当前位置:文档之家› 低镍铬合金铸铁--碳钢--双相不锈不锈钢--铜合金材料在海水阀门上的应用

低镍铬合金铸铁--碳钢--双相不锈不锈钢--铜合金材料在海水阀门上的应用

低镍铬合金铸铁--碳钢--双相不锈不锈钢--铜合金材料在海水阀门上的应用
低镍铬合金铸铁--碳钢--双相不锈不锈钢--铜合金材料在海水阀门上的应用

低镍铬合金铸铁材料在海水阀门上的应用

介绍了低镍铬合金铸铁+重防腐涂料在核电站耐海水阀门领域的使用情况。基于台山核电项目CRF 系统蝶阀主体材料采用低镍铬合金铸铁,对比分析了低镍铬合金铸铁+ 重防腐涂料、碳钢衬胶、双相不锈钢及铜合金等常用耐海水腐蚀性材料在使用性、工艺性和成本等方面的差异。

1、概述

海水作为核电站冷却水源,其优点是取之不竭且温度随季节变化较小,但由于受其氯离子含量高等因素的影响,对金属的腐蚀性较强。与核电站主体配套的CRF、SEN、SRI 及CFI 等系统用DN800 ~DN3 200 大口径蝶阀,在阀门主体耐海水腐蚀性选材要求上尤其具备典型性。目前,国外产品多采用低合金铸铁,并涂覆涂料、衬里以及电化学腐蚀等措施来提高抗腐能力。在国内核电,低镍铬合金铸铁DN1 600 耐海水阀最早被应用秦山一期,在第三代EPR 台山核电站,低镍铬合金铸铁( STQNiCr) 再次被应用于CRF 循环水系统DN3 200 口径的蝶阀。

2、低镍铬合金铸铁

2.1、化学成分

在秦山核电站的应用上,主要依据核电工况系统的要求并参考国外同类铸铁产品的化学成分而确定的。秦山核电站与台山核电站低镍铬合金铸铁水阀的Ni、Cr 成分及其化学成分如表1。

表1 低镍铬合金铸铁水阀用材料化学成分 Wt%

随着国内熔炼、铸造技术和设备的不断发展,目前国内低镍铬合金铸铁的发展也日趋成熟与提高,与低镍铬合金铸铁发展初期相比,无论从熔炼过程还是铸造工艺上,S、P 元素的控制量更加精细。其中,元素Re 和Mg 具有脱气、脱硫和消除其他有害杂质的作用,能改善材料的铸态组织,而有效调节元素Ni、Cr 含量则可获得合理的组织与性能。

2.2、力学性能

台山核电用低镍铬合金铸铁的力学性能与常规球磨铸铁、碳钢和不锈钢的对比如表2。

表2 力学性能对比

由表2 可知,通过在铸铁中加入少量合金元素Ni、Cr,使得铸铁的力学性能有显著提高,且与常规的碳钢、不锈钢材料力

学性能相当。

2.3、合金元素对铸铁性能的影响

合金元素对于铸铁组织的影响一般发生在两个阶段。一是影响凝固阶段中初生奥氏体的生长、共晶转变方式以及共晶相的形态特点。二是在固态相变阶段影响奥氏体转变速率、转变方式以及所形成的组织特征。低镍铬合金铸铁中,Ni 是促进石墨化元素,Cr 是反石墨化元素,即碳化物形成元素。铸铁中Ni 和Cr 的同时加入,显著影响铸铁的固态相变过程。

元素Ni 能以任何比例溶于液态及固态的铁中,在铸铁中不与碳形成碳化物,而是存于铁素体和奥氏体中。Ni 的加入可降低奥氏体各元素的扩散速度,并降低奥氏体共析转变临界速率和转变温度,真空技术网(https://www.doczj.com/doc/2f346864.html,/)认为有利于促使珠光体的形成和细化。少量Ni 的加入还能稳定珠光体和减少铁素体含量,可有效延长珠光体转变孕育期,有助于取得均匀而一体的结构和良好的综合力学性能。

元素Cr 是最强烈的碳化物稳定元素之一,对铸铁固态相变影响体现3 个方面。①抑制铁素体形成,减少游离铁素体含量,促进珠光体形成。②延长珠光体孕育期,推迟共析转变,改善铸铁的硬化性能。③可促进柔软的铁素体转变成珠光体组织,使铸铁中具有极细的片状共晶石墨存在,可使石墨的大小和铸铁的晶粒更均匀。

2.4、应用情况

对于电站系统大口径蝶阀,其阀体、蝶板等主体材料通常占整个阀重的90%,因此在材料选择上,需综合考虑其使用性能、制造工艺性、在线维护检修的便捷性及经济性等因素。目前,国内低镍铬合金铸铁已广泛应用于水利、水电、石油化工等行业,并已取得较丰富的运行经验,并逐步应用于核电循环水系统阀门。

与常规水系统介质不同,核电站循环水系统海水介质中高浓度的Cl 离子含量( 17g /L) 、海生物和泥沙及介质流速等影响,导致金属材料的腐蚀性比普通海水更剧烈,因此阀门选材时不仅需考虑耐腐蚀性能外,还需综合考虑其抗冲刷能力。为了保证阀门过流表面具有足够的抗海水腐蚀能力、耐冲刷磨损能力,台山循环水蝶阀选材还引入了重防腐涂料涂覆工艺,采用低镍铬合金铸铁+ 重防腐涂料相结合,从而实现了双重防腐技术。

3、阀门选材的对比分析

3.1、普通碳钢

碳钢本身不耐海水腐蚀,核电海水阀中普遍采用碳钢加内衬橡胶的技术。核电阀门中常用的衬胶材料是EPDM,采用整体硫化

的方式包覆在阀体和阀瓣上,虽然较好地实现了过流部件与海水的隔离,但在实际工况运行中,由于海水流速冲击、橡胶老化等因素影响,常常会发生局部脱落、变形的现象,而一旦产生橡胶脱落或变形,碳钢基体的腐蚀也随之发生。此外,由于全衬里的阀门需要将设备返厂才能实现橡胶衬里的更换,无法实现在线维修,检修周期长,不适用于大口径海水阀使用。

3.2、双相不锈钢

与传统的奥氏体或铁素体不锈钢相比,双相不锈钢克服了点蚀和缝隙腐蚀敏感性的缺陷,强度、韧性较好,且耐局部腐蚀,特别是耐晶间腐蚀、应力腐蚀、点蚀、缝隙腐蚀等能力有显著提高。但是,由于其昂贵的价格,对于核电站常规岛循环水系统DN800 ~ 3 200 的大口径阀门主体选材不是合适的选择。

3.3、铜合金

阀门选材中常用的铜合金主要有黄铜、锡青铜和铝青铜,这些铜合金在海洋环境中能生成一层腐蚀产物膜,这层薄膜阻碍了氧向金属表面的扩散,在海水中具有较好的耐点蚀和耐缝隙腐蚀性能。但与双相不锈钢一样,铜合金的价格也较高且铸造工艺性要求较高,对于大口径的海水阀也不是较为合适的选择。

表3 耐海水阀门选材的综合性能对比

3.4、低镍铬合金铸铁+ 重防腐涂料

铸铁中少量Ni、Cr 元素的同时加入和共同作用下,最终获得珠光体基体和细化的A 型石墨组织,从而改善铸铁的宏观综合性能,提高铸件的强度和硬度,增强耐海水腐蚀性能。同时,由于合金元素相对较少,生产成本也较低,因此适合于制造大口径海水阀门。而与常规的防腐涂料不同,重防腐涂料适用于更加严苛的环境且能达到比常规涂料更长的保护期,其附着能力和防腐

能力也更强,并且可在潮湿表面施工,对于核电工程抢修来说更加显示了其不同于常规的优越性。

综合上述4 种耐海水阀门选材,对比综合性能指标如表3。

4、结语

在核电站循环水冷却系统中,对于大口径海水阀门主体选材,采用低镍铬合金铸铁加重防腐涂料的选材方式既能满足海水腐蚀工况需求且成本低廉,同时,生产过程阀体、阀瓣的铸造性能较好,表面防腐涂层的涂覆工艺较为简单且寿命较长,涂层的在线维修方便,可推广使用。

双相不锈钢性能特点-力学性能特点

与不锈钢中其他四类相比,由于双相不锈钢具有α+γ双相组织结构,因此,其性能特点兼有奥氏体不锈钢和铁素体不锈钢的特性,是一类高强度与高耐蚀性最佳匹配的不锈钢。 与铁素体不锈钢相比,α+γ双相不锈钢的脆性转变温度低,室温韧性高,耐晶间腐蚀和焊接性能显著改善,同时仍保留铁素体不锈钢的一些特点,如457℃脆性,中温脆性和高温脆性及热导率高、线胀系数小何具有超塑性等。 与奥氏体不锈钢相比,双相不锈钢的强度,特别是屈服强度显著提高,耐晶间腐蚀、应力腐蚀、疲劳腐蚀及磨蚀等性能明显改善,但有磁性。 上述双相不锈钢的特性,随两相比例的不同而有所改变。例如,当铁素体相的比例较大时,则更易显示铁素体不锈钢的性能特点;反之,则更易显示奥氏体不锈钢的性能特点。

1.力学性能 高强度,存在脆性转变温度和三个脆性区。 由于双相不锈钢具有微细的显微组织以及钼、氮等的强化作用,双相不锈钢的强度远远高于铁素体不锈钢和奥氏体不锈钢,一些试验结果见表1和图2。 表1.铁素体(430)、奥氏体(304)和双相不锈钢代表性牌号室温力学性能的对比 图2.分别为超级铁素体不锈钢、超级双相不锈钢、超级奥氏体不锈钢的力学性能对比 但是,双相不锈钢中含高铬、钼的大量铁素体相的存在,使得铁素体不锈钢中所具有的脆性 转变温度和457℃脆性、中温脆性以及高温脆性三个脆性区的特征,在双相不锈钢中先也显 现了出来(图3~5)。但是由于双相不锈钢的晶粒细化且又存在大量奥氏体,所以双相不锈 钢的脆性转变温度明显低于普通铁素体不锈钢,一般均在-40℃或-50℃以下,而且室温冲击 韧性也足够高(表1),因此不影响双相不锈钢的工程应用。至于457℃脆性和中温脆性只 要不高于260℃,长期使用就不会有任何危险。

高铬铸铁热处理工艺

高铬铸铁热处理工艺 化学成分:C2.05,Si1.40,Mn0.78,Cr26.03,Ni0.81,Mo0.35 1、常用的高铬铸铁的热处理工艺是加热到950~1000℃,经保温空冷淬火后再进行 200~260℃的低温回火。 2、2、高温团球化处理1140~1180℃保温16h空冷却,可以明显提高冲击韧度和耐磨性能。 高温团球化处理可使碳化物全部呈团球状,可消除或减少大块状和连续网状碳化物对基体的隔裂作用,经团球化的碳化物受到更加均匀的基体支撑,特别受到一定数量的奥氏体的支撑。如果适当减少保温时间,对薄截面零件也可以取得效果。该工艺的不足是工艺消耗热能较多。 加热到1050℃,经保温空淬火后再进行550℃的回火,效果会怎么样? 要控制加热速度,最好在650? ?? ?750? ?? ?? ? 850? ?? ? 时保温一定时间。我以前做过,正火就可以了。硬度能做到61----65HRC 成熟工艺是:铸造后软化退火,便于加工,加工后空冷淬火加低温去应力回火。使用硬度一般要求为HRC58-62,多用于比如渣浆泵零部件等耐磨易损件。 我们这里是高铬生产基地,一般提供Cr24,Cr26,Cr28,Cr15Mo3等,价格是不便宜的。价格要包括中间的软化退火和精加后的淬火及回火。楼主的材料应该叫Cr26 做高铬磨球的,Cr%=10.2~10.5%,C%=2.2~2.7%,Si、S双零以下,要求硬度HRC>58 我们现在用的是淬火液淬火,淬火工艺参数是:650度保温2小时,升温到960度保温3.5小时淬火;回火温度380~400,保温4~6小时。磨球规格φ40-φ80。 工艺是1050淬火+250~350回火 金属耐磨材料在水泥企业的研究和应用 [摘要] 本文从金属耐磨材料的概述、水泥企业常用的耐磨材料以及根据磨损原理具体的选用金属耐磨材料,对金属耐磨材料进行了研究、分析,对其他选用金属耐磨材料给予一定的参考和借鉴。 [关键词] 金属耐磨材料水泥企业研究应用 一、金属耐磨材料的概述 材料的耐磨性不仅决定于材料的硬度Hm,而且更主要的是决定于材料硬度Hm和磨料硬度Ha的比值。当Hm/Ha比值超过一定值后,磨损量便会迅速降低。 当Hm/Ha≤0.5-0.8时为硬磨料磨损,此时增加材料的硬度对材料的耐磨性增加不大。 当Hm/Ha>0.5-0.8时为软磨料磨损,此时增加材料的硬度,便会迅速地提高材料的耐磨性。 金属耐磨材料一般都指的是耐磨钢,能抵抗磨料磨损的钢。这类钢还没有成为一个完全独立的钢种,其中公认的耐磨钢是高锰钢。 二、水泥企业主要使用的耐磨钢

不锈钢

303无磁性、可自由切削的奥氏体不锈钢。在927℃下仍具有良好的抗氧化性。又名1.4305。 特性:无磁、耐蚀性好、易于切削、抗氧化性好。 用途:齿轮、衬套、轴、泵和阀组件、螺杆机产品、食品器械等。 不能通过热处理进行强化 304 奥氏体不锈钢 特性:耐晶间耐蚀性好、低温强度和机械特性佳、无磁性。 用途:泵轴、阀门配件、手术器械、餐具、橱柜、热水器、锅炉、浴缸等。 不能通过热处理进行强化 310S具有优良的耐腐蚀性能的高强度镍铬不锈钢。 特性:具有优良的耐腐蚀性能、抗高温氧化性能佳、韧性佳、可焊性好。 用途:锅炉配件、热处理制夹具配件、热处理设备零件等。 不能通过热处理进行强化 3163系奥氏体不锈钢。 特性:具有优异的耐蚀性、无磁性。 用途:小型轴件、螺栓、螺丝螺母、食品器械配件、阀门配件等。 不能通过热处理进行强化 410马氏体不锈钢,又1.4006 或X12Cr13。(使用温度不应超过1200°F(649°C)。 特性:具有一定机械性能、耐蚀性好、抗氧化性好。 用途:泵轴、厨房用具、不锈钢餐具、手工具、螺栓螺母等。 热处理:30-43HRC;淬火:927-1050℃;回火:520-580℃×2次以上。 410Q+DT马氏体不锈钢.(使用温度不应超过1200°F(649°C) 特性:具有一定机械性能、耐蚀性好、抗氧化性好。 用途:压缩机叶片、泵轴、厨房用具、不锈钢餐具等。 已预硬 416QT 易加工马氏体不锈钢,又名1.4005 or X12CrS13。 特性:加工成型性好、耐一般腐蚀。 用途:加工成型性好、耐一般腐蚀。 420/420J2耐蚀性较好的马氏体不锈钢,性能与410类似。SUS420J2为日规,对应美规为420J2。特性:耐蚀性佳、较高的力学性能。 用途:塑胶模、螺杆、阀门配件、食品器械配件、手术刀、汽车零配件、瓶胚等 热处理:淬火:950~1050℃;回火:200-500℃ 420QT耐蚀性较好的马氏体不锈钢,性能与410类似。 特性:耐蚀性佳、较高的力学性能。 用途:塑胶模、螺杆、阀门配件、食品器械配件、手术刀、汽车零配件、瓶胚等。 已预硬硬度: 34HRC 420Q+DT易加工马氏体不锈钢,又名1.4005 or X12CrS13。 特性:加工成型性好、耐一般腐蚀。 用途:阀门零件、泵轴、加工零件,马达轴、齿轮等。 已预硬硬度: 226HB 420MP(ESR)耐蚀性较好的马氏体不锈钢,ESR熔炼制程生产。 特性:耐蚀性佳、韧性较好。 用途:骨钉、骨科耗材、小型螺钉螺母、小型不锈钢零件等。

(80-3)黄铜HSi80-3硅黄铜化学成分及力学性能介绍

(80-3)黄铜HSi80-3硅黄铜化学成分及力学性能介绍 牌号:HSi80-3硅黄铜 标准:GB/T 13808-1992 化学成份:周工/ TEL:①③⑧①--⑥①⑥--⑥③④③ 规格:棒,板,管,带,线,毛细管,异型材料 铜Cu:79.0~81.0 锡Sn:≤0.2 锌Zn:余量 铅Pb:≤0.1 磷P:≤0.02 铝Al:≤0.1 铁Fe:≤0.6 锰Mn:≤0.5 硅Si:2.5~4.0 锑Sb:≤0.05 铋Bi:≤0.003 注:≤1.5(杂质) 力学性能 抗拉强度σb (MPa):≥295 伸长率δ10 (%):≥25 注:棒材的纵向室温拉伸力学性能 试样尺寸:直径10~75 热处理规范: 热加工温度750~850℃。 概述: 在铜锌合金的基础上,加入硅的黄铜。它在大气和海水中均有较高的耐蚀性,抗应力腐蚀破裂的能力高于一般黄铜。含硅量一般在4%以下。常用硅黄铜80Cu-17Zn-3Si能承受热压力加工,耐蚀性优良,软态的拉伸强度为300MPa,伸长率为58%,适用于制作船舶零件,蒸汽管和水管配件等。这种合金的含铅量不能超过0.01%,否则会损害热塑性,特别是热锻性能。65Cu-31.5Zn-1.5Si-Pb为含铅的硅黄铜,具有较高的切削性,减摩性和耐蚀性,主要用于耐磨锡青铜的代用品。 特性: HSi80-3硅黄铜有良好的力学性能,耐蚀性高,无腐蚀破裂倾向,耐磨性亦可,在冷态、热态下压力加工性好,易焊接和钎焊,切削性好。导热导电性是黄铜中最低的。 用途: HSi80-3硅黄铜用于船舶零件、蒸汽管和水管配件等。 上海冶韩供应: 三宝红铜、竹菱电解铜、进口、红铜、自然铜、紫铜、纯铜、纯红铜、韧性铜、无氧铜、磷脱氧铜、铅黄铜、无铅铜、环保铜、易车铜、铜锌合金、锌黄铜、海军黄铜、易切削黄铜、简单铜、黄铜、红色黄铜、杯士铜、铬铜合金、铜铬合金、铬锆铜、铬青铜、锆青铜、高铍铜、铍青铜、高猛铜、锑青铜、钨铜、合金铜、磷青铜、锡青铜、铁青铜、模具铜、弹性铜合金、铝黄铜、铁黄铜、锰黄铜、镍黄铜、锑黄铜、砷黄铜、变形铜、康铜、考铜、锰白铜、铝镍青铜、铅白铜、硅黄铜、磷镍铜、高导铜、铍青铜、锡钨铜、锡锌铜、镁青铜、锌白铜、铝白铜、阻尼铜合金、镉青铜、青铜、钛青铜、磷青铜、铝青铜、锡青铜、硅青铜、锰青铜、银白铜、铍镍铜、铍钴铜、钨铜、磷铜、砷铜、锡黄铜、银铜、磷青铜、铜磷合金、白

双相不锈钢的优点和缺点

双相不锈钢的分析 班级学号姓名 摘要双相不锈钢是在18-8奥氏体不锈钢的基础上,提高C r含量或者加入其他铁素体元素形成的,使钢具有奥氏体加铁素体双向组织,又节约了Ni合金。由于双向不锈钢两相组织的特点,通过正确控制化学成分和热处理工艺,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点。文章主要介绍双相不锈钢的性能、双相不锈钢的类型以及双相不锈铜的应用领域。 关键词双相不锈钢;性能;加工;热处理工艺;铁素体不锈钢;奥氏体不锈钢 双相不锈钢的基本优点如下: (1)含铬量为18%—22%的双相不锈钢在低应力下有良好的耐中性氯化物应力腐蚀性能。一般应用在70Y以上中性氯化物溶液中的18—8型奥氏体不锈钢容易发生应力腐蚀破裂,在微量氯化物及硫化氢的工业介质中用这类不锈钢制造的热交换器、蒸发器等设备都存在着产生应力腐蚀破裂的倾向,而双相不锈钢却有良好的抵抗能力。 (2)含钥双相不锈钢有良好的耐孔蚀性能。在具有相同的孔蚀当量值(PR5=cr%*3.3%Moll6%N)时,双相不锈钢与奥氏体不锈钢的临界孔蚀电位相近。含18%cr的双相不 锈钢耐孔蚀性能与AIsl316L相当。含25%Cr的尤其是含氮的高铬双相不锈钢的耐孔蚀和缝隙腐蚀性能超过了AISI 316L。 (3)有良好的耐腐蚀疲劳和磨损腐蚀性能,在某些腐蚀介质条件下被用于泵、阀等设 备中。 (4)综合力学性能好,有较高的强度和疲劳强度,屈服强度是18—8型奥氏体不锈钢的2倍。双相不锈钢由于具有奥氏体+铁素体双相组织,且两个相组织的含量基本相当,故兼有奥氏体不锈钢和铁素体不锈钢的特点。屈服强度可达400Mpa ~ 550MPa,是普通奥氏体不锈钢的2倍。与铁素体不锈钢相比,双相不锈钢的韧性高,脆性转变温度低,耐晶间腐蚀性能和焊接性能均显著提高;同时又保留了铁素体不锈钢的一些特点,如475℃脆性、热导率高、线膨胀系数小,具有超塑性及磁性等。与奥氏体不锈钢相比,双相不锈钢的强度高,特别是屈服强度显著提高,且耐孔蚀性、耐应力腐蚀、耐腐蚀疲劳等性能也有明显的改善。 (5)可焊性良好,热裂倾向小。一般焊前不需预热,焊后不需热处理,可与18—8型奥氏体不锈钢或碳钢等异种钢焊接。 (6)台低铬(18%cr)的双相不锈钢热加工温度范围比18—8型奥氏体不锈钢宽,抗力小,可不经过锻造,直接轧制开坯生产钢板”肯高铬(25%c?)的钢则比奥氏休不锈钢热加r 困难。 (7)与奥氏体不锈钢相比,导热系数大,线膨胀系数小板,也适用丁制造热交换器的管芯。与奥氏体不锈钢相比,双相不锈钢(DSS)的强度和耐局部腐蚀性能结合良好, DSS的金相组织通常为50%的铁素体和50%的奥氏体,但二者的比例也可以在35%/65%到55%/45%之间变化。由于其高强度及长期使用中的高可靠性,目前国外开始考虑把它作为“基体材料”,以代替碳钢应用到大型储罐及设备制造方面。在炼油行业中经常使用的DSS有22%cr和25%Cr两个级别,后者与前者相比包含更多的钼和氮,具有更高的耐蚀性能双相不锈钥处存在如下缺点: (1)与奥氏休不锈钢比较,耐热性较低,一般控制在300Y以下的工作环境中使用。 (2)冷加r比18—8型奥氏体不锈钢的加丁硬化效应大,在管、板承受变形初期,需施

双相不锈钢分类 牌 及标准

双相不锈钢分类、牌号及标准

双相不锈钢一般可分为四类:第一类低合金型,代表牌号UNSS32304,钢中不含钼,PREN:24-25,耐应力腐蚀方面可代替AISI 304或是316使用。第二类中合金型,代表牌号UNSS31803,PREN:32-33耐蚀性能介于AISI316L和6%MO+N奥氏体不锈钢之间。第三类高合金型,一般含25%Cr,还含有钼和氮,有的还含有铜和钨,标准牌号有UNSS32550,PREN:38-39耐蚀性能高于22%Cr双相不锈钢。第四类超级双相不锈钢型,含高钼和氮,标准牌号有UNSS32750,有的也含钨和铜,PREN>40可使用于苛刻的介质条件,具有良好的耐蚀与力学综合性能,可与超级奥氏体不锈钢相媲美。(注:PREN:孔蚀抗力当量值) 化学成分双相钢的最主要合金元素是Cr、Ni、Mo和N。其中Cr、Mo为增加铁素体含量,而Ni、N为奥氏体稳定元素。有些钢种还有Mn、Cu、W等元素。Cr、Ni、Mo能改进抗腐蚀性。在含氯化物的环境中其抗点蚀及裂缝腐蚀的性能特别好。 1.化学成分(%) 表1 牌号 C Cr Ni Mo N P S SAF2205 0.030 21.0-23 4.5-6.5 2.5-3.5 0.08-0.2 0.030 0.030 SA2507 0.030 24.0-26 6.0-8.0 3.0-5.0 0.32 0.035 0.020 2.机械性能双相钢机械性能取决于产品形式及最终热处理,下表列出了规定的极限 表2 项目牌号试验温度℃RP0.2N/mm2RM0.2N/mm2A5% SAF2205 室温450 620 25 100 360 150 335 200 310 250 295 300 285 SA2507 室温550 800 1000 46 100 450 200 400 在-50℃-280℃温度范围同,双相不锈钢具有很好的机械性能,当双相钢长期承受300℃以上高温时,其微观组织会发生变化并导致韧性下降,然而,韧性的降低并不一定对处于工作温度的材料性能产生影响。腐蚀性能跟类似合金含量的奥氏体钢种相比,双相钢和超级双相钢基体材料具有类心抗点蚀和裂纹腐蚀性能,但一般具有极好的抗应力腐蚀有机酸腐蚀的能力。在工业界按照孔蚀抗力当量值PREN来表示抗点蚀等级是众所周知的。 物理性能:双相钢热传导率列于下表中,并与316L相比较。热传导率W/M摄氏率 表3 温度 牌号 SAF2205 SAF2507 AISI316L 20 19 16 15 100 19 17 16 200 21 19 17.5 300 23 20 19 双相不锈钢的热膨胀与碳钢接近,这使双相钢与奥氏体不锈钢相比,具有明显的优势。金相组织我公司使用于西气东输的UNSS31803双相不锈钢的微观组织图如下,其铁素体含量54% 双相不锈钢优势 1、与奥氏体不锈钢相比 1)屈服强度比普通奥氏体不锈钢高一倍多,且具有成型需要的足够的塑韧性。采用双相不锈钢制造储罐或压力容器的厚度要比常用奥氏体不锈钢减少30-50%,有利于降低成本。 双丰不锈钢各种产品形式:板材和带材管---焊管和无缝管锻材管件和法兰棒和丝

低镍铬合金铸铁--碳钢--双相不锈不锈钢--铜合金材料在海水阀门上的应用

低镍铬合金铸铁材料在海水阀门上的应用 介绍了低镍铬合金铸铁+重防腐涂料在核电站耐海水阀门领域的使用情况。基于台山核电项目CRF 系统蝶阀主体材料采用低镍铬合金铸铁,对比分析了低镍铬合金铸铁+ 重防腐涂料、碳钢衬胶、双相不锈钢及铜合金等常用耐海水腐蚀性材料在使用性、工艺性和成本等方面的差异。 1、概述 海水作为核电站冷却水源,其优点是取之不竭且温度随季节变化较小,但由于受其氯离子含量高等因素的影响,对金属的腐蚀性较强。与核电站主体配套的CRF、SEN、SRI 及CFI 等系统用DN800 ~DN3 200 大口径蝶阀,在阀门主体耐海水腐蚀性选材要求上尤其具备典型性。目前,国外产品多采用低合金铸铁,并涂覆涂料、衬里以及电化学腐蚀等措施来提高抗腐能力。在国内核电,低镍铬合金铸铁DN1 600 耐海水阀最早被应用秦山一期,在第三代EPR 台山核电站,低镍铬合金铸铁( STQNiCr) 再次被应用于CRF 循环水系统DN3 200 口径的蝶阀。 2、低镍铬合金铸铁

2.1、化学成分 在秦山核电站的应用上,主要依据核电工况系统的要求并参考国外同类铸铁产品的化学成分而确定的。秦山核电站与台山核电站低镍铬合金铸铁水阀的Ni、Cr 成分及其化学成分如表1。 表1 低镍铬合金铸铁水阀用材料化学成分 Wt% 随着国内熔炼、铸造技术和设备的不断发展,目前国内低镍铬合金铸铁的发展也日趋成熟与提高,与低镍铬合金铸铁发展初期相比,无论从熔炼过程还是铸造工艺上,S、P 元素的控制量更加精细。其中,元素Re 和Mg 具有脱气、脱硫和消除其他有害杂质的作用,能改善材料的铸态组织,而有效调节元素Ni、Cr 含量则可获得合理的组织与性能。

高铬铸铁金相组织

通过试验研究,得到铸态高铬白口铸铁的金相组织主要为:铬奥氏体加M7C3共晶碳化物和铬屈氏体加M7C3共晶碳化物;采用稀土变质处理,可使晶粒细化,从而有效地提高机械性能和抗磨性能。 关键词:铸态高铬白口铸铁;稀土;抗磨性能 高铬铸铁是一种常用的抗磨铸铁。铬的大量加入,使碳化物变成具有更高硬度(1300~1800HV)的M7C3型碳化物,从而提高了抗磨性。在此同时,凝固过程中M7C3型碳化物形成了孤立分布的杆状组织,使得高铬白口铸铁的韧性有了一定程度的改善。目前国内外生产的高铬白口铸铁大多要经过高温淬火加回火处理工艺,以获得马氏体基体,然而这种基体作为水泥磨机磨球材料在高应力小能量的三体磨损中,其韧性仍显不足。并且生产周期长,工艺复杂,设备投资、能源消耗和劳动强度均较大。 本文通过试验对含碳量在亚共晶区,含铬15%左右的高铬白口铸铁进行了铸态金相组织分析及性能研究。试验结果表明:铸态高铬白口铸铁的主要金相组织是铬奥氏体加M7C3共晶碳化物和铬屈氏体加M7C3共晶碳化物。经过稀土变质处理后,可有效改善碳化物形态及分布,均匀组织,细化晶粒,明显提高韧性和强度,提高抗磨性。 一、试验方法及结果 试验用的合金材料在酸性中频无芯感应电炉内熔化,熔化温度在1530℃以上,浇注温度为1380~1450℃,砂型铸造。化学成分、机械性能和金相组织见表l。

机槭性能试验:冲击韧性在JB30A摆锤式冲击试验机上测定,试样尺寸10×lO×55mm,无缺口,不加工。 磨损性能试验在AMSLERAl35/138型动载磨损试验机上进行.试样尺寸Φ32×10mm.中心孔直径Φ6mm,磨料采用28/75目石英砂.试验前预磨lh,三体磨损加水平和垂直方向的冲击,冲击载荷为50~100kg.正式磨损时间20h。试验的失重值在自动电光分析天平上测定. 二、金相组织分析 1 含碳量对金相组织的影响 由表l可知lA、4A基体组织均为屈氏体加M7C3当成分中的含碳量增加时,共晶M7C3的数量增加,形态亦从短小片状向粗大片状发展。M7C3具有高的硬度和高的磨料磨损抗力,数量增加能提高抗磨性;但碳量超过共晶碳量,初生碳化物很粗,在磨料的冲击下会碎裂,从而增加了磨损时的失重。 2 混合稀土变质处理对金相组织的影响 图1 试样6B的金相组织200× 图2 试样10B的金相组织200× 图l、2分别为B组试验中碳铬含量相同.来经处理和经稀土变质处理的金相组织。基体组织主要为铬奥氏体加M7C3共晶碳化物。图示表明,稀土的加入对组织最直观的影响是细化晶粒改变碳化物形态

不锈钢材质简述

浅析不锈钢 什么叫不锈钢? 不锈钢是由铁、锰、碳等基本成分构成的合金钢一族。它是在普通碳钢的基础上,加入一定数量的铬(Wcr),其质量分数大于12%的合金元素钢。还匹配加入其它合金元素如镍(Ni),钛(Ti)等,使钢材表面形成坚固的纯化膜,既不生锈又耐腐蚀,这种合金元素的钢材叫做不锈钢。 通常不锈钢分为普通不锈钢和耐酸不锈钢两种。正规的一般统称为不锈耐酸钢。不锈钢是指能抵抗大气、蒸汽和水等弱介质侵蚀;而耐酸钢则是指能耐酸、碱等强介质侵蚀的钢。一般不锈钢不一定能耐腐蚀,而耐酸钢则肯定不会生锈。 不锈钢除了具有很强的化学稳定性外,同时还有足够的强度和塑性,并且还耐高温和低温,具有稳定的力学性能。有的专门用作耐热钢,有的专门用作耐低温钢。 不锈钢的分类 各国不锈钢牌号、品种不下百余种。不锈钢分类法很多。最常用的方法是: 1、按主要化学成份分类:铬不锈钢,铬镍不锈钢,铬锰氮不锈钢和镍铬钼不锈钢等。 2、按性能特点分类:耐酸不锈钢和耐热不锈钢等。 3、按金相组织特点分类:铁素体不锈钢,马氏体不锈钢,奥氏体不锈钢及奥氏体——铁素体双相不锈钢,还有沉淀硬型不锈钢。 最广泛应用的不锈钢是哪类? 在众多的不锈钢中,奥氏不锈钢属耐蚀钢,是应用最广泛的一类钢。它在高铬不锈钢中添加适当的镍(镍的含量为8%-25%)而形成的。 啤酒厂经常接触的不锈钢是304、304L、316和316L,都是奥氏体不锈钢。它是由铬镍合金的不锈钢。其中以18--8型即18Gr-8Ni钢为典型代表。这种钢的特点是:一是含碳量低(<1%),二是铬含量为17%~19%(个别的Cr最高含量为25%,最低为13%),镍含量为8—11%。奥氏不锈钢按含碳量的不同又分为三个等级:一般含碳量(Wc≤0.15%),低碳级(Wc≤0.08%)和超低级碳量(Wc≤0.03%)。例如我国国家标准中的1Crl8Ni9Ti、0Crl8Ni9、00Crl7Nil4Mo2三种钢

双相不锈钢基本特性

第一类属低合金型,代表牌号UNS S32304(23Cr-4Ni-0.1N),钢中不含钼,PREN值为24-25,在耐应力腐蚀面可代替AISI304或316使用。 第二类属中合金型,代表牌号是UNS S31803(22Cr-5Ni-3Mo-0.15N),PREN值为32-33,其耐蚀性能介于AISI 316L和6%Mo+N奥氏体不锈钢之间。 第三类属高合金型,一般含25%Cr,还含有钼和氮,有的还含有铜和钨,标准牌号UNSS32550(25Cr-6Ni-3Mo-2Cu-0.2N),PREN值为38-39,这类钢的耐蚀性能高于22%Cr的双相不锈钢。 第四类属超级双相不锈钢型,含高钼和氮,标准牌号UNS S32750(25Cr-7Ni-3.7Mo-0.3N),有的也含钨和铜,PREN值大于40,可适用于苛刻的介质条件,具有良好的耐蚀与力学综合性能,可与超级奥氏体不锈钢相媲美。国外主要双相不锈钢牌号的近似对照见表2。 表1 双相不锈钢(DSS)代表牌号的主要化学成分和蚀抗力当量值 Representative Duplex Stainless Steel Types,Main Chemical Analysis and Pitting Resistance Equivalent Number - . -考试文档-

- . -考试文档-

- . -考试文档-

表2 各国主要双相不锈钢牌号的近似对照 Comparison of Main Duplex Stainless Steels Of Different Countries - . -考试文档-

高韧性高铬铸铁衬板和ZGMn13高锰钢的区别研制与应用

高韧性高铬铸铁衬板和ZGMn13高锰钢的区别研制与应用据统计,我国每年消耗的金属耐磨材料约300万吨以上,其中仅冶金矿山消耗的衬板就达10万吨左右。目前我国各类矿山磨机等选矿山用磨机等选矿设备中的衬板等易损件一般都采用ZGMn13高锰钢材质。这类易损件在使用时要承受一定的冲击和磨料磨损,因此其材质应具良好的抗磨性能和一定的冲击韧性。ZGMn13奥氏体高锰钢的冲击韧性很高(ak达200J/cm2),原始硬度不超过HB230,但在高的冲击负荷作用下,工作表面层能够产生硬化效应,其表面硬度可达HRC42-48,而中心仍保持优良的韧性。但如果服役时冲击能量不够,奥氏体高锰钢表面冲击硬化效应不能充分产生,高锰钢表面达不到高硬度,则工体很快磨损。同时高锰钢的屈服极限(δ0.2)较低(约为350Mpa左右),在使用中,尤其是使用前期工件易发生塑性变形。另外球磨机衬板与研磨介质(如磨球)之间还存在一个硬度匹配问题,研磨介质硬度一般应高于衬板硬度HRC3左右较宜,但目前很多厂矿使用的低铬铸铁、高铬铸铁磨球的硬度大大高于高锰钢材板硬度。高锰钢在低冲击负荷下的上述不足常常导致工件的韧性有余而耐磨性不够,磨损失效快,而且变形严重,致使工体寿命短。 Cr>11%的高铬白口铸铁的共晶碳化物为六方晶系的M7C3,(CrFe)7C3硬度为HRM501200-1800,比一般白口铸铁的共晶碳化物Fe3C3(HRV50840-1100)高,同时凝固时(CrFe)7C3 是孤立相,而奥氏体是连续相,因而韧性较普通白口铸铁大有改善,因此是搞磨粒磨损和抗切削磨损的首选材料。国外应用较多,主要用于中低冲击负荷工况条件的衬板、锤头、磨球、渣浆泵过流部件等大中型磨损件。国内外对高铬铸铁的磨损机制、断裂机制、断裂韧性(K1c值)、裂纹扩展机理进行了一系列的研究,结果表明高铬铸铁可通过调整碳化物的大小和形态、二次碳化物量及弥散度以及基体组织(马氏体、奥氏体、索氏体),从而调整性能、满足工作使用要求。近年来国内有关单位也开展了高铬铸铁衬板的研究,其耐磨性可达同工况下高锰钢的2倍以上。但这些材料的韧性仍嫌较低(10×10×55mm无缺口试样的冲击值≤7.3J/cm2)而且含钼、铜等合金元素,生产成本较高。因此这类高铬铸铁仍有待进一步改进和完善。 二.高铬铸铁的成分设计 1.碳和铬 碳和铬的主要作用是保证铸铁中碳化物数量和形态。随着C量提高,碳化物增多;随着Cr/C比的增加,共晶碳化物的形貌经历了由连续网状→片状→杆状连续程度减小的过程,共晶碳化物晶体类型经历由 M3C→M3C+M7C3→M7C3的变化过程。有资料指出:当共晶碳化物不变,且Cr/C为6.6-7.1时,同铬铸铁的断裂纹扩展能力最强。根据这些原理,宜将C量定为3.1-3.6%,Cr量为20-25%。基体中的Cr还可以提高材料的淬透性。 2.镍 其作用是增加高铬铸铁的淬透性,抑制奥氏体基体向珠光体的转变,促进马氏体基的形成。 3.钨 其作用是细化晶粒,提高硬度,增加耐磨性。 4.高效稀土复合变质剂 其作用是脱氧和去硫,从而抑制夹杂物在晶界的偏聚,改善晶界状况;另外,由于稀土元素偏聚、吸附在碳化物择优长大的方向上,使碳化物的生长受到抑制,从而使其变得均匀、孤立,而其他变质元素可以形成弥散分布的碳、氮化合物,阻止晶粒长大,从而细化晶粒。稀土复合变质剂的以上作用不仅改善材料的显微组织,而且可使材料在硬度特别是冲击韧性明显提高。本高效稀土复合变质剂的加入量取0.2-0.5%为宜。 三.高铬铸铁的组织和性能 1.铸态 组织:索氏体+共晶碳化物及条状块壮棒状碳化物。 硬度:HRC48.6,49.3,46.0,49.4,51.7。平均硬度:HRC49。 2.热处理态 经过“正火空冷+回火空冷”的热处理后,硬度平均为HRC60.5,金相组织为马氏体+共晶碳化物+条状块状棒

不锈钢的种类及用途

不锈钢的种类及用途 钢号主要性能用途举例 0Cr13 可在 ≤540℃长期使 用。常作复合板 使用,30℃以下 耐弱酸腐蚀,对 淡水、海水、蒸 发、空气也有足 够的耐蚀性 用于含硫 介质设备内构 件,精馏塔衬 里、接管垫片。 汽轮机叶片、热 裂化设备零件。 用于要求防止 污染各耐蚀性 不高的介质中。 如:焦化分馏塔 衬里,尾气脱 硫,泵叶轮,硫 磺回收中的冷 凝器复合板 1Cr13 2Cr13 可在 ≤540℃长期使 用,最高不超过 700℃,要此 75~457℃略有 热脆 离心油泵 的叶轮壳体。蒸 汽往复泵活塞、 活塞杆。油泵 轴、轴套。与热 含硫介质接触

的紧固件及其它零件 3Cr13 同上,常在 淬火后再低温 回火后磨光使 用。用做弹簧时 在400~450℃使 用 用来制造 高机械载荷、磨 损和腐蚀条件 下的零件,如 轴、阀座、阀盘、 弹簧等,又用于 室温腐蚀介质 中并要求高强 度零件,其耐腐 蚀性比1Crl3、 2Crl3略低 0Cr18Ni9 因含碳低 焊接性能好,可 在-196~+600℃ 长期使用 制造焊接 镍铬不锈钢焊 接用的焊条。用 作非奥氏体钢 法兰、垫片和化 工容器、管道。 也可用做到 -200℃的深冷 设备材料

1Cr18Ni9 1Cr18Ni9 是典型的 18-8不锈钢。耐 酸无磁性,焊接 部分有晶间腐 蚀倾向,应进行 热处理,不宜在 450~800℃使 用,可用于低温 用于温度 不高,侵蚀性介 质中工作的不 经焊接的构件, 如阀门阀件,管 道及其它零件 和要求耐蚀的 非磁性部件,亦 可用于无晶间 腐蚀的焊接件 0Cr18Ni9Ti 1Cr18Ni9Ti 因含钛,有 良好的耐晶间 腐蚀性可在 -196~600℃使 用,负荷小时, 可在650℃以下 使用。最高不超 过800℃ 制造耐酸 容器和设备的 衬里,石油化工 输送管道、设备 和零件。如:换 热器、催化裂化 再生、反应器内 构件,焦化的分 馏塔内构件。制 氢脱碳用泵配 件、管线、塔内 构件、换热器也

铜及铜合金

表3铜及铜合金数字代号编号范围

S----砂型铸造; J----金属型铸造; R----熔模铸造; K----壳型铸造; Y----压力铸造; L1----离心铸造; La----连续铸造; B----变质处理; F---铸态; T1----人工时效; T2----退火; T4---淬火+自然时效; T5----淬火和不完全时效; T6----淬火和完全时效; T7----淬火和稳定回火; T8----淬火和软化回火; 4. 铸造铜合金的主要化学成分及机械性能(表4, 表5 ,表6),

5.4. 炉料计算程序;(铝合金和铜合金); 5.4.1.明确熔炼任务. 5.4.1.1根据所需合金要求选定配料成分. 5.4.1.2所需合金液的重量,(每坩锅熔炼合金重量) 5.4.1.3所用炉料的成分和回炉料用量,(包括中间合金) 5.4.2明确元素的烧损E,即各元素的烧损量%. 5.4.3计算(包括烧损)100公斤炉料各元素的需要量Q, Q=a/(1-E) (公斤) α-合金中计算元素成分的百分含量(%), E—元素的烧损量(%) 5.4.4根据熔制合金的实际重量W, 计算各元素的需要量A, A=Q×W/100 (公斤) 5.4.5计算在回炉料中各元素的含量B(公斤), B=G×a (公斤) G—回炉料加入量(公斤), a—回炉料中各元素的含量(%) 5.4.6计算应补加的新元素重量C; C=A-B (公斤) 5.4.7计算中间合金的需要量D; D=C/F (公斤), F—中问合金中元素的百分含量. 5.4.8中间合金中所带入的主要元素计算, (铜合金中的铜,铝合金中的铝) Cu(Al)=D-C

高铬合金耐磨铸铁生产技术

高铬合金耐磨铸铁生产技术(转 一、高铬铸铁的熔炼 1. 高铬铸铁化学成分( 见下表) 2. 原料要求 另外,还需工业纯铜和废旧电极块( 用于调整碳含量) 等。 3. 熔炼工艺要求 ( 1) 出炉温度高铬铸铁的熔点比一般铸铁高,约为1200 ℃,出炉温度约为1500 ℃,熔炼选用中频感应电炉。 ( 2) 炉衬采用酸性或碱性炉衬均可,炉衬的配比、打结、烘干和烧结均按常规工艺进行。 ( 3) 装料一般按正常顺序加料,先将灰生铁、钼铁等难熔铁合金装入炉底,而后将废钢等按照下紧上松的原则装填( 有助于塌料) 。 ( 4) 送电熔化将电炉功率调至最大进行熔化,由于Cr 的熔炼损耗较大( 约5 % ~15 %) ,故铬铁应在最后加入,通常是待废钢全部熔化后加入烤红的铬铁。 ( 5) 脱氧待金属炉料全部熔化并提温至1480 ℃后,再加入锰铁、硅铁及铝进行脱氧。 ( 6) 浇注在中频感应炉中熔化,温度不必太高,温度达到1480 ℃时即可出炉,铁液在包内应停留一段时间进行镇静,视工件大小不同可在1380 ~1410 ℃之间进行浇注。 二、生产工艺要点

(1) 高铬铸铁铸造性能较差,其热导率低,塑性差,收缩量大,且有大的热裂和冷裂倾向,在铸造工艺上要将铸钢和铸铁的特点结合起来考虑,必须充分注意铸件的补缩问题,其原则与铸钢件相同( 采用冒口和冷铁,且遵循顺序凝固原理) 。由于合金中铬含量高,易在铁液表面结膜,所以看起来铁液流动性差,但实际上流动性较好。 ( 2) 造型宜采用水玻璃硅砂等强度高且透气性好的砂型,涂料应采用耐火度高的高铝粉或镁粉与酒精混合拌制。另外,为获得细晶粒组织和好的表面质量,在铸件外形不太复杂的情况下,金属型铸造也被广泛采用。 ( 3) 高铬铸铁的收缩量与铸钢相近,模样制作上其线收缩率可按1. 8 % ~2 % 进行计算。在砂型制作上,其冒口大小可按碳钢的规定进行计算,而浇注系统则按灰铸铁计算,但需把各截面积增加20 % ~30 % 。浇冒口的选择应注意两个方面: 一是要保证铸件工作带( 使用部位) 的质量; 二是要尽量提高铸件的成品率。 ( 4) 由于高铬铸件的冒口不易切除,因此造型时在冒口形式上宜采用侧冒口或易割冒口。 ( 5) 在具体零件的铸造工艺设计上,要注意不能让铸件出现受阻收缩,以免造成开裂。另外,浇注后开箱温度过高也极易造成铸件开裂,540 ℃以下的缓冷是十分必要的,应使铸件在铸型中充分冷却,然后再开箱清砂,或开箱后先勿清砂而堆在一起( 铸件、浇冒系统等) 围干砂缓冷。开箱周围环境必须保持干燥,不得潮湿有水,否则极易造成铸件裂纹。 ( 6) 浇注温度要低,有利于细化树枝晶和共晶组织,而且可避免出现因温度过高而造成的收缩过大及表面粘砂等缺陷。浇注温度一般比其液相线( 1290 ~1350 ℃) 高55 ℃左右,轻小件一般控制在1380 ~1420 ℃,壁厚100mm以上的厚重件控制在1350 ~1400 ℃。 三、高铬铸铁的热处理 1. 退火 由于高铬制品其铸态硬度较高,为改善工件的机械加工性能,所有毛坯必须进行必要的软化退火处理。 具体工艺( 工艺曲线见图1 ,以壁厚不超过100mm且外形较复杂铸件为例) 如下。 首先将需处理工件在室温下装入热处理炉,然后随炉缓慢升温至400 ℃左右进行保温1 ~2h,随后将炉温升至600 ℃再进行保温1 ~2h,之后以不超过150 ℃/ h的温升速度,将炉温

双相不锈钢分类、牌号及标准

双相不锈钢分类、牌号及标准 双相不锈钢一般可分为低合金型、中合金型、高合金型和超级双相不锈钢型四类。 常用双相不锈钢牌号和各国牌号的近似值对照如下表: 型号\国家中国美国瑞典德国法国日本 低合金型00Cr23Ni4N UN23 (SAF2304) SS232 (SAF2304) W.Nr.1.4362 UR35N DP11 中合金型00Cr18Ni5Mo3Si2 00Cr22Ni5Mo3N UNS S31500 UNS S31803 SS2376(3RE60) SS2377(SAF2205) W.Nr.1.4417 W.Nr.1.4462 UR45N DP1 DP8 高合金型 0Cr25Ni5Mo2 00Cr25Ni7Mo3WCuN UNS S32900 UNS S31260 SS2324(10RE51) W.Nr.1.4460 W.Nr.1.4501 329J1 329J2L 超级双相 钢 00Cr25Ni7Mo4N 00Cr25Ni6Mo3CuN UNS S32750 UNS S32550 SS2328(SAF2507) W.Nr.1.4410 W.Nr.1.4507 UR47N+ UR52N+ 常用双相不锈钢的性能: 1.化学成分(%) 钢号C≤Mn≤Si≤S≤P≤Cr Ni Mo Cu≤N S32750((SAF2507) 00Cr22Ni7Mo4N 0.03 1.20 0.80 0.020 0.035 24.0/ 26.0 6.0/ 8.0 3.0/ 5.0 0.50 0.24/ 0.32 S31803(SAF2205)00Cr22Ni5Mo3N 0.03 2.00 1.0 0.02 0.030 21.0/ 23.0 4.50/ 6.50 2.50/ 3.50 0.08/ 0.20 S31500(3RE60)00Cr18Ni5Mo3Si2 0.03 1.2/ 2.00 1. 4/ 2.00 0.030 0.030 18.0/ 19.0 4.25/ 5.25 2.50/ 2.00 0.05/ 0.10 2.机械性能: 热处理温度℃Ab(MPa)≥As(MPa)≥∮≥布氏洛氏 S32750(SAF2507)00Cr22Ni5Mo3N 1025-1125 水 800 550 15 310 32 S31803(SAF2205) 00Cr22Ni5Mo3N 1020-1100 620 450 25 290 30.5 S31500(3RE60) 00Cr18Ni5Mo3Si2 980-1040 630 440 30 290 30.5 3.双相不锈钢的连续使用温度范围为-50℃-60℃。热加工温度应不低于950℃。 双相不锈钢简介 双相不锈钢是指它的微观组织是由铁素体相和奥氏体相二组成的材料,二相各约占50%。在实际使用中其中一相约在40-60%之间较为合适。 根据两相组织的特点,通过正确控制化学成分和热处理工艺,将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,使双相不锈钢成为一类集优良的耐腐蚀、高强度和易于加工制造等诸多优异性能于一身的钢种。它们的物理性能介于奥氏体不锈钢和铁素体不锈钢之间,但更接近于铁素体不锈钢和碳钢。双相不锈钢的耐氯化物孔蚀和缝隙腐蚀能力与铬、钼和氮含量有关,其耐孔蚀和缝隙腐蚀能力可以类似于316不锈钢,或者高于海水用不锈钢如6%MO奥氏体不锈钢。所有的双相不锈钢耐氯化物应力腐蚀断裂的能力均明显强于300系列奥氏体不锈钢,而且其强度也大大高于奥氏体不锈钢,同时表现出良好的塑性和韧性。 双丰不锈钢各种产品形式:板材和带材管---焊管和无缝管锻材管件和法兰棒和丝

不锈钢基础知识

第一章不锈钢基础知识 1. 不锈钢发展简史 不锈钢是不锈钢和耐酸钢的总称。在冶金学和材料科学领域中,依据钢的主要性能特征,将含铬量大于12%,且以耐蚀性和不锈性为主要使用性能的一系列铁基合金称为不锈钢。 狭义的不锈钢是指在大气中不容易生锈的钢。广义的不锈钢指在特定条件下的酸、碱、盐中耐蚀的钢。不锈钢的不锈性和耐蚀性是由于钢的表面上富铬氧化膜(钝化膜)的形成,这种不锈性和耐蚀性是相对的。试验表明,钢在大气、水等弱介质中和硝酸等氧化性介质中,其耐蚀性随钢中铬含量的提高而增加,当铬含量≥10%时,钢的耐蚀性发生突变,即从易生锈到不易生锈,从不耐蚀到耐腐蚀。所以通常称不锈钢是铬含量为12%以上的铁基合金。由于不锈钢材具有优异的耐蚀性、成型性、相容性以及在很宽温度范围内的强韧性等系列特点,所以在石油化工、原子能、轻工、纺织、食品、家用器械等方面得到广泛的应用。通常对在大气、水蒸汽和淡水等腐蚀性较弱的介质中具有不锈性和耐腐蚀性的钢种称不锈钢;对在酸、碱、盐等腐蚀性强烈的环境中具有耐蚀性的钢种称耐酸钢。两个钢类因成分上的差异而导致了它们具有不同的耐蚀性,前者合金化程度低,一般不耐酸;后者合金化程度高,既具有耐酸性又具有不锈性。 为了了解不锈钢发展的历程,有必要追溯到本世纪初期。大约在1910年左右,在世界上的一些地方出现了对新材料需求的危机,这种对材料需求的动力使得人们发明了不锈钢,并使其得到了飞速发展。 在英格兰的希菲尔德,H. Brearly 希望发明一种新型材料用来制作存放重型枪支的桶,这种桶要求必须耐磨损和擦伤。他经过调查发现在合金材料中加入高含量的铬元素,这种材料就不容易被刻伤。这个重大发现使他获得了专利,即钢中加入9-16%的铬,并且碳含量小于0.70%,第一代不锈钢诞生了。这些不锈钢最初用于不锈钢餐具,而如今普通碳钢已经取代不锈钢在餐具领域的应用。 几乎与此同时,在德国埃森的B. Strauss 发现了一种适合用于热电偶和高温计的保护管的材料。在许多铁基合金中,他发现了含有高含量铬的铁-铬-镍合金。含有超过20%含量Cr的合金样品被发现在实验室里即使放置很长时间也不会生锈。这个发现开发出了含有0.25%碳,20%铬和7%镍的钢,即最初的奥氏体不锈钢。 在英格兰和德国人致力于研究不锈钢的同时,F.M. Becket 正在美国的尼亚加拉大瀑布潜心研究希望发现一种便宜且耐氧化的材料,用于

高铬铸铁(上篇)

铮铮硬骨高铬铸铁(上篇)2009-8-5 17:20:49 高铬白口抗磨铸铁(以下简称高铬铸铁)是一种性能优良而受到特别重视的抗磨材料。它以比合金钢高得多的耐磨性,和比一般白口铸铁高得多的韧性、强度,同时它还兼有良好的抗高温和抗腐蚀性能,加之生产便捷、成本适中,而被誉为当代最优良的抗磨料磨损材料之一。 高铬铸铁属金属耐磨材料、抗磨铸铁类铬系抗磨铸铁的一个重要分支,是继普通白口铸铁、镍硬铸铁而发展起来的第三代白口铸铁。早在1917年就出现了第一个高铬铸铁专利。高铬铸铁一般泛指含Cr量在11-30%之间,含C量在2.0-3.6%之间的合金白口铸铁。我国抗磨白口铸铁国家标准(GB/T8623)规定了高铬白口铸铁的牌号、成分、硬度及热处理工艺和使用特性。其典型成分及工艺如下表: 表1高铬铸铁的牌号及化学成分(GB/T 8623) %

表2高铬铸铁的硬度(GB/T 8623)

表3 高铬铸铁件热处理规范(GB/T 8623)

美国高铬铸铁执行标准为ASTMA532M,英国为BS4844,德国为DIN1695,法国为NFA32401。俄罗斯在前苏联时期曾研制了12-15%Cr、3-5.5%Mn,壁厚达200mm 的球磨机衬板,现执行?OCT7769标准。特别值得一提的是在近一个世纪里,曾为抗磨白口铸铁做出了卓越贡献的美国克莱梅克斯(Climax)钼业公司。1928年该公司首先发明了镍硬铸铁,把抗磨铸铁科技推向了一个空前高度。1974年为纪念国际GIFA,在杜赛尔多夫展览会上展示了名为“神秘1号”和“神秘2号”。即经典的高铬抗磨铸铁153(Cr15Mo3)和1521(Cr15Mo2Cu),现如今克莱梅克斯公司执行高铬铸铁标准如下,栏主提示大家这是特别值得一看的。

第一章镍铬系不锈钢

第一章镍铬系不锈钢、高温合金钢中的Mn 、P、Cr、Ni、Ti、 Mo 的联合测试 一、方法提要 试样经浓盐酸、双氧水分解后,用高氯酸发烟,借以驱除氯及氧化低价元素,控制酸度,将析出的盐类用水溶解后,稀至适当倍数,制成试样母液,然后分取母液,分别测定各元素的含量。 二、母液的制备 1、试剂: a 、盐酸:P:1.19 b 、过氧化氢:30% c 、 高氯酸:70% 2、操作步骤: 称取200mg 试样于150ml 锥形瓶中加入5ml 盐酸、2ml 双氧水、轻摇一下,让试样自然溶解。待试样基本溶解后,加入5ml高氯酸,在电炉上加热至冒浓白烟至瓶口,维持30s (瓶底盐类呈桔红色),取下加入少量水,溶解盐类后,移入200ml 容量瓶中,用水稀至刻度,摇匀。 三、各元素的分别测定 1、Mn 的测定:高碘酸钠氧化光度法(0.01~3.0% ) 试剂及其配制: a、高碘酸钠:(4%)称取20g 高碘酸钠溶于500ml 混酸中(需加热煮沸,搅拌溶解),贮于棕色瓶中备 用。 b、混酸:水+磷酸+硝酸=5:3:2,混匀备用。 分析操作: 分取母液10~20ml 于100ml 的锥形瓶中,加入10ml 高碘酸钠摇匀,加热煮沸显色。参比液:显色液中滴加0.5% 的亚硝酸钠褪色。 于530nm、1~2ml 比色杯,所制参比液作参比。 2、Cr的分析:二苯氨基脲直接光度法(w 26% ) 试剂配制: a、二苯氨基脲:0.5% ,称取4g 邻苯二甲酸酐溶于微热的100ml 乙醇中,再加入0.5g 二苯氨基脲,搅拌溶 解后备用。 b、尿素:5% c、氟化钠:5%

d、亚硝酸钠:0.5% e、硫磷混酸:884ml水+66ml硫酸+50ml磷酸,混匀 分析操作: 分取测Mn 显色液1~5ml 于100ml 两用量瓶中,加入10ml 硫磷混酸,摇匀,加10ml 脲素,摇匀后滴加亚硝酸钠至红色刚好褪去,加入3ml (2ml)二苯氨基脲,摇匀,放置1min,加入10ml 氟化钠,用水定容到刻度,摇匀。于530nm、1~2ml 比色杯,水作参比,10min 内测定结束,否则结果波动。 3、P 的测定:磷铋钼兰光度法:0.002~0.2% 试剂及其配制: a、抗坏血酸:硝酸铋混合液:0.5g 硝酸铋溶于100ml (1+9)的硝酸中,和1 %的抗坏血酸等体积混合。 (抗坏血酸当天配制) b、钼酸铵溶液:0.5% 分析步骤: 分取5~20ml母液于150ml锥形瓶中,钼酸铵20ml,加入混合溶液20ml,摇匀。水作参比,660nm、2~3cm 比色杯。 P 的测定:磷钼兰光度法:0.001~0.1% 试剂及其配制: a、钼酸铵:5% b、氯化亚锡:0.4%:1g 氯化亚锡溶于500ml 2.4%的氯化钠中。(贮存、使用不超过3天) 分析步骤: 分取适量母液于150ml锥形瓶中,加入1+4的硝酸10ml,摇匀,加5ml钼酸铵,15ml氯化亚锡,摇匀后于 650nm、1~2cm 比色杯中,水作参比。 4、Ni的测定:丁二肟直接光度法(w 30% ) 试剂及其配制: a、碘-柠檬酸混合溶液:称取12.7g 碘和25g 碘化钾。先将碘放于少量水中,搅拌下分批加入碘化钾,待碘溶完 后用水稀至500ml。再和500ml柠檬酸(30%)混匀,贮于棕色瓶中备用。b、丁二肟氨性溶液:0.01%。1g 丁二肟溶于少量无水乙醇中,用1+1的氨水稀至1000ml , 贮于 棕色瓶中备用。 分析步骤: 分取母液2~20ml 于100ml 量瓶中,加入5ml 碘-柠混合液摇匀,加上5ml 氨性丁二肟(空白中改加1+1 的氨水)用水稀至刻度。于530nm、0.5~2cm 比色杯中,所制空白作参比,测其含量。 5、Mo的测定:硫氢酸盐光度法(w 5% ) 试剂及其配制: a、混合显色液:20ml浓盐酸中加入6g氯化亚锡,加热溶解后,再加280ml水,6g硫氢酸铵, 搅拌溶解后备用。 b、空白溶液:20ml浓盐酸中加入6g氯化亚锡,加热定容后,再加280ml水,摇匀后备用。

相关主题
文本预览
相关文档 最新文档