network 192.168.0.0 0.0.0.3 area 0 Router(config-router)#network 172.16.0.0 0.0.255.255 area 0 Router(config-router)# OR Router(config)#router ospf 1 Router(config-router)#network 192.168.0.1 0.0.0.0 area 0 Router(config-router)#network 172.16.0.1 0.0.0.0 area 0 Router(config-router)# 5.2在Route0上 Router>en Router#config t Enter configuration commands, one per line. End with CNTL/Z. Router(config)#router ospf 1 Router(config-router)#network 192.168.0.0 0.0.0.3 area 0 Router(config-router)#network 192.168.0.4 0.0.0.3 area 0 Router(config-router)#network 192.168.0.12 0.0.0.3 area 0 Router(config-router)#ex 5.3在Router1上 Router>en

OSPF路由协议

OSPF作为一种内部网关协议(Interior Gateway Protocol,IGP),用于在同一个自治域(AS)中的路由器之间发布路由信息。区别于距离矢量协议(RIP),OSPF具有支持大型网络、路由收敛快、占用网络资源少等优点,在目前应用的路由协议中占有相当重要的地位。 基本概念和术语 1. 链路状态 OSPF路由器收集其所在网络区域上各路由器的连接状态信息,即链路状态信息(Link-State),生成链路状态数据库(Link-State Database)。路由器掌握了该区域上所有路由器的链路状态信息,也就等于了解了整个网络的拓扑状况。OSPF路由器利用“最短路径优先算法(Shortest Path First, SPF)”,独立地计算出到达任意目的地的路由。 2. 区域 OSPF协议引入“分层路由”的概念,将网络分割成一个“主干”连接的一组相互独立的部分,这些相互独立的部分被称为“区域”(Area),“主干”的部分称为“主干区域”。每个区域就如同一个独立的网络,该区域的OSPF 路由器只保存该区域的链路状态。每个路由器的链路状态数据库都可以保持合理的大小,路由计算的时间、报文数量都不会过大。 3. OSPF网络类型 根据路由器所连接的物理网络不同,OSPF将网络划分为四种类型:广播多路访问型(Broadcast multiAccess)、非广播多路访问型(None Broadcast MultiAccess,NBMA)、点到点型(Point-to-Point)、点到多点型(Point-to-MultiPoint)。 广播多路访问型网络如:Ethernet、Token Ring、FDDI。NBMA型网络如:Frame Relay、X.25、SMDS。Point-to-Point型网络如:PPP、HDLC。 4. 指派路由器(DR)和备份指派路由器(BDR) 在多路访问网络上可能存在多个路由器,为了避免路由器之间建立完全相邻关系而引起的大量开销,OSPF 要求在区域中选举一个DR。每个路由器都与之建立完全相邻关系。DR负责收集所有的链路状态信息,并发布给其他路由器。选举DR的同时也选举出一个BDR,在DR失效的时候,BDR担负起DR的职责。 点对点型网络不需要DR,因为只存在两个节点,彼此间完全相邻。协议组成OSPF协议由Hello协议、交换协议、扩散协议组成。本文仅介绍Hello协议,其他两个协议可参考RFC2328中的具体描述。 当路由器开启一个端口的OSPF路由时,将会从这个端口发出一个Hello报文,以后它也将以一定的间隔周期性地发送Hello报文。OSPF路由器用Hello报文来初始化新的相邻关系以及确认相邻的路由器邻居之间的通信状态。 对广播型网络和非广播型多路访问网络,路由器使用Hello协议选举出一个DR。在广播型网络里,Hello 报文使用多播地址224.0.0.5周期性广播,并通过这个过程自动发现路由器邻居。在NBMA网络中,DR负

ospf协议,实验报告

ospf协议,实验报告 篇一:实验7 OSPF路由协议配置实验报告 浙江万里学院实验报告 课程名称:数据通信与计算机网络及实践 实验名称: OSPF路由协议配置专业班级:姓名:小组学号:XX014048 实验日期: 再测试。要求写出两台路由器上的ospf路由配置命令。 第页共页 [RTC-rip-1]import ospf [RTC-rip-1]quit [RTC]ospf [RTC-ospf-1]import rip [RTC-ospf-1]quit 结合第五步得到的路由表分析出现表中结果的原因: RouteB 通过RIP学习到C和D 的路由情况,通过OSPF 学习到A 的路由信息 实验个人总结 班级通信123班本人学号后三位__048__ 本人姓名_徐波_ 日期 本次实验是我们的最后一次实验,再次之前我们已经做了很多的有关于华为的实验,从一开始的一头雾水到现在的有一些思路,不管碰到什么问题,都能够利用自己所学的知识去解决或者有一些办法。这些华为实验都让我受益匪浅。

实验个人总结 班级通信123班本人学号后三位__046__ 本人姓名_金振宁_ 日期 这两次实验都可以利用软件在寝室或者去其他的地方去做,并不拘泥于实验室,好好的利用华为的模拟机软件对我们来说都是非常有用的。 实验个人总结 班级通信123班本人学号后三位本人姓名_陈哲日期 第页共页 篇二:单区域的OSPF协议配置实验报告 学生实验报告 *********学院 篇三:OSPF实验报告 计算机学院 实验报告 ( XX 年春季学期) 课程名称:局域网设计与管理 主讲教师:李辉 指导教师:学生姓名: 学 年郑思楠号: XX012019 级: XX级

路由单区域OSPF协议的配置方法

将路由器连接起来如下图: 接下来是为路由器添加模块(注意要关电添加):

下面配置路由器A的接口IP: Router# Router#config Configuring from terminal, memory, or network [terminal]? Enter configuration commands, one per line. End with CNTL/Z. Router(config)#in Router(config)#interface se Router(config)#interface serial 1/1 Router(config-if)#ip ad Router(config-if)#ip address 192.168.1.1 255.255.255.0 Router(config-if)#co Router(config-if)#cl Router(config-if)#clock ? rate Configure serial interface clock speed Router(config-if)#clock ra Router(config-if)#clock rate 64000 Router(config-if)#no sh Router(config-if)#no shutdown %LINK-5-CHANGED: Interface Serial1/1, changed state to down Router(config-if)# %LINK-5-CHANGED: Interface Serial1/1, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial1/1, changed state to up

OSPF协议基本配置

OSPF协议基本配置 注意:此实验拓扑图是以机房的实验拓扑画的,如果是使用模拟器来做此实验,请根据模拟器的拓扑来更改。 实验目的: 1.能够独立的配置OSPF的单区域,实现整个区域之间的网络通信。 2.能够使用各种SHOW命令进行检查。 3.理解DR/BDR的选举原则,OSPF的邻接关系的建立过程。 4.邻接关系建立的必须匹配的几个参数 5.3张表的形成过程,OSPF协议的基本原理 实验要求: 1.按照拓扑图把基本的链路连接配置起来,并且配置完成以后检查基本的链路通信(检查直连链路之间能否进行通信) 2.运行OSPF协议,实现整个网络之间可达。(配置OSPF单区域) 3.保证R1成为DR,其他的路由器成为DROTHER 实验配置:(基本的常见配置和链路配置这里不给出) R1上的配置: R1(config)#int loopback 0 R1(config-if)#ip address 11.11.11.11 255.255.255.0 //回环接口,一般回环接口我们主要用来做测试或者模拟网段的时候使用,需要注意回环接口是一个逻辑上的接口。没有真实的物理接口和他对应,但是回环接口基本上具有所有物理借口的特性 R1(config-if)#

R1(config)#router ospf 1 //运行OSPF协议,进程ID为1。进程ID只是为了识别路由器本地运行了几个OSPF进程。 R1(config-router)#router-id 1.1.1.1 //指定R1的router-id为1.1.1.1 R1(config-router)#network 12.12.12.0 0.0.0.255 area 0 //将属于12.12.12.0/24这个网段的所有接口公告到区域0里去。 R1(config-router)#network 172.16.1.0 0.0.0.255 area 0 R1(config-router)# R2上的配置: R2(config)#router ospf 1 R2(config-router)#router-id 2.2.2.2 R2(config-router)#network 12.12.12.0 0.0.0.255 area 0 R2(config-router)#network 13.13.13.0 0.0.0.255 area 0 R2(config-router)#network 172.16.1.0 0.0.0.255 area 0 R2(config-router)# R3上的配置: R3(config)#interface loopback 0 R3(config-if)#ip address 33.33.33.33 255.255.255.0 R3(config)#router ospf 1 R3(config-router)#router-id 3.3.3.3 R3(config-router)#network 13.13.13.0 0.0.0.255 area 0 R3(config-router)#network 172.16.1.0 0.0.0.255 area 0 R3(config-router)#network 33.33.33.0 0.0.0.255 area 0 当完成上述配置以后我们可以发现已经可以实现整个网络之间的相互通信了。 当做完以后使用各种SHOW命令进行检查。 R1#sh ip ospf neighbor//查看OSPF的邻接关系表,需要注意这里所看到的都是邻居的信息。 Neighbor ID Pri State Dead Time Address Interface 2.2.2.2 1 FULL/BDR 00:00:29 172.16.1.2 Ethernet0 3.3.3.3 1 FULL/DROTHER 00:00:37 172.16.1.3 Ethernet0 2.2.2.2 0 FULL/ - 00:00:30 12.12.12.2 Serial0 R1#

OSPF协议详情详情震荡处理地地总结

【强烈推荐】OSPF协议震荡处理总结 1.1 协议简要介绍 Ospf: 协议号:89,组播地址发包:224.0.0.5,TTL=1,只有一跳,不会被转发。Router ID,路由器的唯一标志(自治系统内唯一)。 Router ID选取规则: 如果通过命令行router id进行了配置,则按照配置结果设置; 如果没有通过命令行router id进行配置,并且已经存在配置有IP地址的loopback接口,则选择loopback接口地址中最大的作为router id;如果没有通过命令行router id进行配置,并且不存在配置有IP地址的loopback 接口,则从其他接口的IP地址中选择最大的一个作为router id(不考虑接口的UP/DOWN状态); 邻居建立后,还需要通过HELLO报文进行邻居关系的维持,有两个定时器来进行这项工作:HELLO TIME:缺省为10秒) DEAD TIME:缺省为4倍的HELLO TIME 通过Hello报文来进行邻居发现。 Hello报文中描述所有该接口上的邻居。 Hello以HelloInterval(10s)为间隔向外发送。 若间隔DeadInterval(40s)还没有收到邻居的Hello报文,则邻居Down。 1.2 协议状态机及交互 1.3 协议抓包 论坛中前边发过 1.4 常用调试手段 如何方便的了解OSPF出了什么问题,调试开关是需要打开的,其中最有效,最常用的就是debugging ospf event(IOS对应命令为debug ip ospf event)!它能让你对OSPF的大部分问题看的一目了然。当然它也不是万能的,它是在正确接收OSPF报文的基础上才能有相应的错误事件。如果没有看到任何动静,建议打开OSPF的所有报文调试开关debugging ospf packet,看看报文的收发是否正常。 打开OSPF event调试开关举例: debugging ospf event 打开OSPF packet调试开关举例: debugging ospf packet 命令 描述 display ospf peer 显示OSPF邻居信息 display ospf error 显示OSPF错误信息。 display ospf interface 显示使能OSPF的接口信息 display ospf brief

OSPF路由协议概念及工作原理

OSPF路由协议概念及工作原理 1.概述 OSPF路由协议是一种典型的链路状态(Link-state)的路由协议,一般用于同一个路由域内。在这里,路由域是指一个自治系统(Autonomous System),即AS,它是指一组通过统一的路由政策或路由协议互相交换路由信息的网络。在这个AS中,所有的OSPF路由器都维护一个相同的描述这个AS结构的数据库,该数据库中存放的是路由域中相应链路的状态信息,OSPF路由器正是通过这个数据库计算出其OSPF路由表的。 作为一种链路状态的路由协议,OSPF将链路状态广播数据包LSA(Link State Advertisement)传送给在某一区域内的所有路由器,这一点与距离矢量路由协议不同。运行距离矢量路由协议的路由器是将部分或全部的路由表传递给与其相邻的路由器。 2.数据包格式 在OSPF路由协议的数据包中,其数据包头长为24个字节,包含如下8个字段: * Version number-定义所采用的OSPF路由协议的版本。 * Type-定义OSPF数据包类型。OSPF数据包共有五种: * Hello-用于建立和维护相邻的两个OSPF路由器的关系,该数据包是周期性地发送的。* Database Description-用于描述整个数据库,该数据包仅在OSPF初始化时发送。 * Link state request-用于向相邻的OSPF路由器请求部分或全部的数据,这种数据包是在当路由器发现其数据已经过期时才发送的。 * Link state update-这是对link state请求数据包的响应,即通常所说的LSA数据包。* Link state acknowledgment-是对LSA数据包的响应。 * Packet length-定义整个数据包的长度。 * Router ID-用于描述数据包的源地址,以IP地址来表示。 * Area ID-用于区分OSPF数据包属于的区域号,所有的OSPF数据包都属于一个特定的OSPF区域。 * Checksum-校验位,用于标记数据包在传递时有无误码。

OSPF协议的配置

OSPF协议的配置 1.配置ospf的stub区域 【 quidway】ospf [process-id] 【 quidway】area area-id 【 quidway】stub [no-summary]配置当前区域为STUB区域 Stub命令只有当在ABR上配置时,可选参数no-summary 才能对该区域起作用(所有连接到stub区域的路由器必须使用stub命令将该区域配置成stub区域 2.配置ospf的Nssa区域 【 quidway】ospf [process-id] 【 quidway】area area-id 【 quidway】nssa [default-route-advertise|no-import-route|no-summary] 配置一个区域为NSSA区域,所有连接到NSSA区域的路由器使用NSSA命令将 该区域配置为NSSA属性 3.配置ospf的虚连接 【 quidway】ospf [process-id] 【 quidway】area area-id 【 quidway】vlink-peer router-id连接到对方的router-id 4.配置ospf的网络类型 介绍:OSPF根据类型分为四种,由于NBMA网络必须是全连接通的,所有网络中任意两台路由器之间都必须可达,很多情况下,这个要求无法满足,这时需要修改网络类型,如果部分路由器之间没有直接可达的链路时,应将接口配置成P2MP方式,如果路由器在NBMA 网络中只有一个对端,可以将接口类型改为P2P方式 【 quidway】interface interface-type interface-number 【 quidway】ospf network-type {broadcast|nbma|p2mp|p2p}配置ospf接口的网络类型5.配置ospf的路由聚合 【 quidway】ospf [process-id] 【 quidway】area area-id 【 quidway】abr(asbr)-summary ip-address mask配置abr和asbr的路由聚合 6.配置过滤ospf接收的路由 【Quidway】ospf 【Quidway】area area-id 【Quidway】filter-policy acl-number import(基于ACL过滤学到的路由信息) 【Quidway】filter-policy gateway ip-prefix-name import(基于目的地址前缀过滤邻居发布路由信息) 7.配置ospf引入缺省路由 【Quidway】ospf 【Quidway】default-route-advertise[always][cost cost][type type][route- Policy route-policy-name]使用这个命令配置always参数时,可以强制OSPF引入一条缺省路由,否则必须本地有缺省路由才可以 引入。 8.配置ospf的区域认证 【Quidway】ospf 【Quidway】area area-id

实验5 OSPF单区域

【实验名称】 OSPF单区域基本配置。 【实验目的】 掌握在路由器上配置OSPF单区域。 【背景描述】 假设校园网通过1台三层交换机连到校园网出口路由器,路由器再和校园外的另1台路由器连接,现做适当配置,实现校园网内部主机与校园网外部主机的相互通信。 本实验以两台R1762路由器、1台三层交换机为例。S3550上划分有VLAN10和VLAN50,其中VLAN10用于连接Router1,VLAN50用于连接校园网主机。 路由器分别命名为Router1和Router2,路由器之间通过串口采用V35 DCE/DTE电缆连接,DCE端连接到Router1(R1762)上。 PC1的IP地址和缺省网关分别为172.16.5.11和172.16.5.1,PC2的IP地址和缺省网关分别为172.16.3.22和172.16.3.1,网络掩码都是255.255.255.0。 【技术原理】 OSPF(Open Shortest Path First,开放式最短路径优先)协议,是目前网络中应用最广泛的路由协议之一。属于内部网关路由协议,能够适应各种规模的网络环境,是典型的链路状态(link-state)协议。OSPF路由协议通过向全网扩散本设备的链路状态信息,使网络中每台设备最终同步一个具有全网链路状态的数据库(LSDB),然后路由器采用SPF算法,以自己为根,计算到达其他网络的最短路径,最终形成全网路由信息。 OSPF属于无类路由协议,支持VLSM(变长子网掩码)。OSPF是以组播的形式进行链路状态的通告的。 在大模型的网络环境中,OSPF支持区域的划分,将网络进行合理规划。划分区域时必须存在area0(骨干区域)。其他区域和骨干区域直接相连,或通过虚链路的方式连接。 【实现功能】 实现网络的互连互通,从而实现信息的共享和传递。 【实验设备】 S3550(1台)、R1762路由器(两台)、V35线缆(1根)、交叉线或直连线(1条) 【实验拓扑】

实验 7 单区域OSPF路由协议配置

实验7 单区域OSPF路由协议配置 一、实验目的 掌握OSPF 动态路由协议的配置、诊断方法。 二、实验任务 1、配置OSPF 动态路由协议,使得3 台Cisco 路由器模拟远程网络互联。 2、对运行中的OSPF 动态路由协议进行诊断。 三、实验设备 Cisco 路由器3 台,带有网卡的工作站PC 两台,交叉双绞线若干。 四、实验环境 实验环境如图所示。 五、实验步骤 1、运行Cisco Packet Tracer 软件,在逻辑工作区放入3 台路由器、两台工作站PC,分别点击各路由器,打开其配置窗口,关闭电源,分别加入一个 2 口同异步串口网络模块(WIC-2T),重新打开电源。然后,用交叉线(Copper Cross-Over)按图(其中静态路由区域)所示分别连接路由器和各工作站PC,用DTE 或DCE 串口线缆连接各路由器(router0 router1),注意按图中所示接口连接(S0/0 为DCE,S0/1 为DTE)。 2、分别点击工作站PC1、PC3,进入其配置窗口,选择桌面(Desktop)项,选择运行IP 设置(IP Configuration),设置IP 地址、子网掩码和网关分别为: PC1:192.168.1.100/24 gw: 192.168.1.1, PC3:192.168.3.100/24 gw: 192.168.3.3 3、点击路由器R1,进入其配置窗口,点击命令行窗口(CLI)项,输入命令对路由器配置如下:

点击路由器R2,进入其配置窗口,点击命令行窗口(CLI)项,输入命令对路由器配置如下: 同理对R3 进行相应的配置: 4、测试工作站PC 间的连通性。 从PC1 到PC3:PC>ping 192.168.3.100 (不通),如图所示。

OSPF协议配置

OSPF 协议配置 【实验目的】 1.了解和掌握ospf 的原理; 2.熟悉ospf 的配置步骤; 3.懂得如何配置OSPF router ID ,了解DR/BDR 选举过程; 4.掌握hello-interval 的使用; 5.学会使用OSPF 的authentication ; 【实验拓扑】 【实验器材】 如上图,需用到路由器三台,hub/switch 一个,串行线、网线若干,主机三台。 说明:拓扑中网云可用hub 或普通switch 替代,建立multiaccess 网络,以太口连接。 【实验原理】 一、OSPF 1. OSPF 基本原理以及邻居关系建立过程 OSPF 是一种链路状态型路由选择协议。它依靠5种(Hello, DBD, LSR, LSU and LSAck)不同种类的数据包来识别、建立和维护邻居关系。当路由器接收到来自邻居的链路状态信息后,会建立一个链路状态数据库;然后根据该链路状态数据库,采用SPF 算法确定到各目的地的最佳路径;最后将最佳路径放到它的路由表中,生成路由表。 OSPF 会进行周期性的更新以维护网络拓扑状态,在LSA 的生存期到期时进行周期性的更新。除了周期性更新之外,还有触发性更新。即当网络结构发生变化(例如增减路由器、链路状态发生变化等)时,会产生触发性更新,把变化的那一部分通告给整个网络。 192.168.1.0/24 RT A

2.Designated Router (DR) / Backup Designated Router(BDR)选举过程 存在于multiaccess网络,点对点链路和NBMA网络中无此选举过程,此过程发生在Two-Way之后ExStart之前。 选举过程: 选举时,依次比较hello包中的各台router priority和router ID,根据这两个值选出DR 和BDR。选举结束后,只有DR/BDR失效才会引起新的选举过程;如果DR故障,则BDR 替补上去,次高优先级Router被选为BDR。 基本原则如下: 1)有最高优先级值的路由器成为DR,有第二高优先级的路由器成为BDR; 2)优先级为0的路由器不能作为DR或BDR,只能做DRother (非DR); 3)如果一台优先级更高的路由器加到了网络中,原来的DR与BDR保持不变,只有DR 或BDR它们失效时才会改变; 4)当优先级相同时,路由器ID最高和次高的的就成为DR和BDR; 5)当没有配置loopback时,用router上up起来的端口中最高IP地址作为Router ID,否则就用loopback口的IP地址作为它的ID;如果有多个loopback则用loopback端口中最高IP地址作为ID;而且路由器ID 一旦确定就不再更改。 建议使用优先级操纵DR/BDR选举过程 3.update timer与authentication的影响 要让OSPF路由器能相互交换信息,它们必须具有相同的hello间隔和相同的dead-time 间隔。缺省情况下,后者是前者的4倍。 缺省地,路由器认为进入的路由信息总是可靠的、准确的,从而不加甄别就进行处理,这存在一定的危险。因此,为了确保进入的路由信息的可靠性和准确性,我们可以在路由器接口上配置认证密钥来作为同一区域OSPF路由器之间的口令,或对路由信息采用MD5算法附带摘要信息来保证路由信息的可靠性和准确性。建议采用后者,因为前者的密钥是明文发送的。 三、其它预备知识 1、回环接口的配置: Router(config)#int l0 Router(config-if)#ip addr *.*.*.* *.*.*.* 2、telnet:是属于应用层的远程登陆协议,是一个用于远程连接服务的标准协议,用户可以 用它建立起到远程终端的连接,连接到Telnet服务器;用户也可以用它远程连接上路由器进行路由器配置。 【实验内容】 一、在路由器上配置单域的OSPF 1.按照拓扑图1接好线,完成如下基本配置: (1)配置端口IP地址 以RTA路由器的配置为例: RTA(config)#Interface Ethernet 0 RTA(config-if)#ip address 192.168.1.1 255.255.255.0

第6章 OSPF路由协议

第6章 OSPF路由协议 ?OSPF的基本概念和工作过程 开放式最短路径优先协议(OSFP)是基于开放标准的链路状态路由选择协议,它完成各路由选择协议算法的两大主要功能:路径选择和路径交换。Internet 工程任务协会(IETF)于1988年开发了OSPF,其最近版本是OSPF版本2,在RFC 2328中进行了描述。 ?OSPF路由协议概述 1.OSPF是内部网关路由协议 在共同管理域下的一组运行相同路由选择协议的路由器的集合为一个自治系统(Autonomous System,AS)。在互联网中,一个自制系统是一个有权决定本系统使用哪种路由协议的单位,它可以是一个企业、一座城市或一个电信运营商。随着网络的发展,上述对AS的定义已经不是十分准确了,网络的发展使得网络之间经常出现网络合并情况,导致同一个自治系统中使用的路由协议也越来越多,所以自治系统的定义应该是在共同管理下的互联网络。 内部网关路由协议(IGP):用于在单一自治系统(Autonomous System,AS)内决策路由。内部网关路由协议包括RIP、OSPF等。 与内部网关路由协议相对应的叫做外部网关路由协议(EGP),外部网关路由协议用于在多个自治系统之间执行路由。BGP协议就是外部网关路由协议。 IGP是用来解决AS内部通信的,而EGP是解决AS间通信的。 2.OSPF是链路状态路由协议 链路状态路由协议通过与邻居路由器建立邻接关系,互相传递链路状态信息,来了解整个网络的拓扑结构。在链路状态信息中,包括有哪些链路,这些链路与哪个路由器相连,连接的路径成本是多少等信息,因此,在链路状态路由协议收敛后,一台路由器可以了解本区域完整的链路信息。 运行链路状态路由协议的路由器就好像各自“绘制”自己所了解的网段信息,然后通过与邻居路由器建立邻接关系,互相“交流”链路信息,学习整个区域内链路信息,来“绘制”出整个区域内的链路图。在一个区域内的所有路由器都保存着完全相同的链路状态数据库。 名词解释: 邻居路由器:位于同一条物理链路或物理网段上的路由器。 链路状态数据库:也称为拓扑数据库,它包含所有路由器、路由器的链路以及这些链路的状态,还包含所有网路以及到这些网络的所有路径。 邻接关系:当两台运行OSPF协议的邻居路由器的链路状态数据库达到一致(同步)时,它们就是完全邻接的。 ?OSPF的工作过程 运行RIP的路由器只需要保存一张路由器,而使用OSPF路由协议的路由器 需要保存三张表。 邻居表:列出每台路由器已经建立邻接关系的全部邻居路由器。 链路状态数据库(LSDB):列出网络中其他路由器的信息,由此显示了全网的网络拓扑。 路由表:列出通过SPF算法计算出的到达每个相连网络的最佳路径。 运行OSPF的路由器试图与邻居路由器建立邻接关系,在邻居之间互相同步 链路状态数据库。使用最短路径算法(OSPF依据的算法是Dijkstra算法),从 链路状态信息计算得到一个以自己为树根的“最短路径树”。到最后,每一台路

OSPF协议配置实例

OSPF 协议配置 【实验目的】 1.了解和掌握ospf 的原理; 2.熟悉ospf 的配置步骤; 3.懂得如何配置OSPF router ID ,了解DR/BDR 选举过程; 4.掌握hello-interval 的使用; 5.学会使用OSPF 的authentication ; 【实验拓扑】 【实验器材】 如上图,需用到路由器三台,hub/switch 一个,串行线、网线若干,主机三台。 说明:拓扑中网云可用hub 或普通switch 替代,建立multiaccess 网络,以太口连接。 【实验原理】 一、OSPF 192.168.1.0/RTA

1. OSPF基本原理以及邻居关系建立过程 OSPF是一种链路状态型路由选择协议。它依靠5种(Hello, DBD, LSR, LSU and LSAck)不同种类的数据包来识别、建立和维护邻居关系。当路由器接收到来自邻居的链路状态信息后,会建立一个链路状态数据库;然后根据该链路状态数据库,采用SPF算法确定到各目的地的最佳路径;最后将最佳路径放到它的路由表中,生成路由表。 OSPF会进行周期性的更新以维护网络拓扑状态,在LSA的生存期到期时进行周期性的更新。除了周期性更新之外,还有触发性更新。即当网络结构发生变化(例如增减路由器、链路状态发生变化等)时,会产生触发性更新,把变化的那一部分通告给整个网络。 2.Designated Router (DR) / Backup Designated Router(BDR)选举过程 存在于multiaccess网络,点对点链路和NBMA网络中无此选举过程,此过程发生在Two-Way之后ExStart之前。 选举过程: 选举时,依次比较hello包中的各台router priority和router ID,根据这两个值选出DR和BDR。选举结束后,只有DR/BDR失效才会引起新的选举过程;如果DR故障,则BDR替补上去,次高优先级Router被选为BDR。 基本原则如下: 1)有最高优先级值的路由器成为DR,有第二高优先级的路由器成为BDR; 2)优先级为0的路由器不能作为DR或BDR,只能做DRother (非DR); 3)如果一台优先级更高的路由器加到了网络中,原来的DR与BDR保持不变,只有DR或BDR它们失效时才会改变; 4)当优先级相同时,路由器ID最高和次高的的就成为DR和BDR; 5)当没有配置loopback时,用router上up起来的端口中最高IP地址作为Router ID,否则就用loopback口的IP地址作为它的ID;如果有多个loopback则用loopback端口中最高IP地址作为ID;而且路由器ID 一旦确定就不再更改。 建议使用优先级操纵DR/BDR选举过程 3.update timer与authentication的影响 要让OSPF路由器能相互交换信息,它们必须具有相同的hello间隔和相同的dead-time

相关主题
文本预览
相关文档 最新文档