当前位置:文档之家› 单调谐放大器

单调谐放大器

2.3 单调谐放大器

按调谐回路分----单调谐放大器

双调谐放大器

参差调谐放大器

按晶体管连接方法分----

共b、共e、共c 放大器?重点讲共发射极(共e)单调谐放大器

一、技术指标

1.放大能力

表示。

用谐振时的放大倍数K

2.选频性能

(1) 通过有用信号的能力

即具有一定的通频带。

放大器能有效放大的频率范围

(2)抑制无用信号的能力

即有足够的选择性。

放大器对其他频率信号抑制能力的衡量。

二、工作原理

1. 电路组成

2. 电压放大倍数K

20200N N r Z r I Z I N N U U U U U U K i AB i b AB b i AB AB i ββ====21

0)(N N Z Z AC AB =0

2210)(N N N N r Z K i AC β=)()(1210N N N N Z r K AC i β

=因为:所以:

3. 谐振电压放大倍数K 0

谐振时,谐振电压放大倍数

L 0AC Z R Q L

ω==问题:

以前讲的信号源内阻如何反映在单调谐电路中?020L 0i 11

()()N N K Q L r N N β

ω=

三、选频性能

1. K -f 特性

2.K/K 0-f 特性

3. 通用谐振曲线

02i 11

()()AC N N K Z r N N β=2

200L 011()K K f f Q f f =+?

L 0220L 01()AC Q L

Z f f Q f f ω=+?0L 02

22i 11

0L 0()()1()N Q L N K r N N f f Q f f ωβ=+?0220L 01()K f f Q f f

=+?代入得

2200L 01

1()K K f f Q f f =+?K/K 0--f 特性

K--f 特性

ξ=0

0L 0()f f Q f f ξ=?广义失谐量在谐振点附近L 0

2f Q f ξΔ= 2011ξα+==K K α仅与ξ有关,所以不管Q 如何变化,均可

用同一条曲线表示----------通用特性曲线。

0=Δf 1ξ±=0.707111α=+=可见对应于通频带的上下边界

1ξ±=2200L 011()K K f f Q f f =+?

四、调谐放大器的最大增益、阻抗匹配条件

K 0受多种因素影响,一般是采用通过调整匝比的方法获得高的增益。020L 0i 11

()()N N K Q L r N N β

ω=是不是,愈大愈好?为什么?要保证一定的Q ,又要达到尽可能高的增益,

则有一个最佳匝比。

10N N 12N N

0ce 1L 02N r N Q L ηω=2L 1L 02N R N Q L ηω=最佳匝比:阻抗匹配0max ce L

i 2K r R r βη

=最大增益:0

0Q Q Q L ?=η00(dB)20lg L Q Q Q η?=谐振电路的效率谐振电路的插入损耗

式中:''L ce R r

=当变换到谐振电路的负载等于变换到谐振电路的内阻时,可得到最大的增益。'ce r 'L

R

晶体管在低频工作时,常将晶体管的电流放大系数()看成与频率无关的常数。

但晶体管在高频工作时,电流放大系数与频率有明显的关系,频率越高,电流放大系数越小。这直接导致管子的放大能力下降,限制了晶体管在高频范围的应用。

βα、2.4 晶体管高频等效电路及频率参数

高频晶体管放大器的分析方法

?非线性分析方法(大信号功率放大器)

?等效电路分析方法

?定义:将晶体管这样的非线性器件,在一定条件下近似地用一些

线性元件所构成的线性电路来代替

?线性元件:元件参数与通过元件的电流或施加在其上的电压无

关。例如:电阻、电感、电容等

?非线性元器件:元器件参数与通过的电流或施加在其上的电压有

关。例如:二极管、三极管等等

?一定条件:在小信号情况下,晶体管工作在特性曲线很小的范围

内。在这个足够小的范围内,其特性曲线可以近似认为呈直线。

此时可以将晶体管看成一个线性器件,用等效的线性电路分析。

–等效途径

(1)物理等效电路:从晶体管的物理作用出发,将晶体

管的各个部分用适当的线性等效元件来模拟。

π

例如:混合等效电路(特点:其元件参数与频率无关,有明确的物理意义,但是参数的确定过程很复杂)

(2)网络等效电路:不考虑晶体管内部的物理作用机

理,完全从网络的外特性出发,经过一定的计算,用适

当的电路来等效。

例如:h参数等效电路(低频)、y参数等效电路(高频)特点:形式上一致,表达式具有普遍意义,但是每个参数都与频率有复杂的关系,物理概念不明确。

?h参数与y参数的区别:

–h参数等效电路将晶体管等效地看成是由一些与频率无关地电阻所组成的有源四端网络,并用

一些参数来表示,形式简单,但应用范围受

限。

–Reason:当频率变高时,晶体管的输入阻抗、

输出阻抗、电流放大系数都发生了变化,在高

频运用时,晶体管的等效电路不仅由与频率无

关的电阻组成,还必须包括随频率变化的电抗

成分。

一、晶体管混合型等效电路晶体管在高频工作时,常用混合型等效

电路来分析。该等效电路共有8个元件。ππmS

g pF C k r pF

C M r r pF

C r m ce ce c b c b b b e b e b 5051005125500150==Ω

==Ω

==Ω

=′′′′′共发射极混合型等效电路π

1.R b’e 是发射结的结电阻。一般是几百欧。

2.R b’c 是集电结电阻。约为10k Ω至10M Ω。

3.r bb ’是基极体电阻。高频晶体管在15~50Ω之间。

4.r ce 是集-射极电阻。它表示集电极电压对电流的影响。它的数值一般在几十千欧以上,典型值为30~50k Ω。

5.电流源g m U b ’e 代表晶体管的电流放大作用,它与加到发射结上的实际电压U b ’e 成正比,比例系数g m 称为晶体管的跨导。0e m b e 26

I g r β′=≈'0b e e 26(1)()

r I mA β=+

6.C b’e是发射结电容。它随工作点电流增大而增大。它的数值范围为20pF~0.01μF;

7.C b’c是集电结电容。它随c、b间反向电压的增大而减小,它的数值是10pF上下;

8.C ce是集-射极电容。这个电容通常很小。一般在2~10pF之间。

'b c r ce C π在实际应用中,考虑到高频时,的容抗较小,和它并联的基-集电阻可忽略;此外,集-射极电容可以合并到集电极回路之中,则得到简化的混合型等效电路。

'b c C

π

简化的混合型等效电路

实验一小信号调谐(单调谐)放大器实验指导

实验一高频小信号单调谐放大器实验 一、实验目的 1.掌握小信号单调谐放大器的基本工作原理; 2.熟悉放大器静态工作点的测量方法; 3.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 4.了解高频单调谐小信号放大器幅频特性曲线的测试方法。 二、实验原理 小信号单谐振放大器是通信接收机的前端电路,主要用于高频小信号的线性放大。其实验原理电路如图1-1所示。该电路由晶体管BG、选频回路(LC并联谐振回路)二部分组成。它不仅对高频小信号进行放大,而且还有一定的选频作用。 1.单调谐回路谐振放大器原理 单调谐回路谐振放大器原理电路如图1-1所示。图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E是R E的旁路电容,C B、C C 是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。为了减轻负载对回路Q值的影响,输出端采用了部分接入方式。 2.单调谐回路谐振放大器实验电路 单调谐回路谐振放大器实验电路如图1-2所示。其基本部分与图1-1相同。图中,C3用来调谐,K1、K2、K3用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。K4、K5、K6用以改变射极偏置电阻,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。

图1-2 单调谐回路谐振放大器实验电路 高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A u0,放大器的通频带BW 0.7及选择性(通常用矩形系数K 0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1所示电路(也是以下各项指标所对应电路),f 0的表达式为 ∑=LC f π21 式中,L 为调谐回路电感线圈的电感量; ∑C 为调谐回路的总电容,∑C 的表达式为 21oe C C n C ∑=+ 式中, C oe 为晶体管的输出电容; n 1(注:此图中n 1=1)为初级线圈抽头系数;n 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,测出电路的幅频特性曲线,微调C3,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A u0称为调谐放大器的电压放大倍数。A u0的表达式为

高频单级、两级小信号单、双调谐放大器通信电子电路硬件实验报告

实验一高频(单级、两级)小信号(单、双)调谐放大器 一、实验目的 1、掌握高频小信号调谐放大器的工作原理; 2、掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。 二、实验内容 1、测量各放大器的电压增益; 三、实验仪器 BT-3扫频仪(选做)一台、20MHz示波器一台、数字式万用表一块、调试工具一套 四、实验基本原理 1、单级单调谐放大器 图1-1 单级单调谐放大器实验原理图 实验原理图如图1-1所示,本实验的输入信号(10.7MHz)由正弦波振荡器模块的石英晶体振荡器或高频信号源提供。信号从TP5处输入,从TP10处输出。调节电位器W3可改变三极管Q2的静态工作点,调节可调电容CC2和中周T2可改变谐振回路的幅频特性。 2、单级双调谐放大器 图1-2 单级双调谐放大器实验原理图 实验原理图如图1-2所示,单级双调谐放大器和单级单调谐放大器共用了一部分元器件。两个谐振回路通过电容C20(1nF)或C21(10 nF)耦合,若选择C20为耦合电容,则TP7接TP11;若选择C21为耦合电容,则TP7接TP12。 3、双级单调谐放大器 图1-3 双级单调谐放大器实验原理图 实验原理图如图1-3所示,若TP5处输入信号的峰峰值为几百毫伏,经过第一级放大器后可达几伏,此信号幅度远远超过了第二级放大器的动态范围,从而使第二级放大器无法发挥放大的作用。同时由于输入信号不可避免地存在谐波成分,经过第一级谐振放大器后,由于谐振回路频率特性的非理想性,放大器也会对残留的谐波成分进行放大。所以在第一级与第二级放大器之间又加了一个陶瓷滤波器(FL3),一方面滤除放大的谐波成分,另一方面使第二级放大器输入信号的幅度满足要求。 实验时若采用外置专用函数信号发生器,调节第一级放大器输入信号的幅度,使第一级放大器输出信号的幅度满足第二级放大器的输入要求,则第一级与第二级放大器之间可不用再经过FL3。 4、双级双调谐放大器 图1-4 双级双调谐放大器实验原理图 实验原理图如图1-4所示,第一级放大器两谐振回路的耦合电容(C20、C21)可选,第二级放大器两谐振回路的耦合电容不可选(固定为C26,1nF),两级放大器之间是否接FL3及相应原因与两级单调谐放大器相同。

单调谐高频小信号放大器

实验一单调谐高频小信号放大器 一、实验目的 1.熟悉电子元器件和高频电路实验箱。 2.熟悉谐振回路的幅频特性分析--通频带与选择性。 3.熟悉和了解放大器的动态范围及测试方法。 4.熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。 二、实验仪器 1.双踪示波器SS-7804 2.扫频仪PD1250 3.高频信号发生器WY1052 4.万用表 5.实验板1 三、预习要求 1、复习谐振回路的工作原理。 2、了解谐振放大器的电压放大倍 数、动态范围、通频带及选择性相互 之间的关系。 3、实验电路中,若电感量L=1uh, 回 路总电容C=220pf (分布电容包括在 内),计算回路中心频率f。 四、实验内容及步骤 图1-1 单调谐回路谐振放大器原理图(一)单调谐回路谐振放大器。 1.实验电路见图1-1 (1)按图1-1所示连接电路(注意接线前先测量+12 V电源电压,无误后,关断电源再接线) (2)接线后仔细检查,确认无误后接通电源。 2.静态测量 实验电路中选Re=1K 测量各静态工作点,计算并填表1.1

表 1.1 实测实测计算根据V CE判断V是否工作 在放大区 原因 V B V E I C V CE 是否 * V B , V E是三极管的基极和发射极对地电压。 3. 动态研究 (1)测放大器的动态范围V i~V O(在谐振点) 选R=10K , Re=1k 。把高频信号发生器接到电路输入端,电路输出端接示波器,选择正常放大区的输入电压V i, 调节频率f 使其为10.7MH Z, 调节C T使回路谐振,使输出电压幅度为最大。此时调节V i由0.02伏变到0.8伏,逐点记录Vo电压,并填入表1.2 。Vi的各点测量值可根据(各自)实测情况来确定。 表 1.2 V i(v) (峰值)0.02 0.8 V0(v) Re =1KΩRe =500ΩRe =2KΩ (2)用扫频仪调回路谐振曲线。 仍选R=10K, Re=1K。将扫频仪射频输出送入电路输入端,电路输出接至扫频仪检波器输入端。观察回路谐振曲线(扫频仪输出衰减档位应根据实际情况来选择适当的位置,如30dB),调回路电容C T, 使f 0 = 10 .7 MHz 。 (3)测量放大器的频率特性 当回路电阻R=10K时,选择正常放大区的输入电压Vi,将高频信号发生器输出端接至电路输入端,调节频率f使其为10.7MHz,调节C T使回路谐振,使输出电压幅度为最大,此时的回路谐振频率为f0=10.7MHZ 为中心频率,然后保持输入电压Vi 不变,改变频率f由中心频率向两边逐点偏离,测得在不同频率f时对应的输出电压V0,将测得的数据填入表1-3。频率偏离范围可根据(各自)实测情况来确定。 f(MHz) 10.7 V0 R=10KΩR=2KΩR=470Ω

第一节 调谐放大器(含答案)

调谐放大器 一.填空题 1、所谓反馈,就是将输出量的一部分或全部通过一定的电路形式返送到输入回路,用来影响输入量。 2、反馈放大器是由_基本放大_电路和_反馈网络_电路组成。 3、通常采用_瞬间极性法_法判别正反馈还是负反馈。 4、负反馈有__电压串联负反馈__、_电压并联负反馈_、_电流串联负反馈__和_电流并联负反馈_四种基本形式。 5、电压负反馈的作用是_稳定输出电压_,电流负反馈的作用是_稳定输出电流_。 6、分压式偏置电路是_电压串联_负反馈放大器,射极输出器是_电压串联_负反馈放大器。 7、正反馈使净输入信号_增大_,负反馈使净输入信号_减小_。 二.判断题(对的打“√”,错的打“╳”) 1、电压反馈送回到放大器输入端的信号是电压。(×) 2、电流反馈送回到放大器输入端的信号是电流。(×) 3、反馈到放大器输入端的信号极性和原来假设的输入端信号极性相同为正反馈,相反为负反馈。(√) 4、射极输出器反馈系数为1,所以没有放大作用。(×) 5、在放大电路中,当信号源的内阻很小时,若采用串联负反馈,则其反馈效果将是很差的(×) 三.选择题 1、送回到放大器输入端信号是电流的反馈是(C) A、电流反馈 B、电压反馈 C、并联反馈 2、分压式偏置电路引入的是( C ) A、交流反馈 C、直流反馈 C、既有交流也有直流反馈 3、将反馈信号送回输入端基极的反馈是(C) A、串联反馈 B、并联反馈 C、电流反馈 D、电压反馈

4、要稳定输出电流,则要引入( D ) A 、电压正反馈 B 、电流正反馈 C 、电压负反馈 D 、电流负反馈 四.综合题 1.什么是正反馈和负反馈?什么是直流反馈和交流反馈? 答:使放大电路净输入量增大的反馈即正反馈,使放大电路净输入量减小的反馈即负反馈。 2.找出反馈元件,并判断反馈类型。 答:R 3:串联电压正反馈。 R4:串联电流正反馈。 R5:并联电流负反馈。 +V CC +V CC

高频小信号单调谐与双调谐放大器实验报告

高频小信号单调谐与双调谐放大器 实验报告 14044012 孙胤邦 14 级电子一班

?输出电压幅值U/mV 1 \ j \ J____ ■ 实验表格及图像 单调谐放大器的电压幅值 输入信号频率f/fHz 5. 4 5. 5 5. 6 5. 7 5. 8 5. 9 6 6. 1 6. 2 6. 3 6. 4 6. 5 6. 6 6. 7 6. 8 6. 9 输出电压幅值 U/m V 1. 6 1. 76 2 2. 16 2. 4 2. 7 3. 12 3. 84 4. 8 6. 32 7. 92 8. 08 7. 52 6. 08 4. 8 3. 84 单调谐放大器幅频特性 输入信号频率 9 8 7 2 1

如图所示(纵坐标为幅值mV ,横坐标为频率MHZ )单调谐的峰值为8.08mV , 下降到0.707倍时的值为5.71mv 。 输入 信号 频率 f/MHz 4 8 5 5 2 5 4 5 6 5 7 5 8 5 9 6 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 7 7 1 输出 电压 幅值 U/mV 0 6 1 1 4 2 5 7 4 6 8 5 8 5 4 5 6 6 4 7 2 7 4 6 2 4 4 3 6 2 2 8 1 6 8 1 4 1 1 2 双调谐回路幅频特性 如图所示(纵坐标为幅值mV ,横坐标为频率MHZ )双调谐的峰值为7.40mV 和7.40mv 下降到0.707倍时的值为5.23mV 和5.23mV 。 这样看来,单调谐放大器优点是电路简单,缺点是通频带窄、选择性差、增益低。 双调谐放大器具有良好的选择性、 较宽的通频带。而且由图可以看出双调谐的选 择性明显优于单调谐放大器。 值幅压电岀输 2 3 4 5 输入信号频率 6 7 8 8 7 6 5 4 3 2 1 0

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验 实验一高频小信号放大器 1.1 实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 1.2 实验容 1.2.1 单调谐高频小信号放大器仿真 图1.1 单调谐高频小信号放大器 1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz 2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。 下图中绿色为输入波形,蓝色为输出波形

Avo=Vo/Vi=1.06/0.252=4.206 3、利用软件中的波特图仪观察通频带,并计算矩形系数。 通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz 矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)= (14.278GHz-9.359KHz)/7.092MHz=2013.254 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。

Fo(KHz) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV) 0.669 0.765 1 1.05 1.06 1.06 0.977 0.816 0.749 0.653 0.574 0.511 Av 2.655 3.036 3.968 4.167 4.206 4.206 3.877 3.238 2.972 2.591 2.278 2.028 5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形, 体会该电路的选频作用。 2次谐波 4次谐波 6次谐波

高频小信号调谐放大器

高频电子线路课程设计报告 题目: __ 高频小信号谐振放大器 __ 院系:_xxxxxxxxxxxxxxxxxxxxxxxx_ 专业:____电子信息科学与技术 班级: xxxxxxxxxxx 姓名: xxxxxx 学号: _ xxxxxxxxxxxxxxx __ 指导教师: xxxxxxxx 报告成绩: 2016年12月16日

目录 一设计目的 (1) 二设计思路 (1) 2.1 电路的功能 (1) 2.2 设计的基本要求 (1) 三设计过程 (1) 3.1 设计电路 (1) 3.2 测量方法 (4) 3.2.1谐振频率 (4) 3.2.2电压增益 (4) 3.2.3通频带 (5) 3.2.4矩形系数 (5) 四系统调试与结果 (6) 4.1 设置静态工作点 (6) 4.2 计算谐振回路参数 (6) 4.3 利用Multisim 对电路的仿真图 (7) 4.4 设计结果与分析 (8) 五主要元器件与设备 (10) 5.1 元器件与设备 (10) 5.2相关参数 (11) 六课程设计体会与建议 (11) 6.1 设计体会 (11) 6.2 设计建议 (12) 七参考文献 (12)

一设计目的 (1)了解LC谐振回路的选频原理和回路参数对回路特性的影响。 (2)掌握高频单调谐放大器的构成和工作原理。 (3)掌握高频单特性放大器的等效电路、性能指标要求及分析设计。 (4)掌握高频单调谐放大器的设计方案和测试方法。 二设计思路 2.1 电路的功能 所谓谐振放大器,就是采用谐振回路作负载的放大器。根据谐振回路的特性,谐振放大器对于靠近谐振频率的信号,有较大的增益;对于远离谐振频率的信号,增益迅速下降。所以,谐振放大器不仅有放大作用,而且也起着滤波或选频的作用。高频小信号放大器的作用是无失真的放大某一频率围的信号。按其频带宽度可以分为窄带和宽带放大器。高频小信号放大器是通信电子设备中常用的功能电路,它所放大的信号频率在数百千赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 2.2设计的基本要求 (1)通过具体计算,选择器件给出电路设计电路 (2)给出最终实现电路 (3)进行仿真校验 (4)作出设计总结 三设计过程 3.1设计电路

高频小信号放大器——典型例题分析

高频小信号放大器——典型例题分析 1.集成宽带放大器L1590的内部电路如图7.5所示。试问电路中采用了什么方法来扩展通频带的?答:集成宽放L1590是由两级放大电路构成。第一级由V1、V2、V3、V6构成;第二级由V7~V10构成,三极管V11~V16、二极管V17~V20和有关电阻构成偏置电路。其中第一级的V1、V3和V2、V6均为共射-共基组合电路,它们共同构成共射-共基差动放大器,这种电路形式不仅具有较宽的频带,而且还提供了较高的增益,同时,R2、R3和R4引入的负反馈可扩展该级的频带。V3、V6集电极输出的信号分别送到V7、V10的基极。第二级的V7、V8和V9、V10均为共集-共射组合电路,它们共同构成共集-共射差动放大器,R18、R19和R20引入负反馈,这些都使该级具有很宽的频带,改变R20可调节增益。应该指出,V7、V10的共集组态可将第一级和后面电路隔离。由于采取了上述措施,使L1590的工作频带可达0~150MHZ。顺便提一下,图中的V4、V5起自动增益控制(AGC)作用,其中2脚接的是AGC电压。图7.5 集成宽放L1590的内部电路2.通频带为什么是小信号谐振放大器的一个重要指标?通频带不够会给信号带来什么影响?为什么?答:小信号谐振放大器的基本功能是选择和放大信号,而被放大的信号一般都是已调信号,包含一

定的边频,小信号谐振放大器的通频带的宽窄直接关系到信号通过放大器后是否产生失真,或产生的频率失真是否严重,因此,通频带是小信号谐振放大器的一个重要指标。通频带不够将使输入信号中处于通频带以外的分量衰减,使信号产生失真。3.超外差接收机(远程接收机)高放管为什么要尽量选用低噪声管?答:多级放大器的总噪声系数为由于每级放大器的噪声系数总是大于1,上式中的各项都为正值,因此放大器级数越多,总的噪声系数也就越大。上式还表明,各级放大器对总噪声系数的影响是不同的,第一级的影响最大,越往后级,影响就越小。因此,要降低整个放大器的噪声系数,最主要的是降低第一级(有时还包括第二级)的噪声系数,并提高其功率增益。综上所述,超外差接收机(远程接收机)高放管要尽量选用低噪声管,以降低系统噪声系数,提高系统灵敏度。4.试画出图7.6所示放大器的交流通路。工作频率f=465kHZ。答:根据画交流通路的一般原则,即大电容视为短路,直流电源视为短路,大电感按开路处理。就可以很容易画出其交流通路。对于图中0.01μF电容,因工作频率为465kHZ,其容抗为,相对于与它串联 和并联的电阻而言,可以忽略,所以可以视为短路。画出的交流通路如图7.7所示。图7.6 图7.75.共发射极单调谐放大器如图7.2所示,试推导出 谐振电压增益、通频带及选择性(矩形系数)公式。解:单

高频电子线路实验报告高频小信号调谐放大器

太原理工大学现代科技学院高频电子线路课程实验报告 专业班级测控1001班 学号 姓名 指导教师

实验一高频小信号调谐放大器 一、实验目的 小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号微弱信号的线性放大。在本实验中,通过对谐振回路的调试,对放大器处于谐振时各项技术指标的测试(电压放大倍数、通频带、矩形系数),进一步掌握高频小信号调谐放大器的工作原理。学会小信号调谐放大器的设计方法。 二、实验仪器 1.BT-3(G)型频率特性测试仪(选项)一台 2.20MHz模拟示波器一台 3.数字万用表一块 4.调试工具一套 三、实验原理 图1-1所示电路为共发射极接法的晶体管高频小信号调谐放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率和相位。晶体管的静态工作点由电阻RB1,RB2及RE决定,其计算方法与低频单管放大器相同。 图1 小信号调谐放大器 该放大电路在高频情况下的等效为如图1-2所示,晶体管的4个y参数y ie,y oe,y fe 及y re分别为:

输入导纳(1-1) 输出导纳(1-2) 正向传输导纳(1-3) 反向传输导纳(1-4) 图1-2 放大器的高频等效回路 式中,gm——晶体管的跨导,与发射极电流的关系为 (1-5) gb’e——发射结电导,与晶体管的电流放大系数β及IE有关 其关系为(1-6) rb’b——基极体电阻,一般为几十欧姆; Cb’c——集电极电容,一般为几皮法; Cb’e——发射结电容,一般为几十皮法至几百皮法。 由此可见,晶体管在高频情况下的分布参数除了与静态工作电流IE,电流放大系数β关外,还与工作频率ω有关。晶体管手册中给出的分布参数一般是在测试条件一定的情况下测得的。如在f0=30MHz,I E=2mA,U CE=8V条件下测得3DG6C的y参数为: 如果工作条件发生变化,上述参数则有所变动。因此,高频电路的设计计算一般采用工

双调谐回路谐振放大器实验

实验二双调谐回路谐振放大器实验 一、实验目的: 1. 进一步熟悉高频电路实验箱; 2. 熟悉双调谐回路放大器幅频特性分析方法; 二、预习要求: 1. 复习谐振回路的工作原理; 2. 了解实验电路中各元件作用; 3.了解双调谐回路谐振放大器与单调谐回路谐振放大器的异同之处。 三、实验电路说明: 本实验电路如图2-1所示。 图2-1 W、R1、R2和Re1为直流偏置电路,调节W可改变直流工作点。C2、C3、L1、C10、C9、L2构成双谐振回路,C7、C8为耦合电容。RL为负载电阻。 四、实验仪器: 1. 双踪示波器 2. 数字频率计 3. 实验箱及单、双调谐放大模块 4、高频信号发生器 五、实验内容和步骤: 1. 测量双调谐回路谐振放大器的频率特性: 1)拨动开关K1,选中C7=8p;拨动开关K2至“RL”档;

2)检查无误后接通电源; 3)高频信号源输出端接到双调谐回路谐振放大器电路的输入端TP1,示波器接电路输出端TP3; 4)使高频信号源的正弦信号输出幅度为300mV左右(峰峰值),输出频率在8MHz,反复调节C2、C10、W使双调谐回路谐振放大器的输出电压幅度最大且波形不失真; 5)以此时回路的谐振频率8MHz为中心频率,保持高频信号源的信号 输出幅度不变,改变频率由中心频率向两边偏离,测得在不同频率时对应的输出电压 表2-1 6)选C8=12pF,重复第3)---5)步的过程。 六、实验报告要求: 1.画出实验电路的交流等效电路; 2.整理各实验步骤所得的数据和图形,绘制出双调谐回路接不同耦合电容时的幅频特性和通频带,分析原因; 3.比较单、双调谐回路的优缺点。 4.谈谈实验的心得体会。

实验一小信号调谐(单双调谐)放大器实验

实验一高频小信号调谐放大器实验 一、实验目的 1.掌握小信号调谐放大器的基本工作原理; 2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 3.了解高频小信号放大器动态范围的测试方法; 二、实验原理 1-1a1-1b (一)单调谐放大器 小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。其实验单元电路如图1-1(a)所示。该电路由晶体管Q1、选频回路T1二部分组成。它不仅对高频小信号进行放大,而且还有一定的选频作用。本实验中输入信号的频率f S=12MHz。基极偏置电阻W3、R22、R4和射极电阻R5决定晶体管的静态工作点。可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。 表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A v0,放大器的通频带BW及选择性(通常用矩形系数K r0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f0称为放大器的谐振频率,对

于图1-1(a )所示电路(也是以下各项指标所对应电路),f 0的表达式为 ∑ = LC f π210 式中,L 为调谐回路电感线圈的电感量; ∑C 为调谐回路的总电容,∑C 的表达式为 ie oe C P C P C C 2221++=∑ 式中,C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。A V0的表达式为 G g p g p y p p g y p p v v A ie oe fe fe i V ++-=-=- =∑2 22 1212100 式中,∑g 为谐振回路谐振时的总电导。要注意的是y fe 本身也是一个复数,所以谐振时输出电压V 0与输入电压V i 相位差不是180o而是为180o+Φfe 。 A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1(a )中输出信号V 0及输入信号V i 的大小,则电压放大倍数A V0由下式计算: A V0=V 0/V i 或A V0=20 lg (V 0/V i ) d B 3.通频带 由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为

高频小信号放大器的设计

高 频 小 信 号 放 大 器 设 计 学号:320708030112 姓名:杨新梅 年级:07电信本1班 专业:电子信息工程 指导老师:张炜 2008年12月3日

目录 一、选题意义 (3) 二、总体方案 (4) 三、各部分设计及原理分析 (7) 四、参数选择 (11) 五、实验结果 (17) 六、结论 (18) 七、参考文献 (19)

一、选题的意义 高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 高频小信号放大器的分类: 按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器; 其中高频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。

二、总体方案 高频小信号调谐放大器简述: 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以分为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻抗变换和选频滤波功能。对高频小信号放大器的基本要求是: (1)增益要高,即放大倍数要大。 (2)频率选择性要好,即选择所需信号和抑制无用信号的能力要强,通常用Q值来表示,其频率特性曲线如图-1所示,带宽BW=f2-f1= 2Δf0.7,品质因数Q=fo/2Δf0.7. 图-1频率特性曲线

高频实验:小信号调谐放大器实验报告

实验一 小信号调谐放大器实验报告 一 实验目的 1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。 2.掌握高频小信号调谐放大器的调试方法。 3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试。 二、实验使用仪器 1.小信号调谐放大器实验板 2.200MH 泰克双踪示波器 3. FLUKE 万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源 三、实验基本原理与电路 1、 小信号调谐放大器的基本原理 所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,放大这种信号的放大器工作在线性范围内。所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC 调谐回路)。这种放大器对谐振频率0f 及附近频率的信号具有最强的放大作用,而对其它远离0f 的频率信号,放大作用很差,如图1-1所示。 图1.1 高频小信号调谐放大器的频率选择特性曲线 小信号调谐放大器技术参数如下: K ( f ) / K 010.707 0.1 f 0B 0.7B 0.1 f

1.增益:表示高频小信号调谐放大器放大微弱信号的能力 2.通频带和选择性:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。衡量放大器的频率选择性,通常引入参数——矩形系数K0.1。 2.实验电路 原理图分析: In1是高频信号输入端,当信号从In1输入时,需要将跳线TP1的上部连接起来。In2是从天线接收空间中的高频信号输入,电感L1和电容C1,C2组成选频网络,此时,需要将跳线TP1的下部连接起来。电容C3是隔直电容,滑动变阻器RW2和电阻R2,R3是晶体管基极的直流偏置电阻,用来决定晶体管基极的直流电压,电阻R1是射极直流负反馈电阻,决定了晶体管射极的直流电流Ie。晶体管需要设置一个合适的直流工作点,才能保证小信号谐振放大器正常工作,有一定的电压增益。 通常,适当的增加晶体管射极的直流电流Ie可以提高晶体管的交流放大倍数 ,增大小信号谐振放大器的放大倍数。但Ie过大,输出波形容易失真。一般控制Ie在1-4mA之间。 电容C3是射极旁路电路,集电极回路由电容和电感组成,是一个并联的LC 谐振回路,起到选频的作用,其中有一个可变电容可以改变回路总的电容值。电

单调谐高频小信号放大器

沈阳航空航天大学北方科技学院 课程设计说明书 课设题目单调谐高频小信号放大器设计 专业通信工程 班级 B141211 学号 B14121137 学生姓名杨一凡 指导教师李秀人 日期 2013.12

沈航北方科技学院 课程设计任务书 教学系部信息工程系专业通信工程 课程设计题目单调谐高频小信号放大器设计 班级B141211学号姓名 课程设计时间: 2013 年12 月16 日至2013 年12 月29 日 课程设计的内容及要求: (一)主要内容 本课题旨在根据已有的知识及搜集资料设计一个单调谐高频小信号放大器,要求根据给定参数设计电路,并利用multisim仿真软件进行仿真验证,达到任务书的指标要求,最后撰写课设报告。报告内容参照课设报告文档模版要求,主要包括有关理论知识介绍,电路设计过程,仿真及结果分析。 技术指标:谐振频率6MHz,谐振增益≥20dB,通频带≥0.5MHz。输入高频小信号(峰-峰值)100mv。Vcc=12V,R L=1KΩ。 (二)基本要求 根据题目及基本要求(技术指标)查阅相关资料和书籍,设计(计算)电路,确定元器件参数(3天)。 待电路设计完成后,上机进行电路仿真(使用Multisim)。仿真过程中用到的仪器、调试方法、排故过程及电路技术指标的测量要做记录,最终写到报告中(4天)。报告正文按目录要求撰写,其他内容见格式说明(3天)。

(三)主要参考书 [1] 高如云等.通信电子线路(第三版). 西安电子科技大学出版社,2007,11 [2] 赵春华等. Multisim9电子技术基础仿真实验. 机械工业出版社,2007,05 [3] 华永平.电子线路课程设计—仿真、设计与制作.东南大学出版社,2002 (四)评语 (五)成绩 指导教师年月日

(一)小信号调谐放大器基本工作原理

实验室 时间段 座位号 同组人翁洁意 电子科技大学 信息工程学院 通信电子线路实验报告 实验名称小信号调谐放大器 姓名王颖 学号 15934104 指导老师建岚

一.实验目的 1.利用实验箱熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐和双调谐放大器在有负载和无负载的情况下的基本工作原理; 3.掌握用点测法测量放大器幅频特性的方法; 4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响; 5.了解放大器动态围的概念和测量方法。 二.实验容 1.采用点测法测量单调谐和双调谐放大器的幅频特性; 2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数; 3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响; 4.用示波器观察放大器的动态围; 5.观察集电极负载对放大器幅频特性的影响。 三.实验步骤 1.实验准备 在实验箱主板上插装好无线接收与变频模块,接通实验箱上电源开关,按下模块上白色电源开关(POWER),此时模块上电源指示灯亮。 2.单调谐回路谐振放大器幅频特性测量 我们测量幅频特性使用的是点测法。点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。 点测法,其步骤如下: ①2K1置“OFF”位,即断开集电极电阻2R3。2K2置“单调谐”位,此时2C6被短路,放大器为单调谐回路。高频信号源输出连接到调谐放大器的输入端(2P01)。示波器CH1接放大器的输入端2TP01,示波器CH2接调谐放大器的输出端2TP02,调整高频信号源

实验2__高频小信号调谐放大器

高频电子线路实验报告姓名: 班级:

实验一高频小信号调谐放大器 一、实验目的 1.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算。 2.掌握信号源内阻及负载对谐振回路Q值的影响。 3.掌握高频小信号放大器动态范围的测试方法。 二、实验内容: 1.调测小信号放大器的静态工作状态。 2.用示波器观察放大器输出与偏置及回路并联电阻的关系。 3.观察放大器输出波形与谐振回路的关系。 4.调测放大器的幅频特性。 5.观察放大器的动态范围。 三、实验仪器设备: 1、高频电子线路实验箱GP-4。 2、数字存储示波器TDS-1002 3、高频信号发生器WY-1052A 4、数字万用表 四、实验步骤: 实验用单调谐回路谐振放大器电路如图1所示。图中,R1、R2、RE用以保证晶体管工作于放大区域,从而放大器工作于

甲类。 C2是RE的旁路电容,C1、C7是输入、输出耦合电容,L、C3、C4是谐振回路,C3用来调谐,K1、K2、K3用以改变集电极回路的阻尼电阻R3,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值) 的影响。K4、K5、K6用 以改变射极偏置电阻R4, 以观察放大器静态工作 点变化对谐振回路 (包括电压增益)的 影响。为了减轻负载 对回路Q值的影响, 输出端采用了(部分 接入方式),即电感 抽头输出方式。

(一):单级单调谐电路 用示波器在小信号放大器的模块的TT2处观察,调节小信号放大器的T2,CC2,适当调节该模块的w3,使TT2处信号V o的峰值V op-p 最大不失真。记录各数据,填表中。 电压增益系数: 放大器的谐振回路对应的电压放大系数Avo 称为谐振放大器的电压增益系数。当电路处于谐振放大状态时,Avo 计算公式如下: Avo = V o / Vi 或Avo = lg(V o / Vi)dB

最新整理单级放大器.doc

单级放大器 由于模拟或数字信号太小而不能驱动负载等,在模拟电路中就必须采用放大器对信号进行放大。在本章中重点描述五种放大器结构:共源、共栅、源极跟随器和级联结构以及CMOS放大器。对于每一种结构,先进行直流分析,然后进行低频交流小信号分析。分析方法一般都先采用一个简单模型进行分析,然后逐步增加一些诸如沟道调制效应、衬底效应等二阶效应的分析。 放大器的性能指标有:增益、速度、功耗、工作电压、线性、噪声、最大电压摆幅以及输入、输出阻抗等。其中的大部分性能指标之间是相互影响的,因而进行设计时必须实现多维的优化。 3.1 共源放大器 所谓共源放大器是指输入输出回路中都包含MOS管的源极,即输入信号从MOS管的栅极输入,而输出信号从MOS管的漏极取出。根据放大器的负载不同,共源放大器可以分为三种形式:无源负载共源放大器及有源负载共源放大器。3.1.1 无源负载共源放大器 无源负载主要有电阻、电感与电容等,这里主要讨论电阻负载与电感电容谐振负载时共源放大器的特性。 1 电阻负载共源放大器 电阻负载共源(CS)放大器结构如图 3.1(a)所示。对此进行直流分析(确定工作点)与低频交流小信号分析。对于共源放大器,根据第二章的分析,对于低频交流信号从栅极输入时,其输入阻抗很大,所以在分析时可不考虑输入阻抗的影响。 (a) (b) 图3.1 (a)电阻负载的共源级(b) 深三极管区的等效电路 (1)直流分析 先忽略沟道调制效应,根据KCL定理,由图3.1(a)可列出其直流工作的方程: (3.1)而当VGS>Vth时,MOS管导通,根据萨氏方程有: (3.2) 把式(3.2)代入式(3.1)中,可得到其直流工作方程为(注:VGS=Vi,VDS=Vo): (3.3) 对方程(3.3)进行进一步的讨论: 截止区:Vi<Vth,则Vo=VDD; 饱和区:Vi>Vth,且Vi-Vth≤Vo时,有: (3.4) 三极管区: Vo<Vi-Vth,有: (3.5) 深三极管区:Vo<<2(Vi-Vth),根据第二章可知,此时M1可等效为一压

实验 小信 调谐放大器

实验1 小信号调谐放大器 【实验目的】 熟悉电子元器件和高频电子线路实验系统; 掌握单调谐回路谐振放大器的基本工作原理; 掌握测量放大器幅频特性的方法; 熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响; 了解放大器动态范围的概念和测量方法。 【实验内容】 采用点测法测量单调谐和双调谐放大器的幅频特性; 用示波器测量输入、输出信号幅度,并计算放大器的放大倍数; 用示波器观察耦合电容对双调谐放大器幅频特性的影响; 用示波器观察放大器的动态范围; 用示波器观察集电极负载对放大器幅频特性的影响。 【实验步骤】

实验准备 插装好单调谐回路谐振放大器模块,接通实验箱上电源开关,按下模块上开关2K3,此时电源指示灯亮。 单调谐 单调谐回路谐振放大器幅频特性测量 测量幅频特性通常有两种方法,即扫频法和点测法。扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。本实验采用点测法,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路揩振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。步骤如下: ①2K1置“off”位,即断开集电极电阻2R3。2K2置“单调谐”位,此时2C6被短路,放大器为单调谐回路。高频信号源输出连接到单调谐放大器的输入端(2P01)。示波器CH1接放大器的输入端2TP01,示波器CH2接单调谐放大器的输出端2TP02,调整高频信号源频率为?(用频率计测量),高频信号源输出幅度(峰——峰值)为200mv(示波器CH1监测)。调整单调谐放大器的电容2C5,使放大器的输出为最大值(示波器CH2监测)。此时回路谐振于。比较此时输入输出幅度大小,并算出放大倍数。

高频小信号调谐放大器设计-

《高频电子线路》课程设计说明书高频小信号调谐放大器设计与制作 院、部:电气与信息工程学院 学生姓名: 指导教师:职称副教授 专业:通信工程 班级:通信1103班 完成时间:2013年12月16日

摘要 高频小信号调谐放大器是为了对一些幅度比较小的高频信号进行有目的放大,在广播和通信设备中有广泛的应用,通常用于各种发射机的接收端。 本设计围绕高频小信号调谐放大器设计工作进行研究和实现,详细介绍了高频小信号调谐的整体结构,硬件设计,系统方案,单元电路模块和仿真情况的具体实现,介绍了一种利用三极管放大,LC并联谐振选频将特定的信号进行放大和选出相对应频率的信号,达到了设计要求,该设计适用于高频电路发射机的接收端。 关键词高频小信号; LC谐振;放大器;谐振电压放大倍数

ABSTRACT High frequency small signal for some smaller amplitude tuned amplifier is to have a purpose on high frequency signal amplification, widely used in radio and communication equipment. This design around the high frequency small signal tuned amplifier design work for research and implementation, introduces in detail the overall structure of the high frequency small signal tuning, hardware design, system solutions, unit circuit module and the concrete realization of the simulation conditions, the paper introduces a using triode amplifier, LC parallel resonant frequency selective specific signal amplification and to select the corresponding frequency of the signal, meet the design requirements, the design is suitable for hf transmitter circuit at the receiving end. Keywords triode High frequency small signal; LC resonance; Amplifier; Resonant voltage magnification

调谐放大器实验报告

高频实验一 高频小信号调谐放大器实验 一、实验目的 1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。 2.掌握高频小信号调谐放大器的调试方法。 3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试方法。 4.熟练掌握multisim软件的使用方法,并能够通过仿真而了解到电路的一些特性以及各电路原件的作用 二、实验仪器 1.小信号调谐放大器实验板 2.200MHz泰克双踪示波器(Tektronix TDS 2022B) 3. 8808A FLUKE万用表 4.220V市电接口 5.EE1461高频信号源 6.AT6011 频谱分析仪 7.PC一台(附有multisim仿真软件) 三、实验原理 1.小信号调谐放大器的基本原理 小信号调谐放大器的作用是有选择地对某一频率范围的高频小信号进行放大。所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,由于信号小,从而可以认为放大器工作在晶体管的线性范围内。所谓“调谐”,主要是指放大器的集电极负载为调谐回路。这种放大器对谐振频率 f及附近频率 的信号具有较强的放大作用,而对其它远离 f的频率信号,放大作用很差。 高频小信号调谐放大器是我主要质量指标如下: 1.增益:放大器输出电压与输入电压之比,用来表示高频小信号调谐放大器放大微弱信号的能力,即

2.通频带:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。 3.选择性:从含有各种不同频率的信号总和(有用和有害的)中选出有用信号排除有害(干扰)信号的能力,称为放大器的选择性。衡量选择性的基本指标一般有两个:矩形系数和抑制比。矩形系数通常用K0.1表示,它定义为 ,其中是指放大倍数下降至0.1处的带宽。且矩形系数越小,选择性越好,其抑制邻近无用信号的能力就越强。抑制比见末尾附录,此处略。 4.稳定性:指放大器的工作状态(直流偏置)、晶体管的参数、电路元件参数等发生可能的变化时,放大器的主要特性的稳定程度。 5.噪声系数:高频放大器由多级组成,降低噪声系数的关键在于减小前级电路的内部噪声。因此,在设计前级放大器时,要求采用低噪声器件,合理地设置工作电流等,使放大器在尽可能高的功率增益下噪声系数最小。其计算表达式为 , 越接近1越说明噪声越小,电路的性能越好。 2.实验箱电路图 图2-2 小信号调谐放大器实验电路 说明:我们做实验的时候只要使用IN1连R1经C2再至晶体管放大器后经C4输出这条通路即可,分别测试放大器的放大倍数、通频带以及电路的品质因数对通频带以及幅频特性的影响。 四、实验前的准备: 第一部分:理论计算 该放大电路在高频情况下的等效为如图1-2 所示,晶体管的4 个y 参数yie,yoe,yfe 及yre 分别为 由课本所学的理论知识我们可知:回路的总电导为

相关主题
文本预览
相关文档 最新文档