当前位置:文档之家› 铅酸蓄电池容量检测仪故障诊断

铅酸蓄电池容量检测仪故障诊断

铅酸蓄电池容量检测仪故障诊断
铅酸蓄电池容量检测仪故障诊断

第23卷第5期机电产品开发与剀新V01.23,No.5兰Q!Q生呈旦些:!!!!竺竺!苎!!!!!!!!!!!!竺竺!!!!!苎!!!!!!!型璺!!!竺曼皇巳:!至鱼!鱼

文章编号:1002—6673(2010)05—133-03

铅酸蓄电池容量检测仪故障诊断

李国平1,李罡2,周文清3

(1.莱芜职业技术学院工程技术系,山东莱芜271100;2.莱芜市莱城区科技局,山东莱芜271100;

3.山东力创科技有限公司.山东莱芜271100)

摘要:铅酸蓄电池检测装置应用十分广泛,因其集成化较高、结构复杂,故使用过程中的故障率较高。本文以SP3605型铅酸蓄电池容量检测仪为例.在阐述该仪器的主体结构及各模块的工作原理基础上。

就其常见故障和疑难问题进行了深入探讨。

关键词:铅酸蓄电池;检测装置;故障率;放电深度:集成化

中图分类号:TM930.7文献标识码:Adoi:10.3969/i.issn.1002—6673.2010.05,054

FailureDiagnosisofLead-acidStorageBatteryCapacityInspectionInstrument

LICuo-Pir留,LIG孵,ZHOUWen-Qin93

(1.DepartmentofEngineeringTechnology,LaiwuVocational&TechnicalCollege。LaiwuShandong271100.China;

2.ScienceandTechnologyBureauofLaichengDistrictLaiwuCity,LaiwuShandong271100。China;

3.ShandongLichuangScienceandTechnologyLimitedCompany,LaiwuShandong271100,China)

Abstract:Lead—acidstoragebatterycapacityinspectioninstrumentis谢debused,butthefailurerateishigherbecauseofitshigherintegra-tionandcomplexstructnre.UsedSP3605lead—acidstoragebatteryofSuperS&TIndustrialCo.,LtdaSallexample,thearticledoesallin—depthdiscussionOilthefailuresandproblemsoftheequipmentbaSedonexpatiatingitsprincipalpartsstl-UcUlreandworkingprincipleofeachmodule.

Keywords:lead—acidbattery;inspectionequipment;failurerate;depthofdischarge;integrated

O引言

铅酸蓄电池广泛应用于各类有源电器.而铅酸蓄电

池检测装置,对保障铅酸蓄电池的使用质量和寿命意义

重大。在铅酸蓄电池维修及售后服务单位应用频率很

高。仪器的故障率也较高。本文以典型的SP3605型铅

酸蓄电池容量检测仪为例,就其常见故障进行了探讨。

1铅酸蓄电池容量检测仪的总体结构(1)整机的主要结构。典型的铅酸蓄电池容量检测仪由控制单元、显示模块、电源模块、充电和放电电路、接口电路等五部分组成。

(2)控制显示电路的工作原理。该控制电路以5l单片机为核心来完成电池容量的检测和显示.单片机为8051系列八位单片机,具有四组I,o口。

与单片机相连的集成电路还有74Ls244和sN7406。五个数码管在板上的位置如图l所示。

收稿日期:2010-08—13

作者简介:李国平(1972一),男。讲师。硕士研究生。主要从事机电一体化、机械工程材料的教学与研究。

图l显示模块的板级示意图

Fig.1Paneldiagramofdisplaymodule

该电路中的单片机由两段主程序,充电和放电,.分别用C和F来指示。开机时处在充电状态,状态显示为C;按一次状态键,进行人放电状态,显示为F;再按一下状态键,进入充放状态。显示为CF;再按下状态键,进行充放充状态,显示为CFC。如果再按一下状态键,就回到充电状态,依次进行循环。

开机时,充电和放电电流默认为lA,按下电流键,就会显示为3A,再按一下就显示为5A,再按一次电流键,就回到lA。当设置好状态和充放电电流后,按一下启动键,就开始按设定的程序进行工作。按复位键,可使单片机回到开机状态。以上是检测仪控制部分工作

133

铅酸蓄电池容量检测仪故障诊断

作者:李国平, 李罡, 周文清, LI Guo-Ping, LI Gang, ZHOU Wen-Qing

作者单位:李国平,LI Guo-Ping(莱芜职业技术学院,工程技术系,山东,莱芜,271100), 李罡,LI

Gang(莱芜市莱城区科技局,山东,莱芜,271100), 周文清,ZHOU Wen-Qing(山东力创科技有

限公司,山东,莱芜,271100)

刊名:

机电产品开发与创新

英文刊名:DEVELOPMENT & INNOVATION OF MACHINERY & ELECTRICAL PRODUCTS

年,卷(期):2010,23(5)

参考文献(3条)

1.阎石数字电子电路 2002

2.刘瑞新单片机原理及应用 2003

3.叶慧贞;杨兴洲新颖开关稳压电源 2006

本文链接:https://www.doczj.com/doc/2f18702524.html,/Periodical_jdcpkfycx201005054.aspx

蓄电池放电容量测试仪

蓄电池放电容量测试仪产品功能 ●测试电压范围宽,覆盖10V-300V电压范围电池组放电测试,最大放电电流达到120A,用户只需要一台RTKR-8400蓄电池放电容量测试仪就可以满足多种电压等级的电池组测试,大大节约购买仪表资金,而且方便实用 ●支持恒流、恒功率、恒阻值三种放电测试模式,能满足多种测试要求。当需要检测蓄电池容量时,可以选择恒流放电模式,准确测试蓄电池组的实际容量;当需要检测蓄电池带载能力时,可以选择恒功率测试模式,准确模拟蓄电池组真实负载时的后备供电时间。恒阻值放电模式多用于直流电流输出性能检测 ●5.7英寸超大触摸屏:采用大尺寸触摸屏,可直接在屏上进行点击操作,简单明了。放电过程中可查看所有的放电参数,并且可显示单体电压柱状图 ●采用蓝牙无线单体监测模块:兼容2V/6V/12V单体电压监测

●每个无线监测模块可同时监测4个单体:相比每个模块监测一只单体电压方法,需要配置的模块数量只是其1/4(48V只需6个监测模块),让无线模块接线操作更加简便 ●在线补偿式放电功能:在线放电时,主机显示电流=电池组放电电流=主机内部假负载电流+实际负载电流,由于在线放电时实际负载电流会随着在线电压的变化而变化,主机内部假负载电池也会自动进行调整,以保证蓄电池组一直以真正的恒流方式放电 ●单体电压停机门限可设置多节:如此可在一次连续不中断的放电测试中发现多节落后单体电池 ●功耗部分采用航空合金电热元件:电热转换效率高,安全系数高,体积小、重量轻 ●放电电流自动计算功能:内置各小时率放电系数,可放电根据被测电池的标称容量和需要的放电率来自动计算需要设置的放电电流 ●测试过程中,各单体电压实时检测和显示:并在主机屏幕上呈现出各单体电压柱状图的变化轨迹,还能自动实时呈现出电压最高与最低的单体,帮助您快速分析单体变化的趋势●放电参数预设功能:允许预先内置多达8种常用的放电参数设置,很多情况下无须重新设置放电参数,方便使用者放电操作,加快测试速度。使用者也可以对内置的预放参数进行修改 蓄电池放电容量测试仪技术参数

太阳能电池方阵及蓄电池容量计算的一般方法

太阳能电池供电系统设计步骤 ⑴列出基本数据 ①确定所有负载功率及连续工作时间 ②确定地理位置:经、纬度及海拔高度 ③确定安装地点的气象资料: ★年(或月)太阳辐射总量或年(或月)平均日照时数 ★年平均气温和极端气温 ★最长连续阴雨天数 ★最大风速及冰雹等特殊气候资料 ⑵确定负载功耗:Q=ΣI2H 其中:I-负载电流,H-负载工作时间(小时) ⑶确定蓄电池容量:C = Q X d X 1.3 式中:d-连续阴雨天数 C-蓄电池标称容量(10小时放电率) C = (10~20)3Cr /(1-d) ⑷确定方阵倾角:推荐方阵的倾角与纬度的关系 ⑸计算方阵β倾角下的辐射量: Sβ= S3sin(α+β)/sinα 式中:Sβ—β倾角方阵太阳直接辐射分量 α—中午时太阳高度角 S 其它:α=90°-Φ±δ 式中:Φ—纬度 δ—太阳赤纬度(北半球取+号)地面即:α=90°-Φ+δ δ=23.45°sin[(284+n)3360/365] 式中:n—从一年开头算起第n天的纬度 那么 Rβ=S3sin(α+β)/sinα+D 式中 Rβ—β角方阵面上的太阳总辐射量 D—散射辐射量(查阅气象资料) ⑹计算方阵电流: Tm = (Rβ3mwH/cm2)/(100mw/cm2) 式中:Tm—为平均峰值日照时数 Imin = Q/(Tm3η13η2) 式中:Imin—方阵最小输出电流η1—蓄电池充电效率 η2—方阵表面灰尘遮散损失 Imax = Q/(Tmin3η13η2) ⑺确定方阵电压: V = Vf+Vd 式中:Vf—蓄电池浮充电压(25‵)Vd—线路电压损耗 ⑻确定方阵功率: F=Im3V/(1-α(Tmax-25)) 式中:α—一般取α=0.5% Tmax—太阳电池最高工作温度 ⑼根据蓄电池容量、充电电压、环境极限温度、太阳电池方阵电压及功率要求,选取适

电池容量测试方法

容量是指电池存储电量的大小。电池容量的单位是“mAh”,中文名称是毫安时(在衡量大容量电池如铅蓄电池时,为了方便起见,一般用“Ah”来表示,中文名是安时,1Ah=1000mAh)。若电池的额定容量是1300mAh,如果以0.1C(C为电池容量)即130mA的电流给电池放电,那么该电池可以持续工作10小时(1300mAh/130mA=10h);如果放电电流为1300mA,那供电时间就只有1小时左右(实际工作时间因电池的实际容量的个别差异而有一些差别)。这是理想状态下的分析,数码设备实际工作时的电流不可能始终恒定在某一数值(以数码相机为例,工作电流会因为LCD显示屏、闪光灯等部件的开启或关闭而发生较大的变化),因而电池能对某个设备的供电时间只能是个大约值,而这个值也只有通过实际操作经验来估计。 附:充电电池的分类 首先容我向大家介绍与充电电池种类以及相关术语。目前数码产品中使用最多的就是AA(俗称5号)和AAA(俗称7号)标准电池,还有一部份使用专用电池。不管它们的外形如何,从它里面的电芯可以分为镍镉可充电电池(Ni-Cd Battery)、镍氢可充电电池(Ni-Mh Battery)、锂离子电池(Li-lon Battery)三种。 镍镉可充电电池 镍镉可充电电池采用1.6倍电压充电,通常充电次数为300~800次。在充放电达500次后电容量会下降,只能达到约80%。镍镉电池的缺点是在充放电时,阴极会长出镉的针状结晶,有时会穿透分隔物而引起内部枝状晶体式的短路。 这里我顺带提一提大名鼎鼎的“记忆效应”,相信不少朋友都知道这个词,但它倒底是怎么一回事儿呢?针对镍镉电池而言,由于传统工艺中电池负极为烧结式,镉晶粒较粗,如果镍镉电池在它们被完全放电之前就重新充电,镉晶粒容易聚集成块而使电池放电时形成放电平台。电池会储存这一放电平台并在下次循环中将其作为放电的终点。尽管电池本身的容量可以使电池放电到更低的平台上,但在以后的放电过程中电池将只记得这一低容量。也就是说电池容量变小了,这就是所谓的“记忆效应”。 镍氢可充电电池 镍氢可充电电池主要是为了取代镍镉电池而设计的。镍氢电池是使用氧化镍作为阳极,以及吸收了氢的金属合金作为阴极,氢氧化钾碱性水溶液为电解液。镍氢电池的能量密度比镍镉电池大,相同体积的镍氢电池容量可以达到镍镉电池的2倍左右。同时它不含有害金属、更加环保,同时镍氢电池基本消除了“记忆效应”。它的充电效率高,能在2小时内充足90%电量。但是不耐过充和过度放电,因此这种电池的充电器必须可自动断电,否则易造成电池损坏。 基于以上优点,镍氢电池几乎已经完全取代了镍镉电池。目前销售数码相机、MP3的电脑市场上出售的标准AA、AAA电池绝大多数是镍氢电池,主流AA镍氢电池容量达到了1500~2600mAH时,主流AAA镍氢电池容量达650~800mAH。而容量仅几百mAH的镍镉电池仅在一些百货商场可以见到,但与镍氢电池相同明显没有性价比,不建议贪图价格上的便宜而选用镍镉电池。关于容量方面的选择,目前DC、MP3等产品的液晶屏越来越大,应该尽量选择大容量的产品。 锂离子电池 我们俗称的锂电池一般将多颗电芯串连起来,电压范围在3.0~4.0V之间(公称电压3.6V)。以前还有一种金属锂电池,但锂离子电池比金属锂电子更安全,原因就在于是采用锂离子状态,锂离子电池没有可流动的液态电解质,而是改为聚合物电解质导电。锂离子电池与相同

电池容量测试操作规程

电池容量测试操作规程 设备名称:可充电电池综合测试仪 设备型号:BTS-2002 生产厂家:深圳市泰斯电子有限公司 操作步骤: 1.接通测试仪电源按上下键选择(2、Capacity test)容量测试模式。按ENTER键进入下一级菜单。 2.选择该项测试功能后,进入电池容量参数设置菜单。 如下所示: 3.以上1~3项和静态参数设置界面一样,可以参考《可充电电池综合测试仪操作规程》说明。 4.第四项选择功能为锂电池过充电和过放电测量允许控制,选择为YES,将在容量测量的过程中,进行 过充电和过放电保护测试。 5.按下确认键之后,开始启动容量测试,按照下面的流程做一次完整的容量测试:

充电到电池完全充满 过充电测试 搁置100秒 完整放电 过放电测试 结束 在充电过程中,累计充电电量,在放电过程中,累计放电电量,在放电完全结束之后,所显示的放电电量即为电池在此工作模式下的电池容量。 ⑦ Lion ,表示当前设置的电池类型为锂电池 第二项 CV ,表示当前是恒定电压 CC ,表示恒定电流 TC ,表示涓流电流,小电流模式(默认是0.1C ) OC, 过放电测试 第三项 CHARGE, 充电状态 DISCHR, 放电状态 WAIT …34 表示搁置状态,目前还剩余34秒,倒计时显示。 第四项 RUN, 运行模式 PAUSE , 暂停模式 ERROR, 当前运行出错 COMP, 所选择功能完成 第五项 RUN TIME: 00:03:17 运行时间,表示当前测试过程已经持 续多少时间 第六项 V=3.92V 表示当前电池的电压,如显示为+/-符号,指示电池接反。 第七项 I=0.468A 表示当前电池的电流。 第八项 如当前在充电模式,显示CHARGE CAP: 26mAH ,表示当前已经充

蓄电池容量测试操作说明

1准备工作: 1.1工具准备 1.2资料准备 检修票,通信电源蓄电池组维护测试记录表(半年), 1.3注意事项 放电仪的选用: 注意蓄电池放电仪型号选用,48V蓄电池放电仪(型号:IDCE-4815CT)只能用48V蓄电池测试,UPS蓄电池放电仪(型号:IDCE-6006CT)只能用于UPS蓄电池测试。切勿混用。 2操作步骤: 2.1手续办理: 2.1.1信息确认: 把测试事宜及内容告知管理处相关人员,了解测试站点近期市电供电情况,是否存在市电供电异常,确认测试站点当日及第二日市电供电正常,才进行测试,否则,不得进行测试。

2.1.2资料报备: (1)填写检修申请票,并由管理处相关人员签字确认,完成维护报备工作; (2)通知网管中心,测试前将测试内容和涉及的设备向网管中心值班人员报备。 2.2检查记录: 2.2.1设备检查 (1)设备检查记录电池组浮充总电压、单体浮充电压、负载电流、环境温度以及开关电源的其它设置参数,检查蓄电池组的现有容量是否100%。 (2)检查所有的电池端子是否处于拧紧状态 (3)检查电池是否有漏液、酸雾等异常。 2.2.2仪器检查 按照设备清单清点配件是否齐全, 面板介绍 2.3开机与参数设置 2.3.1开机 UPS电源系统:

1)断开待测电池组断路器(注意:严禁两个断路器同时断开),如下图: 2)接交流电源,打开仪表上的市电开关,正常开机 40V蓄电池: 1)断开开关电源柜内的待测电池组熔断丝(注意:两组熔断丝严禁同时断开) 2)把正负极电缆接入仪器正负极接口,另一端与蓄电池正负极相连,然后先打开仪表 市电开关,再合上F1空开,仪表正常开机。(拆下的电池线铜鼻子做好绝缘保护)

蓄电池容量计算方法

蓄电池容量计算部分 1、常用的蓄电池容量计算方法 (1)容量换算法(电压控制法) 按事故状态下直流负荷消耗的安时值计算容量,并按事故放电末期或其他不利条件下校验直流母线电压水平。 (2)电流换算法(阶梯负荷法) 按事故状态下直流的负荷电流和放电时间来计算容量。该方法相对于电压控制法,考虑了大电流放电后负荷减小的情况下,电池具有恢复容量的特性,该算法不需在对电池容量进行电压校验。 2、采用容量换算法计算容量 2.1 按持续放电负荷计算蓄电池容量,取电压系数Ku=0.885,则计算的单个电池的放电终止电压为: V (4-1) 蓄电池的计算容量: (4-2) 式中Cc—事故放电容量; Kcc—蓄电池容量系数; Krel—可靠系数,一般取1.40 对于阶梯型负荷,可采用分段计算法计算。以东直门车站为例,各阶段负荷分布如下图所示: 图中: I1=325.27A I2=293.45A I3=46.36A I4=13.64A m1=0.5h m2=0.5h m3=1h m4=2h 80 .1 108 220 885 .0 = ? = Ud cc s rel c K C K C=

在4个不同阶段,任意一个时期的放电容量为: (4-3) 总的负荷容量为: (4-4) 在计算分段ta 内,所需要的蓄电池容量计算值为: (4-5) 其中,容量系数Kcca 按计算分段的时间ta 决定。 通过查图 (GF 型蓄电池放电容量与放电时间的关系曲线),对应于事故时间4小时和放电终止电压1.80V ,得出容量系数 Kcc=0.77。 分别计算n 个分段的蓄电池计算容量,然后按照其中最大者选择蓄电池,则蓄电池的容量为: (4-6) 2.2 放电电压水平的校验 (1)持续放电电压水平的校验。事故放电末期,电压将降到最低,校验是否符合要求的方法如下: 事故放电期间蓄电池的放电系数 (4-7) 式中,Cs —事故放电容量(Ah ),t —事故放电时间 通过计算出来的K 值和对应的事故放电时间,可以通过蓄电池的冲击放电曲线,求出单只电池的电压,再乘以蓄电池只数,得到蓄电池整组电压,该电压值应大于198V 。 (2)冲击放电电压水平的校验。 冲击放电过程中,放电时间极短,放电电流较大。尽管消耗电量较少,但对电压影响较大。所以,按持续放电算出蓄电池容量后,还应校验事故放电初期、末期及其他放电阶段中,在可能的大冲击放电电流作用下蓄电池组的电压水平。 mi i mi t I C =n a a i mi sa C C ...2,11 |==∑=n a Kcca KrelCsa Cca ...2,1|== Cca n a Cc max 1 =≥10 tC KrelCs K =

计算电池剩余容量的常用方法

计算电池剩余容量的常用方法 阅读次数:105 我要发表评论 作者:optimumchina发表时间:2010-10-13 本文将讨论尽可能精确计算剩余电池电量的重要性。令人遗憾的是,仅通过测量某些数据点甚至是电池电压无法达到上述目的。温度、放电速率以及电池老化等众多因素都会影响充电状态。本文将集中讨论一种专利技术,该技术能够帮助设计人员测量锂电池的充电状态以及剩余电量。现有的电池电量监测方法 目前人们主要使用两种监测方法:一种方法以电流积分(current integration)为基础;而另一种则以电压测量为基础。前者依据一种稳健的思想,即如果对所有电池的充、放电流进行积分,就可以得出剩余电量的大小。当电池刚充好电并且已知是完全充电时,使用电流积分方法效果非常好。这种方法被成功地运用于当今众多的电池电量监测过程中。 但是该方法有其自身的弱点,特别是在电池长期不工作的使用模式下。如果电池在充电后几天都未使用,或者几个充、放电周期都没有充满电,那么由内部化学反应引起的自放电现象就会变得非常明显。目前尚无方法可以测量自放电,所以必须使用一个预定义的方程式对其进行校正。不同的电池模型有不同的自放电速度,这取决于充电状态(SOC)、温度以及电池的充放电循环历史等因素。创建自放电的精确模型需要花费相当长的时间进行数据搜集,即便这样仍不能保证结果的准确性。 该方法还存在另外一个问题,那就是只有在完全充电后立即完全放电,才能够更新总电量值。如果在电池寿命期内进行完全放电的次数很少,那么在电量监测计更新实际电量值以前,电池的真实容量可能已经开始大幅下降。这会导致监测计在这些周期内对可用电量做出过高估计。即使电池电量在给定温度和放电速度下进行了最新的更新,可用电量仍然会随放电速度以及温度的改变而发生变化。 以电压为基础的方法属于最早应用的方法之一,它仅需测量电池两级间的电压。该方法基于电池电压和剩余电量之间存在的某种已知关系。它看似直接,但却存在难点:在测量期间,只有在不施加任何负载的情况下,才存在这种电池电压与电量之间的简单关联。当施加负载时(这种情况发生在用户对电量感兴趣的多数情况下),电池电压就会因为电池内部阻抗所引起的压降而产生失真。此外,即使去掉了负载,发生在电池内部的张持过程(relaxation processe)也会在数小时内造成电压的连续变化。由于多种原因的存在,基于电池阻抗知识的压降校正方法仍存在问题,本

DIY电池容量测试仪

DIY电池容量测试仪——数码之家司马摄影作 数码时代,每个人都会接触到各种类型的电池,数码相机,MP3,手机,笔记本电脑,还有众多的使用AA5号电池的设备,通常我们是按照标称电量来估算手里电池的容量的,但是,虚标的电池和使用过一段时间的电池的容量已经改变,尤其是使用多节电池的设备,比如闪光灯,是用4节AA电池串联使用的,其中一节电池容量降低,就会使整体4节的使用效率全部下降,知道每节的正确容量,可以很轻易的配套使用,发挥电池的最大效应。 为了测试手里的一堆电池,决定DIY个电池容量的测试设备 在网上淘到的双路专用A/D转换板,因为设计限制,只能测试5V以下的电池 在箱子里面翻出来两个CPU风扇,吹灰,校油,拆下固定卡簧 拆下功率管原来的小散热片,做好延长线 打孔,涂导热硅脂,固定在大的散热片上 按预定位置固定好,底下固定用的板是以前在废笔记本上拆下的上盖 接好测试AA电池的盒子和外接鳄鱼夹用来测试其他类型的电池 以前把屏拆掉的笔记本电脑,屏用来DIY液晶显示器了,(原帖地址:https://www.doczj.com/doc/2f18702524.html,/152929.html),剩下的机身闲置,因为机器太老了,也运行不了现在的程序了,正好做测试仪的专用主机。开机试验,换了个BIOS电池后还蛮正常的,装好WINDOWS 98,拷入A/D板专用程序 基本成型的全套测试仪 进行电压和电流的校准,两个电压要显示完全一样 找了两块从报废的笔记本电池拆下来的电芯,测试整体工作是否正常 测试完成,红圈里面是电池的测试数据和工作状态,内容包括测试好的电池容量,内阻和放电能量,上面的是电池测试时的放电曲线,由于是拆机电池,容量剩余已经不是太高了 测试AA电池 左边的是数码伴侣的电池,右边的是我手机的电池,用报废的万能充的接口做的万能放电座 测试手里的两块外拍灯电瓶,这个时候就要开散热片上的风扇了,否则功率管烫的吓人,功率管上的理论耗散功率达到12W,打开风扇后,还是蛮温的 经过一天的测试,工作的还是蛮正常的,还发现了一个问题,有的时候不是电池的毛病,充电器的截止电压低也会造成电池的容量不满,用同一块电池,用不同的充电器充满测试,可以测试充电器是否工作正常。。。。。。

光伏电站蓄电池容量的计算方法

光伏电站蓄电池容量的计算方法 在确定蓄电池容量时,并不是容量越大越好,一般以20%为限。因为在日照不足时,蓄电池组可能维持在部分充电状态,这种欠充电状态导致电池硫酸化增加,容量降低,寿命缩短。不合理地加大蓄电池容量,加大蓄电池容量,将增加光伏系统的成本。 在独立光伏发电系统中,对蓄电池的要求主要与当地气候和使用方式有关,因此各有不同。例如,标称容量有5h 率、24h 率、72h 率、100h 率、240h 率以及720h 率。每天的放电深度也不相同,南美的秘鲁用于“阳光计划”的蓄电池要求每天40%~50%的中等深度放电,而我国“光明工程”项目有的户用系统使用的电池只进行20%~30%左右的放电深度,日本用于航标灯的蓄电池则为小电流长时间放电。蓄电池又可分为浅循环和深循环两种类型。因此选择太阳能用蓄电池应既要经济又要可靠,不仅要防止在长期阴雨天气时导致电池的储存容量不够,达不到使用目的;又要防止电池容量选择过小,不利于正常供电,并影响其循环使用寿命,从而也限制了光伏发电系统的使用寿命;又要避免容量过大,增加成本,造成浪费。确定蓄电池容量的公式为: a K U L P F D C ????=0 C -蓄电池容量,kW ·h (Ah );D -最长无日期间用电时数,h ;F —蓄电池放电效率的修正系数,(通常取1.05);PO -平均负荷容量,kW ;L为蓄电池的维修保养率,(通常取0.8);U 为蓄电池的放电深度(通常取0.5);Kα为包括逆变器等交流回路的损耗率(通常取0.7~0.8)。上式可简化为: C =3.75× D ×P0 这是根据平均负荷容量和最长连续无日照时的用电时数算出的蓄电池容量的简便公式。由于蓄电池容量一般以安时数表示,故蓄电池容量应该为: V Wh C Ah C )(1000)(?=' H I Ah C ?=')( C '为蓄电池容量,A ·h;V 为光伏系统的电压等级(系统电压),通常为12V 、24V 、48V 、110V 或220V 。 例如,按宁波太阳能电源有限公司提供的晶体电池组件,对浙江南都电源动力股份有限公司的阀控式密封铅酸蓄电池进行选型。基本要求为:可为400W 的负载连续5天阴雨天的

智能蓄电池检测仪

智能蓄电池检测仪 智能蓄电池检测仪是针对蓄电池组进行核对性放电实验、容量测试以及日常定期维护而设计。在蓄电池组进行恒流放电的同时,对单节蓄电池 (2V 、6V或12V)电压同时进行检测。集整组放电与单节检测为一体,在放电过程随时发现性能落后的蓄电池。功耗元件采用新型PTC,安全无污染、寿命长。整机外观新颖、体积小、重量轻、移动方便。微处理器控制,液晶显示、中文菜单,操作简单。同时配有功能完备的数据处理软件。各种参数一旦设定,自动完成整个放电检测过程,完全实现智能化。 主要功能与特点: ?微电脑控制:大屏幕液晶显示、中文菜单;实时显示各种检测数据(放电电流、电池组总电压、每节电池电压、放电时长、放电容量、启动时间,温度等),随时了解设备运行状态。 ?键盘操作:通过键盘设置各种放电参数及机器运行的各种指令。 ?电脑操作:通过笔记本电脑或计算机可以设置、提取,下传各种放电参数及机器运行的各种指令 ?自动保护:设定放电时长到、放电容量到;蓄电池组电压、单节电池电压低于设定的最低保护电压;负载连线出现异常等,自动停止放电并报警。同时自动记录停机方式。 ?掉电功能:在放电过程中如意外停电,自动保存所设置的放电参数和在放电过程所采集的各种数据,等来电后自动持续放电,各种放电数据连续存储,且不会对设备造成损坏。

?数据采集:放电开始以较快的频率自动采集存储各种数据(采集周期可以自行设定)从而便于对蓄电池组及每节蓄电池性能的分析。 ?数据处理:检测存储的各种数据可通过RS232口(也可以是485口)或U盘上传计算机,经专用软件(随机配置)进行处理,生成各种直观反应蓄电池组及每节蓄电池性能的曲线、柱图、报表,并可放大、查询、打印等。?高温报警:当机内温度过高时,自动报警。 ?监测功能:在放电中可通过笔记本电脑或计算机随时提取各种数据,监测放电情况。 ?修正功能:对电压、电流值无论在放电前或放电过程中都可进行修正(校验)。 ?数据存储:可自动连续存储多次放电数据、关机不丢失。 ?功耗元件:采用新型PTC,安全无明火、寿命长、体积小、重量轻、无污染。 ?U盘的应用:使数据转存变的更加方便,快捷。 ?性能稳定:轴流风机、IGBT单管 ,新型PTC(功能元件)的应用以及出厂时的严格检验、老化,使整机的性能非常稳定,经久耐用。 ?便携灵活:机器底座配有四个耐冲击脚轮,二侧配有提手,使机器在使用或移动上都非常方便。 ?操作方便:蓄电池引入接线及负载开关位于机箱左侧、工作电源、RS232、USB 等接口位于机箱右侧,操作面板、液晶显示屏、倾斜位于机箱顶端,操作起来相当方便。

(整理)铅酸蓄电池的性能检测

铅酸蓄电池的性能检测 一、容量 电池容量是指在规定条件下测得的并由制造商宣称的电池容量值。实际上是在规定 温度下,以一定电流放电一定时间,当达到规定的终止电压时,所能给出的电量,用C 表示,以安时(Ah)为单位。 ⑴起动电池的容量 a. 额定储备容量,用Cr.n表示,其值应符合GB/T 5008.2-2008标准的规定。 b. 实际储备容量,用Cr.e表示,其值应在第3次或之前的储备容量试验时,达到额定储备容量用Cr.n。 c. 20h率额定容量,用C20表示,其值应符合GB/T 5008.2-2008标准的规定。 d. 实际容量,用Ce表示,其值应在第3次或之前的容量试验时,应不低于额定容量C20的95%。 ⑵牵引电池的容量 a. 额定容量,用C5表示,在30℃温度下放电5h,放电电流是C5/5(A),放电至单体电压1.70V,所给出的电量(Ah),其值应符合GB/T 7403.1-2008标准的规定。 b. 实际容量,用Ce表示,在规定条件下,电池所能放出的电量(Ah),其值应在第1次容量试验时应不低于额定容量C5的85%。实际容量在前10次容量试验内至少有1次 达到额定容量。 ⑶内燃机车用排气式电池的容量 电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.1-2008标准的规定。 ⑷内燃机车用阀控密封式电池的容量 电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.2-2008标准的规定。

⑸铁路客车用电池的容量 a. 额定容量,用C10、C5、C1表示,其容量值在进行容量试验时要达到额定值,在3次试验中有1次合格为合格,应符合GB/T 13281-2008标准的规定。 b. 实际容量,用Ce表示,即在规定条件下测得的电池实际放电容量。 c. 低温容量,用Cd表示,电池在零下40℃环境中静置8h,以I10(A)电流放电至单体电压1.60V,计算其容量,低温容量Cd与常温容量C10、C5、C1的比值不少于0.4(>40%)。 ⑹固定型防酸式电池的容量 C10容量在第1次循环不低于0.90C10,第5次循环应达到C10;C1和1.0C容量分别在第7次、第9次循环达到额定值,应符合GB/T 13337.1-2008标准的规定。 ⑺固定型阀控密封式电池的容量 C10容量在第1次循环不低于0.95C10,第3次循环应达到C10、C3、C1,应符合GB/T 19638.1-2008的规定。 ⑻小型阀控密封式电池的容量 C20容量应符合GB/T 19639.2-2008的规定。实际容量Ce在第5次充/放循环内应不低于C20。 ⑼电动道路车辆用电池的容量 a. 额定容量,用C3表示,第1次放电容量应不低于0.85C3,第10次放电容量或之前放电容量应达到C3,应符合GB/T 18332.1-2008的规定。 b. 低温容量,用Cd表示,电池在零下18℃环境中静置24h,以I3(A)电流放电至单体电压1.40V,其容量应不低于0.5C3。 ⑽电动助力车用密封式电池的容量 a. 额定容量,用C2表示,应在第3次循环内达到。 b. 实际容量,用Ca表示,应符合GB/T 22199-2008的规定。

BTS-2002电池综合测试仪说明书

目录 1.前言 (2) 2.功能概述 (3) 3.仪器外观 (5) 4.接线方式 (6) 5.主功能菜单 (7) 6.电池静态参数测量模式 (8) 7.电池容量测量模式 (12) 8.单独充电模式 (14) 9.单独放电模式 (14) 10.程控电源模式 (14) 11.程控电子负载模式 (15) 12.电压与内阻表模式 (16) 13.仪器校准模式 (16) 14.读码功能(DS2502兼容码) (17) 15.仪器特性指标 (18)

前言 常见的可充电电池包含锂电池,镍镉电池,镍氢电池,以及密封铅酸蓄电池等。 其中,锂电池具有容量大,重量轻,循环次数高等特点,广泛应用于移动电话,PDA,数码相机,摄像机,笔记本电脑等领域,是目前最为先进的可充电电池。这里所指锂电池是成品锂电池包,由锂电芯(锂离子电芯或者锂聚合物电芯)加锂电池保护板组成。 镍镉电池是比较早应用的可充电电池,具有成本较低,低内阻,能够大电流放电的特点,至今在一些电动工具、电动车上面有广泛应用。 镍氢电池和镍镉电池类似,但是因为不含重金属,所以对环境的污染较小,目前在一些常见的消费类电子产品中应用广泛,已基本取代以前镍镉电池的应用领域。 小型密封铅酸电池,又称免维护铅酸电他,目前工艺成熟,目前主要应用在固定式后备电源场合,如不间断电源,应急照明灯等等场合。 针对这些可充电电池的生产检测需要,特研制了专用的可充电电池综合检测仪,本测试仪可以对电池的一些基本参数做一个定量的精确的测量,可以测量电池的开路电压,内阻,充电,放电性能,电池容量特别针对锂电池的功能还有过充电保护,过放电保护,过电流保护,短路保护等功能,并测出过相应的数值,极大的方便了电池的生产和售前售后服务工作。采用非常简单的几个步骤就可以直观的判断电池的性能和好坏,同时也具有快速筛选的功能,可以设定测量参数的上限和下限,可以容易的从一批电池成品中快速检测出不良电池,提高生产效率。另外,也附加了一些特别的功能,使之具有一些通用仪器设备的特征,扩大了设备的使用灵活性,以及具有应用范围广泛的特点。 此外,本测试仪可根据客户的需要提供软件升级服务,在基本型号的基础上,可以通过软件升级为可连接电脑的型号,可以通过电脑来设置和保存测试数据,自动记录测试结果。也可以通过电池条码来记录每块电池的测试数据,有利于生产质量的分析控制,产品追朔等等。另外,可以通过加装硬件升级模块来提高电压和内阻的测试精度上升一个数量级,来满足更苛刻的质量要求。

充电机特性测试仪

RTKC-II 便携式智能蓄电池充电机 一、产品概况: RTKC-II便携式智能充电机是采用当今最先进的边缘谐振软开关技术,可带电插拔,模块与模块之间采用自带二极管隔离设计,防止模块间相互影响。模块内部自带CPU,模块所有基准校准和控制功能,采用12位D/A完成,替代所有电位器,避免了电位器固有的温度系数和机械特性所引起的参数漂移。 二、产品主要特点及功能: ● 输出过压保护:输出电压过高对用电设备会造成灾难性事故,为杜绝此类 情况发生,本系列高频模块内设有过压保护电路,出现过压后模块自动锁死,相应模块故障指示灯亮,故障模块自动退出工作而不影响整个系统正常运行;过压保护点一般设为313V±2V(220V),过压报警点软件可设定。 ● 输出限流保护:模块输出电流最大限制为额定输出电流的倍(可设定),恒 流降压工作方式. ● 短路保护:整流模块输出特性如图3-1,输出短路时模块在瞬间把输出电压 拉低到几乎为零,限制短路电流在限流点之下,此时模块输出功率很小,以达到保护模块的目的。模块可长期工作在短路状态,不会损坏,排除故障后模块可自动恢复工作。 ● 模块并联保护:每个模块内部均有二极管并联保护电路,绝对保证故障模块 自动退出系统,而不影响其它正常模块工作。模块并机可直接在输出端相连。 ● 风扇启动:设有两档风扇启动功能,当输出电流大于25%30%额定值时,或当 模块内部温度高于60℃时,模块会启动强力风扇。 ● 过温保护:如环境温度过高、风机停转等情况下,模块检测散热器温度超过 85℃时自动关机保护,温度降低到76℃时模块自动启动。 ● 测量输出电压和输出电流以及模块的工作状态,并通过LCD中文显示,直观 方便。 ● 报警:在模块出现故障时模块会发出声光报警,同时LCD上显示故障信息, 用户能方便的对模块故障定位,便于及时排除故障。 项目技术指标 交流输入三相四线输入380V四线制;50Hz 电压变化范围323V-437V 频率变化范围50Hz±10% 直流输入直流输出额定电压220V, 80-286V 直流输出额定电流10A, 15A 输出限流范围(10%—100%)x额定电流稳压精度≤% 稳流精度≤% 纹波系数≤% 工作效率≥94% 动态响应≤200μS 绝缘绝缘电阻DC500V, >2MΩ 绝缘强度AC1500V/50Hz,1min,无闪络

UPS容量和蓄电池容量计算方法

UPS容量和蓄电池容量计算方法 UPS容量和蓄电池容量计算方法 蓄电池的放电时间定义为:当蓄电池以规定的放电电流进行恒流放电时,蓄电池的端电压下降到所允许的临界电压(终了电压)时所经过的时间。 UPS容量计算 P入=P出/(COSφ×ц) COSφ----功率因数(一般取0.8) P出-------额定输出功率(KVA) (注:计算时负载多为W) P入-------输入功率(KVA)(UPS容量) ц--------保险系数(一般取0.8) UPS蓄电池容量计算 电池放电电流计算: I=(S×COSφ)/(n×V×ц逆) S----------UPS额定输出容量(或实际或预期负载)(VA) ц逆-------逆变器效率(一般取0.8~0.85) n----------蓄电池只数 V---------蓄电池放电终止电压(2V电池对应1.8V;12V电池对应10.8V)COSφ---- UPS (或负载)功率因数(1~20 kVA为0.7,20~120 kVA为0.8) 艾默生UH31系列(10-20KVA)UPS电池电压240VDC(2组)20节(2组) 艾默生UL33系列(20-60KVA)UPS电池电压360VDC 12V电池30节 蓄电池容量计算 1、普通蓄电池计算(与华为计算方法相同) Q:蓄电池容量(Ah); K:安全系数; I:负荷电流(A); T:放电小时数(h); η:放电容量系数; t:实际电池所在地的最低环境温度数值,有采暖设备时,按15℃考虑;无采暖设备时,按5℃考虑; α:电池温度系数,电解液温度以25℃为标准时,放电小时率≥10时,取0.006;10>放电小时率≥1时,取0.008;<1时,取0.01 以上公式可以简化成:

充电电池容量测试仪实现方案

充电电池容量测试仪实现方案 电池容量是衡量电池质量的重要指标。充电电池的容量测试有很多的方法。可以依据电池的放电曲线,进行短时间放电,从而粗略得出电池容量。这种方法最大的优点是快速,但是充电电池的放电曲线并不具有普遍性,很多劣质电池放电初期电压也很平稳,一旦进入中后期,电压下降非常迅速,所以采用这种方法得出的结论将非常不准确的。 最可靠最准确无误的还是以标准电流放电,全程测量实际放电时间的方式。不同的放电电流,充电电池最终能够释放出的电量是不同的,有一定的差距。蓄电池的容量标注都是有统一标准的。目前使用最多的是10小时率放电容量与20小时率放电容量两种。10小时率放电容量就是电池以恒定电流放电,至电量耗尽放电时间能够维持10个小时左右,这个电流就被称作10小时率电流(衡量电量用尽的标准,不能以电池放电端电压降低到零为准。电池过度放电,会导致电池容量减少,无法恢复,乃至提早损坏、完全失效。所以每种电池放电终止电压都有严格的规定,这个可以查阅相关资料。 过度放电与过度充电是造成充电电池不能达到使用年限、提前报废的主要原因)。实时放电的测量方法最大的缺点就是费时费力,因为耗时久这样测量精度也很容易受到各种外部因素的影响。测量过程中如果用10小时率电流持续放电时间至少都要在5个小时以上,作这样长时间的测试更需要足够的耐心与精力以及充裕的时间。科技的发展是非常迅速,今天单片机已经非常普及了。通过单片机程序控制对放电时间,深度进行自动化控制,就很容易精准测出电池的实际容量,实现整个过程的自动控制。模拟实际放电测量容量的方法虽然对能源有一点浪费,但是对于1A、2A以下的小容量充电电池还是完全可行的,对大容量电池进行抽样检查也是很有必要。 下面介绍的电池容量测试仪采用89S51作为控制芯片,图1就是硬件的电路原理图。 图1 硬件的电路原理图 这个电池容量测试仪由放电电路、单片机控制计时两个完全独立部分组合而成。单片机部分制作费时费力,而且市面上单片机已很普及,没必要亲手制作,随便找一片51单片机实验板就可以了。放电电路则是比较简单的,仅由四五只元件构成。单片机部分主要负责对放电时间计时,最终得到一组可靠的数据,用于电池性能的考量。 这种放电电路的实质就是一模拟可控硅。当我们将待测电池接入电路相应位置时,点按启动键,如果电池尚有余量,则电池两端放电电压将维持在设定值以上,三极管VT1就会瞬间饱和,电池通过电阻R2进行放电。这种电路有可靠精确陡峭的开关特性,VT1绝对工作于饱和截止两种状态之下。通过可调电阻对开关电路临界值(即充电电池放电终止电压)进行调节设定,便可适应于各种不同类型充电电池的全程保护放电。由于个人的应用不需要非常精准的测试结果,所以实际测试中电池模拟放电原则上还是以快些为好,只需要得到一个大致的电池容量。为了较快完成电池测试过程,这里的电路设计采用两小时率电流进行放电。通过对各种电池测量结果的横向比较,容量的差异还是显而易见的,以此作为衡量电池优劣的标准,就已经足够了。这里以1000mAH、1.2V规格镍氢电池测试为例,放电电流500mA就需要采用2Ω的放电电阻,电池终止放电电压应控制在1V以上。放电终止电压通过可调电阻R1来调节设定。普通可调电阻精度较差,且容易产生漂移,会导致设定好的终止电压随时间推移以及使用环境变化产生较大的波动。为了保证放电终止电压的精准且易于设定,R1可以使用3296系列精密可调电位器。3296多圈可调精密电位器的可调范围一般在50T,所以每圈的调节范围为2%,每转动一度,阻值变化大约0.005%,所以很容易调节获得一个精确、稳定的阻值。 终止电压的设定必须在实际放电过程中进行,负载电阻R2阻值变动,已经设定的终止电压也

电池电量检测芯片

电池电量检测芯片 时间:2011-12-17 22:29:42来源:作者: 电池电量监测计就是一种自动监控电池电量的IC,其向做出系统电源管理决定的处理器报告监控情况。一个不错的电池电量监测计至少需要一些测量电池电压、电池组温度和电流的方法、一颗微处理器、以及一种业经验证的电池电量监测计算法。bq2650x 和 bq27x00 均为完整的电池电量监测计,其拥有一个用于电压和温度测量的模数转换器(ADC) 以及一个电流和充电感应ADC。这些电池电量监测计还拥有一颗运行TI 电池电量监测计算法的内部微处理器。这些算法将对锂离子(Li-ion)电池的自放电、老化、温度和放电率进行补偿。该微处理器可以使主机系统处理器不用进行没完没了的计算。 电池电量监测计提供了诸如?电量剩余状态?等信息,同时bq27x00 系统还提供了?剩余运行时间?信息。主机在任何时候都可以询问到这种信息,并由主机来决定是通过LED 还是通过屏幕显示消息来通知最终用户有关电池的信息。由于系统处理器只需要一个12C 或一个HDQ 通信驱动,因此使用电池电量监测计非常简单。 电池组电路描述 图1 描述了电池组中的应用电路。根据所使用电池电量监测计IC 的不同,电池组将至少具有三到四个可用外部终端。 图1 典型的应用电路 VCC 和BAT 引脚将接入电池电压,用于IC 功率和电池电压的测量。一只低阻值感应电阻被安装在电池的接地端,以使感应电阻两端的电压能够被电池电量监测计的高阻抗SRP 和SRN 输入监控到。流经感应电阻的电流有助于我们确定电池的已充电量或已放电量。在选择感应电阻值时,设计人员必须考虑到其两端的电压不应该超过100 mV。太小的电阻值在低电流条件下可能会带来误差。电路板布局必须确保SRP 和SRN 到感应电阻的连接尽可能地靠近感应电阻的各个端点;即Kelvin 连接测量。

蓄电池组充电、放电综合测试

GDCF-220V/30A 智能蓄电池充放电综合测试仪 一、设备特点 在所有信息化、自动化程度不断提高的运行设备、运行网络系统中,不间断供电是一个最基础的保障.而无论是交流还是直流的不间断供电系统,蓄电池作为备用电源在系统中起着极其重要的作用。平时蓄电池处于浮充备用状态,一旦交流电失电或其它事故状态下,蓄电池则成为负荷的唯一能源供给者。 我们知道,蓄电池除了正常的使用寿命周期外,由于蓄电池本身的质量如材料、结构、工艺的缺陷及使用不当等问题导致一些蓄电池早期失效的现象时有发生。为了检验蓄电池组的可备用时间及实际容量,保证系统的正常运行,根据电源系统的维护规程,需要定期或按需适时的对蓄电池组进行容量的核对性放电测试,以早期发现个别的失效或接近失效的单体电池予以更换,保证整组电池的有效性;或者对整组电池的预期寿命作出评估。 我司经多年研制,以其专有技术,开发成功系列化的、智能化程度和精度极高的蓄电池组容量测试仪。本测试仪可在蓄电池离线状态下,作为放电负载,通过连续调控放电电流,实现设定值的恒流放电。在放电时,当蓄电组端电压或单体电压,跌至设定下限值、或设定的放电时间到、或设定的放电容量到,仪器自动停止放电,并记录下所有有价值的、连续的过程实时数据。 本测试仪系统对单体电池的电压监测信息,采用无线中继接入,简单、安全、精确。 本仪器有非常友好的人机界面,不仅可以在菜单的提示下完成各种设置和

数据查詢,而且放电的过程数据,均保存在设备的内存中,通过数据接口可以读取、转存,并通过上位机的专用软件,对数据进行分析,生成需要的曲线和报表。 本仪器有完善的保护功能,不仅有声、光告警,而且还有明确的界面提示。 1.1放电仪不带监测功能特点 采用PTC陶瓷电阻,避免了红热现象,使整个放电过程更安全。 具有核对性容量测试、暂停放电、并机负载测试、在线补偿式放电、等功能,可适应各类复杂的现场情况。 有USB接口,可将放电过程的数据转存入U盘,并导入PC机。PC 数据管理软件可对电池放电的过程进行分析、并可生成相应的数据报表。使数据的转存更加方便。 采用智能单片机ARM控制、7寸触摸液晶中英文显示。菜单操作简单明了。 自动保护功能,设定放电时长到、放电容量到、蓄电池组电压低于设定的最低保护电压、负载连线出现异常等,自动停止放电并报警,同时自动记录停机方式。 多种放电终止条件,包括电池组终止电压、放电容量、放电时间,确保放电测试的安全。 可进行在线补偿式放电,通过接入外置的电流钳形传感器可对在线工作中的蓄电池进行放电测试,极大地方便了测试工作。该功能尤其适合于只有单组备用电池的场合。 1.2放电仪带监测功能特点 采用PTC陶瓷电阻,避免了红热现象,使整个放电过程更安全。

蓄电池容量计算方法之令狐文艳创作

蓄电池容量计算部分 令狐文艳 1、常用的蓄电池容量计算方法 (1)容量换算法(电压控制法) 按事故状态下直流负荷消耗的安时值计算容量,并按事故放电末期或其他不利条件下校验直流母线电压水平。 (2)电流换算法(阶梯负荷法) 按事故状态下直流的负荷电流和放电时间来计算容量。该方法相对于电压控制法,考虑了大电流放电后负荷减小的情况下,电池具有恢复容量的特性,该算法不需在对电池容量进行电压校验。 2、采用容量换算法计算容量 2.1 按持续放电负荷计算蓄电池容量,取电压系数Ku=0.885,则计算的单个电池的放电终止电压为: V (4-1) 蓄电池的计算容量: (4-2) 式中 Cc —事故放电容量; Kcc —蓄电池容量系数; Krel —可靠系数,一般取1.40 80.1108 220885.0=?=Ud cc s rel c K C K C =

I1=325.27A I2=293.45A I3=46.36A I4=13.64A m1=0.5h m2=0.5h m3=1h m4=2h 在4个不同阶段,任意一个时期的放电容量为: (4-3) 总的负荷容量为: (4-4) 在计算分段ta 内,所需要的蓄电池容量计算值为: (4-5) 其中,容量系数Kcca 按计算分段的时间ta 决定。 通过查图 (GF 型蓄电池放电容量与放电时间的关系曲线),对应于事故时间4小时和放电终止电压1.80V ,得出容量系数 Kcc=0.77。 分别计算n 个分段的蓄电池计算容量,然后按照其中最大者 mi i mi t I C =n

选择蓄电池,则蓄电池的容量为: (4-6) 2.2 放电电压水平的校验 (1)持续放电电压水平的校验。事故放电末期,电压将降到最低,校验是否符合要求的方法如下: 事故放电期间蓄电池的放电系数 (4-7) 式中,Cs —事故放电容量(Ah ),t —事故放电时间 通过计算出来的K 值和对应的事故放电时间,可以通过蓄电池的冲击放电曲线,求出单只电池的电压,再乘以蓄电池只数,得到蓄电池整组电压,该电压值应大于198V 。 (2)冲击放电电压水平的校验。 冲击放电过程中,放电时间极短,放电电流较大。尽管消耗电量较少,但对电压影响较大。所以,按持续放电算出蓄电池容量后,还应校验事故放电初期、末期及其他放电阶段中,在可能的大冲击放电电流作用下蓄电池组的电压水平。 ①事故放电初期,电压水平的校验 事故放电初期的冲击系数为 (4-8) 式中,Krel —可靠性系数,一般取1.1 I ch0—事故放电初期的放电电流,(A) 10 tC KrelCs K

相关主题
文本预览
相关文档 最新文档