当前位置:文档之家› 流量计精度

流量计精度

流量计精度
流量计精度

流量计精度等级划分介绍

流量计量是计量科学技术的组成部分之一,它与国民经济、国防建设、科学研究有密切的关系。做好这一工作,对保证产品质量、提高生产效率、促进科学技术的发展都具有重要的作用,特别是在能源危机、工业生产自动化程度愈来愈高的当今时代,流量计在国民经济中的地位与作用更加明显。

流量计又分为有转子流量计、节流式流量计、细缝流量计、容积流量计、电磁流量计、超声波流量计和堰等。按介质分类:液体流量计和气体流量计。

国家是用仪表的最大相对百分误差的绝对值作为准确度等级,其中:一级标准仪表的准确度是:0.005 0.02 0.05二级标准仪表的准确度是:0.1 0.2 0.35 0.5一般工业用仪表的准确度是:1.1.52.54.0相对百分误差=(北测参数的测量值-北侧参数的标准值)/(标尺上限值-标尺下限值)*100% 我国仪表精度等级是如何划分的?基本误差:基本误差又称引用误差或相对误差,是一种简化的相对误差。仪表的基本误差定义为:基本误差=(最大绝对误差/仪表量程)*100==(检测仪表的指示值-被测量真值)MAX/(测量上限-测量下限)*100%精确度(简称精度)为了便于量值传递,国家统一规定了仪表的精确度(精度)等级系列。将仪表的基本误差去掉“±”号及“%”号,便可以套入国家统一的仪表精确度等级系列。

目前,我国生产的仪表常用的精确度等级有0.005,0.02,0.05,0.1,0.2,0.4,0.5,1.0,1.5,2.5,4.0等。如果某台

测温仪表的基本误差为±1.0%,则认为该仪表的精确度等级符合1.0级。如果某台测温仪表的基本误差为±1.3%,则认为该仪表的精确度等级符合1.5级。级数越小,精度(准确度)就越高。科学实验用的仪表精度等级在0.05级以上;工业检测用仪表多在0.1~4.0级,其中校验用的标准表多为0.1或0.2级,现场用多为0.5~4.0级。工业检测用仪表多在0.1~4.0级。我在不同的地方看到如下3种不同的说法:1.我国工业仪表等级分为0.1,0.2,0.5,1.0,1.5,2.5,5.0七个等级,并标志在仪表刻度标尺或铭牌上。2.我国电工仪表共分0.1,0.2,0.5,1.0,1.5,2.5,5.0七个等级。3.按国家统一划分的仪表精度等级有:0.005、0.02、0.05、0.1、0.2、0.35、0.4、0.5、1.0、1.5、2.5、4.0等.

电磁流量计项目工作总结汇报

电磁流量计项目工作总结汇报 规划设计 / 投资分析

第一章项目总体情况说明 一、经营环境分析 1、坚持把可持续发展作为建设制造强国的重要着力点,加强节能环保 技术、工艺、装备推广应用,全面推行清洁生产。发展循环经济,提高资 源回收利用效率,构建绿色制造体系,走生态文明的发展道路。 2、当前,中国经济步入新常态,为实现从过度扩张平稳着陆到适度增 长的目标,急需解决产业的结构问题。从长远来看,产业结构调整将带来 长期、稳定的经济增长,合理的经济结构可以优化社会结构,并提高创造 经济效应的效率。尤其通过产业升级,提高科技水平,为经济增长注入新 鲜血液,促使经济的转型升级和长期、稳定的发展。过去,我国依靠大量 劳动力与国内丰富的自然资源,以生产出口产品来带动经济的发展。然而,2008年国际金融危机后,全球经济遭遇沉重打击,以美国为首的发达国家 金融体系受到严重冲击。同时,也直接削弱了全球市场对我国出口产品的 需求,我国出口导向型经济结构不可持续,需求侧的三辆马车已不足以拉 动中国经济的快速发展。改革将成为重新平衡中国国内经济结构、促进消 费和扩大内需的必然选择。 3、战略性新兴产业代表新一轮科技革命和产业变革的方向,其发展事 关全局和长远。必须以更大的决心和勇气谋篇布局,确保战略性新兴产业 成为支撑新旧增长动能转换的新动力,引领产业迈向中高端和经济社会高

质量、可持续发展。目前,很多后发国家和地区着力推进战略性新兴产业的赶超发展,促进产业结构调整升级。近年来,我国战略性新兴产业得到快速发展。但也要看到,由于战略性新兴产业的高附加值特点,众多资本会竞相投向战略性新兴产业,导致一些地方出现了投资潮涌和“非理性繁荣”现象,如光伏产业在一个时期就存在一哄而上分割有限的产品市场和创新资源的现象,这不仅不利于企业的技术创新,而且也降低了产业的预期利润。因此,企业进入新兴产业,要慎重选择和把握好时机。我国经济已经由高速增长阶段转向高质量发展阶段。推动高质量发展是做好经济工作的根本要求。高质量发展是体现新发展理念的发展,突出高质量发展导向,就是要坚持稳中求进,在稳的前提下,有所进取、以进求稳,更好满足人民群众多样化、多层次、多方面的需求。 充分发挥有效投资关键作用,要落实到工业、制造业。加快新旧动能转换,扩大完善基金支持,撬动社会和企业投资;改造提升传统产业,支持制造业技术改造,加快发展新兴产业;企业要专注主业,集中力量稳投资、补短板、强弱项、调结构,主动取得支持,做强做大做优。 二、项目情况说明 为了积极响应xx保税区关于促进电磁流量计产业发展的政策要求,xxx有限公司通过科学调研、合理布局,计划在xx保税区新建“电磁流量计项目”;预计总用地面积52139.39平方米(折合约78.17亩),其中:净用地面积52139.39平方米;项目规划总建筑面积69866.78平方米,计

高精度气体流量计标定介绍

高精度气体流量计的校准情况和气体流量计的校准情况大致是一样的,但是也有着本质的区别。用过气体流量计应该大概了解些校准情况,高精度气体流量计的校准多数都不是太清楚。下面就介绍下高精度气体流量计的校准。 对蒸汽、氮气、二氧化碳、氢气等测量的气体流量计的校准要求在不断增加。高精度气体流量计由于采用这些气体进行大规模校准的设施并不多,因此采用另一种流体进行校准几乎是唯一的选择,且在许多情况下是一种合理的、可替代的选择。如果流动条件可以估算出来,那么就可以在与操作条件不同的条件下对气体流量计进行校准,估算流动条件所采用的参数通常为关于该气体流量计入口直径的雷诺数。首先,将操作条件范围转换为雷诺数范围。其次,所选定的校准设备要符合所规定的雷诺数范围。然后,在不同的压力条件下或采用不同的气体进行校准。在一定精度等级范围内,标准差压气体流量计的雷诺特性是众所周知的。同样,靶式流量计的特性也是已知的。在某些情况下,有必要在进行最终校准之前先进行几次测试以鉴定该气体流量计的运行情况是否符合雷诺定标系数。将来,高精度气体流量计还需要做一些工作来鉴定靶式流量计的性能,并确定高压气体情况下靶式流量计和质量流量计流量计的性能。年检校准的基本要求校准应满足的基本要求如下: 环境条件校准如在检定(校准)室进行,则环境条件应满足实验室要求的温度、湿度等规定。校准如在现场进行,https://www.doczj.com/doc/2818543128.html,则环境条件以能满足仪表现场使用的条件为准。仪器作为校准用的标准仪器其误差限

应是被校表误差限的1/3~1/10。人员校准虽不同于检定,但进行校准的人员也应经有效的考核,并取得相应的合格证书,只有持证人员方呆出具校准证书和校准报告,也只有这种证书和报告才认为是有效的。校准可以找地方计量所或者第三方校准单位,都必须得有国家办法的CNAS计量资质的。一台好的高精度气体流量计需要准确的校准,这样才能保证在工作的使用中的合格准确性,以上的校准方法希望对大家有帮助吧!!

各种流量计计算公式

各种流量计计算公式

V锥流量计计算公式为: 其中: K为仪表系数; Y为测量介质压缩系数;对于瓦斯气Y=0.998; ΔP为差压,单位pa; ρ为介质工况密度,单位kg/m3。取0.96335 涡街流量计计算公式:

一、孔板流量计 1.1 工作原理 流体流经管道内的孔板,流速将在孔板处形成局部收缩因而流速增加,静压力降低,于是在孔板上、下游两侧产生静压力差。流体流量愈大,产生的压差愈大,通过压差来衡量流量的大小。它是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础,在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。其流量计算公式如下:

上式中:ε——被测介质可膨胀性系数,对于液体ε=1;对气体等可压缩流体ε<1(0.99192)Q工——流体的体积流量(单位:m3/min) d ——孔径(单位:m ) △P——差压(单位:Pa) ρ1——工作状况下,节流件(前)上游处流体的密度,[㎏/m3]; C ——流出系数 β——直径比 1.2 安装 孔板流量计的安装要求:对直管段的要求一般是前10D后5D,因此在安装孔板流量计时一定要满足这个直管段距离要求,否则测量的流量误差大。

1.3 测量误差分析 1.3.1 基本误差 孔板在使用过程中,会由于煤气的侵蚀而产生变形,从而引起流量系数增大而产生测量误差;而且流量计工作时间越长,流体对节流件的冲刷越严重,也会引起流量系数增大而产生测量误差。 1.3.2 附件误差 孔板节流装置安装于现场严酷的工作场所,在长期运行后,无论管道或节流装置都会发生一些变化,如堵塞、结垢、磨损、腐蚀等等。检测件是依靠结构形状及尺寸保持信号的准确度,因此任何几何形状及尺寸的变化都会带来附加误差。

电磁流量计的工作原理

电磁流量计的工作原理 电磁流量计(Eletromagnetic Flowmeters,简称EMF)是20世纪50~60年代随着电子技术的发展而迅速发展起来的新型流量测量仪表。电磁流量计是根据法拉第电磁感应定律制成的,电磁流量计用来测量导电液体体积流量的仪表。由于其独特的优点,电磁流量计目前已广泛地被应用于工业过程中各种导电液体的流量测量,如各种酸、碱、盐等腐蚀性介质;电磁流量计各种浆液流量测量,形成了独特的应用领域。 在结构上,电磁流量计由电磁流量传感器和转换器两部分组成。传感器安装在工业过程管道上,它的作用是将流进管道内的液体体积流量值线性地变换成感生电势信号,并通过传输线将此信号送到转换器。转换器安装在离传感器不太远的地方,它将传感器送来的流量信号进行放大,并转换成流量信号成正比的标准电信号输出,以进行显示,累积和调节控制。电磁流量计的基本原理 一、测量原理 根据法拉第电磁感应定律,当一导体在磁场中运动切割磁力线时,在导体的两端即产生感生电势e,其方向由右手定则确定,其大小与磁场的磁感应强度B,导体在磁场内的长度L及导体的运动速度u成正比,如果B, L,u三者互相垂直,则 e=Blu。与此相仿,在磁感应强度为B的均匀磁场中,垂直于磁场方向放一个内径为D的不导磁管道,当导电液体在管道中以流速u流动时,导电流体就切割磁力线.如果在管道截面上垂直于磁场的直径两端安装一对电极,则可以证明,只要管道内流速分布为轴对称分布,两电极之间也特产生感生电动势:e=BD。式中,为管道截面上的平均流速.由此可得管道的体积流量为:qv=πDUˉ。由上式可见,体积流量qv与感应电动势e和测量管内径D成线性关系,与磁场的磁感应强度B成反比,与其它物理参数无关.这就是电磁流量计的测量原理。需要说明的是,要使式qv=πDUˉ严格成立,必须使测量条件满足下列假定: ①磁场是均匀分布的恒定磁场;

孔板流量计计算公式

孔板流量计计算公式 孔板流量计,可广泛应用于石油、化工、天然气、冶金、电力、制药等行业中,各种液体、气体、天燃气以及蒸汽的体积流量或质量流量的连续测量。但是许多人不知道孔板流量计是怎么计算出来,今天我就和大家探讨一下孔板流量计的计算公式 简单来说差压值要开方输出才能对应流量 实际应用中计算比较复杂一般很少自己计算的这个都是用软件来计算的下面给你一个实际的例子看看吧 一.流量补偿概述 差压式孔板流量计的测量原理是基于流体的机械能相互转换的原理。在水平管道中流动的流体,具有动压能和静压能(位能相等),在一定条件下,这两种形式的能量可以相互转换,但能量总和不变。以体积流量公式为例: Q v = CεΑ/sqr(2ΔP/(1-β^4)/ρ1) 其中:C 流出系数; ε可膨胀系数 Α节流件开孔截面积,M^2 ΔP 节流装置输出的差压,Pa; β直径比 ρ1 被测流体在I-I处的密度,kg/m3; Qv 体积流量,m3/h 按照补偿要求,需要加入温度和压力的补偿,根据计算书,计算思路是以50度下的工艺参数为基准,计算出任意温度任意压力下的流量。其实重要是密度的转换。计算公式如下: Q = 0. *d^2*ε*@sqr(ΔP/ρ) Nm3/h 0C101.325kPa 也即是画面要求显示的0度标准大气压下的体积流量。 在根据密度公式: ρ= P*T50/(P50*T)* ρ50 其中:ρ、P、T表示任意温度、压力下的值 ρ50、P50、T50表示50度表压为0.04MPa下的工艺基准点 结合这两个公式即可在程序中完成编制。 二.程序分析 1.瞬时量 温度量:必须转换成绝对摄氏温度;即+273.15 压力量:必须转换成绝对压力进行计算。即表压+大气压力 补偿计算根据计算公式,数据保存在PLC的寄存器内。同时在画面上做监视。 2.累积量 采用2秒中一个扫描上升沿触发进行累积,即将补偿流量值(Nm3/h)比上1800单位转换成每2S的流量值,进行累积求和,画面带复位清零功能

电磁流量计

电磁流量计 1. 概 述   电磁流量计(以下简称EMF)是利用法拉第电磁感应定律制成的一种测量导电液体体积流量的仪表。50年代初EMF实现了工业化应用,近年来世界范围EMF产量约占工业流量仪表台数的5%~6.5%。 70年代以来出现键控低频矩形波激磁方式,逐渐替代早期应用的工频交流激磁方式,仪表性能有了很大提高,得到更为广泛的应用。 2. 原理与机构    EMF的基本原理是法拉第电磁感应定律,即导体在磁场中切割磁力线运动时在其两端产生感应电动势。如图1所示,导电性液体在垂直于磁场的非磁性测量管内流动,与流动方向垂直的方向上产生与流量成比例的感应电势,电动势的方向按“弗来明右手规则”,其值如下式 式中 E-----感应电动势,即流 量信号,V; k-----系数; B-----磁感应强度,T; D----测量管内径,m; --- 平均流速,m/s。 设液体的体积流量为 ,则 式中 K 为仪表常数,K= 4 KB/ πD 。 EMF由流量传感器和转换器两大部 分组成。传感器典型结构示意如图 2,测量管上下装有激磁线圈,通 激磁电流后产生磁场穿过测量管, 一对电极装在测量管内壁与液体相

接触,引出感应电势,送到转换 器。激磁电流则由转换器提供。 3、 优 点   EMF的测量通道是一段无阻流检测件的光滑直管,因不易阻塞适用于测量含有固体颗粒或纤维的液固二相流体,如纸浆、煤水浆、矿浆、泥浆和污水等。 EMF不产生因检测流量所形成的压力损失,仪表的阻力仅是同一长度管道的沿程阻力,节能效果显著,对于要求低阻力损失的大管径供水管道最为适合。 EMF所测得的体积流量,实际上不受流体密度、粘度、温度、压力和电导率(只要在某阈值以上)变化明显的影响。 与其他大部分流量仪表相比,前置直管段要求较低。 EMF测量范围度大,通常为20:1~50:1,可选流量范围宽。满度值液体流速可在0.5~10m/s内选定。有些型号仪表可在现场根据需要扩大和缩小流量(例如设有4位数电位器设定仪表常数)不必取下作离线实流标定。 EMF的口径范围比其他品种流量仪表宽,从几毫米到3m。可测正反双向流量,也可测脉动流量,只要脉动频率低于激磁频率很多。仪表输出本质上是线性的。 易于选择与流体接触件的材料品种,可应用于腐蚀性流体。 4、 缺 点   EMF不能测量电导率很低的液体,如石油制品和有机溶剂等。不能测量气体、蒸汽和含有较多较大气泡的液体。 通用型EMF由于衬里材料和电气绝缘材料限制,不能用于较高温度的液

电磁流量计的工作原理

电磁流量计的工作原理 电磁流量计(Eletromagnetic Flowmeters,简称EMF)是20世纪50~60年代随着电子技术的发展而迅速发展起来的新型流量测量仪表。电磁流量计是根据法拉第电磁感应定律制成的,电磁流量计用来测量导电液体体积流量的仪表。由于其独特的优点,电磁流量计目前已广泛地被应用于工业过程中各种导电液体的流量测量,如各种酸、碱、盐等腐蚀性介质;电磁流量计各种浆液流量测量,形成了独特的应用领域。 在结构上,电磁流量计由电磁流量传感器和转换器两部分组成。传感器安装在工业过程管道上,它的作用是将流进管道内的液体体积流量值线性地变换成感生电势信号,并通过传输线将此信号送到转换器。转换器安装在离传感器不太远的地方,它将传感器送来的流量信号进行放大,并转换成流量信号成正比的标准电信号输出,以进行显示,累积和调节控制。电磁流量计的基本原理 一、测量原理 根据法拉第电磁感应定律,当一导体在磁场中运动切割磁力线时,在导体的两端即产生感生电势e,其方向由右手定则确定,其大小与磁场的磁感应强度B,导体在磁场内的长度L及导体的运动速度u成正比,如果B, L,u三者互相垂直,则e=Blu。与此相仿,在磁感应强度为B的均匀磁场中,垂直于磁场方向放一个内径为D的不导磁管道,当导电液体在管道中以流速u流动时,导电流体就切割磁力线.如果在管道截面上垂直于磁场的直径两端安装一对电极,则可以证明,只要管道内流速分布为轴对称分布,两电极之间也特产生感生电动势:e=BD。式中,为管道截面上的平均流速.由此可得管道的体积流量为:qv=πDUˉ。由上式可见,体积流量qv与感应电动势e和测量管内径D成线性关系,与磁场的磁感应强度B成反比,与其它物理参数无关.这就是电磁流量计的测量原理。需要说明的是,要使式qv=πDUˉ严格成立,必须使测量条件满足下列假定: ①磁场是均匀分布的恒定磁场; ②被测流体的流速轴对称分布; ③被测液体是非磁性的; ④被测液体的电导率均匀且各向同性。 二、励磁方式 励磁方式即产生磁场的方式。由前述可知,为使式qv=πDUˉ严格成立,第一个必须满足的条件就是要有一个均匀恒定的磁场.为此,就需要选择一种合适的励磁方式。目前,一般有三种励碰方式,即直流励磁、交流励磁和低频方波励磁。现分别予以介绍。 1.直流励磁 直流励磁方式用直流电产生磁场或采用永久磁铁,它能产生一个恒定的均匀磁场。这种直流励磁变送器的最大优点是受交流电磁场干扰影响很小,因而可以忽略液体中的自感现象的影响。但是,使用直流磁场易使通过测量管道的电解质液体被极化,即电解质在电场中被电解,产生正负离子。在电场力的作用下,负离子跑向正极,正离子跑向负极。这样,将导致正负电极分别被相反极性的离子所包围,严重影响电磁流量计的正常工作。所以,直流励磁一般只用于测量非电解质液体,如液态金属等。 2.交流励磁 目前,工业上使用的电磁流量计,大都采用工频50Hz电源交流励磁方式,即它的磁场是由正弦交变电流产生的,所以产生的磁场也是一个交变磁场。交变磁场变送器的主要优点是消除了电极表面的极化于扰。另外,由于磁场是交变的,所以输出信号也是交变信号,放大和转换低电平的交流信号要比直流信号容易得多。

气体腰轮流量计如何选择

气体腰轮流量计如何选择 在迅速发展的气体腰轮流量计仪器仪表时代里,越来越多的仪表让我们不知如何来选用,我们不是专业的技术人员,特别是工业化有害气体传感器,如果选不好,对我们会有很大的危害,所以希望在选择是尽量让厂家的技术人员来帮忙选,这样即安全又保证工作的效率。气体腰轮流量计 气体腰轮流量计传感器精度等级一般都比较高,通常情况下精度越高对现场的使用环境越敏感。从经济效益上面来说,不要一味追求高的精度等级。对于大口径流量的场合,如西气东输工程中,就要选择高精度的气体腰轮流量计传感器,而对于输送量很小又需计量的场合则可以选择一般的气体腰轮流量计传感器。气体腰轮流量计气体密度的稳定性对气体腰轮流量计传感器的计量准确度影响很大,对于经常变化密度的场合,还需对流量系数采取修正的方式的处理,尤其对于低流量区域。 气体腰轮流量计流量范围 气体腰轮流量计传感器流量范围的选择直接影响着它的精确度和使用年限,它还决定着流量传感器口径的选择。选择流量范围一般按照如下准则:最小流量应大于等于仪表能够测量的最小流量,最大流量应小于等于仪表能够测量的最大流量;对于不间断工作小于八小时的场合,其最大流量应为实际最大流量的1.3倍左右;对于不间断工作超过八小时的场合,其最大流量应为实际最大流量的1.4倍以上;最小流量应为实际最小流量的0.8倍为最佳。压力损失越小,气

体在流动过程中的能量消耗就越小,这样可以节约能源、降低输送成本,提高利用率。所以在选择的时候,尽量选择压力损失小的涡轮流量传感器。一般,采用半椭球体前导流器的涡轮流量传感器比锥体的前导流器的涡轮流量传感器压力损失要小。 气体腰轮流量计结构形式采用以上三种方法确定:内部结构最好选用反推式气体腰轮流量计传感器,因为该结构在一定流量范围内可使叶轮处于浮游状态,轴向不存在接触点,无端面摩擦和磨损,可延长轴承的使用寿命;对于水平结构安装的流量传感器,它与管道连接方式可以是法兰连接、螺纹连接和夹装连接;对于垂直结构安装的流量传感器只能采用螺纹连接。

压差流量计计算公式

()差压式流量计差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量地平方成正比.在差压式流量计仪表中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛 地应用.孔板流量计理论流量计算公式为:式中,为工况下地体积流量,;为流出系数,无量钢;β,无量钢;为工况下孔板内径,;为工况下上游管道内径,;ε为可膨胀系数,无量钢;Δ为孔板前后地差压值,;ρ为工况下流体地密度,.对于天然气而言,在标准状态下天然气积流量地实用计算公式为: 式中,为标准状态下天然气体积流量,;为秒计量系数,视采用计量单位而定,此式×;为流出系数;为渐近速度系数;为工况下孔板内径,;为相对密度系数,ε为可膨胀系数;为超压缩因子;为流动湿度系数;为孔板上游侧取压孔气流绝对静压,;Δ为气流流经孔板时产生地差压,. 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组成,对工况变化、准确度要求高地场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等.流量计算器.()速度式流量计速度式流量计是以直接测量封闭管道中满管流动速度为原理地一类流量计.工业应用中主要有:①涡轮流量计:当流体流经涡轮流量传感器时,在流体推力作用下涡轮受力旋转,其转速与管道平均流速成正比,涡轮转动周期地改变磁电转换器地磁阻值,检测线圈中地磁通随之发生周期性变化,产生周期性地电脉冲信号.在一定地流量(雷诺数)范围内,该电脉冲信号与流经涡轮流量传感器处流体地体积流量成正比.涡轮流量计地理论流 量方程为:式中为涡轮转速;为体积流量;为流体物性(密度、粘度等),涡轮结构参数(涡轮倾角、涡轮直径、流道截面积等)有关地参数;为与涡轮顶隙、流体流速分布有关地系数;为与摩擦力矩有关地系数. ②涡街流量计:在流体中安放非流线型旋涡发生体,流体在旋涡发生体两侧交替地分离释放出两列规则地交替排列地旋涡涡街.在一定地流量(雷诺数)范围内,旋涡地分离频率与流经涡街流量传感器处流体地体积 流量成正比.涡街流量计地理论流量方程为:式中,为工况下地体积流量,;为表体通径,;为旋涡发生体两侧弓形面积与管道横截面积之比;为旋涡发生体迎流面宽度,;为旋涡地发生频率,;为斯特劳哈尔数,无量纲. ③旋进涡轮流量计:当流体通过螺旋形导流叶片组成地起旋器后,流体被强迫围绕中心线强烈地旋转形成旋涡轮,通过扩大管时旋涡中心沿一锥形螺旋形进动.在一定地流量(雷诺数)范围内,旋涡流地进动频率与流经旋进涡流量传感器处流体地体积流量成正比.旋进旋涡流量计地理论流量方程 为:式中,为工况下地体积流量,;为旋涡频率,;为流量计仪表系数,(为 脉冲数). ④时差式超声波流量计:当超声波穿过流动地流体时,在同一传播距离内,其沿顺流方向和沿逆流方向地传播速度则不同.在较宽地流量(雷诺数)范围内,该时差与被测流体在管道中地体积流量(平均流速)成正比.超声波流量计地流量方程式为:

当代新技术电磁流量计的新发展

电磁流量计的发展 利用电磁感应原理测量流量是众多流量测量方法中最普遍的方法之一。它能够测量多种形状流道内导电液体的流速和流量,是法拉第电磁感应定律的应用。 电磁感应定律是1831年英国物理学家法拉第发现的。法拉第电磁感应定律讲:当导体在磁场中作切割磁力线运动时,在导体两端就会感应一个与磁场方向和导体运动方向相互垂直的感应电动势。感应电动势的大小与磁感应强度和运动速度成正比。 1832年法拉第在泰晤士河滑铁卢桥的两岸,选择与水流方向垂直的地磁场方向的地方,放下两个金属棒当作电极来测量河水的流速。这是世界上第一次电磁流量计的试验。但是,由于电化学反应、热电效应等原因,测出的信号是虚假的,并且流速信号被河床短路。加上当时的测量条件限制,所以他失败了。有幸的是,他在1851年见到了Wollsaton等人利用电磁感应法测量英吉利海峡潮汐试验的成功。 到了1917年,史密斯和斯皮雷安获得了应用电磁感应的原理制造船舶测速仪的专利,并推荐使用交流励磁来克服水的极化影响,从而开辟了电磁流速计在海洋学上的应用。 1930年,威廉斯将硫酸铜溶液在置于直流磁场中的一个不导电圆管内流动,检测圆管两电极问的直流电压与流速成正比,这种装置成为一种简单的电磁流量计。威廉斯第一次用数学上的方法分析圆管内流速分布对测量的影响,提出了以管中心轴为对称的流速分布不影响电磁流量计测量精度的理论。尽管他的分析在数学上有错误,但自此有了电磁流量计的基础理论。 1932年前后,根据Fabre的建议,生物学家Willams、A.柯林利用电磁流量计测量和记录瞬时的动脉血液流量获得了成功。 第二次世界大战以后,原子能工业有了迅猛的发展,因而能够测量液态金属的永磁,使电磁流量计得以发展和应用。但是,由于当时电子技术尚还落后,它的使用领域还不能扩大到一般工业中去。 1950年,荷兰人首先在挖泥船上使用电磁流量计测量泥浆流量。后来电磁流量计在美国的一般工业生产中得到了应用。1955年日本的北辰电机和横河电机分别引进美国nscher&Porter公司和Foxboro公司的电磁流量计产品,经过不断地消化、吸收和改进,其电磁流量计很快进入世界先进行列。1955年前后,前苏联、英国、德国也成功地生产出电磁流量计。 20世纪60年代初,希克里夫(J.A Shercliff)在柯林(A.Kolin)等前人无限长均匀磁场的电磁流量计的数学解析基础上,完成了有限长均匀磁场下等流速情况的数学解析,并用权重函数的理论。揭示了产生感应电动势的微观特性,使得电磁流量计有了系统的基础理论。同时,存电子工业飞速发展和工业自动化程度不断提高的条件下,电磁流量汁逐渐完善、成熟起来,发展成为一种性能优良的流量仪表.在工业中得到了广泛的应用。 20世纪60年代后期到70年代中期,随着对三维权重函数的深入研究,出现了权重分布磁场的电磁流量计,使得有限的磁场长度大大缩短,并在一定程度上改善了测量对流速的不敏感性。同时,也有利于流量计制造简化与降低成本。三维权重函数的研究成果,对这时期电磁流量计的发展有重大的指导意义。由于这一时期集成电路的迅速发展和世界能源危机对流量测量仪表提出的更高性能要求,出现了低频矩形波励磁的新技术。低频矩形波励磁电磁流量计,集中了交流励磁流量计能抑制直流磁场信号中的极化干扰和降低交流磁场流量计中信号所含电磁感应干扰信号成分两方面的优点,提高了流量计的零点稳定性、灵敏度和测量精度,降低了功率消耗,解决了互换性等问题,形成了电磁流量计发展的一次高潮。 20世纪80年代以来,微电子技术和计算机技术的迅猛发展,使电磁流量计制造技术更加成熟和完善,其应用领域更加扩大。当代的电磁流量计采用单片机技术,用数字的处理方法等措施使电磁流量计的测量精度和性能不断提高,并可充分利用计算机具有信息贮存、分

泄漏率测试微小气体流量计高精度微流量

CAFS3000 Consensic Data Sheet Rev 0.0 MEMS气体质量流量计说明书 Sep. 2016 DAT-0025

DAT-0025, rev 0.0 使用须知 注意事项 1、在使用产品前请仔细阅读说明书。 2、产品在清洁气体的环境中使用最佳;不适用于有大量粉尘、油污及多相流的环境中;对于有大量水汽的环境下使用,请事先与厂商联系。 3、产品适用于汽车、工业、商用,设备等行业的气体测量、监测和控制。其他不适宜环境内的使用应严格控制。 4、在使用或应用本产品时,应严格遵循相应有关的操作规范和操作人员安全注意事项和规程。 5、无锡康森斯克电子科技有限公司及其分公司、子公司、办事处及其它附属机构将不为任何因不当使用本产品带来的损害负责。其它事宜以销售合同为准。 1、产品只有在本手册界定的使用环境中才能正常工作。 2、安装时应注意气体流向标志,连接和检漏应按相应规程进行。 3、 在产品使用过程中,在线安装管道、清洗管道或其他可能引入大量杂质的操作将可能对产品带来损坏。 4、介质中如果有水,或浸到水中可能会造成传感器敏感特性下降或损坏。 5、 电源正负极接反会造成传感器内部电路烧坏,从而影响使用。

公司概况 无锡康森斯克电子科技有限公司(Consensic,Inc.)是一家新兴的MEMS设计、生产制造的美国独资企业。公司创立于2009年,总部位于美国加利福尼亚州旧金山南部,且由具有丰富传感器和半导体工作经验的管理团队建立。我们致力于不断创新和具有市场竞争力的传感器制造,为先进的集成系统提供了更多微小型封装的选择。通过持续不断地技术创新,为客户提供更多具有市场竞争力的MEMS产品。 无锡康森斯克电子科技有限公司拥有在MEMS设计,制造和测试方面的核心能力,可以为客户提供高精确度和高可靠性的MEMS产品及解决方案。从硅元素到测试的设计品质和可靠性,我们努力超越客户的要求。公司创立之初,我们就同客户与合作者密切联系,同时怀揣手牵手的共赢理念一起创造成功。 产品描述 CAFS3000系列气体质量流量传感器是采用微机电系统(MEMS)流量传感芯片制作,适用于各种用途的清洁、相对干燥性小流量气体测量和过程控制,独特的封装技术使得产品满足不同范围的流量测量,确保高灵敏度,高可靠性,高稳定性和低成本。 CAFS3000是基于MEMS流量传感单元和高精度数字处理和标定电路(MCU)组成.集成的Δ-ΣA/D转换器和具有内部校准功能的逻辑电路及MCU处理器共同保证了传感信号实时有效采集,获得精确的流量信号,并在内部进行相应的补偿算法处理,因此无需再做任何外部校准补偿,就能确保高精度的流量输出;友好的数字化输出通讯方式,用户可以很方便的得到进行通信得到相应数据信息;产品应用范围十分广阔。 DAT-0025, rev 0.0

各种流量计计算公式

各种流量计计算公式内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

V锥流量计计算公式为: 其中: K为仪表系数; Y为测量介质压缩系数;对于瓦斯气Y=; ΔP为差压,单位pa; ρ为介质工况密度,单位kg/m3。取 涡街流量计计算公式: 一、孔板流量计 工作原理 流体流经管道内的孔板,流速将在孔板处形成局部收缩因而流速增加,静压力降低,于是在孔板上、下游两侧产生静压力差。流体流量愈大,产生的压差愈大,通过压差来衡量流量的大小。它是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础,在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。其流量计算公式如下: 上式中:ε——被测介质可膨胀性系数,对于液体ε=1;对气体等可压缩流体ε<1() Q ——流体的体积流量 (单位:m3/min) 工 d ——孔径(单位:m ) △P——差压(单位:Pa)

ρ ——工作状况下,节流件(前)上游处流体的密度,[㎏/m3]; 1 C ——流出系数 β——直径比 安装 孔板的安装要求:对直管段的要求一般是前10D后5D,因此在安装孔板时一定要满足这个直管段距离要求,否则测量的流量误差大。 测量误差分析 1.3.1 基本误差 孔板在使用过程中,会由于煤气的侵蚀而产生变形,从而引起流量系数增大而产生测量误差;而且流量计工作时间越长,流体对节流件的冲刷越严重,也会引起流量系数增大而产生测量误差。 1.3.2 附件误差 孔板节流装置安装于现场严酷的工作场所,在长期运行后,无论管道或节流装置都会发生一些变化,如堵塞、结垢、磨损、腐蚀等等。检测件是依靠结构形状及尺寸保持信号的准确度,因此任何几何形状及尺寸的变化都会带来附加误差。

日本横河AXF系列电磁流量计(精)

概述 AXF系列电磁流量计是基于数十年现场实践经验研发的产品,不仅耐用,而且易于操作。 可更换电极和电极粘污度诊断功能的结合大大提高了系统可维护性。 AXF系列采用能消除流体噪音的“双频励磁法”和为恶劣环境下使用所新增的“增强型双频励磁法”,提高了系统稳定性和响应的高速性。 注:“双频励磁法”是横河电机株式会社的专用技术。 特点 使用方便 流体粘合度诊断 通过监控电极上绝缘介质的粘合度可以判断仪表是否需要进行维修。 由于采用了可更换电极,即使在严重粘合时,也可以很方便地从流量计上拆下电极进行清洗。 灵活的电气连接方向 在通用型和卫生型的使用现场,转换器或接线盒可以任意旋转,以改变电气连接的方向。 多功能清晰显示 指示器采用一个大的背光全点阵液晶显示屏,它可以用来进行各种显示。 指示器可以显示一到三行。发生警报时,指示器上会显示出具体的应急对策。 “Easy Setup(快速设置)”参数使用频率最高的参数整合成一组,位于参数设置的最前面。 用户可以在不打开壳盖的情况下,使用红外开关进行参数设置。 ■产品系列 两种精度等级 标准精度为0.35%,也有高精度等级(0.2%)。 超小尺寸法兰型 法兰尺寸可以从2.5 mm开始。 不同的卫生型连接 可以有不同的卫生型连接,例如三点压板、ISO、DIN和SMS。 ■增强型性能和技术规格 增强型双频励磁法 “增强型双频励磁法”为可选项。 对于恶劣状况,如混有高浓度泥浆或低电导率的流体,它可以实现高标准的稳定测量。 改进的最小电导率

电导率的下限是1μ S/cm。 高速脉冲输出 脉冲频率可以达到10000 pps(脉冲/秒),这样就可以参与高速应用,如进行短时间的批处理操作。一体型流量计增加了更灵活的输入/输出功能

正确使用气体流量计

正确使用气体流量计,确保长时间高精度测量 气体流量计按照24小时均匀用气量计算如下: 二氧化碳常温常压下密度=1.977千克/立方 在0.8MPa压力下密度为15.635千克/立方 24小时用气总量15吨,换算成体积流量是15000(千克)/15.635(千克/立 方)=959立方(工况流量) 按照均匀用气计算,每小时用气量为40立方左右(工况流量)。 一般气体输送流速按照10米/秒计算,那么管道应该是选用DN40的管道。 如果考虑到用气量的不均匀性,那么可以考虑用DN50或者DN65的管道。 减压阀流量按照标况计算的话,那就要选择360立方的减压阀 1.6Mpa(表压)的饱和蒸气比容为:0.1189(立方米/公斤);饱和蒸汽重度 为:8.410(公斤/立方米),(而过热蒸汽性质与温度相关,因此现只能用饱和蒸汽作计算) 蒸汽有管道中的平均流速一般在25米/秒左右,管道中的体积流量等于流速乘管道内截面积,有了上面两个参数,其重量流量也很容易求得。 气体流量计选型,应在规定的流量范围内,防止长时间过载运行,以保证获得理想的准确度和保证正常使用寿命。 安装好气体流量计以后,在准备运行时应先缓慢地开启前阀门,防止瞬间气流冲击而损害涡轮。

气体流量计加润滑油应按加油告示牌操作,加油的次数依气质洁净程度而定,通常每2~3个月加一次。试压、吹扫管道或排气造成涡轮超速运转,以及涡轮在反向流中运转都可能使流量计损坏。 流量计运行时不允许随意打开前后盖(前后盖内有线路板,不慎短路会产生电花火,当测量介质为易燃易爆气体时,将引发严重事故),及更改运行参数(更改参数将影响流量计的正常运行)。 小心安装垫片,确保没有突出物进入管道,以防止干扰正常的流量测量。 流量计在标定时要在流量计取压口上采集压力,待标定结束后应及时旋紧取压口螺栓防止使用时漏气。

计算差压流量计计算公式汇总归纳

计算差压流量计计算公式汇总归纳 已知工艺管道的直径,管道内介质的密度,怎么算出差压变送器的压力.差压变送器是配合弯管流量计一起安装的.尽量说详细点,谢谢 差压式流量计的测量原理是基于流体的机械能相互转换的原理。在水平管道中流动的流体,具有动压能和静压能(位能相等),在一定条件下,这两种形式的能量可以相互转换,但能量总和不变。以体积流量公式为例: Q v = CεΑ/sqr(2ΔP/(1-β^4)/ρ1) 其中:C 流出系数; ε可膨胀系数 Α节流件开孔截面积,M^2 ΔP 节流装置输出的差压,Pa; β直径比 ρ1 被测流体在I-I处的密度,kg/m3; Qv 体积流量,m3/h 按照补偿要求,需要加入温度和压力的补偿,根据计算书,计算思路是以50度下的工艺参数为基准,计算出任意温度任意压力下的流量。其实重要是密度的转换。计算公式如下: Q = 0.004714187 *d^2*ε*@sqr(ΔP/ρ) Nm3/h 0C101.325kPa 也即是画面要求显示的0度标准大气压下的体积流量。 在根据密度公式: ρ= P*T50/(P50*T)* ρ50 其中:ρ、P、T表示任意温度、压力下的值 ρ50、P50、T50表示50度表压为0.04MPa下的工艺基准点 结合这两个公式即可在程序中完成编制。 二.煤气计算书(省略)

三.程序分析 1.瞬时量 温度量:必须转换成绝对摄氏温度;即+273.15 压力量:必须转换成绝对压力进行计算。即表压+大气压力 补偿计算根据计算公式,数据保存在PLC的寄存器内。同时在intouch画面上做监视。 2.累积量 采用2秒中一个扫描上升沿触发进行累积,即将补偿流量值(Nm3/h)比上1800单位转换成每2S的流量值,进行累积求和,画面带复位清零功能。 差压流量计的通用计算公式如下图所示,由式1推导可得到式2。式中Q代表流量,△P代表差压,ρ代表流体密度,K是仪表系数,由流量计出厂标定时得到。 流量与差压的平方根成正比。差压式流量计是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的几何尺寸来计算流量的仪表。差压式流量计由一次装置(检测件)和二次装置(差压转换和流量显示仪表)组成

超声波流量计和电磁流量计各自特点及区别比较

超声波流量计和电磁流量计各自特点及区别比较 叙述了超声波流量计和电磁流量计在概论、工作原理、分类和工作性能的区别,提出,我国现阶段2种最常用流量计的特征和不同优势。 1超声波流量计和电磁流量计的概念 超声波流量计是通过检测流体流动对超声束(或超声脉冲)的作用以测量流量的仪表。超声流量计和电磁流量计一样,因仪表流通通道未设置任何阻碍件,均属无阻碍流量计,是适于解决流量测量困难问题的一类流量计,特别在大口径流量测量方面有较突出的优点,近年来它是发展迅速的一类流量计之一。 电磁流量计是1种根据法拉第电磁感应定律来测量管内导电介质体积流量的感 应式仪表,采用单片机嵌入式技术,实现数字励磁,同时在电磁流量计上采用CAN现场总线。 2超声波流量计和电磁流量计的工作原理 超声波流量计由超声波换能器、电子线路及流量显示和累积系统3部分组成。超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。这样就实现了流量的检测和显示。 超声波流量计常用压电换能器。它利用压电材料的压电效应,采用适出的发射电路把电能加到发射换能器的压电元件上,使其产生超声波振动。超声波以某一角度射入流体中传播,然后由接收换能器接收,并经压电元件变为电能,以便检测。发射换能器利用压电元件的逆压电效应,而接收换能器则是利用压电效应。电磁流量计的工作原理是基于法拉第电磁感应定律。在电磁流量计中,测量管内的导电介质相当于法拉第试验中的导电金属杆,上下两端的2个电磁线圈产生恒定磁场。当有导电介质流过时,则会产生感应电压。管道内部的两个电极测量产生的感应电压。测量管道通过不导电的内衬(橡胶,特氟隆等)实现与流体和测量电极的电磁隔离。导电性液体在垂直于磁场的非磁性测量管内流动,与流动方向垂直的方向上产生与流量成比例的感应电势,电动势的方向按“弗来明右手规则”。 3超声波流量计和电磁流量计的分类 根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。根据对信号检测的原理,目前超声波流量计大致可分传播速度差法(包括:直接时差法、时差法、相位差法、频差法)波束偏移法、多普勒法、相关法、空间滤波法及噪声法等类型。其中以噪声法原理及结构最简单,便于测量和携带,价格便宜但准确度较低,适于在流量测量准确度要求不高的场合使用。 由于直接时差法、时差法、频差法和相位差法的基本原理都是通过测量超声波脉冲顺流和逆流传报时速度之差来反映流体的流速的,故又统称为传播速度差法。其中频差法和时差法克服了声速随流体温度变化带来的误差,准确度较高,所以被广泛采用。按照换能器的配置方法不同,传播速度差拨又分为:Z法(透过法)、V法(反射法)、X法(交叉法)等。

泄漏率测试微小气体流量计使用说明书_V100

CAFS3000系列产品说明书 (V1.00) Consensic,Inc. 在使用本产品前,请仔细阅读本说明书 并请妥善保管,以备将来需要 MEMS 气体质量流量计

使用须知 注意事项

无锡康森斯克电子科技有限公司(Consensic,Inc.)是一家新兴的MEMS设计、生产制造的美国独资企业。公司创立于2009年,总部位于美国加利福尼亚州旧金山南部,且由具有丰富传感器和半导体工作经验的管理团队建立。我们致力于不断创新和具有市场竞争力的传感器制造,为先进的集成系统提供了更多微小型封装的选择。通过持续不断地技术创新,为客户提供更多具有市场竞争力的MEMS产品。 无锡康森斯克电子科技有限公司拥有在MEMS设计,制造和测试方面的核心能力,可以为客户提供高精确度和高可靠性的MEMS解决方案。从硅元素到测试的设计品质和可靠性,我们努力超越客户的要求。公司创立之初,我们就同客户与合作者密切联系,同时怀揣手牵手的共赢理念一起创造成功。 产品描述 CAFS3000系列气体质量流量传感器是采用微机电系统(MEMS)流量传感芯片制作,适用于各种用途的清洁、相对干燥性小流量气体测量和过程控制,独特的封装技术使得产品满足不同范围的流量测量,确保高灵敏度,高可靠性,高稳定性和低成本。 CAFS3000是基于MEMS流量传感单元和高精度数字处理和标定电路(MCU)组成.集成的Δ-ΣA/D转换器和具有内部校准功能的逻辑电路及MCU处理器共同保证了传感信号实时有效采集,获得精确的流量信号,并在内部进行相应的补偿算法处理,因此无需再做任 何外部校准补偿,就能确保高精度的流量输出;友好的数字化输出通讯方式,用户可以很方 便的得到进行通信得到相应数据信息;产品应用范围十分广阔。

各种流量计计算公式

V锥流量计计算公式为: 其中: K为仪表系数; Y为测量介质压缩系数;对于瓦斯气Y=0.998; ΔP为差压,单位pa; ρ为介质工况密度,单位kg/m3。取0.96335 涡街流量计计算公式:

一、孔板流量计 1.1 工作原理 流体流经管道内的孔板,流速将在孔板处形成局部收缩因而流速增加,静压力降低,于是在孔板上、下游两侧产生静压力差。流体流量愈大,产生的压差愈大,通过压差来衡量流量的大小。它是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础,在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。其流量计算公式如下: 上式中:ε——被测介质可膨胀性系数,对于液体ε=1;对气体等可压缩流体ε<1(0.99192)Q工——流体的体积流量(单位:m3/min) d ——孔径(单位:m ) △P——差压(单位:Pa) ρ1——工作状况下,节流件(前)上游处流体的密度,[㎏/m3]; C ——流出系数 β——直径比 1.2 安装 孔板流量计的安装要求:对直管段的要求一般是前10D后5D,因此在安装孔板流量计时一定要满足这个直管段距离要求,否则测量的流量误差大。

1.3 测量误差分析 1.3.1 基本误差 孔板在使用过程中,会由于煤气的侵蚀而产生变形,从而引起流量系数增大而产生测量误差;而且流量计工作时间越长,流体对节流件的冲刷越严重,也会引起流量系数增大而产生测量误差。 1.3.2 附件误差 孔板节流装置安装于现场严酷的工作场所,在长期运行后,无论管道或节流装置都会发生一些变化,如堵塞、结垢、磨损、腐蚀等等。检测件是依靠结构形状及尺寸保持信号的准确度,因此任何几何形状及尺寸的变化都会带来附加误差。

电磁流量计发展前景全面展望

电磁流量计发展前景全面展望 来源:https://www.doczj.com/doc/2818543128.html, 点击: 4 作者:admin 日期:2012-11-19 9:10:18 电磁流量计使用的范围很广泛,测量的介质也是多种多样的。但是电磁流量计的测量并不是万能的,电磁流量计也有着自己的要求。对于流量计的安装场所,不同流量计也会有着不同的要求。对于电磁流量计也是如此。下面就来看看电磁流量计的安装场所。 电磁流量计的安装场所: 根据不同的情况选择不同的场所。第一:安装在无振动或振动小的场所如果振动过大,则应在传感嚣前后的管道加固定支撑。第二:避免安装在周固有强腐蚀性气体的场所。第三:选择测量导管内不会出现负压的场所。第四:应安装在没有强电场的环境.附近也不应有大的用电设备,对安装场所的要求是如电动机、变压器等.以免受电破场干扰。第五:环境温度一般应在-25-60℃范围内,并尽可能避免阳光直射。第六:测量混合相流体时,应选择不会引起相分离的场所。第七:环境相对湿度一般应在lo%.-90%的范围内。第八:避免安装在能被雨水直淋或被水浸没的场所。 对于电磁流量计的安装场所一一观访后,也许我们会有这样的疑问,电磁流量计对于安装场所的要求这么高,那么它的发展前景会是如何呢?下面就来分析一下电磁流量计的发展前景。 电磁流量计的发展前景: 电磁流量计的生存和发展具有市场、人力资源和行业基础三大优势,中国仪器仪表行业正在培育和已经出现具备这种规模和能力的企业。在世界仪器仪表工业全球化的发展过程中,对中国仪器仪表工业来说,我们的看法是:外资来比不来好;转移到其他国家(地区)还不如转移到中国好。在我国发展制造业的总体方针下,在WTO的框架下,兼而采用两种模式,走一条符合中国国情的发展中国电磁流量计工业之路是21世纪中国仪器仪表行业几代人的共同探索和艰苦实践。 一方面充分发挥行业比较优势,巩固和扩大在一般产品领域的地位和成果,另一方面,在科学仪器和测试控制高技术领域取得突破,缩小差距是本国企业的发展途径。

相关主题
文本预览
相关文档 最新文档