当前位置:文档之家› 高层建筑箱形与筏形基础技术规范JGJ6

高层建筑箱形与筏形基础技术规范JGJ6

高层建筑箱形与筏形基础技术规范JGJ6
高层建筑箱形与筏形基础技术规范JGJ6

高层建筑箱形与筏形基础技术规范JGJ6-99

1总则

1.0.1为了在高层建筑箱形和筏形基础的勘察、设计与施工中做到技术先进、经济合理、安全适用、确保质量,制订本规范。

1.0.2本规范适用于高层建筑箱形和筏形基础的勘察、设计与施工。

1.0.3箱形和筏形基础的设计与施工,应综合考虑整个建筑场地的地质条件、施工方法、使用要求以及与相邻建筑的相互影响,并应考虑地基基础和上部结构的共同作用。1.0.4高层建筑箱形和筏形基础的勘察、设计与施工除应符合本规范外,尚应符合国家现行有关标准的规定。

2术语、符号

2.1术语

2.1.1箱形基础Box Foundation

由底板、顶板、侧墙及一定数量内隔墙构成的整体刚度较好的单层或多层钢筋混凝土基础。2.1.2筏形基础 Raft Foundation

柱下或墙下连续的平板式或梁板式钢筋混凝土基础。

2.2符号

3地基勘察

3.1一般规定

3.1.1地基勘察应进行以下主要工作:

(1)查明建筑场地内及其邻近地段有无影响工程稳定性的不良地质现象以及有无古河道和人工地下设施等存在;

(2)查明建筑场地的地层结构、均匀性以及各岩土层的工程性质;

(3)查明地下水类型、埋藏情况、季节性变化幅度和对建筑材料的腐蚀性;

(4)在抗震设防区应划分对建筑抗震有利、不利和危险的地段,判明场地土类型和建筑场地类别,查明场地内有无可液化土层。

3.1.2勘察报告应包括以下主要内容:

(1)建筑场地的基本地质情况及分析;

(2)地基基础设计和地基处理的建议方案;

(3)天然地基或桩基的承载力和变形计算所需的计算参数;

(4)场地水文地质条件、地下水埋藏条件和变化幅度。当基础埋深低于地下水位时,应就施工降水方案和对相邻建筑物的影响提出建议并提供有关的技术参数;

(5)基坑开挖边坡稳定性的分析,必要时提出支护方案。

3.2勘探要点

3.2.1勘探点的布置应考虑建筑物的体型、荷载分布和地层的复杂程度,应满足评价建筑物纵横两个方向地层土质均匀性的要求.

注:1、取值应考虑土的密度、地下水位等条件、当为密实土,且地下水位埋较深时取小值,反之取大值;

2、在软土地区,取值时应考虑基础宽度,当b>60m时取小值;b≤20m时取大值。3.2.2.3抗震设防区的勘探点深度尚应符合现行国家标准《建筑抗震设计规范》(GBJ11)的要求;

3.2.2.4对不考虑群桩效应,端承型大直径桩的控制性勘探点深度应达到预计桩尖以下3~5m;当桩端(包括扩底端)直径大于1.5m时,控制性勘探点深度应大于或等于5倍桩端直径。当遇软层时则应加深至穿透软层。一般性勘探点应到桩端以下1~2m;3.2.2.5摩擦型桩基需计算地基变形时,可将群桩视为一假想实体基础,并自桩端开始计算压缩层深度来决定控制性钻孔的深度。当利用公式3.2.2/1估算控制性钻孔的深度时,基础埋深d应按桩尖的埋深取值。在计算深度范围内遇有坚硬岩层或密实的碎石土层时,钻孔深度可酌减。

3.2.3取土和原位测试勘探点的数量和取土数量应符合下列规定:

3.2.3.1取土和原位测试勘探点数量应占勘探点总数的1燉2~2燉3,且单幢建筑至少应有二个取土和原位测试孔;

3.2.3.2地基持力层和主要受力土层采取的原状土样每层不应少于6件,或原位测试次数不应少于6次。

3.3室内试验与现场原位测试

3.3.1室内压缩试验所施加的最大压力值应大于土的自重压力与预计的附加压力之和。压缩系数和压缩模量的计算应取自重压力至自重压力与附加压力之和的压力段,当需考虑深基坑开挖卸荷和再加荷对地基变形的影响时,应进行回弹再压缩试验,其压力的施加应模拟实际加卸荷的应力状态。

3.3.2剪力试验宜采用三轴压缩试验。当地基土为饱和软土或荷载施加速率较高时,宜采用三轴不固结不排水的试验方法;当荷载施加速率较低时,宜采三轴固结不排水的试验方法。

3.3.3确定一级建筑物或有特殊要求建筑物的地基承载力和变形计算参数,应进行平板载荷试验。建筑物安全等级按现行国家标准《建筑地基基础设计规范》(GBJ7)划分。3.3.4确定软土地基的抗剪强度,宜进行十字板剪切试验。

3.3.5查明粘性土、粉土、砂土的均匀性、承载力及变形特征时,宜进行静力触探和旁压试验。

3.3.6判明粉土和砂土的密实度和地震液化的可能性时,宜进行标准贯入试验。3.3.7查明碎石土的均匀性和承载力时,宜进行重型或超重型动力触探。

3.3.8取得抗震设计所需的参数时,应进行波速试验。

3.4地下水

3.4.1应查明建筑场地的地下水位,包括实测的上层滞水、潜水和承压水水位、季节性变化幅度以及地下水对建筑材料的腐蚀性。

3.4.2对需进行人工降低地下水位的工程,勘察报告应包括场地的水文地质资料和降水设计的参数,对降水方法提出建议,并预测降水对邻近建筑物和重要地下设施的影响。

4地基计算

4.0.1箱形和筏形基础的地基应进行承载力的变形计算,必要时应验算地基的稳定性。4.0.2在确定高层建筑的基础埋置深度时,应考虑建筑物的高度、体型、地基土质、抗震设防烈度等因素,并应满足抗倾覆和抗滑移的要求。抗震设防区天然土质地基上的箱形和筏形基础,其埋深不宜小于建筑物高度的1燉15;当桩与箱基底板或筏板连接的构造符合本规范第5.4.5条的规定时,桩箱或桩筏基础的埋置深度(不计桩长)不宜小于建筑物高度的1燉18。

4.0.3箱形和筏形基础底面的压力设计值,可按下列公式计算:

5结构设计与构造要求

5.1一般规定

5.1.1箱形和筏形基础的平面尺寸,应根据地基土的承载力、上部结构的布置及荷载分布等因素确定。当为满足地基承载力的要求而扩大底板面积时,扩大部位宜设在建筑物的宽度方向。

5.1.2对单幢建筑物,在均匀地基的条件下,箱形和筏形基础的基底平面形心宜与结构竖向荷载重心重合。当不能重合时,在永久荷载与楼(屋)面活荷载长期效应组合下,偏心距e宜符合下式要求:

5.1.3当高层建筑的地下室采用箱形或筏形基础,且地下室四周回填土为分层夯实时,上部结构的嵌固部位可按下列原则确定:

5.1.3.1单层地下室为箱基,上部结构为框架、剪力墙或框剪结构时,上部结构的嵌固部位可取箱基的顶部(图5.1.3a);

5.1.3.2采用箱基的多层地下室及采用筏基的地下室,对于上部结构为框架、剪力墙或框剪结构的多层地下室,当地下室的层间侧移刚度大于等于上部结构层间侧移刚度的1.5倍时,地下一层结构顶部可作为上部结构的嵌固部位(图5.1.3b、c),否则认为上部结构嵌固在箱基或筏基的顶部。上部结构为框架或框剪结构,其地下室墙的间距尚应符合表5.1.3的要求;

5.1.5符合本规范第5.1.3.2或5.1.3.3款要求的多层地下室,在进行抗震验算时,地下室的框架及剪力墙的加强部位应从地下一层结构顶板标高往下延伸一层,地下室加强部位的框架柱、剪力墙的弯矩设计值应根据抗震设防烈度、建筑物的抗震等级按现行国家标准《混凝土结构设计规范》(GBJ10)和《建筑抗震设计规范》(GBJ11)中的有关底部加强区的规定进行计算,其构造措施也应符合相应规定。当不符合上述要求时,加强部位应从箱基

顶板或平板式筏基或梁板式筏基梁的顶部开始。加强范围以下的结构构造可遵循非抗震设计的构造要求。

5.1.6箱形基础的混凝土强度等级不应低于C20;筏形基础和桩箱、桩筏基础的混凝土强度等级不应低于C30。当采用防水混凝土时,防水混凝土的抗渗等级应根据地下水的最大水头的比值,按表5.1.6选用,且其抗渗等级不应小于0.6MPa。对重要建筑宜采用自防水并设架空排水层方案。

5.2箱形基础

5.2.1箱形基础的内、外墙应沿上部结构柱网和剪力墙纵横均匀布置,墙体水平截面总面积不宜小于箱形基础外墙外包尺寸的水

5.2.15当箱基的外墙设有窗井时,窗井的分隔墙应与内墙连成整体。窗井分隔墙可视作由箱形基础内墙伸出的挑梁。窗井底板应按支承在箱基外墙、窗井外墙和分隔墙上的单向板或双向板计算。

5.2.16与高层建筑相连的门厅等低矮单元基础,可采用从箱形基础挑出的基础梁方案(图5.2.16)。挑出长度不宜大于0.15倍箱基宽度,并应考虑挑梁对箱基产生的偏心荷载的影响。挑出部分下面应填充一定厚度的松散材料,或采取其它能保证挑梁自由下沉的措施。

5.3筏形基础

5.3.1筏形基础分梁板式和平板式两种类型,应根据地基土质、上部结构体系、柱距、荷载大小以及施工等条件确定。

5.3.2梁板式筏基底板的板格应满足受冲切承载力的要求。梁板式筏基的板厚不应小于300mm,且板厚与板格的最小跨度之比不宜小于1/20。

5.4桩箱与桩筏基础

5.4.1当高层建筑箱形与筏形基础下天然地基承载力或沉降变形不能满足设计要求时,可采用桩加箱形或筏形基础。桩的类型应根据工程地质资料、结构类型、荷载性质、施工条件以及经济指标等因素确定。有关桩的设计应符合国家现行行业标准《建筑桩基技术规范》(JGJ94)的要求。

5.4.2当箱形或筏形基础下桩的数量较少时,桩宜布置在墙下、梁板式筏形基础的梁下或平板式筏形基础的柱下。基础底板的厚度应满足整体刚度及防水要求。当桩布置在墙下或基础梁下时基础板的厚度不得小于300mm,且不宜小于板跨的1燉20。

5.4.3当箱形或筏形基础下需要满堂布桩时,基础板的厚度应满足受冲切承载力的要求。基础板沿桩顶、柱根、剪力墙或筒体周边的受冲切承载力可按国家现行行业标准《建筑桩基技术规范》(JGJ94)计算。

5.4.4基础板的弯矩可按下列方法计算:

5.4.4.1先将基础板上的竖向荷载设计值按静力等效原则移至基础底面桩群承载力重

心处。弯矩引起的桩顶不均匀反力按直线变化原则计算,并以柱或墙为支座采用倒楼盖法计算板的弯矩。当支座反力与实际柱或墙的荷载效应相差较大时,应重新调整桩位再次计算桩顶反力。

5.4.4.2当桩基的沉降量较均匀时,可将单桩简化为一个弹簧,按支承于弹簧上的弹性平板计算板中的弯矩。桩的弹簧系数可按单桩载荷试验或地区经验确定。

5.4.5桩与箱基或筏基的连接应符合下列规定:

5.4.5.1桩顶嵌入箱基或筏基底板内的长度,对于大直径桩,不宜小于100mm;对中小直径的桩不宜小于50mm;

5.4.5.2桩的纵向钢筋锚入箱基或筏基底板内的长度不宜小于钢筋直径的35倍,对于抗拔桩基不应少于钢筋直径的45倍。

6施工

6.1一般规定

6.1.1箱形基础与筏形基础的施工组织设计应根据整个建筑场地、工程地质和水文地质资料以及现场环境等条件进行。

6.1.2施工前应根据工程特点、工程环境、水文地质和气象条件制定监测计划。6.1.3施工过程中应保护各类观测点和监测点。

6.1.4施工中应做好监测记录并及时反馈信息,发现异常情况应及时处理。

6.2影响区域的监测

6.2.1基坑开挖前应对邻近原有建、构筑物及其地基基础、道路和地下管线的状况进行详细调查。发现裂缝、倾斜、滑移等损坏迹象,应作标记和拍照,并存档备案。

6.2.2施工过程中应按监测计划对影响区域内的建、构筑物、道路和地下管线的水平位移和沉降进行监测,监测数据应作为调整施工进度和工艺的依据。

6.2.3对影响区域内的危房、重要建筑、变形敏感的建、构筑物、道路和地下管线,应采取防护措施。

6.3降水

6.3.1当地下水位影响基坑施工时,应采取人工降低地下水位或隔水措施。

6.3.2降水、隔水方案应根据水文地质资料、基坑开挖深度、支护方式及降水影响区域内的建筑物、管线对降水反应的敏感程度等因素确定。

6.3.11对无抗浮措施的箱、筏基础,停止降水后的抗浮稳定系数不得小于1.26.4基坑开挖

6.4.1在下列情况下,基坑开挖时应采取支护措施:

(1)深度较大不具备自然放坡施工条件;

(2)地基土质松软,并有地下水或丰盛上层滞水;

(3)基坑开挖危及邻近建、构筑物、道路及地下管线的安全与使用。

6.4.2基坑支护结构应根据当地工程经验,综合考虑水文地质条件、基坑开挖深度、场地条件及周围环境因地制宜进行设计。

6.4.3在场地宽阔,不影响邻近建筑、周围地下构筑物或地下管线的情况下,宜采用放坡开挖,并根据稳定性分析确定坡度。

6.4.4当采用机械开挖基坑时,应保留200~300mm土层由人工挖除。6.4.5基坑边的施工荷载不得超过设计规定的荷载值。

6.4.6开挖深基坑时,宜布置地面和坑内排水系统。

6.4.7冬期施工时,必须采取有效措施,防止基土的冻胀。

6.4.8基坑开挖完成并经验收后,应立即进行基础施工,防止暴晒和雨水浸泡造成基土破坏。

6.5支护结构施工

6.5.1板桩的制作质量应符合设计要求和现行国家标准《地基与基础施工及验收规范》

(GBJ202)的规定。当采用预制钢筋混凝土桩或型钢作为支护板桩时,应有出厂合格证。

6.5.2钢筋混凝土板桩的榫口应结合紧密,钢板桩应锁口或相互搭接。

6.5.3第一根沉打的钢筋混凝土板桩的桩尖应做成双面斜口,桩长应比以后沉打的长2~3m,以后沉打的桩的桩尖应为单面斜口。

(1)钢筋笼的拼装应采用焊接,不得采用铁丝绑扎;

(2)钢筋笼的构造应便于准确就位,不得采用强行加压或用自重坠落的方法沉入槽内;(3)从钢筋笼沉入槽内到混凝土浇筑的时间不宜超过4~6小时,浇筑混凝土时,应防止钢筋笼上浮;

(4)地下连续墙混凝土的配合比应按流态混凝土设计并经过试验确定。坍落度宜为18~20cm。

6.5.11支护结构的横梁和支撑应按施工组织设计规定的程序和要求进行安装和拆除。支撑与横梁的接触面应平整紧贴。当采用拼接的支撑系统时,拼接节点应符合设计要求。6.5.12当圈梁作为顶层支撑或锚杆锚固端的支承梁而承受水平力时,应满足强度和变形要求。

6.6箱基与筏基的施工

6.6.1箱基与筏基的施工应执行现行国家标准《混凝土结构工程施工及验收规范》(GB50204)的有关规定。

6.6.2基础长度超过40m时,宜设置施工缝,缝宽不宜小于80cm。在施工缝处,钢筋必须贯通。

6.6.3当主楼与裙房采用整体基础,且主楼基础与裙房基础之间采用后浇带时,后浇带的处理方法应与施工缝相同。

6.6.4施工缝或后浇带及整体基础底面的防水处理应同时做好,并注意保护。6.6.5基础混凝土应采用同一品种水泥、掺合料、外加剂和同一配合比。

6.6.6大体积混凝土可采用掺合料和外加剂改善混凝土和易性,减少水泥用量,降低水化热,其用量应通过试验确定。掺合料和外加剂的质量应符合现行国家标准《混凝土质量控制标准》(GB50164)的规定。

6.6.7大体积混凝土宜采用蓄热养护法养护,其内外温差不宜大于25℃。

6.6.8大体积混凝土宜采用斜面式薄层浇捣,利用自然流淌形成斜坡,并应采取有效措施防止混凝土将钢筋推离设计位置。

6.6.9大体积混凝土必须进行二次抹面工作,减少表面收缩裂缝。

6.6.10混凝土的泌水宜采用抽水机抽吸或在侧模上开设泌水孔排除。

6.6.11基础施工完毕后,基坑应及时回填。回填前应清除基坑中的杂物;回填应在相对的两侧或四周同时均匀进行,并分层夯实。

6.7施工监测

6.7.1从基坑开挖至基坑回填完成期间(软土地区尚应延长4~6个月),应对影响区范围内的邻近建筑物和管线垂直与水平变形进行监测。

6.7.2实施降水和回灌方案时,应进行降水观测井和回灌观测井的水位测试以及邻近建筑物、管线的沉陷与水平位移观测。

6.7.3采用护坡桩系统时,应对挡土桩的变形、桩的内力变化进行监测。

6.7.4当采用地下连续墙作为围护结构时,应监测墙体位移、平面变形、结构整体稳定、土压力、孔隙水压力、土体位移和地下水位等项目。

6.7.5基坑开挖过程中,应对水平支撑系统和锚杆的工作状态进行检查和监测。6.7.6施工中应进行大体积混凝土的测温工作。测温点的布置应便于绘制温度变化梯度图,可布置在基础平面的对称轴和对角线上。测温点应设在混凝土结构厚度的1/2、1/4和表面处,离钢筋的距离应大于30mm。

筏形基础质量通病及防治措施

筏形基础质量通病及防治措施 筏形基础是把柱下独立基础或者条形基础全部用联系梁联系起来,下面再整体浇筑底板,由底板、梁等整体组成。当建筑物荷载较大,地基承载力较弱时,常采用混凝土底板,承受建筑物荷载,形成筏基,其整体性好,能很好地抵抗地基不均匀沉降。 当筏板厚度较大,达到或接近1m时,就会和大体积混凝土施工联系起来,浇筑前的准备工作、浇筑过程中的工艺要求、混凝土的水化热、施工裂缝,再加上基础施工本身的难题,大型筏形基础施工会出现质量问题。 质量通病 1、大体积混凝土施工的质量通病 大型筏形基础施工是典型的大体积混凝土浇筑施工,会出现大体积混凝土施工的质量通病,主要表现在混凝土泌水,上、下浇筑层施工间隔时间较长,各分层之间产生泌水层,将导致混凝土强度降低、脱皮、起砂等不良后果;混凝土表面水泥浆过厚,因大体积混凝土的量大,且多数是用泵送,在混凝土表面的水泥浆会产生过厚现象,最关键的问题是裂缝问题。 大体积混凝土内出现的裂缝按深度的不同,分为贯穿裂缝、深层裂缝及表面裂缝3种;形成原因上主要是温度裂缝和沉降裂缝。当大体积混凝土浇筑后,当地基之间出现不均匀沉降及应力时,又没有及时采取措施消除或根本无法消除约束应力时,就可能导致拉应力超过混凝土的极限抗拉强度而产生裂缝,甚至会贯

穿整个表面产生贯穿性裂缝。大体积混凝土浇筑前准备不充分,混凝土原材料选用不合理,配合比设计不当,浇筑方案不科学,混凝土养护不当,地基产生应力等原因都可能导致上述质量通病的产生。 2、土方开挖时的土体扰动 大型筏形基础的施工,一般意味着高层建筑和深基坑的开挖,开挖深度过大,开挖时间长,开挖时施工机械使用多,将会对土体造成很大的扰动,当采用的土方开挖方案不够科学,开挖周期过长,土方加固措施不当或土方开挖时遇到恶劣天气都会导致产生一系列的土方开挖问题,如边坡扰动、塌陷,严重时酿成质量事故,甚至危及建筑物结构安全及周边建(构)筑物的使用。 3、施工易形成混凝土施工冷缝 混凝土施工冷缝就是由于施工不当,在施工过程中由于某种原因使前浇筑混凝土在已经初凝,后浇筑混凝土继续浇筑,使前后混凝土连接处出现一个软弱的结合面。 根据混凝土的施工规范要求,不允许出现施工冷缝,特别是基础施工,涉及结构安全和防水功能,一旦出现冷缝,将造成永久性质量缺陷。 混凝土施工冷缝产生原因也有很多,比如说,因大体积混凝土的混凝土浇筑量大,在分层浇筑中,前后分层没有控制在混凝土的初凝之前;混凝土供应不足或遇到停水、停电及其他恶劣气候等因素的影响,致使混凝土不能连续浇筑而出现冷缝。

建筑地基处理技术规范

1 总则 1.0.1 为了在地基处理的设计和施工中贯彻执行国家的技术经济政策,做到安全适用、技术先进、经济合理、确保质量、保护环境,制定本规范。 1.0.2 本规范适用于建筑工程地基处理的设计、施工和质量检验。 1.0.3地基处理除应满足工程设计要求外,尚应做到因地制宜、就地取材、保护环境和节约资源等。 1.0.4 建筑工程地基处理除应执行本规范外,尚应符合国家现行的有关强制性标准的规定。经处理后的地基计算时,尚应符合现行国家标准《建筑地基基础设计规范》GB 50007的有关规定。

2术语和符号 2.1术语 2.1.1 地基处理ground treatment 提高地基强度,改善其变形性质或渗透性质而采取的技术措施。 2.1.2 复合地基composite foundation 部分土体被增强或被置换,形成的由地基土和增强体共同承担荷载的人工地基。 2.1.3 地基承载力特征值characteristic value of subgrade bearing capacity 由载荷试验测定的地基土压力变形曲线线性变形段内规定的变形所对应的压力值,其最大值为比例界限值。 2.1.4 换填垫层cushion 挖去表面浅层软弱土层或不均匀土层,回填坚硬、较粗粒径的材料,并夯压密实形成的垫层。 2.1.5 加筋垫层reinforced cushion 在垫层材料内铺设单层或多层水平向加筋材料形成的垫层。 2.1.6 预压地基preloading foundation 对地基进行堆载预压或真空预压、或联合使用堆载和真空预压,形成的地基土固结压密后的地基。 2.1.7 堆载预压drift preloading 对地基进行堆载使地基土固结压密的地基处理方法。 2.1.8 真空预压vacuum preloading 通过对覆盖于竖井地基表面的不透气薄膜内抽真空排水使地基土固结压密的地基处理方法。 2.1.9 压实地基compacted foundation 利用平碾、振动碾或其它碾压设备将填土分层密实的处理地基。 2.1.10 夯实地基rammed foundation 反复将夯锤提到高处使其自由落下,给地基以冲击和振动能量,将地基土密实的处理地基。 2.1.11 挤密地基compaction foundation 利用横向挤压设备成孔或采用振冲器水平振动和高压水共同作用下,将松散土层密实的处理地基。 2.1.12 砂石桩复合地基sand-gravel columns composite foundation 将碎石、砂或砂石挤压入已成的孔中,形成密实砂石增强体的复合地基。 2.1.13 水泥粉煤灰碎石桩复合地基cement fly ash-graval pile composite foundation 由水泥、粉煤灰、碎石等混合料加水拌合形成增强体的复合地基。

高层建筑基础

高层建筑基础工程 我们研究学习高层建筑基础的有关知识,首先必须知道什么是高层建筑?中国自2005年起规定超过10层的住宅建筑和超过24米高的其他民用建筑为高层建筑。1972年国际高层建筑会议将高层建筑分为4类:第一类为9~16层(最高50米),第二类为17~25层(最高75米),第三类为26~40层(最高100米),第四类为40层以上(高于100米)。公元前280年古埃及人建造了高100多米的亚历山大港灯塔。523年在中国河南登封县建成高40米嵩岳寺塔。现代高层建筑兴起于美国,1883年在芝加哥建起第一幢高11层的保险公司大楼,1931年在纽约建成高101层的帝国大厦。第二次世界大战以后,出现了世界范围的高层建筑繁荣时期。1970~1974年建成的美国芝加哥西尔斯大厦,约443米高。高层建筑可节约城市用地,缩短公用设施和市政管网的开发周期,从而减少市政投资,加快城市建设。 与低中层建筑相比,高层建筑施工面临着更多的难题,主要有以下几点:第一,高层建筑一般建在人口稠密经济发达的闹市区,而这就给施工带来了不便。要求施工单位在较小的空间内布置施工所需器械,而且还得注重工程的经济性,时间性。尽量压缩施工平面占地,减少现场设备,材料,制品储存量,要按照施工进度合理安排各阶段的现场布置,节约施工用地。 第二,高空作业量大,精度要求高,垂直运输量大,安全隐患多。高层建筑随着施工的进行,作业高度越来越大,材料运输量增加,这

对垂直运输设备的高度,运量,安全可靠性提出了更高的要求。施工全过程要做好安全防护工作,特别是百米以上高空落物打击事故要求施工单位高度重视。此外,防火,用水,用电,通信,临时厕所等这些在中低层建筑施工时易解决的问题,在高层,特别是超高层建筑施工时难度较大。 第三,基础开挖深度大,支护结构费用高。一般随着建筑物高度增加,其基础开挖深度也要相应的加深,而且城市施工又无条件放坡开挖,因此支护结构工程量大,特别是周边临时建筑物,地下管道,城市道路都对支护结构的强度,位移变形有很高要求。使得本是临时结构的支护结构所用费用增加,有的达数百万,因支护不当引发的工程事故也很多,费用较大。 高层建筑因为荷载很大,通常采用底面积较大的天然地基基础形式或深基础形式,常用的基础形式有:梁式基础、筏形基础、箱形基础、桩基础、地下连续墙基础,以及这些基础的联合使用。在高层建筑基础形式的选择中要考虑的因素有:(1)上部结构的类型,整体性和结构刚度;(2)地下结构的使用功能要求;(3)地基的工程地质条件;(4)抗震设防要求;(5)施工技术,基础工程造价和工期;(6)周围建筑物和环境条件。 条形基础是指长度远大于其宽度的一种基础形式,按上部结构形式,可分为墙下条形基础和柱下条形基础,当建筑物荷载较大且地基土较软时,为增强基础的整体刚度,减少不均匀沉降,可在纵横方向设置双向条形基础,称为正交格形基础,柱下钢筋混凝土条形基础、

建筑地基基础设计规范(GB50007-2011)最新版本

1 总则 1.0.1 为了在地基基础设计中贯彻执行国家的技术经济政策,做到安全适用、技术先进、经济合理、确保质量、保护环境,制定本规范。 1.0.2 本规范适用于工业与民用建筑(包括构筑物)的地基基础设计。对于湿陷性黄土、多年冻土、膨胀土以及在地震和机械振动荷载作用下的地基基础设计,尚应符合国家现行相应专业标准的规定。 1.0.3 地基基础设计,应坚持因地制宜、就地取材、保护环境和节约资源的原则;根据岩土工程勘察资料,综合考虑结构类型、材料情况与施工条件等因素,精心设计。1.0.4 建筑地基基础的设计除应符合本规范的规定外,尚应符合国家现行有关标准的规定。

2 术语和符号 2.1 术语 2.1.1 地基Subgrade, Foundation soils 支承基础的土体或岩体。 2.1.2 基础Foundation 将结构所承受的各种作用传递到地基上的结构组成部分。 2.1.3 地基承载力特征值Characteristic value of subgrade bearing capacity 由载荷试验测定的地基土压力变形曲线线性变形段内规定的变形所对应的压力值,其最大值为比例界限值。 2.1.4 重力密度(重度)Gravity density, Unit weight 单位体积岩土体所承受的重力,为岩土体的密度与重力加速度的乘积。2.1.5 岩体结构面Rock discontinuity structural plane 岩体内开裂的和易开裂的面,如层面、节理、断层、片理等,又称不连续构造面。2.1.6 标准冻结深度Standard frost penetration 在地面平坦、裸露、城市之外的空旷场地中不少于10年的实测最大冻结深度的平均值。 2.1.7 地基变形允许值Allowable subsoil deformation 为保证建筑物正常使用而确定的变形控制值。 2.1.8 土岩组合地基Soil-rock composite subgrade 在建筑地基的主要受力层范围内,有下卧基岩表面坡度较大的地基;或石芽密布并有出露的地基;或大块孤石或个别石芽出露的地基。 2.1.9 地基处理Ground treatment, Ground improvement 为提高地基强度,或改善其变形性质或渗透性质而采取的工程措施。 2.1.10 复合地基Composite subgrade,Composite foundation 部分土体被增强或被置换,而形成的由地基土和增强体共同承担荷载的人工地基。 2.1.11 扩展基础Spread foundation 为扩散上部结构传来的荷载,使作用在基底的压应力满足地基承载力的设计要求,且基础内部的应力满足材料强度的设计要求,通过向侧边扩展一定底面积的基础。2.1.12 无筋扩展基础Non-reinforced spread foundation 由砖、毛石、混凝土或毛石混凝土、灰土和三合土等材料组成的,且不需配置钢筋的墙下条形基础或柱下独立基础。 2.1.13 桩基础Pile foundation

筏板基础施工工艺

二)筏板基础施工 1.机械土方开挖 基础内的第一层杂填土和第二层粉土应全部清除,根据地质报告土方挖掘深度大概为5.0米深(基础正式开挖前,在建筑物一角选点测试需实际挖土深度)。计划采用30型挖掘机一次挖到基底标高,或者两层挖到基底,为了便于挖掘运输,第一层挖土深度为1~1.5米,第二层挖到中砂层深约为3.5~4.0米,自卸车外运,人工配合。土方挖到基础外300~500mm宽作为工作面。挖土时严格控制按1:8放坡,防止塌方,随时观察土质及测量坡度。基础土方挖完后,灰粉撒出边线,经设计和有关部门验收后进行下步工序施工。 2.粗砾垫层施工 基础杂填土及粉土挖除后,-5.8米以下,大约到-7.5米之间,设计要求用粗砾砂回填并夯实至-5.8米标高,分层厚度为200~300mm ,垫层顶面每边超出基础底边300mm,按宽:高=1:2向下向外延伸加宽。铺筑粗砂砾时应设置水平木桩或在基础周边侧壁测出控制点。如果基底深度不平,基土面应挖成踏步或斜坡形,搭槎处应注意夯实,应按先深后浅的顺序施工。 工艺流程:检验砂砾质量→分层铺筑砂砾→洒水→夯实或碾压→找平验收(1)分层铺筑粗砂砾 铺筑砂砾的每层厚度,一般为15~20cm,不宜超过30cm,分层厚度可用木桩控制。视不同条件,可选用夯实或压实的方法。大面积的粗砂砾垫层,铺筑厚度可达35cm,宜采用6~10t的压路机碾压。 粗沙砾地基底面宜铺设在同一标高上,如深度不同时,基土面应挖成踏步和斜坡形,搭槎处应注意压(夯)实。施工应按先深后浅的顺序进行。 分段施工时,接槎处应做成斜坡,每层接岔处的水平距离应错开0.5~1.0m,并应充分压(夯)实。 洒水:铺筑粗沙砾在夯实碾压前,应根据其干湿程度和气候条件,适当地洒水以保持砂石的最佳含水量,一般为8%~l2%。 夯实或碾压:夯实或碾压的遍数,由现场试验确定。用水夯或蛙式打夯机时,应保持落距为400~500mm,要一夯压半夯,行行相接,全面夯实,一般不少于3遍。采用压路机往复碾压,一般碾压不少于4遍,其轮距搭接不小于50cm。边缘和转角处应用人工或蛙式打夯机补夯密实。

建筑地基处理技术规范JGJ79 强制性条文

建筑地基处理技术规范 JGJ79-2012 强制性条文13条: 3.0.5处理后的地基应满足建筑物地基承载力,变形和稳定性要求,地基处理的设计尚应符合下列规定:1、经处理后的地基,当在受力层范围内仍存在软弱下卧层时,应进行软弱下卧层地基承载力验算;2、按地基变形设计或应作变形验算且需进行地基处理的建筑物或构造物,应对处理后的地基进行变形验算;3、对建造在处理后的地基上受较大水平荷载或位于斜坡上的建筑物及构造物,应进行地基稳定性验算。 4.4.2 换填垫层的施工质量检验应分层进行,并应在每层的压实系数符合设计要求后铺上层。 5.4.2 预压地基竣工验收检验应符合下列规定:1、排水竖井处理深度范围内和竖井底面一下受压土层,经预压所完成的竖向变形和平均固结度应满足设计要求;2、应对预压的地基土进行原位试验和室内土工试验。 6.2.5 压实地基的施工质量检验应分层进行。每完成一道工序,应按设计要求进行验收,未经验收或验收不合格时,不得进行下一道工序施工。 6.3.2 强夯置换处理地基,必须通过现场试验确定其适用性和处理效果。 6.3.10 当强夯施工所引起的振动和侧向挤压对邻近建构筑物产生不利影响时,应设置监测点,并采取挖隔振沟或防振措施。 6.3.13 强夯处理后的地基竣工验收,承载力检验根据静载荷试验、其他原位测试和室内土工试验等方法综合确定。强夯置换后的地基竣工验收,除应采用单墩静载荷试验进行承载力检验外,尚应采用动力触探等查明置换墩着底情况及密度随深度的变化情况。 7.1.2 对散体材料复合地基增强体应进行密实度检验;对有粘结强度复合地基增强体应进行强度及桩身完整性检验。 7.1.3复合地基承载力的验收检验应采用复合地基静载荷试验,对有粘结强度的复合地基增强体尚应进行单桩静载荷试验。 7.3.2 水泥土搅拌桩用于处理泥炭图、有机质土、pH值小于4的酸性土、塑性指数大于25的粘土,或在腐蚀性环境中以及无工程经验的地区使用时,必须通过现场和室内试验确定其适用性。 7.3.6 水泥土搅拌桩干法施工机械必须配置经国家计量部门确认的具有能瞬时检测并记录出粉体计量装置及搅拌深度自动记录仪。 8.4.4 注浆加固处理后地基的承载力应进行静载荷试验检验。 10.2.7 处理地基上的建筑物应在施工期间及使用期间进行沉降观测,直至沉降达到稳定为止。

高层建筑一般采用什么基础

高层建筑一般采用什么基础 一、高层建筑一般采用基础形式: 一般适用于高层建筑或在软弱地基上造的上部荷载较大的建筑物。当基础的中空部分尺寸较大时,可用作地下室。 在进行箱形基础基坑开挖时,如地下水位较高,应采取措施降低 地下水位至基坑底以下(500)mm。箱形基础是由钢筋混凝土的底板、顶板和若干纵横墙组成的,形成中空箱体的整体结构,共同来承受上部结构的荷载。箱形基础整体空间刚度大,对抵抗地基的不均匀沉降有利。 高层建筑结构有几种不同的基础类型,但实际在选择应用上一般 会应该根据上部结构类型,地基土质条件、有无抗震设防、施工技术和场地环境等因素,经综合考虑后,选择安全可靠和经济技术合理的基础形式。为了有利于高层建筑结构的整体稳定,常选用整体性较好的箱形基础,筏形基础和交叉梁基础。 二、高层建筑有几种基础 当基础直接埋置在微风化或未风化的岩石上时,也可以采用单独 柱基和条形基础。与高层相连的低层裙房基础,常采用交叉梁基础,单独柱基加拉梁。按构造形式可分为条形基础、独立基础、满堂基础和桩基础。 1、满堂基础:(包括阀形基础和箱形基础),将这个建筑物的下部做成整块钢筋混凝土基础。现代建筑的主要基础形式,主要适用于

地基承载力较低的小高层和高层建筑,特点:就是造价高,受力面积大,受力均匀,适合建地下室。 2、独立柱基础:这个可是现在仍在广泛使用的基础啊,适合多层建筑使用,承载能力不比满堂基础,但造价低 3、条形基础:当建筑物采用砖墙承重时,墙下基础常连续设置,形成通长的条形基础。现在不常用了,除了围墙,呵呵。 4、钢筋混凝土预制(灌注)桩:这种桩在施工现场或构件场预制,用打桩机打入土中,然后再在桩顶浇注钢筋混凝土承台。其承载力大,不受地下水位变化的影响,耐久性好。但自重大,运输和吊装比较困难。打桩时震动较大,对周围房屋有一定影响。此外:(1)按使用的材料分为:灰土基础、砖基础、毛石基础、混凝土基础、钢筋混凝土基础。 (2)按埋置深度可分为:浅基础、深基础。埋置深度不超过5M 者称为浅基础,大于5M者称为深基础。 (3)按受力性能可分为:刚性基础和柔性基础。

-筏板基础基础施工工艺

一、施工工艺流程 测量定位放线→垫层施工→测量定位放线→筏板基础钢筋绑扎→筏板基础侧模安装→柱插筋→验收→筏板基础混凝土浇注→混凝土养护 防雷接地应随着筏板基础施工随着进行。 二.主要分项工程施工方案 1、测量定位放线 1.1定位点依据:根据业主提供的控制点坐标、标高及总平面布置图、施工图纸进行定位。 1.2场区内控制网布置:在各单体工程测量定位放线之前,在场区内布置好测量控制点控制网(包括坐标控制点和高程控制点)。 1.3测量工具: 1.3.1场区内坐标控制点和高程控制点设置采用全站仪进行; 1.3.2建筑物坐标点定位采用全站仪进行; 1.3.3建筑物高程控制点设置采用水准仪进行; 1.3.4建筑物轴线定位采用经纬仪进行; 1.3.5其他辅助工具:50m钢尺、木桩、钢筋桩、墨斗、油漆等等。 1.4.建筑物轴线定位:根据已知轴线坐标控制点采用经纬仪进行建筑物轴线的定位,其他相应线采用钢尺进行排尺。 1.5.建筑物标高测量:根据已知高程控制点采用水准仪进行测量建筑物各工序的标高。 2、模板工程 2.1材料选择 模板采用δ=18mm厚九夹板制作加工,采用60×90mm木方模板背楞,木方间距不得超过200mm。 对拉螺栓杆采用φ14圆钢制作,两端丝扣长度不得小于150mm。 模板钢管支撑系统中钢管为φ48×3.5。 2.2模板安装 2.2.1筏板基础侧壁模板

筏板基础侧模支设示意图 2.3模板拆除 筏板基础侧模应待浇筑完毕3d后方可松动对拉螺栓和拆除钢管三角支撑体系,7d后方可拆除基础侧模。 待模板拆除完后应及时将对拉螺杆抽出或切割。 三、钢筋工程 3.1钢筋加工制作 3.1.1.进场钢筋应按级别、种类和直径分类架空堆放,不得直接放置在地上,以免锈蚀和油污,进场钢筋应有出厂质量合格证明,并及时抽样进行复检,复检合格后方可进行加工。 3.1.2.钢筋加工应先按图纸设计要求及《09G101-2》图集、《09G101-3》图集、《06G101-1》图集、《04G101-3》图集和《03G101-1》图集进行翻样,然后经相关部门核认后开始加工。 3.1.3.加工的半成品钢筋应按型号、品种及规格尺寸等挂牌堆放。 3.1. 4.Ⅰ级钢筋末端需做180o弯钩,其圆弧曲线直径不小于钢筋直径的2.5倍,平直部分长度不小于钢筋直径的3倍;Ⅱ级钢筋末端须作90o或135o弯折

筏板基础基础施工方案(最新整理)

王家官庄旧村改造项目二期 筏 板 基 础 施 工 方 案 施工单位:江苏茂盛建设有限公司 编??? 制:黄正传 审??? 核:崔盛庆 日??? 期:二〇一一年十二月二日 1.编制依据 1.设计施工图纸; 3.《11G101-1》图集; 4.《11G101-2》图集; 5.《11G101-3》图集; 9.《建筑地基基础工程施工质量验收规范》GB50202-2002; 10.《混凝土结构工程施工质量验收规范》GB50204-2002;(2011年版) 11.《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011;

12.《建筑电气工程施工质量验收规范》GB50303-2002; 13.《钢筋机械连接技术规程》JGJ107-2010; 2.工程概况 本工程包含18#~23#楼,总建筑面积133222.73平方米。 18#楼32层、建筑面积为210656.14.平方米, 19#楼32层、建筑面积为20707.36平方米,20#楼32层、建筑面积为16933.56平方米,21#楼34层、建筑面积为38981.02平方米,22#楼32层建筑面积17420.33平方米,23#楼建筑面积17420.33平方米。基础为梁式筏板基础,主体为框剪结构。设计使用年限为三类50年,抗震设防裂度为6度。 基础垫层为C15混凝土,筏板为上反梁式筏板基础混凝土为C40P8内掺占水泥用量的0。21%的减缩型混凝土防水密实剂FS102, 18#、19#、20#楼基础筏板高为0.7/0.85米,混凝土约556m3,21#楼基础筏板高为0.7/0.85米,有后浇带分为二段每段混凝土约为550 m3,22#、23#楼基础筏板高为0.7/0.85米混凝土约为680 m3 设计抗震等级:抗震等级为三级。 3.施工工艺流程 测量定位放线——基槽开挖——地基钎探——地基处理——测量定位放线——垫层施工——测量定位放线——筏板基础底部钢筋绑扎——筏板基础侧模安装——上返梁底部钢筋绑扎——上返梁顶部钢筋绑扎——筏板基础顶部钢筋绑扎——柱插筋——验收——筏板基础混凝土浇注——混凝土养护防雷接地应随着筏板基础施工随着进行。 4.主要分项工程施工方案 4.1测量定位放线 1.定位点依据:根据业主提供的控制点坐标、标高及总平面布置图、施工图纸进行定位。 2.场区内控制网布置:在各单体工程测量定位放线之前,在场区内布置好测量控制点控制网(包括坐标控制点和高程控制点)。 3.测量工具: 1)场区内坐标控制点和高程控制点设置采用全站仪进行; 2)建筑物坐标点定位采用全站仪进行;

高层建筑平板式筏板基础设计计算

龙源期刊网 https://www.doczj.com/doc/2f338340.html, 高层建筑平板式筏板基础设计计算 作者:赛里曼.海切木汉 来源:《城市建设理论研究》2013年第23期 摘要:高层建筑基础选型是整个结构设计中的一个重要组成部分,直接关系到工程造价、施工难度和工期。本文以湖北某高层住宅楼的基础设计为例,介绍高层建筑基础的选型和筏板基础的设计方法。 关键词:高层建筑;基础选型;筏板基础设计 中图分类号:TU97文献标识码: A 文章编号: 1引言 高层建筑地下室通常作为地下停车库,建筑上不允许设置过多的内墙,筏板基础能充分发挥其地基承载力,刚度大整体性好,调整不均匀沉降,更好的满足停车库的空间使用要求,同时施工难度小,缩短工期,降水及支护费用相对较低等优点,在高层建筑中广泛应用。本文以湖北某高层住宅楼的基础设计为例,介绍高层建筑基础的选型和筏板基础的设计方法。 2筏板基础结构设计 2.1 工程地质概况 本工程地下室1层,地上17层,采用框架-核心筒结构。根据岩土工程勘察报告,场地土分布自上而下分别为:①素填土层,厚度1.7~2.6m; ②粘土层,厚度6.4~7.1m, 标贯击数为15~17击; ③粉质粘土层,厚度2.7~4.0m, 标贯击数为10~11击;④粘土层,厚度2.6~19.8m, 标贯击数为12~17击; 2.2 基础结构方案选择 根据地基土质、上部结构体系、柱距、荷载大小、使用要求以及施工条件等因素的不同,筏形基础可分为梁板式和平板式两种类型。与梁板式筏基相比,平板式筏基具有抗冲切及抗剪切能力强的特点,且构造简单,施工便捷;对于框架-核心筒结构宜采用平板式筏形基础。本工程基础占地面积为1142m2,总荷载为210792KN,即要求地基平均承载力为185kPa。从地层剖面分析,地下室开挖后板底标高下的土层为硬-坚硬状粘土,标贯击数为15~17击,经深度及宽度修正后,地基承载力特征值fa≥300kPa,可满足要求。地基的验算包括地基承载力和变形两个方面,对于高层建筑,变形往往起着决定性的控制作用。本工程初步分析结果表明,

梁板式筏形基础设计

梁板式筏形基础设计 2.1工程概况和设计依据 本工程为长沙市信德商场的梁式筏板基础。筏板基础的工程地质条件详见中表1.1。本筏板设计主要依据《建筑地基基础设计规范》GB50007-2002,《混凝土结构设计规范》GB50010-2002,《高层建筑箱形与筏形基础技术规范》JGJ 6-99进行设计。 2.2 基础形式的选择 本工程中上部柱荷载平均在4599kN,较大,且粘土层的承载力较低,故使用独立基础,条形基础和桩基础无法满足地基承载力的要求。 经综合考虑,选择筏板基础,既充分发挥了地基承载力,又能很好地调整地基的不均匀沉降。本工程上部荷载平均在4599kN,较大且不均匀,柱距为9m,较大,将产生较大的弯曲应力,肋梁式筏基具有刚度更大的特点,可以很好的抵抗弯曲变形,能够减小筏板厚度,更适合本工程。 2.3基础底面积的确定 地基承载力验算采用标准组合,地下室柱下荷载标注组合由PKPM导出的, 即 表2.2 竖向导荷 柱号 荷载 (KN) 柱 号 荷载 (KN) 柱 号 荷载 (KN) 柱 号 荷载 (KN) 柱 号 荷载 (KN) 合力 A1 2219 B1 3261 C1 3056 D1 3578 E1 2654 14768 A2 3357 B2 4512 C2 4113 D2 4813 E2 3549 20344 A3 3133 B3 4216 C3 4357 D3 4526 E3 3179 24176 A4 3142 B4 4230 C4 4354 D4 4496 E3 3203 19431

A5 3193 B5 4255 C5 4096 D5 5419 E5 4545 21508 A6 2553 B6 3513 C6 3045 D6 3672 E6 2716 15499 合 力 17597 23987 23021 26504 19846 110955 基底面积: ㎡144032450=?=A 110955 255331933142313333572219271645453203317935492654=++++++??++++++=∑i N kpa A N P i 1.771440 110955 == = ∑ 修正后的地基承载力特征值(持力层): 查表得:)5.0()3(-+-+=d b f f m d b ak a γηγηηb=0.3 ηd=1.5 γ=20.3KN/ m 3 m3/55.9104 .104 .23.205.13.205.61.19KN m =-?+?+?= γ kpa P kpa f a 8.956.1039)5.000.2(55.95.1)36(3.203.01000=≥=-??+-??+= 符合条件,满足要求。 基础内力计算采用基本组合,地下室的柱荷载基本组合是由PKPM 导出的,即 11KQ Q G K G S S s γγ+= (2.1) 其中:G K G S ,4.1.2,1Q 1==γγ—恒载,K Q S 1—活载。 地下室(柱与基础相交处)基本组合下竖向荷载见表2.1。 表2.2 竖向导荷 柱号 荷载(KN) 柱 号 荷载 (KN ) 柱 号 荷载 (KN ) 柱 号 荷载 (KN) 柱号 荷载 (KN ) 合力 A1 2703 B1 4014 C1 3779 D1 4408 E1 3237 18141 A2 4125 B2 5633 C2 5158 D2 6009 E2 4366 25291

建筑地基处理技术规范JGJ79-2012

建筑地基处理技术规范JGJ79-2012 1总则 1.0.1为了在地基处理的设计和施工中贯彻执行国家的技术经济政策,做到安全适用、技术先进、经济合理、确保质量、保护环境,制定本规范。 1.0.2本规范适用于建筑工程地基处理的设计、施工和质量检验。 1.0.3地基处理除应满足工程设计要求外,尚应做到因地制宜、就地取材、保护环境和节约资源等。 1.0.4建筑工程地基处理除应执行本规范外,尚应符合国家现行的有关强制性标准的规定。经处理后的地基计算时,尚应符合现行国家标准《建筑地基基础设计规范》GB 50007 的有关规定。 2术语和符号 2.1术语 2.1.1地基处理ground treatment 提高地基强度,改善其变形性质或渗透性质而采取的技术措施。 2.1.2复合地基composite foundation 部分土体被增强或被置换,形成的由地基土和增强体共同承担荷载的人工地 基。 2.1.3地基承载力特征值characteristic value of subgrade bearing capacity 由载荷试验测定的地基土压力变形曲线线性变形段内规定的变形所对应的压力值,其最大 值为比例界限值。 2.1.4换填垫层cushion 挖去表面浅层软弱土层或不均匀土层,回填坚硬、较粗粒径的材料,并夯压密实形成的垫 层。 2.1.5加筋垫层reinforced cushion 在垫层材料内铺设单层或多层水平向加筋材料形成的垫层。 2.1.6预压地基preloading foundation 对地基进行堆载预压或真空预压、或联合使用堆载和真空预压,形成的地基土固结压密后 的地基。 2.1.7堆载预压drift preloading 对地基进行堆载使地基土固结压密的地基处理方法。 2.1.8真空预压vacuum preloading 通过对覆盖于竖井地基表面的不透气薄膜内抽真空排水使地基土固结压密的地基处理方 法。

重庆市建筑地基基础设计规范

重庆市建筑地基基础设计规范 第一节、术语 地基 subgrade,foundation soils 承受建筑物基础传来的各种作用的岩土体。 基础 foundation 将结构所随的各种作用传递到地基上的结构组成部分。 土岩组合地基 soil-rock composite subgrade 由土与岩石(或大块弧石)组成的地基 填土地基 fill-foundation soil 由人工填土组成的地基洞穴地基foundation with cavern 地基受力层范围内存在着洞穴的地基 地基承载力特征值 characteristic value of subgrade bearing capacity 具有一定安全储备的地基承载能力代表值 扩展基础 spread foundation 底部截面扩大的基础。分为无筋扩展基础和有筋扩展基础两类 刚性下卧层 rigid sub-layer 相对上方持力层而言其压缩模量或变形模量很大的土层或岩层 桩基础 pile foun dati on 由柱或桩与连接于桩顶的承台所组成的基础 嵌岩桩 rock-socketed piles 端部嵌入基岩不小于1倍桩径的桩 基坑支护结构 support ing of foun dati on pit

为保持基坑稳定、控制基坑变形而兴建的结构 第二节、基本规定 1、根据地基基础损坏造成建筑物破坏后果(危及人的生命,造成的经济损失、社会环境影响及修复的可能性)的严重性,将建筑物分为三个安全等级,按表3.0.2选用。 2、岩土的分类及工程特性指标应由工程地质勘察报告提供。 岩体分类有:1.岩石根据坚硬程度分为坚硬岩、较硬岩、较软岩、软岩及极软岩。 2.岩石根据风化程度分为强风化、中等风化、和微风化。 3、岩层根据单层厚度分为巨厚层(H>1.0)、厚层(1.0>H>0.5)、中厚层(0.5>H>0.1)和薄层(H<0.1) 4、按岩体结构类型分为整体状结构、块状结构、层状结构、碎裂结构、和散体结构。 5、按岩体裂隙发育程度分为不发育、较发育、发育。 6、按岩体完整程度分为完整、较完整、较不完整、不完整、和极不完整。 7、粒径大于2mm勺颗粒含量超过全重的50%勺土应定名为碎石土。

高层建筑箱形与筏形基础技术规范JGJ6

高层建筑箱形与筏形基础技术规范JGJ6-99 1总则 1.0.1为了在高层建筑箱形和筏形基础的勘察、设计与施工中做到技术先进、经济合理、安全适用、确保质量,制订本规范。 1.0.2本规范适用于高层建筑箱形和筏形基础的勘察、设计与施工。 1.0.3箱形和筏形基础的设计与施工,应综合考虑整个建筑场地的地质条件、施工方法、使用要求以及与相邻建筑的相互影响,并应考虑地基基础和上部结构的共同作用。1.0.4高层建筑箱形和筏形基础的勘察、设计与施工除应符合本规范外,尚应符合国家现行有关标准的规定。 2术语、符号 2.1术语 2.1.1箱形基础Box Foundation 由底板、顶板、侧墙及一定数量内隔墙构成的整体刚度较好的单层或多层钢筋混凝土基础。2.1.2筏形基础 Raft Foundation 柱下或墙下连续的平板式或梁板式钢筋混凝土基础。 2.2符号 3地基勘察 3.1一般规定 3.1.1地基勘察应进行以下主要工作: (1)查明建筑场地内及其邻近地段有无影响工程稳定性的不良地质现象以及有无古河道和人工地下设施等存在; (2)查明建筑场地的地层结构、均匀性以及各岩土层的工程性质; (3)查明地下水类型、埋藏情况、季节性变化幅度和对建筑材料的腐蚀性;

(4)在抗震设防区应划分对建筑抗震有利、不利和危险的地段,判明场地土类型和建筑场地类别,查明场地内有无可液化土层。 3.1.2勘察报告应包括以下主要内容: (1)建筑场地的基本地质情况及分析; (2)地基基础设计和地基处理的建议方案; (3)天然地基或桩基的承载力和变形计算所需的计算参数; (4)场地水文地质条件、地下水埋藏条件和变化幅度。当基础埋深低于地下水位时,应就施工降水方案和对相邻建筑物的影响提出建议并提供有关的技术参数; (5)基坑开挖边坡稳定性的分析,必要时提出支护方案。 3.2勘探要点 3.2.1勘探点的布置应考虑建筑物的体型、荷载分布和地层的复杂程度,应满足评价建筑物纵横两个方向地层土质均匀性的要求. 注:1、取值应考虑土的密度、地下水位等条件、当为密实土,且地下水位埋较深时取小值,反之取大值; 2、在软土地区,取值时应考虑基础宽度,当b>60m时取小值;b≤20m时取大值。3.2.2.3抗震设防区的勘探点深度尚应符合现行国家标准《建筑抗震设计规范》(GBJ11)的要求; 3.2.2.4对不考虑群桩效应,端承型大直径桩的控制性勘探点深度应达到预计桩尖以下3~5m;当桩端(包括扩底端)直径大于1.5m时,控制性勘探点深度应大于或等于5倍桩端直径。当遇软层时则应加深至穿透软层。一般性勘探点应到桩端以下1~2m;3.2.2.5摩擦型桩基需计算地基变形时,可将群桩视为一假想实体基础,并自桩端开始计算压缩层深度来决定控制性钻孔的深度。当利用公式3.2.2/1估算控制性钻孔的深度时,基础埋深d应按桩尖的埋深取值。在计算深度范围内遇有坚硬岩层或密实的碎石土层时,钻孔深度可酌减。 3.2.3取土和原位测试勘探点的数量和取土数量应符合下列规定: 3.2.3.1取土和原位测试勘探点数量应占勘探点总数的1燉2~2燉3,且单幢建筑至少应有二个取土和原位测试孔; 3.2.3.2地基持力层和主要受力土层采取的原状土样每层不应少于6件,或原位测试次数不应少于6次。 3.3室内试验与现场原位测试 3.3.1室内压缩试验所施加的最大压力值应大于土的自重压力与预计的附加压力之和。压缩系数和压缩模量的计算应取自重压力至自重压力与附加压力之和的压力段,当需考虑深基坑开挖卸荷和再加荷对地基变形的影响时,应进行回弹再压缩试验,其压力的施加应模拟实际加卸荷的应力状态。 3.3.2剪力试验宜采用三轴压缩试验。当地基土为饱和软土或荷载施加速率较高时,宜采用三轴不固结不排水的试验方法;当荷载施加速率较低时,宜采三轴固结不排水的试验方法。 3.3.3确定一级建筑物或有特殊要求建筑物的地基承载力和变形计算参数,应进行平板载荷试验。建筑物安全等级按现行国家标准《建筑地基基础设计规范》(GBJ7)划分。3.3.4确定软土地基的抗剪强度,宜进行十字板剪切试验。 3.3.5查明粘性土、粉土、砂土的均匀性、承载力及变形特征时,宜进行静力触探和旁压试验。 3.3.6判明粉土和砂土的密实度和地震液化的可能性时,宜进行标准贯入试验。3.3.7查明碎石土的均匀性和承载力时,宜进行重型或超重型动力触探。 3.3.8取得抗震设计所需的参数时,应进行波速试验。 3.4地下水

《建筑地基基础设计规范

竭诚为您提供优质文档/双击可除《建筑地基基础设计规范 篇一:建筑地基基础设计规范 关于发布国家标准《建筑地基基础设计规范》的通知 建标[20xx]46号 根据我部《关于印发的通知》(建标[1997]108号)的要求,由建设部会同有关部门共同修订的《建筑地基基础设计规范》,经有关部门会审,批准为国家标准,编号为gb50007—20xx,自20xx年4月1日起施行。其中,3.0.2、3.0.4、5.1.3、5.3.1、5.3.4、5.3.10、6.1.1、6.3.1、6.4.1、7.2.7、 7.2.8、8.2.7、8.4.5、8.4.7、8.4.9、8.4.13、8.5.9、8.5.10、 8.5.18、8.5.19、9.1.3、9.1.6、9.2.8、10.1.1、10.1.6、10.1.8、10.2.9为强制性条文,必须严格执行。原《建筑地基基础设计规范》gbj7—89于20xx年12月31日废止。 本规范由建设部负责管理和对强制性条文的解释,中国建筑科学研究院负责具体技术内容的解释,建设部标准定额研究所组织中国建筑工业出版社出版发行。 中华人民共和国建设部 20xx年2月20日

第1章总则 第1.0.1条为了在地基基础设计中贯彻执行国家的技术经济政策,做到安全适用,技术先进,经济合理,确保质量,保护环境.制定本规范. 第1.0.2条地基基础设计,必须坚持因地制宜,说地取材,保护环境和节约资源的原则;根据岩土工程勘察资料,综合 考虑结构类型,材料情况与施工条件等因素,精心设计. 第1.0.3条本规范适用于工业与民用建筑(包括构筑物)的地基基础设计.对于湿陷性黄土,多年冻土,膨胀土以及在地震和机械振动荷载作用下的地基基础设计,尚应符合现行有关标准,规范的规定. 第1.0.4条采用本规范设计时,荷载取值应符合现行国家标准《建筑结构荷载规范》gb50009的规定;基础的计算尚应符合现行国家标准>gb50010和>gb50003的规定.当基础处于侵蚀性环境或受温度影响时,尚应符合国家且行的有关强性规范的规定,采取相应的防护措施. 第2章术语和符号 2.1术语 第2.1.1条地基subgradefoundationsoils为支承基础的土体或岩体. 第2.1.2条基础foundation 将结构所承受的各种作用传递到地基上的结构组成部

建筑地基处理技术规范JGJ79—2002

四、《建筑地基处理技术规范》JGJ79—2002 3基本规定 3.0.5按地基变形设计或应作变形验算且需进行地基处理的建筑物或构筑物,应对处理后的地基进行变形验算。 3.0.6 受较大水平荷载或位于斜坡上的建筑物及构筑物,当建造在处理后的地基上时,应进行地基稳定性验算。 4换填垫层法 4.4质量检验 4.4.2垫层的施工质量检验必须分层进行。应在每层的压实系数符合设计要求后铺填上层土。 5预压法 5.4质量检验 5.4.2预压法竣工验收检验应符合下列规定: 1 排水竖井处理深度范围内和竖井底面以下受压土层,经预压所完成的竖向变形和平均固结度应满足设计要求。 2 应对预压的地基土进行原位十字板剪切试验和室内土工试验。 6强夯法和强夯换法 6.1一般规定 6.1.2强夯置换法在设计前必须通过现场试验确定其适用性和处理效果。

6.3施工 6.3.5当强夯施工所产生的振动对邻近建筑物或设备会产生有害的影响时,应设置监测点,并采取挖隔振沟等隔振或防振措施。 6.4质量检验 6.4.3强夯处理后的地基竣工验收时,承载力检验应采用原位测试和室内土工试验。强夯置换后的地基竣工验收时,承载力检验除应采用单墩载荷试验检验外,尚应采用动力触探等有效手段查明置换墩着底情况及承载力与密度随深度的变化,对饱和粉土地基允许采用单墩复合地基载荷试验代替单墩载荷试验。 7振冲法 7.4质量检验 7.4.4振冲处理后的地基竣工验收时,承载力检验应采用复合地基载荷试验。 8砂石桩法 8.4质量检验 8.4.4砂石桩地基竣工验收时,承载力检验应采用复合地基载荷试验。 9水泥粉煤灰碎石桩法 9.4质量检验

建筑地基处理技术规范(JGJ791.doc

建筑地基处理技术规范(JGJ791 建筑地基处理技术规范(JGJ79-91) 第九章深层搅拌桩 第一节一般规定 第9.1.1条深层搅拌法适于处理淤泥、淤泥质土、粉土和含水量较高且地基承载力标准值不大于120KPa 的粘性土等地基。当用于处理泥炭土或地下水具有侵蚀性时,宜通过试验确定其适用性,冬季施工时应注意负温对处理效果的影响。 第9.1.2条工程地质勘察应查明填土层的厚度和组成,软土层的分布范围、含水量和有机质含量,地下水的侵蚀性质等。 第9.1.3条深层搅拌设计前必须进行室内加固试验,针对现场地基土的性质,选择合适的固化剂及外掺剂,为设计提供各种配比的强度参数。加固土强度标准值宜取90d龄期试块的无侧限抗压强度。 第二节设计 第9.2.1条深层搅拌法处理软土的固化剂可选用水泥,也可选用其它有效的固化材料。固化剂的掺入量宜为被加固土重的7%~15%。外掺剂可根据工程需要选用具有早强、缓凝、减水、节约水泥等性能的材料,但应避免污染环境。 第9.2.2条搅拌桩复合地基承载力标准值应通过现场复合地

基荷载试验确定,也可按下式计算: f sp,k=m·R kd/A p+ β·(1-m)f s,k(9.2.2-1) 式中 f sp,k——复合地基的承载力标准值; m——面积置换率; A p——桩的截面积; f s,k——桩间天然地基土承载力标准值; β——桩间土承载力折减系数,当桩端土为软土时,可取0.5~1.0, 当桩端土为硬土时,可取0.1~0.4,当不考虑桩间土的作用时,可取0; Rkd ——单桩竖向承载力标准值,应通过现场单桩荷载试验确定。 单桩竖向承载力标准值也可按下列二式计算,取其中较小值: Rkd =ηfcu,kAp (9.2.2-2) Rkd=qsUpl + αApqp (9.2.2-3) 式中 fcu,k ——与搅拌桩身加固土配比相同的室内加固土试块

相关主题
文本预览
相关文档 最新文档