当前位置:文档之家› 钢结构稳定问题解析

钢结构稳定问题解析

钢结构稳定问题解析
钢结构稳定问题解析

钢结构稳定问题的综述

建筑与土木工程学院刘小伟学号:2111316139

摘要:总结了钢结构稳定问题的基本概念和类型,介绍了影响钢结构稳定的一些因素和稳定问题的计算方法、规范规定,并总结了钢结构稳定设计的设计原则和目前钢结构稳定问题研究中存在的问题特点。

关键词:钢结构稳定性原则类型

Abstract:Summarized the basic concept and type of stability problems of steel structure, introducing the standard calculation method.The influence of some factors and stability problems of steel structure stability of the regulation, and summarizing the design principle of stability design of steel structure and the present research of structure stability problems in steel.

Keywords: Steel structure stability principle type

1、引言

随着我国钢铁工业的快速发展,又由于钢结构的诸多优点,所以这种被认为绿色环保型产品的钢结构,是建筑的发展方向。但由于钢比混凝土的抗压强度高20多倍,因此设计的承担相同受力功能的钢构件与混凝土构件相比,具有截面尺寸小、构件细长等特点,在对于受压、受弯等存在受压区的钢构件处理不当时,就很可能出现失稳现象。因此为了提高截面效率、充分发挥钢材的强度,钢结构一般做成

薄壁结构,这使得钢结构在大跨方案中有着极大的竞争力,但与此同时也带来了缺点:结构刚度小,稳定问题突出,稳定问题普遍处在于钢结构设计中,所以只有处理好钢结构稳定问题,才能做出经济合理的设计。

2、失稳的概念及稳定问题的类型

2.1失稳的概念

处于平衡位置的结构或构件,在任意微小外界扰动下,将偏离其平衡位置,当外界扰动去除后,仍能自动回复到初始平衡位置时,则初始平衡状态是稳定状态;若外界扰动去除后,不能回复到初始平衡位置,则初始平衡状态就是不稳定的平衡状态。所以平衡状态就是从稳定状态向不稳定状态过渡的一中中间状态。稳定分析就是研究结构或构件的平衡状态是否稳定的问题。结构或构件由于平衡形式的不稳定,从初始平衡位置转变到另一种平衡位置,即称为屈曲,或失稳。

2.2稳定问题的类型

钢结构的失稳现象是多种多样的,但就其性质而言,可以分为以下三类:

2.2.1、平衡分岔失稳(分支点失稳)

完善的(即无缺陷的、挺直的)轴心受压构件和完善的在中面内受压的平板的失稳都属于平衡分岔失稳问题。属于这一类的还有理想的受弯构件以及受压的圆柱壳等的失稳。

如图1所示为理想状态下中心受压直杆。当Pcr P时,直线平衡是不稳定的。设直杆中点挠度为Δ,当

作用在构件端部的荷载P未达到某一限值[1]时,构件始终保持着挺直的稳定平衡状态,Δ=0,构件只承受均匀的压应力,同时沿构件的轴线只产生相应的压缩变形。

如果在其横向施加一微小干扰,构件会呈现微小变形,但是一旦撤去此干扰,构件又会立即恢复到原有的直线平衡状态。若果当作用于上端的荷载达到了限值cr P时构件将会发生弯曲,Δ≠0,此时直线平衡状态不稳定,构件由原来挺直的平衡状态转变到与其相邻的伴有微小弯曲的平衡状态。OB表示直线平衡,AC表示弯曲平衡。表示轴心受压直杆随荷载P的增加而取不同的平衡形式的OA,AB,AC线段称为平衡路径。平衡路径在A点发生分支,A点称为分支点,该店的荷载值称为分支点荷载,即为cr P。平衡路径OA上的中心受压直杆处于稳定的直线平衡状态;AB是不稳定的直线平衡状态;AC是稳定的压弯平衡状态。分支点是直线平衡状态从稳定转为不稳定的分界点。直线平衡失稳时,将存在轴向受压和压弯两种不同受力性质的平衡状态的可能,即发生平衡路径的分支。具有上述特征的失稳现象,称为分支点失稳[2]。

2.2.2、极值点失稳(或称无平衡分岔的稳定问题)

偏心受压构件,在荷载开始作用时保持弯曲形式的平衡直到临界状态终止,如图2所示,平衡路径分为OA和AB两端。OA段上的平衡状态是稳定的。下降段上的AB的平衡状态是不稳定的。在平衡稳定阶段,其平衡形式只是原来平衡形式之下变形的加剧,没有出现不同变形状态的分岔点,只有极值点。故此失稳不属于分支稳定问题,因此称之为极值点失稳。

事实上当荷载加至A点时,杆件稍受扰动即由于平衡的不稳定性而立即破坏,故难以绘出下降段AB线。

A点称之为极值点,所对应的荷载称为稳定极限荷载或压溃荷载,P u表示。

因为没有平衡形式的改变,相比之下可见,分支点失稳带有突然性,而极值点失稳则不带有突然性[3].。

实际的轴心受压构件因为都存在初始弯曲和荷载的作用点稍稍偏离构件轴线的初始偏心,因此工程中存在的稳定问题大多数属于极值点失稳。如双向受弯构件和双向弯曲压弯构件发生弹塑性弯扭失稳都属于极值点失稳。而实际工程中一把是将极值点失稳问题转化为分

支点失稳来处理。通过引进某些参数【4】来反映两者之间的差别。2.2.3跃越失稳

如图3(a)所示的两端铰接比较平坦的拱结构,在均布荷载q 的作用下有挠度ω,其荷载—挠度曲线也有稳定的上升段A,但是因为结构已经破坏,但是到达曲线的最高点A点时会突然跳跃到一个非临近的具有很大变形的C点,拱结构顷刻下垂。在荷载—挠曲线上,虚线AB是不稳定的,BC段虽然是稳定的而且一直是上升的,但是因为结构已经破坏,故不能利用。与A点对应的荷载cr q是坦拱的临界荷载。这种失稳现象称为跃越失稳,它既无平衡分岔点,有无极值点,但和不稳定分岔失稳又有某些相似的现象,都在丧失稳定平衡之后又跳跃到另一个稳定平衡状态。扁壳和扁平的网壳结构也可能发生跃越失稳。在图3(b)是发生局部凹陷的网壳结构的点状跃越失稳,而图3(c)是整体跃越失稳。带有缓坡的有侧移大跨度门式钢架,当钢架横梁的刚度很弱而侧移刚度却很强时,有可能发生如图3(d)所示的跃越失稳。横梁的初始倾角即横梁的坡度对这类结构的变形影响很大,类同于有缺陷不稳定分岔失稳。缺陷对这类结构的影响也很大。

区分结构失稳类型的性质十分重要,否则不可能正确估量结构的稳定承载力。对于具有平衡分岔失稳现象的结构,如前所述,理论上的屈曲荷载区分成三种情况,一种比较接近于实际的极限荷载,一种大于实际的极限荷载,一种远小于实际的极限荷载。大挠度理论才能揭示具有平衡分岔的结构屈曲后的性能,然而大挠度理论分析实际结构的计算过程十分复杂。对于稳定的临界状态,结构体系在其相邻的

屈曲位形可以维持在超过分岔屈曲荷载的荷载处;但对于不稳定的临界状态,结构体系在其相邻的屈曲位形只能在低于分岔屈曲荷载的荷载处才能维持。

图3 跃越失稳

3、影响钢结构稳定的因素

在设计中一般都是把钢结构看成是完善的结构体系,事实上还有一些随机因素在影响钢结构的稳定性,一般情况下把影响钢结构稳定性随机因素分为三类:

(1)物理、几何不确定性:如材料(弹性模量,屈服应力,泊松比等)、杆件尺寸、截面积、残余应力、初始变形等。

(2)统计的不确定性:在统计与稳定性有关的物理量和几何量时,总是根据有限样本来选择概率密度分布函数、因此带来了一定的

经验性。这种不确定性称为统计的不确定性,是由于缺乏信息造成的。

(3)模型的不确定性:为了对结构进行分析,所提的假设、数学模型、边界条件以及目前技术水平难以在计算中反映的种种因素,所导致的理论值与实际承载力的差异,都归结为模型的不确定性。4、钢结构稳定问题的计算方法

钢结构稳定问题的分析方法都是针对着在外荷载作用下结构存在变形的条件下进行的,此变形应该与所研究结构或构件失稳时出现的变形相对应。由于所研究的结构变形与荷载之间呈非线性关系,因此稳定计算属于几何非线性问题,采用的是二阶分析的方法【5】。稳定计算所给出的,不论是屈曲荷载还是极限荷载,都标志着所计算构件或结构的稳定承载力。稳定问题的计算方法有以下三种:

(1)平衡法(静力法)

中性平衡法或静力平衡法,简称平衡法,是求解结构稳定极限荷载的最基本的方法。平衡法是根据已发生了微小变形后结构的受力条件建立平衡微分方程而后求解临界荷载cr P。在建立理想轴心受压构件弯曲平衡方程时有如下假定:

1)构件时等截面直杆;

2)压力始终沿构件原来轴线作用;

3)材料符合胡克定律,即应力与应变成线性关系;

4)构件符合平截面假定,即构件变形前的平截面在变形后仍为平面;

5)构件的弯曲变形是微小的,曲率可近似地用挠度函数二阶导

数表示,以此可建立微分平衡方程:0EI =+′′

Py y ,代入相应的边界条件,即可解得两端铰支的轴压构件的临界荷载22cr P l EI π=。

(2)能量法

能量法是求解稳定承载力的一种近似方法,用能量法求解临界荷载的途径主要有能量守恒原理和势能驻值原理:

1)能量守恒原理求解临界荷载

保守体系处在平衡状态时,贮存在结构体系中的应变能等于外力所做的功,此即能量守恒原理。用能量守恒原理解决结构弹性稳定问题的方法称为Timoshenko 法,其临界状态的能量关系为:

W U Δ=Δ

其中,U Δ指应变能的增量;W Δ指外力做功的增量,以此可建立平衡方程:

dx x y P dx x y EI l cr l 2020)]([)]([∫′=∫′

′ ∫′∫′

′=

?l l cr dx

x y dx x y EI 0202)]([)]([P

式中:y(x)—满足位移边界条件的任一可能曲线位移方程。

2) 势能驻值原理求解临界荷载

势能驻值原理指:受外力作用的结构,当位移有微小变化而总势能不变,即总势能有驻值时,结构处于平衡状态。表达式:

0-==ΠdW dU d

式中:dU —指虚位移引起的结构内应变能的变化,它总是正值;

dW —表示外力在虚位移上做的功。

势能驻值原理与平衡方程式等价的,用该原理可以解决复杂结构的弹性稳定问题。如很多结构很难直接建立平衡方程,则可以先写出结构总势能Π,然后利用0Π=d ,即可得到平衡方程。还可以先假定构件挠曲线形状,给出挠曲线方程,将其代入总势能Π,通过0Π=d 解出临界荷载。

3)动力法

处于平衡状态的结构体系,如果施加微小干扰使其发生振动,这时结构的变形和振动加速度都和已经作用在结构上的荷载有关。当荷载小于稳定的极限值时,加速度和变形的方向相反,因此干扰撤去以后,运动趋于静止,结构的平衡状态是稳定的;当荷载大于极限值时,加速度和变形的方向相同,即使将干扰撤去,运动仍是发散的,因此结构的平衡状态是不稳定的;临界状态的荷载即为结构的屈曲荷载,可由结构振动频率为零的条件解得。动力法属于结构动力稳定问题。

在平衡法和能量法的运算中,有用解析法求解的,也有用数值法求解的。利用计算机技术的数值法已成为近代研究结构稳定问题的一种基本方法。

5、钢结构稳定设计的原则

根据稳定问题的特点,为了更好地保证钢结构稳定设计中构件不会丧失稳定,必须注意下面的原则:

(1)结构整体布置必须考虑整个体系[6]以及组成部分的稳定性要求。目前结构大多数是按照平面体系来设计的,如桁架和框架都是

如此。保证这些平面结构不致平面失稳,需要从结构整体布置来解决,亦即设计必要的支撑构件。这就是说,平面结构构件的平面稳定计算必须和结构布置相一致。

(2)杆件稳定计算的常用方法是依据一定的简化假设或典型情况得出,必须使得所设计的结构符合这些假定【7】。目前设计单层和多层框架结构时,经常不作框架稳定分析而是代之以框架柱的稳定计算。在采用这种方法时,计算框架柱稳定时用到的柱计算长度系数,只有通过框架整体稳定分析得出,才能是柱稳定计算等效于框架稳定计算。然而实际框架多种多样,而设计中为了简化计算工作,需要设定一些典型条件。GB50017—2003规范对框架柱给出的计算长度系数,采用了五条基本假定,其中第三条:“框架中所有柱子是同时丧失稳定的,即各柱同时达到其临界荷载”。按照这条假的,框架各柱的稳定参数杆件稳定计算的常用方法,往往是依据一定的简化假设或典型情况得出的,设计者必须确知所设计的结构符合这些假设时才能正确应用。对于有摇摆柱的无或弱支撑纯框架柱,规范考虑了增大系数,这样就可以使得实际的计算方法与前提假设和具体计算对象相一致。

(3)设计结构的细部构造和构件的稳定计算必须相互配合,使二者有一致性。如梁的整体稳定性就与梁端连接结构造有重要的关联。

6、钢结构体系稳定研究中存在的问题

钢结构体系稳定性研究虽然取得了一定的进展,但也存在一些不容忽视的问题[8]:

(1)目前在网壳结构稳定性的研究中,梁—柱单元理论已经成为主要的研究工具。但梁—柱单元是否能真实反映网壳结构的受力状态还很难说,虽然有学者对梁—柱单元进行过修正,主要问题在于如何反映轴力和弯矩的耦合效应。

(2)在大跨度结构设计中整体稳定与局部稳定的相互关系也是一个值得探讨的问题,目前大跨度结构设计中取一个统一的稳定安全系数,为反映整体稳定与局部稳定的关联性。

(3)与张拉结构体系的稳定设计理论还很不完善,目前还没有一个完整合理的理论体系来分析预张拉结构体系的稳定性。

(4)钢结构体系的稳定性研究中存在很多随机因素的影响,目前结构随机影响分析所处理的问题大部分局限于确定的结构参数、随机荷载输入这样一个格局范围,而在实际工程中,由于结构参数的不确定性,会引起结构响应的显著差异。所以应着眼于考虑随机参数的结构极值失稳、干扰型屈曲、跳跃型失稳问题。

7、结语

稳定问题是很复杂的,尤其当构件存在初始缺陷、残余应力以及非线性因素的影响,就更增加了解决稳定问题的难度。另外,在工程结构稳定性的研究领域中,还存在很多尚未解决好的问题。比如:大跨度桥梁、大跨度薄壳、大跨度空间网壳、高层与超高层结构的双重非线性动力稳定问题。只有深入了解这些问题,才会使得钢结构稳定理论设计不断地完善。

参考文献:

[1]GB 50068—2001,建筑结构设计统一指标[S].2001

[2]陈骥编. 钢结构稳定理论与设计[M].第3版.北京:科学出版社,2006

[3]永毓东,王志骞.钢结构稳定性原理[M].西安:西安交通大学出版社,1991

[4]赵瑞岚,暴育红.浅谈钢结构住宅的发展[J].山西建筑,2005.1

[5]刘开国. 钢框架结构的弹性和弹塑性二阶分析[J].华中建筑,2000.1

[6]马奇,罗志兵.钢结构稳定设计的探讨[J].江西建材.2004.2

[7] GB50017—2003,钢结构设计规范[M].高等教育出版社,2003.11

[8]Qi-Lin Bhang,U.pail.Dynamic Stability Analysis of Space Structure.Advances in Structural Dynamics,2000.Vol.II 1223-1226.

[9]Achimenes Chaldaic,Ankara Maidservant.Reliability Assessment using Stochastic Finite Element Analysis.JOHN WILEY&SONS.INC2000.

[10]Thairm,N.S. and Bradford,M.A. The Behaviour an Design of Steel Structures,Revised 2nd.Ed.Chapman and Hall,London,1991

钢结构的实习总结

实习总结 我的实习从7月15日在***公司开始,为期两个月。在这段日子里,我大部分时间被安排在钢结构车间,最后不到半个月的时间被公司调往天津中色的工地上去实习。在这个过程中,我努力融合课堂教学容与现实工作情况,获益匪浅,现在对我的暑期实习情况做一个大致的总结。 在车间里,公司给我安排的师傅是一个铆工,其他同学有质检、下料等。作为一名合格的钢结构铆工,首先要有识图和制图的知识、辨认钢材型号及热处理知识、能矫正构件变形、能熟练使用剪床、气割、电焊机等设备、能读懂并装配桁架类、梁柱类、箱体类、等图样,并进行全位置定位焊、铆接、螺纹连接,检验尺寸、形状位置,我的师傅还持有专业焊工证,能进行一级焊缝焊接。 起初,由于不具备实践经验,我每天的工作容就是协助师傅为构件放样,做一些较简单的计算,练习使用焊条电弧焊、二保焊、火焰割枪、钻孔机等机械设备,以及在质检部门检查之前核对图纸,对构件做规检查。随着对工作的熟悉,我逐渐可以在工友的协助下完成对部分钢构件的拼装工作,总结工作过程主要有:省图、放养、下料、打孔、拼装、焊接(定位焊)、矫正等。其中: 1、省图:这是个很关键的步骤,要对你要做的东西在自己的脑海里有个空间想象,因为图纸只会给你平面的图形,从三个面的图,你才能在脑海里构成一个三维的立体图形。当然图纸里还有部件的图形和材料表,这些都不能马虎,因为这个直接关系到你后面制作。

2、放样:一般情况下,你接到的构件仅是经过组立、埋弧焊、矫正的原件,其长度、坡口等细节均未进行,所以就需要你根据图纸给你的尺寸来放样了。这其中包含了你对图纸的专业认知,以及你长时间工作的经验积累,两者是缺一不可。 3、下料:根据放样的线,割去多余部分。下料的方法一般有用手动割、自动割(火焰、等离子、水分割)等,要根据你要做的结构的用途和质量要求来决定。下料过程中,需要细心谨慎,必须严格按照放样的线条进行,误差最大要求为2个毫米。若不符合要求,则须返工,费力费时;情况严重的,可能造成整个构件作废,废材废财。 4、打孔:根据图纸要求,提前选好孔模板。将模板按规定位置固定在构件上(点焊),用钻孔机通过模板上固定的孔位对构件进行钻孔。过程中需要不断向钻孔处加水,用以降低热量,保护钻头。完成后,拆去孔模板。 5、拼装:用工人们比较熟悉的词语叫“对活”,在对活的过程中,一定要控制好你的尺寸,心要细致,不然直接影响后面的步骤和结果。这个就需要铆工熟知图纸已经自身的对活经验了,做的多经验越多,东西就会越做越好,而且越做越快。 6、焊接:这个需要和电焊工的配合了,要对电焊工强调你需要的质量要求,包括焊接的方法和方式。在此之前的拼装,你只需进行简单的定位焊就可以了。 7、矫正:对于变形的结构要进行矫正,使产品达到图纸的要求。这里的矫正并非如专业矫正班那样,只是对一些不平整的连接板等小件做人

钢结构公司年度工作总结

工作总结 通过在市场部的工作,使我对自己的工作有了重新的认识,工作上的经验和得失,是需要不断学习和总结的,从中有经验也有教训,市场部的工作使我懂得了很多,不管是技术水平的提高,还是在为人处事的礼节,都需要进一步的提高,同时在努力作好自己本职工作的同时,更重要的是发挥团队的精神,与本部门及其他部门密切配合来共同来完成每一项工作。对于市场部,是充满机遇和挑战的,要想抓住机遇,必须苦练内功,作好迎接各种挑战的准备,还需要领导的培养和自己的历练。 一,现将近期在市场部的工作总结如下 近期公司任务量不足,主要跟市场的大环境有关,我们公司主要是内部市场,当集团公司投资或新建项目减少,公司生产也受影响,再者目前公司的钢结构产品还处在一个低端的水平,成本高,市场竞争力弱,在市场上竞争并不占优势,要想有大的突破1,必须树立良好的外界形象,建立良好的客户口碑和良好的长期合作关系,;2,苦练内功,节能降耗,提高自己的产品质量和档次,争夺高端市场,避免和低端市场打价格战;3,提高自身的技术水平,如网架,框架,高层建筑钢结构等的学习和研发,同时也可以到外面学习或引进外部的技术力量。 特别是近期在林重,山西陵川关岭山煤矿,新乡同力水泥网架工程,工作中,深深感觉到,客户的需求就是我们的努力的方向,同时跟客户进行有效的沟通至关重要,虽然自己在此方面的工作中曾经也出现了一些失误,如林州重机孵化园餐厅檩条材质问题,出现了失误,但亡羊补牢,为时不晚,吸取教训,以后要杜绝此类失误,公司虽然给予了处分,但公司是站在大局考虑的,不能因为同情,就原谅你的错误,一视同仁,所以

不找客观理由,不推卸,敢担当,先从自身找起,吸取教训,总结经验,进一步提高自身业务水平,争取让每一个客户满意。同时业主与合作单位客户沟通联系工作是一项纷繁复杂而又十分重要的工作,在山西陵川关岭山煤矿工程中,刚开始是一个新建工程,造价是147.7万元。但后期逐步增多,第二是活动中心,造价是121.1万元,工期45天,由于它是局部二层框架结构,屋顶为三角桁架,还涉及和原有建筑搭接问题,比较复杂,但经过现场实际勘察测量,和甲方多方面沟通,还是很好完成了任务,虽然施工过程中也存在和原有混凝土建筑打架的问题,如原有混凝土天沟和三角桁架打架,屋檐留口位置错误,但经过领导及项目部成员多方面努力,本着考虑进度,把影响及损失减少到最小,现场克服困难,很好完成施工任务。之后山西陵川关岭山煤矿防风抑尘网,虽然没有作过,但我们具有学习的精神,发挥自己的主观能动性,可以说是在学习中成长,并用于实际工作中去,工业场地热力管道土建及钢结构工程,是现场制作安装,本人在现场和施工人员加强沟通交流,也学习到了新的技术工艺。后续工程陆陆续续开工,截至目前我公司在此累计已承接工程437.45万元,这充分说明一个问题,只要我们本着为客户着想,创造优质工程,就会逐渐取得客户的信任,创造更多得合作机会。 新乡水泥有限公司煤棚又是另外一个例子,第一次投标我公司投标价并不占优势,投标价338万,由高到低排名第3,共6家,领导及市场部刚开始认为把握不大,但第一次投标流标,出乎意料,第二次投标公司考虑全面,运筹帷幄,投标价格占优势,另外离公司地址又近,占据天时,地利,人和,随后中标,以中标价272万元签合同。这让我们也领略到了什么叫峰回路转,凡事只要准备充分,机会会照顾有备之人的。但在喜悦的同时,得正视工作中的不足,第一工作经验不足,人际关系没有充分展

钢结构稳定问题

稳定 1、稳定为何复杂 稳定是“混沌”问题比随机模糊都要复杂,欧拉公式至今已236年,但在稳定理论方面进展不大;随机问题可用概率法来解决,事先不知、事后可知;模糊问题属于有些说不清问题,属于经验的问题如专家系统等可以用模糊数学解决。但混沌问题理论较深缺乏数理资料,当前还无法解决,混沌的特点非线性,解的多样性、初始值敏感,因此振动,地震均是混沌。 2、第二类失稳是否是强度问题 从现象看似乎是强度问题,但应是稳定问题,强度与稳定的区分:强度是截面承载力而稳定是杆件整体承载力问题伴随大变形,过去规范用δ= N/φA是混淆概念,将稳定表达为强度,现已改进。 3、二阶效应与非线性分析有什么区别 二者本质一样,都是由变形后的轴线来求得平衡条件,但二者在要概念上有区别:非线性分析有几何非线性与物理非线性之分,二阶仅对一阶而只有几何非线性。对于柔性结构根本就没有一阶二阶之分就是非线性。 4、计算长度与非线性关系 计算长度是在一阶基础上考虑变形引起的附加弯矩,是近似的非线性分析,如悬臂柱计算长度L。=2L也就是悬臂柱所产生的附加弯矩与一个跨度2L的筒支柱的附加弯矩等效,以每筒的附加弯矩作为标准,计算长度是近似的,如一个悬臂柱设计数L。=2L,但在图5情况下左柱上下2个铰要倾倒,必须由右柱加以支持,精确计算右柱L0=2.69h,一个框架再加一个摇摆柱,要保证其不失稳必然靠框架支撑,因此按一般规范可给的框架计算长度即不对,应该 , n=P3/(P1+P2),而一般框架计算长度1.25,1.5也是考虑群柱作用即各柱互相 支持的问题,如悬臂柱有水平力时其计算长度即如图6:其合力延长线与曲线交点才是计算长度这些情况无法一一反映,因此计算长度是近似的。 5、网壳稳定是混沌问题,为何稳定问题无法解决 沈土钊院士陈昕教授最大的贡献是经过2800次试算 采用“一致缺陷摸态法”即结构缺陷分布正好与结构最 低阶的模态一致,得到在一般正常缺陷下稳定承载数值 不小于下临界点,这样就使计算工作简化,当然网壳稳 定的解决并不是从理论上解决,而是从工程处理上解决 了难题,因为数值分析,人为假定,失稳的荷载位移曲

钢结构稳定性的分析

钢结构稳定性的分析 摘要:在钢结构设计中,稳定形设计是较为重要的一个环节。在各种类型的钢结构中,由于结构失稳造成的伤亡事故时有发生,凸显了稳定问题研究的重要性。本文从钢结构失稳的类型入手,阐述了钢结构稳定性的分析方法及稳定设计需要注意的问题。 关键词:钢结构稳定性分析 Abstract: Stable shape design is an important link in the steel structure design. In various types steel structure, casualties results from the structure instability, which highlights the importance of research on the stability. This article from the steel structure buckling type, elaborates the steel structure stability analysis method and some issues requiring attention in the stable design. Key words: steel structure; stability ; analysis 1 .前言 钢结构稳定分析是研究结构或构件的平衡状态是否稳定的问题。结构或构件的平衡状态有三种:1)稳定平衡:处于平衡位置的结构或构件,在任意微小外界扰动下,将偏离其平衡位置,当外界扰动除去以后,仍能自动回复到初始平衡位置时,称为稳定平衡。2)不稳定平衡:如果不能回复到初始平衡位置,则称为不稳定平衡。3)随遇平衡或中性平衡:如果受到扰动后不产生任何作用于该体系的力,因而当扰动除去以后,既不能回复到初始平衡位置又不继续增大偏离,则为随遇平衡或中性平衡。结构或构件由于平衡形式的不稳定性,从初始平衡位置转变到另一平衡位置,称为屈曲,或称为失稳。 钢结构稳定与强度有着显著区别。强度是指结构或者构件在稳定平衡状态下由荷载所引起的最大应力是否超过材料的极限强度,因此是一个应力问题。极限强度的取值取决于材料的特性,对混凝土等脆性材料,可取它的最大强度,对钢材则取它的屈服点。稳定问题则与强度问题不同,它主要是找出外荷载与结构内部抵抗力间的不稳定平衡状态,即变形开始急剧增长的状态,从而设法避免进入该状态,因此,它是一个变形问题。如轴压柱,由于失稳,侧向扰度使柱增加数量很大的弯矩,因而柱子的破坏荷载可远远低于它的轴压强度。显然,,失稳是柱子破坏的主要原因,而非强度不够。 2 .钢结构失稳的分类 区分结构失稳类型的性质十分重要,这样才有可能正确估量结构的稳定承载力。钢结构的失稳按有无平衡分叉可分为两类: 2.1 第一类稳定问题—具有平衡分岔的失稳,也叫“分叉屈曲”。

钢结构稳定问题解析

钢结构稳定问题的综述 建筑与土木工程学院刘小伟学号:2111316139 摘要:总结了钢结构稳定问题的基本概念和类型,介绍了影响钢结构稳定的一些因素和稳定问题的计算方法、规范规定,并总结了钢结构稳定设计的设计原则和目前钢结构稳定问题研究中存在的问题特点。 关键词:钢结构稳定性原则类型 Abstract:Summarized the basic concept and type of stability problems of steel structure, introducing the standard calculation method.The influence of some factors and stability problems of steel structure stability of the regulation, and summarizing the design principle of stability design of steel structure and the present research of structure stability problems in steel. Keywords: Steel structure stability principle type 1、引言 随着我国钢铁工业的快速发展,又由于钢结构的诸多优点,所以这种被认为绿色环保型产品的钢结构,是建筑的发展方向。但由于钢比混凝土的抗压强度高20多倍,因此设计的承担相同受力功能的钢构件与混凝土构件相比,具有截面尺寸小、构件细长等特点,在对于受压、受弯等存在受压区的钢构件处理不当时,就很可能出现失稳现象。因此为了提高截面效率、充分发挥钢材的强度,钢结构一般做成

钢结构实习总结报告

钢结构实习总结报告 姓名:学号:系别:专业:班级:指导教师:实习单位:刘 璐建筑工程系建筑工程管理级建筑工程管理二班杨文才老师烟台创佳 金属结构有限公司200910633909一、实习目的毕业实习是我们在校学 习期间最后一次综合性实践学习环节。通过对实际施工工地和建筑的 参观,培养我们实践的水平,获得更多的感性理解,把所学的知识与 实际工作更好地联系起来,为以后能够灵活使用理论知识解决实际工 作中的问题打好基础,同时综合检验我们所学的知识,以出色地完成 我们这学期毕业设计的任务和以后从学习岗位到工作岗位的良好过渡。毕业实习能够使我们的毕业设计有更充分、更现实的依据。通过毕业 实习,要使我们更深刻理解专业知识、提升职业技能和技巧,初步实 现社会心理角色的转变,使学生能够真正参与社会竞争,实现学习和 就业的有机结合。并在实习过程中发现工程中实际存有的问题,努力 培养自己实际解决问题的水平,通过实习加深对施工工艺的印象,为 顺利完成毕业设计、为将来参加工作后迅速适合实际工作打下基础。 在实习过程中,我们要1、了解各种钢结构建筑的组成和形式; 2、了 解钢结构各种构件的节点连接;3、了解钢结构楼盖的布置和采光带的 布设和排水处理; 4、深入理解自己所学专业,为将要进入工作岗位 作好准备;二、实习时间2020年4月18号-2020年5月1号三、实习地点张家口天宇钢构有限公司和张家口宝马4S店四、实习内容此 次实习,我们依次参观了张家口天宇钢构有限公司生产车间和张家口宝 马4S店施工现场。1、张家口天宇钢构有限公司张家口天宇彩钢制品 有限公司成立于1998年6月,是张家口市首家以生产开发钢结构、彩 钢板系列产品为主的新型企业,注册资金1600万元时间如流水转瞬即逝,不知不觉在充实的实习工作中迎来了人生的又一个转折点——毕业。回顾过去半年多的时间里所经历过的一切,虽然有过疲惫、彷徨 与失落,但充实而忙碌的工作,热情开朗的同事让我觉得所有的一切 都是值得的。相信这半年的经历将会成为我人生中重要的篇章。(一)、简介2020年11月16日我离开学校正式踏上了实习的工作岗

钢结构稳定问题的可靠性研究评述

钢结构稳定问题的可靠性研究评述 稳定问题一直是钢结构设计的关键问题之一,钢结构体系的广泛应用凸显了稳定问题研究的重要性和紧迫性。由于钢结构体系设计、建造以及使用当中存在着许多不确定性因素,所以引入可靠度分析必要的。本文从结构体系稳定的可靠性研究的角度对这一领域的研究进行了评述。 关键词:稳定性钢结构体系可靠性 一、钢结构体系稳定性研究现状 (一)钢结构体系稳定性研究现状 近二三十年来,高强度钢材的使用,施工技术的发展以及电子计算机的应用使钢结构体系的发展和广泛应用成为可能。钢结构体系的稳定性一直是国内外学者们关注的研究领域。经过几十年的研究,已取得不少研究成果。 迄今为止,对钢结构基本构件的理论问题的研究已较多,基于各种数值分析的稳定分析已较成熟。但对构件整体稳定和局部稳定的相互作用的理论和设计应用上还有待进行深入的研究。由于结构失稳是网壳结构破坏的重要原因,所以网壳结构的稳定性是一个非常重要的问题,正确的进行网壳结构尤其是单层网壳结构的稳定性分析与设计是保证网壳的安全性的关键。自六十年代以来,网壳结构的非线性稳定性分析一直是国内外学者们注意的焦点。英、美、德、意大利、澳大利亚、罗马尼亚、波兰等国的研究人员进行了多方面的理论方面的理论分析和研究。各种方法如牛顿-拉斐逊迭代法、弧长法、广义逆法、人工弹簧法、自动求解技术、能量平衡技术等使跟踪屈服问题全过程,得到结构的下降段曲线成为可能。国内学者关于网壳结构稳定性也进行了大量研究。文献在国外研究的基础上,通过精确化的理论表达式、合理的路径平衡跟踪技术及迭代策略,实现了复杂结构体系的几何非线性全过程分析,取得了规律性的成果。同时利用随机缺陷模态法和一致缺陷模态法两种方法,对网壳结构各种初始缺陷的影响进行研究,较好地描述了结构的实际承载过程。也有一些学者进行了实验

钢结构总结1

钢结构总结1 钢结构的特点、设计方法和材料 一、钢结构的特点 强度高,塑性和韧性好 强度高,适用于建造跨度大、承载重的结构。塑性好,结构在一般条件下不会因超载而突然破坏。韧性好,适宜在动力荷载下工作。重量轻 材质均匀,和力学计算的假定比较符合 钢材内部组织比较均匀,接近各向同性,实际受力情况和工程力学计算结果比较符合。钢结构制作简便,施工工期短 钢结构加工制作简便,连接简单,安装方便,施工周期短。钢结构密闭性较好 水密性和气密性较好,适宜建造密闭的板壳结构。钢结构耐腐蚀性差 容易腐蚀,处于较强腐蚀性介质内的建筑物不宜采用钢结构。钢材耐热但不耐火 温度在200℃以内时,钢材主要力学性能降低不多。温度超过200℃后,不仅强度逐步降低,还会发生兰脆和徐变现象。温度达600℃时,钢材进入塑性状态不能继续承载。 在低温和其他条件下,可能发生脆性断裂。

二、钢结构的设计方法和设计表达式 《钢结构设计规范》除疲劳计算外,采用以概率理论为基础的极限状态设计方法,用分项系数的设计表达式进行计算。 1.极限状态 当结构或其组成部分超过某一特定状态就不能满足设计规定的某一功能要求时,此特定状态就称为该功能的极限状态。 。 1 以结构构件的荷载效应S和抗力R这两个随机变量来表达结构的功能函数,则 Z=g(R,S)=R-S (1) 在实际工程中,可能出现下列三种情况: Z>0 结构处于可靠状态; Z=0 结构达到临界状态,即极限状态; Z<0 结构处于失效状态。 按照概率极限状态设计方法,结构的可靠度定义为:结构在规定的时间内,在规定的条件下,完成预定功能的概率。这里所说“完成预定功能”就是对于规定的某种功能来说结构不失效(Z≥0)。这样结构的失效概率pf表示为 pfP(Z0) (2)

钢结构整体稳定性

在钢结构的可能破坏形式中,属于失稳破坏的形式包括:结构和构件的整体失稳;结构和构件的局部失稳。钢结构和构件的整体稳定,因结构形式的不同、截面形式的不同和受力状态的不同,可以有各种形式。轴心受压构件是工程结构中的基本构件之一。其形式分为实腹式轴心受压构件和格式轴心受压构件。在工程结构中,整体稳定通常控制着轴心受压构件的承载力,因为构件丧失整体稳定性常常是突发性的,易造成严重后果,所以应加以特别重视。对于钢构件轴心压杆承载力的极限状态是丧失稳定。轴心压杆整体失稳可能是弯曲屈曲、扭转屈曲、也可能是弯扭屈曲。 1、轴心压杆整体失稳形式 一根完全弹性的材料和无缺陷的轴心压杆,达到承载力的极限状态时,究竟呈弯曲屈曲、扭转屈曲、还是弯扭屈曲,要看它的材料和截面抗弯刚度EI、杆约束扭转刚度、杆自由扭转刚度GJ以及长度L的大小。 1.1弯曲失稳 对于截面没有削弱的双轴对称工字形等截面轴心受压构件,在承受较小压力Ⅳ时,构件可保持顺直。若遇到干扰力使其产生微小变形,在干扰力去掉后,构件将恢复其直线状态。当Ⅳ增加到一定大小后,该平衡状态则会转为不稳定平衡,亦即此时若有干扰力使其发生微变,则干扰力去掉后,构件任保持微弯状态。这时如果压力Ⅳ再稍加,则弯曲变形就会迅速增大而使构件丧失承载能力。这种现象称为构件的弯曲失稳或弯曲屈曲。 1.2扭转失稳 某些抗扭刚度较弱的十字截面和z形截面等轴心受压构件,当Ⅳ达到某一临界值时,构件将发生微扭变形。同样,若N再稍微增加,则扭转变形迅速增大而使构件丧失承载能力。这种现象称为扭转屈曲或扭转失稳。 1.3弯扭失稳 当构件的截面为单轴对称时,可能会发生绕非对称轴弯曲屈曲,也可能会发生绕对称轴弯曲变形并同时伴随有扭转变形的屈曲,这称为弯曲扭转屈曲或弯曲扭转失稳,简称弯扭屈曲或弯扭失稳。 2、考虑各种缺陷时的临界应力 实际工程中钢轴心压杆是弹塑性材料,但理想的轴心压杆并不存在,钢构件

钢结构基本原理全面详细总结!

钢结构基本原理复习总结 一.填空题 1、影响结构疲劳寿命的最主要因素是构造状态、循环荷载和循环次数。 2、钢材的机械性能指标为屈服强度、抗拉强度、伸长率、冷弯性能、 Z向收缩率和冲击韧性。 3、荷载作用点的位置对梁的整体稳定有影响,相对于荷载作用于工字形截面简支梁受拉翼缘,当荷载作用于梁的受压翼缘时,其梁的整体稳定性将降低。 4、某工字形组合截面简支梁,若腹板的高厚比为100,应设置横向加劲肋,若腹板高厚比为210,应设置纵向加劲肋。 的杂质元素。 6、在轴心受压构件中,确定箱形截面板件满足局部稳定的宽(高)厚比限值的原则是构件应力达到屈服前其板件不发生局部屈曲(或局部屈曲临界应力不 低于屈服应力,或不先于屈服),确定工字形截面确定板件宽(高)厚比限 值的原则是构件整体屈曲前其板件不发生局部屈曲(或局部屈曲临界应力不 低于整体屈曲临界应力或等稳定或不先于整体失稳)。 7.衡量钢材塑性性能的主要指标是伸长率。 9.钢材五项机械性能指标是屈服强度、抗拉强度、延伸率、冷弯性能、冲击韧性。

12.对于缀条式格构柱,单肢不失稳的条件是单肢稳定承载力不小于整体稳定承载力。 13.薄板的强度比厚板略高。 14.角焊缝的最小计算长度不得小于和焊件厚度。 15.承受静力荷载的侧面角焊缝的最大计算长度是。 。 16.在螺栓连接中,最小端距是 2d 17.在螺栓连接中,最小栓距是 3d 。 18.普通螺栓连接,当板叠厚度∑t〉5d时 (d-螺栓直径),连接可能产 生栓杆受弯破坏。 19.单个普通螺栓承压承载力设计值,式中表示受力方向承压构件总厚度的较小值。 20.普通螺栓连接靠螺栓杆传递剪力;摩擦型高强度螺栓连接靠摩擦 力传递剪力。 21.手工焊焊接Q235钢,一般采用 E43 型焊条。 22.焊接结构在焊缝附近形成热影响区,该区材质存在缺陷。 23.侧面角焊缝连接或正面角焊缝的计算长度不宜。 24.承压型高强度螺栓仅用于承受非动力荷载结构的连接中。 25.采用手工电弧焊焊接Q345钢材时应采用 E50 焊条。 26.格构式轴心受压构件的等稳定性的条件绕虚轴与绕实轴的长细比相同。 27.双轴对称的工字型截面轴压构件失稳时的屈曲形式是弯曲屈曲。

钢结构课程总结

在大三的第一学期我们在老师的带领下学习了钢结构这门课,虽然只有短短的的六周时间,但我们也掌握了许多重要知识,对钢结构的特点,强度、稳定等验算、连接方式等都有了进一步的了解与掌握。学习的过程中不仅学习了新的知识概念,更多的还是掌握的新的解题方法,形成了新的解题思想。了解了钢结构的一些基本知识,这对我们今后的专业入门有极大的帮助。 一、钢结构的概述 由型钢和钢板连接成基本构件,然后运至现场组装成整体结构形式,称为钢结构。 1 钢结构特点 材料的强度高,塑性和韧性好;钢结构构件断面小、自重轻;钢结构制作简便,加工周期短;钢结构材质性能均匀,易于检测和控制,可靠性高;钢结构建筑易于改造,原料可重复使用,节省资源,环保资源;钢结构建筑可以实现大跨度、大空间结构;耐腐蚀性能差,涂料维护费用高;钢材耐热但不耐火。 2钢结构的合理应用范围 ①大跨度结构;②重型厂房结构;③受动力荷载影响的结构;④可拆卸的结构;⑤高耸结构和高层建筑;⑥容器和其他构筑物;⑦轻型钢结构。 3建筑钢结构的结构形式 单层钢结构(重型钢结构)工业厂房;大型空间(大跨度)钢结构;高层钢结构;高耸结构;桥梁钢结构;轻钢结构;住宅钢结构;容器和其它构筑物。 4钢结构的极限状态 《钢结构设计规范》除疲劳计算外,采用以概率理论为基础的极限状态设计方法,用分项系数的设计表达式进行计算。当结构或其组成部分超过某一特定状态就不能满足设计规定的某一功能要求时,此特定状态就称为该功能的极限状态。 (1)承载能力极限状态:包括构件和连接的强度破坏、疲劳破坏和因过度变形而不适于继续承载,结构和构件丧失稳定,结构转变为机动体系和结构倾覆。(2)正常使用极限状态:包括影响结构、构件和非结构构件正常使用或外观的变形,影响正常使用的振动,影响正常使用或耐久性能的局部损坏。 二、钢结构的材料 1 对钢结构用钢的基本要求: (1)较高的抗拉强度,和屈服点; (2)较高的塑性和韧性; (3)良好的工艺性能; (4)根据具体工作条件,有时还要求钢材具有适应低温、高温和腐蚀性环境

建筑钢结构的稳定性设计综述

建筑钢结构的稳定性设计综述 摘要:建筑钢结构设计不但施工工艺简单,质量轻,而且还具有很高的强度, 但同时钢结构本身也存在一定的不稳定性,在外力干扰作用下,极易发生结构失稳,从而对建筑结构的平衡力和结构产生一定负面影响,一旦结构出现变形,必 然会对钢结构寿命和正常使用造成一定负面影响,从而增加工程事故发生概率。 为了有效改善此情况,有必要进一步分析和研究能够提高建筑钢结构设计稳定性 的设计方法,从而大大提升建筑钢结构的稳定性性能。 关键词:钢结构;稳定性;设计 前言:稳定性是钢结构设计的重要环节。一旦无法保证稳定性,对于这座建 筑而言,将失去它的意义。在建筑钢结构设计中,稳定性的考虑是最基本的问题,假设得到不妥善处理,必然会影响建筑的稳定性。在混凝土钢结构设计中,应先 对钢结构进行计算,再进行验算,以避免钢结构的失稳。为了克服这些困难,保 证建筑结构的性能,目前钢结构稳定设计中存在的缺陷主要集中在钢结构对稳定 性的影响上。 1建筑钢结构概述 1.1建筑钢结构的优点 由于建筑钢结构是一种能保证建设工程稳定的结构,它起着支撑作用,并具 有一定的抗震效果,其塑性和强度都比较强。在发生地震时,钢结构具有一定的 缓冲作用,减少了地震对房屋的破坏,提高了建筑物的安全性。建筑钢结构支撑 着整个建筑物,建筑钢的材料具要比钢筋混凝土材料要精确的多,所以会有部分 人在建筑工程项目中选择使用建筑钢结构。钢结构的可塑性也比较强,钢结构适 用于各种跨度比较大的建筑,较强的可塑性,导致建筑钢结构在受力过程中更加 的合适。而建筑钢结构的施工方法相对简单,建筑钢结构由钢板组成,钢板的生 产工艺也非常简单,大大缩短了施工周期。 1.2建筑钢结构存在的不足 建筑钢结构在建筑工程中的应用还存在一些不足。与其他建筑材料相比,钢 结构的耐腐蚀性和耐火性相对较低。如果有腐蚀性的东西,结构就会损坏。而且,如果发生火灾,房子很容易着火。危险和安全隐患很多。这些情况都不利于房屋 的质量安全。在实际的施工过程中,很多的建筑项目会选择一些强度比较低的钢 结构,这样就会导致建筑项目在施工过程中出现各种各样的问题。 2钢结构稳定设计中的几个问题 2.1结构完整性的影响 在钢结构设计稳定性分析过程中,设计者需要有一种全局感,从整体建筑的 角度考虑钢结构的整体性,充分考虑构件本身的特点。随着数据信息运用效率的 提升,分析钢结构设计中整体刚度、失稳问题的时候常常以临界压力求解法、折 减系数等方式,计算出轴心杆的稳定性。同时弹性稳定性设计也是钢结构设计中 的重要内容,在计算的过程中不仅仅要考虑钢结构本身的稳定性,还要做二阶分析。主要是因为结构内力被建筑结构中部分柔性构件变形量而影响,最后发生变化。对于应力叠加问题,设计人员应充分考虑。由于弹性稳定计算和结构变形关 系分析非常复杂,目前在弹性稳定计算中还没有得到广泛的应用。 2.2不确定因素分析 钢结构设计的稳定性会受到许多不确定因素的影响,主要表现在物理、几何 和力学方面。在结构设计中,涉及到材料、截面面积、构件尺寸、应力等诸多因

钢结构的稳定性

钢结构的稳定可分为结构整体的稳定和构件本身的稳定两种情况。 结构整体的稳定,在结构的纵向,主要依靠结构的支撑系统来保证,如钢柱的柱间支撑,钢屋架的上、下弦水平支撑和垂直支撑等。计算时主要考虑支撑系统能可靠地传递结构纵向的水平荷载(风荷载、地震荷载、厂房吊车荷载等)。在结构的横向,主要依靠结构自身(框架或排架)的刚度来保证,计算时主要要考虑结构自身能可靠地传递结构横向的水平荷载。 构件本身的稳定主要由构件组成部份的自身刚度来保证。计算时要保证构件本身及其组成部份(杆件或板件)在荷载作用下不发生屈曲而丧失稳定(这种情况主要发生在受压或压弯构件上)。在实际计算中,一般是用稳定系数来限制钢材的设计强度。使构件中的最大应力不大于钢材的设计强度乘以稳定系数后的值。这样的公式在钢结构的受压和受弯的计算公式中均可见到。 稳定系数是个主要与构件的长细比(杆件)或高厚比(板件)有关的系数,控制了长细

比和高厚比也就等于控制了构件的稳定。 所以说,构件本身的稳定因素主要是构件的计算长度和截面特性,包括平面内和平面外的两个方向。当然,还应该包括材料的强度和应力的大小。 对钢管的强度和稳定性(整体稳定性)都有影响,当钢管受拉时,其破坏是强度破坏,它能承受的轴向拉力设计值为:N=A*f,其中:A是钢管的截面面积,f是钢材的强度设计值,由于钢管壁厚的减小,必然导致钢管截面面积的减小,从而导致钢管承受的轴向拉力值的减小。当钢管受压时,其破坏是稳定性破坏,它能承受的压力设计值为:N=φ*f*A,其中:φ是钢管的整体稳定系数,可以根据它的长细比由钢结构设计规范的附表查到,长细比的计算公式是:λ=l/i,l 是它的计算长度,i是截面的回转半径,由于钢管壁厚的减小,必然导致i的减小,因为i=sqrt(I/A),这里的I是钢管的截面惯性矩,A为截面面积,所以由于壁厚的减小,导致了长细比的增大,从而导致了稳定系数φ的减小,最终导致了稳定承载力设计值的

建筑钢结构整体稳定性分析

建筑钢结构整体稳定性分析 0 引言 建筑钢结构的应用越来越广泛,其稳定性和重量轻的特点为建筑整体的稳定性起到了促进作用,避免建筑物的倒塌等事故的发生,但是就现状来看,建筑钢结构的整体稳定性还存在着一定的问题,因此加强对钢结构的稳定性研究具有重要的现实意义。 1 建筑钢结构的概述 (1)建筑钢结构的优势。其一,抗震性高。在建筑工程中,选用钢结构是因为其自身的优势所在,由于钢材料的强度较高,另外还具有相对较强的可塑性和柔韧度,能够满足建筑工程的需要。再加上建筑钢结构的延展性比较好,对地震的抗御能力较高,当地震灾害发生时,钢结构具有一定的缓冲能力,其抗震性增加了建筑物的安全性;其二,钢结构的精确度较高。为了增强建筑物的稳定性,应选用精确度较高的材料,钢结构就具备这样的优势,因为它相对传统的钢筋混凝土结构具有较强的精确度。另外,钢结构还具有一定的可塑性和韧性,可以适用于大跨度的建筑。如果想要达到增强建筑物稳定性的目的,就应优先选用钢结构,它的应力幅度具有很强的弹性,而且这种钢建筑在受力的情况下,与工程建筑的力学计算方式相符合,被广

泛的应用;其三,建筑钢结构的施工过程较简单。建筑钢结构主要是由钢板、冷加工的薄型钢板或者是热轧型钢为材料制作而成的,不论是制作过程还是制作方法都相对较简单,这样就有力的缩短了建筑施工的周期和建筑施工所用的成本;(2)建筑钢结构的劣势。建筑钢结构在拥有一定优势的情况下,同时也存在着一定的不足,主要体现在钢结构的耐腐蚀性和抗火性相对较差,这些都隐藏着一定的危险,容易引发事故。除此之外,在建筑施工的过程中,通常选取强度较低的构件,这样就对建筑的整体稳定性造成了一定的限制。因为施工单位一味的注重稳定性,却忽视了强度的重要性,这样就造成了建筑材料的浪费,同时也造成了对建筑工程质量的不良影响。 2 建筑钢结构稳定性的概念 建筑钢结构的强度不够,或是失稳现象出现,都会对建筑结构造成一定的影响。建筑钢结构的稳定性与强度不同,由于建筑构件受到外部的重荷以及建筑结构内部的抵抗能力,在这期间存在着不稳定性,在施工的过程中,最重要的任务就是找到一个平衡的状态,从而减少钢结构损坏的现象出现。在建筑施工过程中,钢材的强度较高,在受到压力的情况下,为了在强度与稳定性之间找到平衡,取得最优的效果,往往都是选择了稳定性方面的要求,这样就导致了建筑钢结构的强度得不到很好的发挥。由此可见,在建筑钢结构的设计过程中,要注重对钢结构强度与稳定的界定,充分的了解对建筑物造成破坏的

最新钢结构工作总结

钢结构工作总结 钢结构工作总结范文: 一、监理组织机构、监理人员和投入的监理设施 我单位承担本工程施工阶段的监理工作(建筑给水排水及采暖、建筑电气、建筑电气防雷接地、钢结构防火涂料 等子分部工程不在监理合同范围内),项目监理机构依据建设单位委托监理合同及工程的设计文件、施工合同及国家法律、法规及施工标准及施工验收规范进行工程监理。 根据本工程的结构特点及工程结构的复杂程度以及工 程的重要性,项目监理机构采用了直线职能制监理机构组织 形式。由总监理工程师直线组织指挥,本工程共安排了三位专业监理人员,一位钢构监理工程师,一位土建监理工程师, 一位监理员。 为了便于工程信息及时有效的沟通,项目监理部配备了专职文档管理人员1名,在总监理工程师的领导及指导下,负责本工程信息的收集、传递、加工、整理、分发的工作, 并配备了电脑、打印机各一台。为了便于控制工程质量,针 对本工程的特点,项目监理部配备了回弹仪、检测锤及测量 仪器等检测工具,由项目监理部专业监理工程师及监理员在 日常针对工程工序质量巡视、检查、平行检验中使用。 二、监理合同履行情况 在监理合同履行的过程中,针对本工程在施工过程中质量、进度方面出现的偏差问题,项目监理部为了保证三大 控制目标不变,在做好信息管理工作的同时,针对工程出现 问题的特点及时调整监理目标控制措施,并及时与业主及施 工单位进行沟通做好协调工作。在工程施工阶段的监理工作 中项目监理部采取切实有效的组织措施及方法,对工程质量 及进度的目标进行控制,主要采用专题会议措施、阶段性监 理工作总结措施、现场调查法、全过程全方位跟踪监督管理 法等措施和方法对工程进行监理,保证了工程合同的切实有 效履行。 本工程的投资控制工作由业主自行控制;本工程的工

钢结构工作总结

钢结构工作总结 一.工程概况 本工程位于江阴-靖江工业园区,头圩港至上六圩港之间,单层钢结构厂房,采用桩基础;建筑面积为52625平方米,工程造价为5520万元。建设单位为江苏新扬子造船有限公司;设计单位为苏州中才非金属矿工业设计研究院有限公司;监理单位为南京工大建设监理咨询有限公司;施工总承包单位为宜兴陶都建筑安装工程有限公司;钢构制作分包单位为安微鸿路钢构有限公司;江苏宜兴赛特钢构有限公司;钢构安装单位为江苏宜兴赛特钢构有限公司;钢管柱c50砼采用商品砼供应商为靖江市三江商品砼有限公司。 二、监理组织机构、监理人员和投入的监理设施 我单位承担本工程施工阶段的监理工作(建筑给水排水及采暖、建筑电气、建筑电气防雷接地、钢结构防火涂料等子分部工程不在监理合同范围内),项目监理机构依据建设单位委托监理合同及工程的设计文件、施工合同及国家法律、法规及施工标准及施工验收规范进行工程监理。 根据本工程的结构特点及工程结构的复杂程度以及工程的重要性,项目监理机构采用了直线职能制监理机构组织形式。由总监理工程师直线组织指挥,本工程共安排了三位专业监理人员,一位钢构监理工程师,一位土建监理工程师,一位监理员。 为了便于工程信息及时有效的沟通,项目监理部配备了专职文档管理人员1名,在总监理工程师的领导及指导下,负责本工程信息的收集、传递、加工、整理、分发的工作,并配备了电脑、打印机各一台。为了便于控制工程质量,针对本工程的特点,项目监理部配备了回弹仪、检测锤及测量仪器等检测工具,由项目监理部专业监理工程师及监理员在日常针对工程工序质量巡视、检查、平行检验中使用。 三、监理合同履行情况 在监理合同履行的过程中,针对本工程在施工过程中质量、进度方面出现的偏差问题,项目监理部为了保证三大控制目标不变,在做好信息管理工作的同时,针对工程出现问题的特点及时调整监理目标控制措施,并及时与业主及施工单位进行沟通做好协调工

ansys分析钢结构稳定问题

ANSYS软件分析轴压和压弯构件的 稳定性问题

摘要:轴心受压杆件和压弯杆件广泛应用于工程中,本文通过ansys软件对该两种杆件进行分析,对于轴心受压杆件,运用beam189、solid95、shell65单元,进行弹性稳定分析和非线性分析,得到其屈曲荷载和变形情况;对于压弯杆件,在集中荷载和分布荷载的条件下,运用beam3单元进行非线性分析,得到其最大弯矩值,通过和理论值相比较,验证其正确性。 关键词:ANSYS;轴心受压杆件;压弯杆件;非线性分析 Abstract:Axial strut pieces and bending rods are widely used in engineering. This paper, using ANSYS software, analyzes the two rods. For Centrally Compressed Members, this paper using beam189, solid95, shell65 unit, carries out elastic stability analysis and nonlinear analysis, getting the buckling load and deformation. For the bending rod under conditions of concentrated loads and distributed loads, nonlinear analysis was conducted using beam3 unit, getting its greatest moment, and was compared to theoretical value to verify its correctness. Keywords: ANSYS;Centrally Compressed Members; the bending rod member; nonlinear analysis 钢材具有高强度、质轻、力学性能良好的优点,是制造结构物的一种极好的建筑材料,所以广泛运用于工程实例中,它和钢筋混凝土结构相比,对于充任相同受力功能的构件,具有截面轮廓尺寸小、构件细长和构件柔薄的特点。对于因受压、受弯和受剪等存在受压受压区的构件或板件,如果技术上处理不当,可能使钢结构出现整体失稳或局部失稳。失稳前结构物的变形可能很微小,突然失稳使结构物的几何形状急剧改变而导致结构物完全丧失抵抗能力,以致整体塌落。钢结构的稳定性能是决定其承载力的一个特别重要的因素[1]。对于钢结构稳定性的研究也就极其重要。而轴压杆件和压弯杆件是钢结构的基础,对此杆件进行稳定性分析也就是不可避免的和尤为重要的。所以,非常有必要利用大型通用ANSYS软件对这两类杆件进行分析,得到一系列的研究成果。 一、基本理论 结构在荷载作用下由于材料的弹性性能而发生变形,若变形后结构上的荷载保持平衡,这种状态称为弹性平衡。如果结构在平衡状态时,受到扰动而偏离平衡位置,当扰动消除后仍能恢复到原来平衡状态的,这种平衡状态称为稳定平衡状态。根据失稳的性质,结构的稳定问题可以分为平衡分岔失稳,极值点失稳和跃越失稳三种情况。结构的弹性稳定分析属于平衡分岔失稳,在ANSYS中对应的分析类型是特征值屈曲分析(Buckling Analysis)[2]。

钢结构厂房实习心得

钢结构厂房实习心得 钢结构厂房实习心得范文1 通过这次现场施工实习,我不但学到了高大构件的吊装过程,还从天幕的安装中得到了一点启示,那就是在设计这种拱行简支梁时,要考虑到他们的沉降是否均匀,他们的水平变形是比较大的。 通过这次实习我还了解到各种钢结构建筑设计的原理,使我不仅巩固课堂中所学的理论知识,而且也扩大了个人的视野,不仅对钢结构施工有了较好的认识,也同时更加深入认识了自己所学专业,为将要进入工作岗位奠定了良好的基础和准备。使我有信心做好一名土木工程人员,为土木事业做出一定的贡献。我认为这次实习对我将来的工作有着很重要的意义,在接下的日子里我将把这次实习和课堂学到知识认真结合,努力用到实际工作中。为自己的未来好好努力。 钢结构厂房实习心得范文2 在公司的安排下我来到陕西建业10万吨华建福仓项目部,本工程是公司目前最大的钢板仓工程,工期也是最紧的工程。我的专业是道路桥梁技术工程,进入公司前曾在海德路桥担任技术员,从事桥梁施工,历时一年;曾在青岛路桥担任技术员,从事高速公路施工,历时一年;现在,我进入了一个新的行业,钢板仓施工,曾经的施工经验在钢板仓工程上变得不再重要,刚进工地时,感觉十分茫然,在经理张令新带领下逐渐融入工地,在同事孔令雷、李士强的指导下逐步在钢板仓施工中走向成熟,两

个月过来,钢板仓库体落成。 回首这两个月,有苦有甜,有失败有成功,痛恨自己对焊接的不懂,又有学会钢构施工的欢乐,万分庆幸,感谢公司给我这个机会,让我能在刚进入公司就参与到华建福仓这个奇迹工程中来,下面,我对我这两个月的成长做出总结,钢结构是未来的发展趋势,以前我国的钢结构发展缓慢主要是因为钢结构造价高(毕竟我们是发展中国家)以及钢材产量有限。今非昔比,钢结构强度高、自重轻、刚度大;材料塑性、韧性好,可有较大变形,能很好地承受动力荷载;建筑工期短;其工业化程度高,可进行机械化程度高的专业化生产;加工精度高、效率高、密闭性好的特点无论在生产、加工、安装使用上都占有绝对的优势,在今天,钢结构已经成为未来发展的趋势。 车间里很多老师傅对钢结构的生产加工都非常有经验,对钢结构的生产加工工艺也非常熟知,因此从他们热情的教导中我学到了真正的专业知识,而且少走了弯路,结交了朋友。首先车间生产安全和消防安全非常重要,虽然是一名实习学生,在日常工作中,要和其他同事一样,将安全生产,标准生产牢记心中。注重并严格执行钢结构生产压、验收规范中所制定的工艺流程和技术要求,把工作有计划,合理地安排,能够做到细心、精心、用心、善于发现并解决问题。让工作有顺序和准备充分,例如日常质检工作中,对焊缝质量应根据材质、焊件厚度、焊接工艺、施焊时气温、及结构性能确定焊接结构是否需要焊前预热或焊后热处理等。

钢结构的-稳定性验算

第七章 稳定性验算 整体稳定问题的实质:由稳定状态到不能保持整体的不稳定状态;有一个很小的干扰力,结构的变形即迅速增大,结构中出现很大的偏心力,产生很大的弯矩,截面应力增加很多,最终使结构丧失承载能力。 注意:截面中存在压应力,就有稳定问题存在!如:轴心受压构件(全截面压应力)、梁(部分压应力)、偏心受压构件(部分压应力)。 局部稳定问题的实质:组成截面的板件尺寸很大,厚度又相对很薄,可能在构件发生整体失稳前,各自先发生屈曲,即板件偏离原来的平衡位置发生波状鼓曲,部分板件因局部屈曲退出受力,使其他板件受力增加,截面可能变为不对称,导致构件较早地丧失承载力。 注意:热轧型钢不必验算局部稳定! 第一节 轴心受压构件的整体稳定和局部稳定 一、轴心受压构件的整体稳定 注意:轴心受拉构件不用计算整体稳定和局部稳定! 轴心受压构件往往发生整体失稳现象,而且是突然地发生,危害较大。构件由直杆的稳定状态到不能保持整体的不稳定状态;有一个很小的干扰力,结构的弯曲变形即迅速增大,结构中出现很大的偏心力,产生很大的弯矩,截面应力增加很多,最终使结构丧失承载能力。这种现象就叫做构件的弯曲失稳或弯曲屈曲。不同的截面形式,会发生不同的屈曲形式:工字形、箱形可能发生弯曲屈曲,十字形可能发生扭转屈曲;单轴对称的截面如T 形、Π形、角钢可能发生弯曲扭转屈曲;工程上认为构件的截面尺寸较厚,主要发生弯曲屈曲。 弹性理想轴心受压构件两端铰接的临界力叫做欧拉临界力: 2222//λππEA l EI N cr == (7-1) 推导如下:临界状态下:微弯时截面C 处的内外力矩平衡方程为: /22=+Ny dz y EId (7-2) 令EI N k /2 =,则: 0/222=+y k dz y d (7-3) 解得: kz B kz A y cos sin += (7-4) 边界条件为:z=0和l 处y=0; 则B=0,Asinkl=0,微弯时πn kl kl A ==∴≠,0sin 0 最小临界力时取n=1,l k /π=, 故 2 2 2 2 //λππEA l EI N cr == (7-5) 其它支承情况时欧拉临界力为: 2 222/)/(λπμπEA l EI N cr == (7-6) 欧拉临界应力为: 22/λπσE cr = (7-7)

相关主题
文本预览
相关文档 最新文档