当前位置:文档之家› A New Multi-focus Image Fusion Method Using Principal

A New Multi-focus Image Fusion Method Using Principal

A New Multi-focus Image Fusion Method Using Principal
A New Multi-focus Image Fusion Method Using Principal

A New Multi-focus Image Fusion Method Using Principal

Component Analysis in Shearlet Domain

Biswajit Biswas

Department of Computer

Science and Engineering

University Of Calcutta,

Kolkata,India biswajit.cu.08@https://www.doczj.com/doc/2118062936.html,

Ritamshirsa Choudhuri

Department of Computer

Science and Engineering

University Of Calcutta,

Kolkata,India

ritam.shirsa@https://www.doczj.com/doc/2118062936.html,

Kashi Nath Dey

Department of Computer

Science and Engineering

University Of Calcutta,

Kolkata,India

kndey55@https://www.doczj.com/doc/2118062936.html, Amlan Chakrabarti

AKCSIT

University Of Calcutta,

Kolkata,India

acakcs@caluniv.ac.in

ABSTRACT

The multi-focus image fusion used to produce a single im-age where the entire view is focused by combining multi-ple images taken with di?erent focus distances.Here we present a concept for multi-focus image fusion using Princi-pal component analysis(PCA)method on shearlet domain. Our proposed concept works on two folds,i)transform the source image into shearlet-image by using shearlet transform (ST),ii)use of PCA model in low-pass sub-band by which the best pixels in smooth parts are selected according to their arrangement.The composition of di?erent high-pass sub-band coe?cients achieved by the ST decomposition are realized.Then,the resultant fusion image is reconstructed by performing the inverse shearlet transform(IST).The ex-perimental results,show that our proposed technique can tender enhanced fusion results than some existing methods in the state-of-the-art.This comparative assessment done in the lights of qualitative and quantitative measurements in terms of mutual information and fusion matrix Q AB/F. Categories and Subject Descriptors

1.4[Computing Methodologies]:Image Processing—Im-age Fusion

Keywords

Multi-focus image fusion,shearlet transform,Principal com-ponent analysis,mutual information

1.INTRODUCTION

Image fusion is the process of combining information from Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for pro?t or commercial advantage and that copies bear this notice and the full citation on the?rst page.To copy otherwise,to republish,to post on servers or to redistribute to lists,requires prior speci?c permission and/or a fee.Request permissions from Permissions@https://www.doczj.com/doc/2118062936.html,. PerMin’15February26-27,2015,Kolkata,West Bengal,India Copyright2015ACM978-1-4503-2002-3/15/02...$15.00

https://www.doczj.com/doc/2118062936.html,/10.1145/2708463.2709064.two or more images of a scene into a single composite im-age that is more informative and is more suitable for visual perception or computer processing[1].This technology has been widely used in the di?erent areas such as military,re-mote sensing,medicine etc[2].Now-a-days,many image fusion techniques have been proposed to fuse multi-focus images[8,9,11,12].In general,these fusion techniques can be categorized into two classes:i)spatial domain methods ii)transform domain methods[1,2].

In spatial domain methods,images can directly fuse inten-sity values of pixels from the input images.The simplest fu-sion method of this class is to compute the average of all the input images,i.e.‘Average scheme’,but average scheme is often su?ers sharpness and contrast degradation problem[3]. An improvement over this baseline method is to use for the sharper pixels at each pixel location over all the input im-ages to compose the fused image.This method requires an evaluation metric,such as variance[2],energy of image gra-dient[3],energy of Laplacian[3,5],to establish what amount of a pixel be fused.However,these pixel-based methods e.g.Principle component analysis(PCA),Intensity-Hue-Saturation(IHS),etc.,the presence of noise can cause in-accurate measurement of sharpness and degrade fusion per-formance,while sharpness is evaluated locally around each pixel[3].To resolve the noise issue,block-based methods have been proposed[8].For block based methods,the input images are?rst divided into blocks/regions,the fused image is then composed by selecting the sharper blocks/regions from the input images[12].These block-based methods may su?er that the artifacts can be appear at the boundary of blocks which greatly reduce the quality of the fused image. These limitations of spatial domain methods handled on transform domain methods.The Wavelet transform,Lapla-cian pyramid or Curvelet transform,are pioneering methods of transform domain.These methods produce better results than any spatial domain methods.In recent years,wavelet transform for time-frequency localization,multi-scale char-acteristic and spare representation of target function with point singularity is widely used in image processing and achieved good e?ect[6,7,10].However,for images con-tained higher dimension singularity,wavelet transform can-not achieve the optimal spare approach[13,14].Thus,to

resolve the such limitation,wavelet transform represents im-ages,multi-scale geometric analysis theory is developed and proposed a series of new multi-scale geometric transform method,such as,ridgelet [13],curvelet [13],contourlet [14].Presently,many author have developed fundamental theory of shearlet transform over the a?ne system that is provided the complete characteristic of analysis and synthesis.

The principal component analysis (PCA)is a popular method for feature extraction and dimension reduction and is employed for image fusion [2].Usually,principal compo-nent analysis is a mathematical that transform a number of correlated variables into a several uncorrelated variables.PCA is widely used in data classi?cation [4].We propose image fusion algorithm by combining shearlet transform and PCA techniques and carry out the quality analysis of pro-posed fusion algorithm on set of benchmark Multi-focus im-age.The fusion using PCA is achieved by weighted sum of source images.The weights for each source image are ob-tained from the normalized Eigen vector of the covariance matrices of each source image.Experimental results show that the proposed algorithm provides better results that help to facilitate more accurate analysis of multi-focus images.Our contributions are as follows:?Multi-focus image fusion algorithm using PCA in shear-let domain have been proposed.?In quality analysis,proposed fusion algorithm com-pared with ?ve popular fusion schemes and illustrated that proposed approach more e?cient for Multi-focus images.The rest of the paper is organized as follows.in section 2,Shearlet transform have been discussed in brief and Our proposed method is presented in Section 3and the exper-imental results are illustrated in Section 4.In section 5,furnished the conclusion of this paper.

2.SHEARLET TRANSFORM

Conventionally,the shearlet transform was developed based on an a?ne system with composite dilations [15].The shift-invariant shearlet transform primarily consists of two steps:multi-scale decomposition and directional localization.To save space,we like better to refer the readers to the litera-tures [15,16]for more details.Let us brie?y described the continuous and discrete shearlet transform at ?xed resolu-tion level j on later subsections:

2.1Continuous Shearlet Systems

In dimension n =2,the a?ne systems with composite dilations are the collections of the form:

ΨP Q (ψ)={ψj,k,l (X )(1)

=|det P |j/2ψ

Q l P j

X ?k

:j,l ∈Z ,k ∈Z 2}

where,P,Q are 2×2invertible matrices,f ∈L 2 R 2

,conventionally de?ned as follows:

j,k,l

| f,ψj,k,l |2=||f ||2(2)

The elements of this method are called composite wavelets if ΨP Q (ψ)forms a Parseval frame or tight frame for f ∈L 2 R 2 ,In this system,the dilations matrices P j are related

with scale transformations,while the matrices Q l are related with area-preserving geometric transformations,such as ro-tations and shear.

The de?nition of continuous shearlet transform,usually we have,

ψa,s,k (x )=a ?3/4ψ U ?1s V ?1a (x ?k )

(3)

Where V a =

a 0

√a ,U s = 1001 ,ψ∈L 2 R 2 ,following conditions :

1.?ψ

( )=?ψ( 1, 2)=?ψ1( 1)?ψ2( 2/ 1);2.?ψ

1∈C ∞(R )supp ψ1?[?2,?1/2] [1/2,2],where,ψ1is continuous wavelet;3.?ψ

2∈C ∞(R )supp ψ2?[?1,1],?ψ2>0But ψ2 =1For ψa,s,k ,a ∈R +,s ∈R +and k ∈R +,for any f ∈L 2(R 2),is called shearlet [15],a collection of wavelets with di?erent scales.Here,the anisotropic expansion matrix U s is associated with the scale transform and the shear matrix V a denotes the geometric transformation.Generally,a =4and s =1.Where a,s,k are denote with scale transformations,the shear direction and the translation vector,respectively.

2.2The Discrete Shearlet Transform

The process of the discrete shear transformation can be divided into two steps:i)multi-scale subdivision ii)direction localization [15].The ?gure 1illustrates the decomposition process with the shearlets and the ?gure 4illustrate shearlet transform of an image (‘Book’).

In this process,at any scale j,let f ∈L (Z 2N ).Firstly the Laplacian pyramid method is used to decompose a im-age f j ?1a into low-pass image f j

a and a high-pass image f j h

with N j =N j ?1/4,where f j ?1

a ∈L (Z 2N j ?1),f j a ∈L (Z 2N j )

and f j h ∈L (Z 2N j ?1).After decomposition,estimated ?f j b on a pseudo-polar grid with the sub-sequent one-dimensional band pass ?lter with respect to the signal components,that

generate a special matrix D ?f j b

.Then used a band-pass ?lter on matrix D ?f j b to reconstruct the Cartesian sampled val-ues and ?nally performed the inverse two-dimensional Fast

Fourier Transform (FFT)for reconstruct the image.Figure 2illustrate the structure of the frequency tiling provide by the shearlet transform [15].

3.THE PROPOSED FUSION ALGORITHM

In this paper,we develop a novel multi-focus image fusion

scheme to share the merits of ST and PCA technique.For simplicity,we name this fusion algorithm as ST-PCA fusion algorithm.The main steps of the proposed ST-PCA fusion algorithm is shown in Figure.3.

The proposed fusion scheme (ST-PCA)consists two pro-cessing parts:The low frequency coe?cients of the original image manipulated by using PCA and integrated them with average method.The high frequency coe?cients updated by using an adaptive parameter that is derived from high-pass sub-bands of same and di?erent levels.To summarize the necessary process are described as follows:

3.1PCA transform fusion approach

Principal component analysis is transforms a number of correlated variables into a several uncorrelated variables [5].

Figure 1:The ?gure shows the order of decomposition and directional

?ltering.

(a)

(b)

Figure 2:The structure of the frequency tiling by the shear-let:(a)The tiling of the frequency plane R 2induced by the shearlet,(b)The size of the frequency support of a shearlet ψj,l,k

..

Figure 3:Schematic diagram of ST-PCA-based fusion algo-rithm.

Mostly,the image fusion using PCA is achieved by weighted factor of source images.The weights for each source im-age are obtained from the normalized Eigen vector of the covariance matrices of each source image [2,5].

The concept and method of this way is explained in detail in references [2,5],the basics of PCA fusion as follows:?First,the Multi-focus image is transformed with PCA technique and the Eigen values and corresponding

Eigen-

(a)Original

image (b)Shearlet

coe?cients

(c)

Shearlet (d)Re-constructed

Figure 4:Illustration of Shearlet transform on Benchmark image Book:(a)Original ‘Book’image,(b)Shearlet coe?-cients,(c)Shearlet,and (d)Re-constructed ‘Book’image.

vectors of correlation matrix between the Multi-focus source images.However,the individual bands is prin-ciple components of derived matrix [4].

?Second,the Multi-focus images are matched by the estimated principle components and using as weighted average for individual bands.?Finally,the ?rst band of the ?rst Multi-focus image is multiply with the ?rst principle component and ?rst band of the second Multi-focus image is multiply with the second principle component and ?nally,for integra-tion of low-pass sub-bands inverse shearlet transform have been done.

3.2

Evaluation of low frequency sub-band co-ef?cients

Conventionally,the shearlet low-pass sub-bands e?ciently represents the approximation of an original image [15].In this paper,the section scheme based on threshold has been used to produce the best fused low-pass coe?cients.As,local image features have a highly related with the ST co-e?cients,and its corresponding neighborhoods [15].Also,the threshold is determined from the ST coe?cients,and its neighborhood.Furthermore,the local disparity reveals of shearlet coe?cients is mostly related with the clarity of fused image.Thus,to obtain better fused result,here prin-cipal ST coe?cients are selected and combined by principal component analysis (PCA)method.We can summarize the overall procedure as follows:

Let L g (i,j )denote the low-pass sub-band located at (i,j ),g =X,Y .The fused low-pass coe?cients L F (i,j )are achieved

by the following calculation:

L F (i,j )=αL X (i,j )+βL Y (i,j )

(4)

where α,β,α+β=1are two parameters,which are deter-mine via PCA method as follows:

1.Initially,we estimate covariance matrix C (i,j )from L g (i,j )and calculate Eigen value V and vector D from matrix C (i,j )successively [4].

https://www.doczj.com/doc/2118062936.html,ter,we have [V,D ]=eigen(C (i,j )),thus if D (i,i )≥D (i +1,i +1),then normalized the i th column of eigen value matrix V otherwise normalized the (i +1)th col-umn of eigen value matrix V .For i =1,we can write as V (:,i )/ n i =1

V (:,i )and V (:,i +1)/ n

i =1V (:,i +1)respectively.3.Finally,?rst element of normalized Eigen vale matrix V represents by αand second value by β.

that are α=V (:,i )/

n i =1V (:,i )and β=V (:,i +1)/ n i =1V (:,i +1)respectively.

3.3

Evaluation of high frequency sub-band co-ef?cients

High-pass sub-bands of ST provides the details informa-tion of the image,such as edge,corner and etc.[16].To enhance the performance of image fusion method,a new de-cision mapping scheme has been proposed and integrated with shearlets high-pass sub-bands.

Let H l,k

g (i,j )be the high-pass coe?cient at the location (i,j )in the l th sub-band at the k th level,g =X,Y .In short,the process of high-pass shearlet sub-bands by proposed fu-sion method ST-PCA is as follows:

For the current sub-band H l,k

g of the horizontal levels,let

R g,h is the total of H l,k

g and the other horizontal sub-bands H m,k g in same level k .It is computed by:

R g,h

=K k =1L l =1

| H l ?1,k g ?H l,k

g |(5)

where |·|is absolute distance between two consecutive levels.

Similarly,for vertical level,let R g,v is the sum of H l,k

g

and all the other vertical high-pass sub-bands H m,n

g in the di?erent high-pass levels.We evaluated as follows:

R g,v =

K l,m =1L k,n =1

|

H l,k

g

?

H m,n g

|(6)

To determine the horizontal ζg,h and the vertical ζg,v high-pass sub-band dependency factor for the present high-pass

shearlet sub-band H l,k

g ,we performed:

ζg,h =

R g,h

G,h g,v (7)

ζg,v =

R g,v

(R g,h +R g,v )

(8)

The parameter ζg,h is a relationship between H l,k

g and other neighbor high-pass sub-bands in the same horizontal plane,

and ζg,v relationship between H l,k

g in the di?erent vertical plane with its corresponding neighbor sub-bands.

Table 1:Statistical result analysis of ST-PCA Performance metric

‘Book ’‘Clock’‘Pepsi ’MI 8.2478.0358.011Q

AB/F 0.703

0.731

0.771

Finally,to derived the new coe?cients H l,k

g,new from old

shearlet high-pass sub-bands H l,k

g by the factors ζg,h and ζg,v ,we evaluated as follow:

H l,k g,new =H l,k g ×

1+ζ2g,h +ζ2g,v (9)However,the fused coe?cients H l,k

F (i,j )are obtained by the following estimation:

H F (i,j )=

H l,k X,new (i,j )if H l,k X,new ≥H l,k Y,new

H l,k

Y,new (i,j )otherwise

(10)The procedure of the ST-PCA fusion algorithm is sum-marized as :

?The images to be fused must be registered.

?These source images are decomposed by ST transformed.?Best low-pass sub-band are estimated by PCA using

Eq.4and the ?nal fused image are obtained via IST.?Largest high-pass shearlet coe?cients are selected by Eqs.9,10and fused by proposed fusion rules.?Largest directional shearlet sub-bands is selected.?The fused image is reconstructed by IST.

4.EXPERIMENTAL ANALYSIS

In this section,we assessed the performance of the pro-posed multi-focus image fusion technique (ST-PCA).The proposed ST-PCA and other selected fusion algorithms are analyzed on a set of benchmark image.Here,three of them are presented to demonstrate the performance of the algo-rithm and two of them are shown the comparative analysis.The benchmark image sets are available at https://www.doczj.com/doc/2118062936.html, as shown in ?gure.5.In our experiments,we compared the performance of proposed ST-PCA method with ?ve di?er-ent fusion schemes such as (1)Principal component analysis (PCA)[2,4](2)Laplacian pyramid technique (LPT)[5](3)Discrete wavelet transform (DWT)[6],(4)Curvelet trans-form (CVT)[13]and (5)Non-sub-sampled counterlet trans-form (NCST)[14]respectively.Our experimental platform is MATLAB R2010b in the PC Intel Quad-Core i33.2GHz CPU and 8GB memory.

Here we have selected two most popular fusion metrics such as Mutual Information (MI)[17]and Q AB/F [18],to evaluate the performance of multi-focus fusion.The MI determines how much information is achieved from the in-put images.This is accomplished by accumulating the mu-tual information of the fused image with each of the input images [17].On the other hand,the performance metric,Q AB/F [18],is based on the assumption that the perceptu-ally important information of an image is the high-frequency edge details.This metric compute how much edge informa-tion is transferred from the input images to the fused image.

Table2:Statistical results of comparative assessments of various fusion schemes

Fusion Method Performance metric‘Clock’‘Pepsi’PCA MI7.1277.301

Q AB/F0.7080.719 LPT MI7.4187.325

Q AB/F0.7120.722 DWT MI7.5077.480

Q AB/F0.7190.732 CVT MI7.6847.541

Q AB/F0.7200.740 NSCT MI7.9807.897

Q AB/F0.7240.759 ST-PCA MI8.0358.011

Q AB/F0.7310.771 The experimental results demonstrate that the focus in the source images are properly fused in the?nal images. Figure1show three fusion results and?gure2show?ve fused images obtained by di?erent fusion algorithms on the ‘Pepsi’and‘Clock’image sets.The results of MI and Q AB/F are shown in Table1and Table2.Note that the highest score in each row of Tables2is displayed in bold.From Table1and Table2,it can be observed that the ST-PCA method consistently outperforms the other?ve methods in both evaluation metrics on images set?gure5.In addition to the objective evaluation,we also performed a visual com-parison on image set Pepsi as shown in?gure6,and Clock as shown in?gure6,.In?gures.??,6are illustrated the re-sultant fused images obtained from the PCA[2,5],LPT[5], DWT[6],CT[13],NCST[14],and ST-PCA respectively. From Tables1and2,we observed that the ST-PCA is bet-ter to the other?ve ones in terms of all the performance metrics,as a result the ST-PCA superior than others.Fur-thermore,we also observed that the quality score of the proposed algorithm by MI and Q AB/F are much higher than the ones of other fusion methods,the fact is that the method is more e?cient to preserves the salient information of im-age.From the above experiments,we concluded that the proposed ST-PCA persistently outperforms the other?ve methods in image quality measures.

5.CONCLUSION

The Shearlet provides better analytical information about directionality,localization,anisotropy and multi-scale than traditional multi-scale analysis.In this paper,we propose a new multi-focus image fusion algorithm based on shift-invariant shearlet and PCA or ST-PCA model.The main advantage of our proposed ST-PCA method is to determined optimal maps of focus depth of image which is able to im-prove the focus detection accuracy in smooth regions.Sup-ported by the experimental results,we can conclude that,our ST-PCA method tender better results than many other ex-isting state-of-the-art techniques.

6.REFERENCES [1]Anish,A.and Jebaseeli,T.J.A survey on multi-focus

image fusion methods,https://www.doczj.com/doc/2118062936.html,put.Eng.

Technol.(IJARCET).1(8).2012.

[2]Konstantinos,https://www.doczj.com/doc/2118062936.html,parison of nine fusion

techniques for very high resolution data,Photogramm.

Eng.Remote Sens.74(5).2008.647-659.

[3]Wang,Z.Ziou,D.Armenakis,C.Li,D.and Li,Q.A

comparative analysis of image fusion methods,IEEE

Trans.Geosci.Remote Sens.43(6).2005.1391-1402. [4]Sun,J.F.Jiang,Y.J.and Zeng,S.Y.A study of PCA

image fusion techniques on remote sensing,Proc.

SPIE-5985.2005.739-744.

[5]Burt,P.J.The pyramid as a structure for e?cient

computation,in:A.Rosenfeld(Ed.),Multiresolution

Image Processing and Analysis,Springer-Verlag.1984.

6-35.

[6]Pajares,G.de la Cruz,J.M.A wavelet-based image

fusion tutorial,Pattern Recognit.37(9).2004.1855-1872.

[7]Li,H Manjunath,B.S.and Mitra,S.K.Multisensor

image fusion using the wavelet transform,Graph.

Models Image Process.57(3).1995.235-245.

[8]Li,S.and Yang,B.Multifocus image fusion using

region segmentation and spatial frequency,Image Vision Comput.26(7),2008.971-979.

[9]Aslantas,V.and Kurban,R.Fusion of multi-focus

images using di?erential evolution algorithm,Expert

Syst.37(12).2010.8861-8870.

[10]Tian,J.and Chen,L.Multi-focus image fusion using

wavelet-domain statistics,in:201017th IEEE

International Conference on Image Processing(ICIP).

2010.1205-1208.

[11]Zhao,H.Shang,Z.Tang,Y.Y.and Fang,B.

Multi-focus image fusion based on the neighbor distance, Pattern Recognit.46(3).2013.1002-1011.

[12]Huang,W.and Jing,Z.Evaluation of focus measures

in multi-focus image fusion,Pattern Recognit.Lett.

28(4).2007.493-500.

[13]Ali,F.El-Dokany,I.Saad,A.and El-Samie F.A

curvelet transform approach for the fusion of MR and CT images,Journal of Modern Optics.57.2010.273-286.

[14]Do,M.and Vetterli,M.The contourlet transform:an

e?cient directional multiresolution image representation, IEEE Trans.Image Process.104(12).2005.2091-2106. [15]Lim,W.Q.The Discrete Shearlet Transform:A New

Directional Transform and Compactly Supported

Shearlet Frames,IEEE TRANSACTIONS ON IMAGE PROCESSING.19(5).2010.1166-1180.

[16]Easley,https://www.doczj.com/doc/2118062936.html,bate,D.and Colonna,F.

Shearlet-Based Total Variation Di?usion for Denoising, Image Processing,IEEE Transactions on.18(2).2009.

260-268.

[17]Qu,G.Zhang,D.and Yan,https://www.doczj.com/doc/2118062936.html,rmation measure

for performance of image fusion,Electron.Lett.38(7).

2002.313-315.

[18]Xydeas,C.and Petrovic V.Objective image fusion

performance measure,Electron.Lett.36(4).2000.

308-309.

(a)Right focus(b)Left focus(c)ST-PCA

(d)Right focus(e)Left focus(f)ST-PCA

(g)Right focus(h)Left focus(i)ST-PCA

Figure5:Multi-focus image fusion results of ST-PCA-based method:(a,d,g)Right Focus.(b,e,h)Left focus.(c,f,i)ST-PCA.

(a)PCA(b)LPT(c)DWT

(d)CVT(e)NSCT(f)ST-PCA

(g)PCA(h)LPT(i)DWT

(j)CVT(k)NSCT(l)ST-PCA

巧用二次函数图象的对称性解题解析

巧用二次函数图象的对称性解题解析 新盈中学王永升 2010-6-29 二次函数是初中数学的重点内容之一,在初中代数中占有重要位置。其图象是一种直观形象的交流语言,含有大量的信息,为考查同学们的数形结合思想和应用图象信息的能力,二次函数图象信息题成了近年来各地中考的热点。所以学会从图象找出解题的突破点成了关键问题,那就要熟练掌握二次函数的基本知识。比如:二次函数的解析式,二次函数的顶点坐标对称轴方程,各字母的意义以及一些公式,对于这些知识,同学们掌握并不是很困难,但对二次函数图象的对称性,掌握起来并不是很容易,而且对于有关二次函数的一些题目,如果用别的方法会很费力,但用二次函数图象的对称性来解答,也许会有事倍功半的效果。现将这两个典型例题,供同学们鉴赏:例1、已知二次函数的对称轴为x=1,且图象过点(2,8)和(4,0),求二次函数的解析式。 分析:此题中我们可以按照常规的解法,用二次函数的一般式 来解,但运算量会很大,因为我们将会解一个三元一次方程组。 另外,我们还可以利用二次函数的对称性来解决此题。本道题 目的特点是给了抛物线的对称轴方程及一个x轴上的点坐标。因此 我们可以依据二次函数的对称性,求出抛物线所过的x轴上的另一 个点的坐标为(-2,0),这样的话我们就可以选择用二次函数的

交点式来求解析式。设二次函数的解析式为y=a(x+2)(x-4),然后将(2,8)代入即可求出a值,此题得解。 本题利用二次函数的对称性解题减少了大量的运算,既可以准确解题又节省了时间,不失为一种好的方法。 例2、若二次函数y=ax2+b(ab≠0),当x取x1、x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值是____________ 分析:此题我们可以采用常见的将x1、x2代入解析式,由于y 值相等,则可求出x1+x2的值为0,将x=0代入解析式可得函数值为b。 我们也可以用二次函数的对称性来解题。由于二次函数的对称性,当函数值相等时,则两点为对称点,且本题中的二次函数 y=ax2+b(ab≠0)的对称轴为y轴(x=0),所以,我们也可以得到x1+x2的值为0,将x=0代入解析式可得函数值为b。 相比较我们可以知道,利用二次函数的对称性解决本题,减少了运算量,但对于知识点的理解和掌握的要求大大增加了。要求学生对二次函数的对称性的把握要进一步理解、深化。 我们还可以将上题中的解析式变为一般式y=ax2+bx+c,其他条件不变,结果为c。 下面仅以a>0时为例进行解答。当a<0时也是成立的。

初中数学函数知识点归纳(1)

函数知识点总结(掌握函数的定义、性质和图像) 平面直角坐标系 1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系 2、各个象限内点的特征: 第一象限:(+,+) 点P (x,y ),则x >0,y >0; 第二象限:(-,+) 点P (x,y ),则x <0,y >0; 第三象限:(-,-) 点P (x,y ),则x <0,y <0; 第四象限:(+,-) 点P (x,y ),则x >0,y <0; 3、点的对称特征:已知点P(m,n), 关于x 轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y 轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号 4、点P (x,y )的几何意义: 点P (x,y )到x 轴的距离为 |y|, 点P (x,y )到y 轴的距离为 |x|。 点P (x,y )到坐标原点的距离为22y x + 5、两点之间的距离: 已知A ),(11y x 、B ),(22y x AB|=2 12212)()(y y x x -+- 6、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为AB 的中点,则:M=(212x x + , 2 1 2y y +) 7、点的平移特征: 在平面直角坐标系中, 将点(x,y )向右平移a 个单位长度,可以得到对应点( x-a ,y ); 将点(x,y )向左平移a 个单位长度,可以得到对应点(x+a ,y ); 将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b ); 将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。 注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来, 从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。

图像分割算法研究与实现

中北大学 课程设计说明书 学生姓名:梁一才学号:10050644X30 学院:信息商务学院 专业:电子信息工程 题目:信息处理综合实践: 图像分割算法研究与实现 指导教师:陈平职称: 副教授 2013 年 12 月 15 日

中北大学 课程设计任务书 13/14 学年第一学期 学院:信息商务学院 专业:电子信息工程 学生姓名:焦晶晶学号:10050644X07 学生姓名:郑晓峰学号:10050644X22 学生姓名:梁一才学号:10050644X30 课程设计题目:信息处理综合实践: 图像分割算法研究与实现 起迄日期:2013年12月16日~2013年12月27日课程设计地点:电子信息科学与技术专业实验室指导教师:陈平 系主任:王浩全 下达任务书日期: 2013 年12月15 日

课程设计任务书 1.设计目的: 1、通过本课程设计的学习,学生将复习所学的专业知识,使课堂学习的理论知识应用于实践,通过本课程设计的实践使学生具有一定的实践操作能力; 2、掌握Matlab使用方法,能熟练运用该软件设计并完成相应的信息处理; 3、通过图像处理实践的课程设计,掌握设计图像处理软件系统的思维方法和基本开发过程。 2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等): (1)编程实现分水岭算法的图像分割; (2)编程实现区域分裂合并法; (3)对比分析两种分割算法的分割效果; (4)要求每位学生进行查阅相关资料,并写出自己的报告。注意每个学生的报告要有所侧重,写出自己所做的内容。 3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: 每个同学独立完成自己的任务,每人写一份设计报告,在课程设计论文中写明自己设计的部分,给出设计结果。

函数图象的对称变换

课题:函数图像的对称变换(2课时) 学情分析:相对于函数图象的平移变换,对称变换是学生的难点,对于具体函数,学生还有一定的思路,但结论性的结果,学生掌握的不是很好。 教学目标: (1) 通过具体实例的探讨与分析,得到一些对称变换的结论。 (2) 通过一定的应用,加强学生对对称变换结论的理解。 (3) 能数形结合解决想过题目。 教学过程: 欣赏图片,感受对称 一、师生共同分析讨论完成下列结论的形成。 1、(1)函数()y f x =-与()y f x =的图像关于 对称; (2)函数()y f x =-与()y f x =的图像关于 对称; (3)函数()y f x =--与()y f x =的图像关于 对称. 2、奇函数的图像关于 对称,偶函数图像关于 对称. 3、(1)若对于函数()y f x =定义域内的任意x 都有()()f a x f b x +=-,则 ()y f x =的图像关于直线 对称.

(2)若对于函数()y f x =定义域内的任意x 都有()2()f a x b f a x +=--,则()y f x =的图像关于点 对称. 4、对0a >且1a ≠,函数x y a =和函数log a y x =的图象关于直线 对 称. 5、要得到()y f x =的图像,可将()y f x =的图像在x 轴下方的部分以 为轴翻折到x 轴上方,其余部分不变. 6、要得到()y f x =的图像,可将()y f x =,[)0,x ∈+∞的部分作出,再利用偶函数的图像关于 的对称性,作出(),0x ∈-∞时的图像. 二、学生先独立完成,再分析点评 2 3、函数x y e =-的图象与函数 的图象关于坐标原点对称. 4、将函数1()2x f x +=的图象向右平移一个单位得曲线C ,曲线C '与曲线C 关于直线y x =对称,则C '的解析式为 . 5、设函数()y f x =的定义域为R ,则函数(1)y f x =-与(1)y f x =-的图像的关系为关 于 对称. 6、若函数()f x 对一切实数x 都有(2)(2)f x f x +=-,且方程()0f x =恰好有四个不同实根,求这些实根之和为 . 二、典例教学 【例1】填空题: (1 (2)对于定义在R 上的函数()f x ,有下列命题,其中正确的序号为 . ①若函数()f x 是奇函数,则(1)f x -的图象关于点(1,0)A 对称;②若对x R ∈,有

数学f1初中数学2006年中考试题分类汇编--函数及其图像 (2)

本文为自本人珍藏 版权所有 仅供参考 本文为自本人珍藏 版权所有 仅供参考 2006年中考试题分类汇编--函数及其图像 1.(2006·梅列区)函数y = 3 x+1 中自变量x 的取值范围是 .x ≠-1 2.(2006·晋江市)函数3 21-= x y 中,自变量x 的取值范围是 . x ≠2 3 3.(2006·旅顺口区)如图是一次函数y 1=kx+b 和反比例函数y 2观察图象写出y 1>y 2时,x 的取值范围 . -2<x <0或x >3 4.(2006·南通市)在函数5 2-=x x y 中,自变量x 的取值范围是_ ________.x>5 5.(2006·衡阳市)函数y =中自变量劣的取值范围是 . x ≥1 6.(2006·盐城市)函数y= 1 -x 1中,自变量x 的取值范围是 . x ≠1 7.(2006·永州市)函数y =中自变量x 的取值范围是 .3x ≤ 8.(2006·潍坊市)函数12 y x -=-中,自变量x 的取值范围是( )D A .1x -≥ B .2x > C .1x >-且2x ≠ D .1x -≥且2x ≠ 9.(2006·广东省)函数1 1+= x y 中自变量x 的取值范围是 ( A ) A .x ≠-l B .x >-1 C .x =- 1 D .x <- 1 10.(2006·永州市)小慧今天到学校参加初中毕业会考,从家里出发走10分钟到离家500米的地方吃早餐,吃早餐用了20分钟;再用10分钟赶到离家1000米的学校参加考试.下列图象中,能反映这一过程的是( )D 11.(2006·湛江市)小颖从家出发,直走了20分钟,到一个离家1000米的图书室,看了40分钟的书后,用15分钟返回到家,下图中表示小颖离家时间与距离之间的关系的是( )A A . B . C . D . (分)

车辆牌照图像识别算法研究与实现本科毕设论文

Q260046902 专业做论文 西南科技大学 毕业设计(论文)题目名称:车辆牌照图像识别算法研究与实现

车辆牌照图像识别算法研究与实现 摘要:近年来随着国民经济的蓬勃发展,国内高速公路、城市道路、停车场建设越来越多,对交通控制、安全管理的要求也日益提高。因此,汽车牌照识别技术在公共安全及交通管理中具有特别重要的实际应用意义。本文对车牌识别系统中的车牌定位、字符分割和字符识别进行了初步研究。对车牌定位,本文采用投影法对车牌进行定位;在字符分割方面,本文使用阈值规则进行字符分割;针对车牌图像中数字字符识别的问题,本文采用了基于BP神经网络的识别方法。在学习并掌握了数字图像处理和模式识别的一些基本原理后,使用VC++6.0软件利用以上原理针对车牌识别任务进行编程。实现了对车牌的定位和车牌中数字字符的识别。 关键词:车牌定位;字符分割;BP神经网络;车牌识别;VC++

Research and Realization of License Plate Recognition Algorithm Abstract:In recent years, with the vigorous development of the national economy,there are more and more construct in the domestic expressway, urban road, and parking area. The requisition on the traffic control, safety management improves day by day. Therefore, license plate recognition technology has the particularly important practical application value in the public security and the traffic control. In the paper, a preliminary research was made on the license location, characters segment and characters recognition of the license plate recognition. On the license location,the projection was used to locate the license plate; On the characters segmentation, the liminal rule was used to divide the characters; In order to solve the problem of the digital characters recognition in the plate, BP nerve network was used to recognize the digital characters. After studying and mastering some basic principles of the digital image processing and pattern recognition, the task of license plate recognition was programmed with VC++ 6.0 using above principles. The license location and the digital characters recognition in the license plate were implemented. Keywords: license location, characters segmentation, BP nerve network, license plate recognition, VC++

2020最新函数图像的对称问题(小结)

解填空题常用到的几个公式 1. AB 和平面M 所成的角为α,AC 在平面M 内,AC 和AB 在平面M 内的射影AB 1所成 的角是β,设∠BAC=θ,则βαθcos cos cos = 2. 在二面角N l M --的面M 内,有直角三角形ABC,斜边BC 在棱上,若A 在平面内N 的射影为D,且∠ACD=1θ,∠ABD=2θ,二面角为θ,则22 122sin sin sin θθθ+= 3. 设F 1,F 2为椭圆122 22=+b y a x (a>b>0)的焦点,M 是椭圆上一点,若∠F 1MF 2=θ 则21MF F S ?=2tan 2θ b , 21e a b -= . 4. 设F 1,F 2为双曲线122 22=-b y a x (a>b>0)的焦点,M 是双曲线上一点,若∠F 1MF 2=θ,则21MF F S ?=2cot 2θ b , 12-=e a b . 5.已知椭圆122 22=+b y a x (a>b>0)上一点,F 1,F 2为左右两焦点,∠PF 1F 2=α, ∠P F 2F 1=β,则2 cos 2cos βαβα-+==a c e . 6.设直线b kx y +=与椭圆12222=+b y a x (双曲线122 22=-b y a x )相交于不同的两点A ),(11y x ,B ),(22y x ,AB 的中点为M ),(00y x ,则0202y a x b k -=(0 202y a x b k =). 7.过抛物线两点,的直线交抛物线于作倾斜角为的焦点B A F p px y ,)0(22θ>= 函数图像的对称问题(小结) 函数问题的对称性问题是函数性质的一个重要方面,也是历年高考热点问题之一,除了常见的自身对称(奇偶函数的对称性),两函数图像对称(原函数与反函数的对称性)以外,函数图象的对称性还有一些图像关于点对称和关于直线对称的两类问题,在这里,两函..数图象关于某直线对称或关于某点...............成.中心对称....与函数自身的对称轴或对称中心............. 是有本质区别的,注意不要把它们相混淆。造成解题失误,下面就这些问题给出一般结论,希望对同学们有帮助。 一、 同一个函数图象关于直线的对称

初中数学函数知识点汇总

函数及其图像 一、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x 轴和y 轴上的点,不属于任何象限。 二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 第一象限(+,+) 第二象限(-,+) 第三象限(-,-) 第四象限(+,-) 2、坐标轴上的点的特征 在x 轴上纵坐标为0 , 在y 轴上横坐标为, 原点坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上?x 与y 相等 点P(x,y)在第二、四象限夹角平分线上?x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。 位于平行于y 轴的直线上的各点的横坐标相同。 5、关于x 轴、y 轴或远点对称的点的坐标的特征 点P 与点p ’关于x 轴对称?横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称?纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称?横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离: (1)到x 轴的距离等于y (2)到y 轴的距离等于x (3)到原点的距离等于22y x + 三、函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。 2、函数的三种表示法(1)解析法(2)列表法(3)图像法 3、由函数解析式画其图像的一般步骤(1)列表(2)描点(3)连线 4、自变量取值范围 四、正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。 特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。这时,y 叫做x 的正比例函数。

初中数学函数图像专题

中考专项复习三(函数及其图象) 一、选择题(本题共10 小题,每小题4 分,满分40分) 2.若 ab >0,bc<0,则直线y=-a b x -c b 不通过( ). A .第一象限 B 第二象限 C .第三象限 D .第四象限 3.若二次函数y=x 2-2x+c 图象的顶点在x 轴上,则c 等于( ). A .-1 B .1 C . 2 1 D .2 4.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ). A .y=-x -2 B .y=-x -6 C .y=-x+10 D .y=-x -1 5.已知一次函数y= kx+b 的图象经过第一、二、四象限,则反比例函数y= kb x 的图象大致为( ) . 6.二次函数y=x 2-4x+3的图象交x 轴于A 、B 两点,交y 轴于点C ,则△ABC 的面积为 A .1 B .3 C .4 D .6 7.已知一次函数y=kx+b 的图象如图所示,当x <0时,y 的取值范围是( ). A .y >0 B .y <0 C .-2<y <0 D .y <-2 8.如图是二次函数y=ax 2+bx+c 的图象,则点(a+b ,ac)在( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 (第7题图) (第8题图) (第9题图) (第10题图) 9.二次函数c bx ax y ++=2 (0≠a )的图象如图所示,则下列结论: ①a >0; ②b >0; ③c >0;④b 2-4a c >0,其中正确的个数是( ). A . 0个 B . 1个 C . 2个 D . 3个 10.如图,正方形OABC ADEF ,的顶点A D C ,,在坐标轴上,点F 在AB 上,点B E ,在函数 1 (0)y x x =>的图象上,则点E 的坐标是( ) A. ?? B. ? ? C. ?? D.?? 二、填空题(本题共 4 小题,每小题 5 分,满分 20 分) 11.已知y 与(2x+1)成反比例,且当x=1时,y=2,那么当x=-1时,y=_________. 12.在平面直角坐标系内,从反比例函数x k y = (k >0)的图象上的一点分别作x 、y 轴的垂线段,与x 、y 轴所围成的矩形面积是12,那么该函数解析式是_________. 13.老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质:甲:函数的图象经过第一象限;乙: 函数的图象经过第三象限;丙:在每个象限内,y 随x 的增大而减小 .请你根据他们的叙述构造满足上述 x

基于Matlab的图像边缘检测算法的实现及应用汇总

目录 摘要 (1) 引言 (2) 第一章绪论 (3) 1.1 课程设计选题的背景及意义 (3) 1.2 图像边缘检测的发展现状 (4) 第二章边缘检测的基本原理 (5) 2.1 基于一阶导数的边缘检测 (8) 2.2 基于二阶导的边缘检测 (9) 第三章边缘检测算子 (10) 3.1 Canny算子 (10) 3.2 Roberts梯度算子 (11) 3.3 Prewitt算子 (12) 3.4 Sobel算子 (13) 3.5 Log算子 (14) 第四章MATLAB简介 (15) 4.1 基本功能 (15) 4.2 应用领域 (16) 第五章编程和调试 (17) 5.1 edge函数 (17) 5.2 边缘检测的编程实现 (17) 第六章总结与体会 (20) 参考文献 (21)

摘要 边缘是图像最基本的特征,包含图像中用于识别的有用信息,边缘检测是数字图像处理中基础而又重要的内容。该课程设计具体考察了5种经典常用的边缘检测算子,并运用Matlab进行图像处理结果比较。梯度算子简单有效,LOG 算法和Canny 边缘检测器能产生较细的边缘。 边缘检测的目的是标识数字图像中灰度变化明显的点,而导函数正好能反映图像灰度变化的显著程度,因而许多方法利用导数来检测边缘。在分析其算法思想和流程的基础上,利用MATLAB对这5种算法进行了仿真实验,分析了各自的性能和算法特点,比较边缘检测效果并给出了各自的适用范围。 关键词:边缘检测;图像处理;MATLAB仿真

引言 边缘检测在图像处理系统中占有重要的作用,其效果直接影响着后续图像处理效果的好坏。许多数字图像处理直接或间接地依靠边缘检测算法的性能,并且在模式识别、机器人视觉、图像分割、特征提取、图像压缩等方面都把边缘检测作为最基本的工具。但实际图像中的边缘往往是各种类型的边缘以及它们模糊化后结果的组合,并且在实际图像中存在着不同程度的噪声,各种类型的图像边缘检测算法不断涌现。早在1965 年就有人提出边缘检测算子,边缘检测的传统方法包括Kirsch,Prewitt,Sobel,Roberts,Robins,Mar-Hildreth 边缘检测方法以及Laplacian-Gaussian(LOG)算子方法和Canny 最优算子方法等。 本设计主要讨论其中5种边缘检测算法。在图像处理的过程需要大量的计算工作,我们利用MATLAB各种丰富的工具箱以及其强大的计算功能可以更加方便有效的完成图像边缘的检测。并对这些方法进行比较

角函数图像的对称轴与对称中心

函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 中心对称:如果一个函数的图像沿一个点旋转 180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 正弦函y=sinx 的图像既是轴对称又是中心对称, 它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形;y=sinx 的图象的对称轴是经过其图象的 “峰顶点” 或 “谷底点” , 且平行于y 轴的无数条直线; 它的图象关于x 轴的交点分别成中心对称图形。 三角函数图像的对称轴与对称中心 特级教师 王新敞 对于函数sin()y A x ωφ=+、cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系.而tan()y A x ωφ=+的对称中心与零点和渐近线与x 轴的交点相联系,有渐近线但无对称轴.由于函数sin()y A x ωφ=+、cos()y A x ωφ=+和tan()y A x ωφ=+的简图容易画错, 一般只要通过函数sin y x =、cos y x =、tan y x =图像的对称轴与对称中心就可以快速准确的求出对应的复合函数的对称轴与对称中心. 1.正弦函数sin y x =图像的对称轴与对称中心: 对称轴为2 x k π π=+ 、对称中心为(,0) k k Z π∈. 对于函数sin()y A x ωφ=+的图象的对称轴只需将x ωφ+取代上面的x 的位置,即 2 x k π ωφπ+=+ ()k Z ∈,由此解出1 ()2 x k π πφω = + - ()k Z ∈,这就是函数 sin()y A x ωφ=+的图象的对称轴方程. 对于函数sin()y A x ωφ=+的图象的对称中心只需令x k ωφπ+= ()k Z ∈,由此解出 1 ()x k πφω = - ()k Z ∈,这就是函数sin()y A x ωφ=+的图象的对称中心的横坐标,得对称中心1 ( (),0) k k Z πφω -∈. 2.余弦函数cos y x =图像的对称轴与对称中心:

数据隐藏课程设计论文——图像的信息隐藏检测算法和实现

中国科学技术大学继续教育学院课程设计 论文报告 论文题目:图像的信息隐藏检测算法和实现学员姓名:黄琳 学号:TB04202130 专业:计算机科学与技术 指导教师: 日期:2007年1月20日

图像的信息隐藏检测算法和实现 [摘要] Information hiding analysis is the art of detecting the message's existence or destroying the stega nographic cover in order to blockade the secret communication. And information Information hiding includes steganography and digital watermark. The application of steganography can be traced to ancient time, and it is also an n hiding detection is the very first step in information hiding analysis. Firstlly, architectonic analysis about information hiding detection is proposed, including the analysis of digital image characteristics, image based detecting algorithms and some problems in its realization. Secondly, many detecting algorithms are introduced with theoretical analyses and experimental results in details. Thirdly, two applications of detecting technology are put forward. Finally, a detecting model used in Internet is discussed [关键词]安全信息隐藏检测 1. 引言 数字图像的信息隐藏技术是数字图像处理领域中最具挑战性、最为活跃的研究课题之一。本文概述了数字图像的信息隐藏技术,并给出了一个新的基于彩色静止数字图像的信息隐藏算法。 数字图像可分为静止图像和动态图像两种,后者一般称为视频图像。视频图像的每一帧均可看作是一幅静止图像,但是这些静止图像之间并不是相互孤立的,而是存在时间轴上的相关性。静止图像是像素(Pixel)的集合,相邻像素点所对应的实际距离称为图像的空间分辨率。根据像素颜色信息的不同,数字图像可分为二值图像、灰度图像以及彩色图像。数字图像的最终感受者是人的眼睛,人眼感受到的两幅质量非常相同的数字图像的像素值可能存在很大的差别。这样,依赖于人的视觉系统(Human Visual System,HVS)的不完善性,就为数字图像的失真压缩和信息隐藏提供了非常巨大的施展空间。 信息隐藏与信息加密是不尽相同的,信息加密是隐藏信息的内容,而信息隐藏是隐藏信息的存在性,信息隐藏比信息加密更为安全,因为它不容易引起攻击者的注意。 2. 信息隐藏技术综述 2.1信息隐藏简介 信息隐藏(Information Hiding),也称作数据隐藏(Data Hiding),或称作数字水印(Digital Watermarking)。简单来讲,信息隐藏是指将某一信号(一般称之为签字信号,Signature Signal)嵌入(embedding)另一信号(一般称之为主信号,Host Signal,或称之为掩护媒体,cover-media)的过程,掩护媒体经嵌入信息后变成一个伪装媒体(stegano-media)。这一嵌入过程需要满足下列条件:

函数图象的对称教案

函数图象的对称教案 【教学目标】1.让学生掌握函数关于点(或直线)的对称函数解析式的求法; 2.让学生了解函数图象的自对称和两函数图象之间的相互对称问题. 【教学重点】函数(或曲线)关于点(或直线)的对称问题的解法 【教学难点】自对称和相互对称的区别 【例题设置】例1、例2、例3(函数(或曲线)关于点(或直线)的对称问题的解法), 例4(函数的对称问题) 【教学过程】 一、函数关于点(或直线)的对称函数解析式的求法 〖例1〗 写出点),(y x M 关于下列直线或点对称的点的坐标 ★ 点评:将点),(y x M 改为函数)(x f y =图象或曲线0),(=y x F 解法类似,其步骤大致如下: 将所求曲线上的任意一点(,)P x y ,求其关于点(或直线)的对称点(,)P x y ''',再将点P '的坐标代入原方程,即可得到所求的轨迹方程. 因此所有的对称问题最终都将归结为点的对称问题,只要记住对称点的写法, 问题便迎刃而解. 〖例2〗 已知函数31y x =+,则其关于原点对称的函数解析式为 ;关于直线1y x =+对称的函数解析式为 . 当对称轴斜率为±1时,点坐标符合口诀: x 用y 代, y 用x 代.

答案:31y x =-;113 y x =+ 〖例3〗 已知定义在[1,1]-上的奇函数()f x 的图象与函数()g x 的图象关于点(2,1)对称,且当34x ≤≤时,3()(4)2g x x =-+,求()f x 的解析式. 解:① 设(,)P x y (01x ≤≤)为()f x 的图象上的任意一点,则其关于点(2,1)的对称点(4,2)P x y '--(344x ≤-≤)必在()g x 的图象上,故32(44)2y x -=--+ ∴当01x ≤≤时,3()f x x = ② 当10x -≤<时,10x -≤<,且()f x 为奇函数 ∴33()()()f x f x x x =--=--= 综上所述, 3()f x x =. 〖例4〗 设函数()y f x =的定义域为R ,则下列命题中: ① 若()f x 为偶函数,则(2)y f x =+的图象关于y 轴对称; ② 若(2)y f x =+是偶函数,则()y f x =的图象关于直线2x =对称; ③ 若(2)(2)f x f x -=-,则()y f x =的图象关于直线2x =对称; ④ 若(2)(2)f x f x +=-,则()y f x =的图象关于直线2x =对称; ⑤ (2)y f x =+与(2)y f x =-图象关于直线2x =对称. ⑥ (2)y f x =-与(2)y f x =-图象关于直线2x =对称. 其中正确命题的序号为: . 答案:④⑥ ★点评:其中注意④⑤的区别,(2)(2)f x f x +=-指的是()y f x =的图象自身的一种对称关系;而(2)y f x =+与(2)y f x =-是函数()f x 通过复合变换后得到的两个新的函数图象,要求的应是这两个函数图象的对称关系. 二、函数)(x f y =图象本身的对称性(自身对称) 命题1:设函数()y f x =的定义域为D ,若对于一切的x D ∈,都有()()f a x f a x +=-, 则函数()y f x =的图象关于直线x a =对称. 推 论:设函数()y f x =的定义域为D ,若对于一切的x D ∈,都有()()f a x f b x +=-, 则函数()y f x =的图象关于直线()()22 a x b x a b x ++-+= = 对称. 命题2:设函数()y f x =的定义域为D ,若对于一切的x D ∈,都有()()f a x f a x +=--, 思考: 情形一中 x 的范围 是如何给 出的,为何 要限定其范围?

一次函数图象的变换--对称

一次函数图象的变换——对称求一次函数图像关于某条直线对称后的解析式是一类重要题型,同学们在做时经常做错,下面我介绍一种简便的方法:抓住对称点的坐标解决问题。 知识点: 1、与直线y=kx+b关于x轴对称的直线l,每个点与它的对应点都关于x轴对称,横坐标不变纵坐标互为相反数。设l上任一点的坐标为(x,y),则(x, -y)应当在直线y=kx+b上,于是有-y=kx+b,即l:y=-kx-b。 2、与直线y=kx+b关于y轴对称的直线l,每个点与它的对应点都关于y轴对称,纵坐标不变横坐标互为相反数。设l上任一点的坐标为(x,y),则(-x, y)应当在直线y=kx+b上,于是有y=-kx+b,即l:y=-kx+b。下面我们通过例题的讲解来反馈知识的应用: 例:已知直线y=2x+6.分别求与直线y=2x+6关于x轴,y轴和直线x=5对称的直线l的解析式。 分析:关于x轴对称时,横坐标不变纵坐标互为相反数; 关于y轴对称时,纵坐标不变横坐标互为相反数; 关于某条直线(垂直坐标轴)对称时,则相关点 解:1、关于x轴对称 设点( x , y )在直线l上,则点( x , -y )在直线y=2x+6上。 即:-y=2x+6 y=-2x-6 所以关于x轴对称的直线l的解析式为:y=-2x-6. 关于直线对称。 2、关于y轴对称 设点(x,y)在直线l上,则点(-x,y)在直线y=2x+6上。 即:y=2(-x) +6 y=-2x+6 所以关于y轴对称的直线l的解析式为:y=-2x+6.

3、关于直线x=5对称(作图) 由图可知:AB=BC则C点横坐标:-x+5+5=-x+10 所以点C (-x+10, y) 设点(x,y)在直线l上, 则点(-x+10, y)在直线y=2x+6上。 即:y=2(-x+10)+6 y=-2x+26 所以关于直线x=5对称的直线l的解析式为:y=-2x+26. 总结:根据对称求直线的解析式关键在找对称的坐标点。 关于x轴对称,横坐标不变纵坐标互为相反数; 关于y轴对称,纵坐标不变横坐标互为相反数; 关于某条直线(垂直对称轴)对称,可见例题 中分析的方法去求对称点。 练习:1、和直线y=5x-3关于y轴对称的直线解析式为,和直线y=-x-2关于x轴对称的直线解析式为。 2、已知直线y=kx+b与直线y= -2x+8关于y轴对称, 求k、b的值。 答案:1、y=-5x-3;y=x+2 分析:设点(x,y)在直线上,则点(-x,y)在关于y轴对称的直线y=5x-3上,所以直线为y=-5x-3;设点(x,y)在直线上,则点(x,-y)在

初中数学一次函数的图像专项练习30题(有答案)

一次函数(图像题) 专项练习一 1.函数y=ax+b 与y=bx+a 的图象在同一坐标系内的大致位置正确的是( ) A . B . C . D . 2.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③当x >2时,y 2>y 1,其中正确的个数是( ) A . 0 B . 1 C . 2 D . 3 3.一次函数y=kx+b ,y 随x 的增大而减小,且kb >0,则在直角坐标系内它的大致图象是( ) A . B . C . D . 4.下列函数图象不可能是一次函数y=ax ﹣(a ﹣2)图象的是( ) A . B . C . D . 5.如图所示,如果k ?b <0,且k <0,那么函数y=kx+b 的图象大致是( ) A . B . C . D . 6.如图,直线l 1:y=x+1与直线l 2:y=﹣x ﹣把平面直角坐标系分成四个部分,则点(,)在( )

A . 第一部分 B . 第二部分 C . 第三部分 D . 第四部分 7.已知正比例函数y=﹣kx 和一次函数y=kx ﹣2(x 为自变量),它们在同一坐标系内的图象大致是( ) A . B . C . D . 8.函数y=2x+3的图象是( ) A . 过点(0,3),(0,﹣)的直线 B . 过点(1,5),(0,﹣)的直线 C . 过点(﹣1,﹣1),(﹣,0)的直线 D . 过点(0,3),(﹣,0)的直线 9.下列图象中,与关系式y=﹣x ﹣1表示的是同一个一次函数的图象是( ) A . B . C . D . 10.函数kx ﹣y=2中,y 随x 的增大而减小,则它的图象是下图中的( ) A . B . C . D . 11.已知直线y 1=k 1x+b 1,y 2=k 2x+b 2,满足b 1<b 2,且k 1k 2<0,两直线的图象是( ) A . B . C . D . 12.如图所示,表示一次函数y=ax+b 与正比例函数y=abx (a ,b 是常数,且ab ≠0)的图象是( ) A . B . C . D . 13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若该水库的蓄水量V (万米3)与降雨的时间t (天) 的关系如图所示,则下列说法正确的是( )

初中数学一次函数的图像专项练习30题(有答案)ok

. 一次函数的图像专项练习30题(有答案) 1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是() A.B.C.D. 2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y1,其中正确的个数是() A.0B.1C.2D.3 3.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D. 4.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是() A.B.C.D. 5.如图所示,如果k?b<0,且k<0,那么函数y=kx+b的图象大致是() A.B.C.D. 6.如图,直线l1:y=x+1与直线l2:y=﹣x ﹣把平面直角坐标系分成四个部分,则点(,)在()

A . 第一部分 B . 第二部分 C . 第三部分 D . 第四部分 7.已知正比例函数y=﹣kx 和一次函数y=kx ﹣2(x 为自变量),它们在同一坐标系内的图象大致是( ) A . B . C . D . 8.函数y=2x+3的图象是( ) A . 过点(0,3),(0,﹣)的直线 B . 过点(1,5),(0,﹣)的直线 C . 过点(﹣1,﹣1),(﹣,0)的直线 D . 过点(0,3),(﹣,0)的直线 9.下列图象中,与关系式y=﹣x ﹣1表示的是同一个一次函数的图象是( ) A . B . C . D . 10.函数kx ﹣y=2中,y 随x 的增大而减小,则它的图象是下图中的( ) A . B . C . D . 11.已知直线y 1=k 1x+b 1,y 2=k 2x+b 2,满足b 1<b 2,且k 1k 2<0,两直线的图象是( ) A . B . C . D .

最新数字图像处理算法实现精编版

2020年数字图像处理算法实现精编版

数字图像处理算法实现 ------------编程心得(1) 2001414班朱伟 20014123 摘要: 关于空间域图像处理算法框架,直方图处理,空间域滤波器算法框架的编程心得,使用GDI+(C++) 一,图像文件的读取 初学数字图像处理时,图像文件的读取往往是一件麻烦的事情,我们要面对各种各样的图像文件格式,如果仅用C++的fstream库那就必须了解各种图像编码格式,这对于初学图像处理是不太现实的,需要一个能帮助轻松读取各类图像文件的库。在Win32平台上GDI+(C++)是不错的选择,不光使用上相对于Win32 GDI要容易得多,而且也容易移植到.Net平台上的GDI+。 Gdiplus::Bitmap类为我们提供了读取各类图像文件的接口, Bitmap::LockBits方法产生的BitmapData类也为我们提供了高速访问图像文件流的途径。这样我们就可以将精力集中于图像处理算法的实现,而不用关心各种图像编码。具体使用方式请参考MSDN中GDI+文档中关于Bitmap类和BitmapData类的说明。另外GDI+仅在Windows XP/2003上获得直接支持,对于Windows 2000必须安装相关DLL,或者安装有Office 2003,Visual Studio 2003 .Net等软件。 二,空间域图像处理算法框架 (1) 在空间域图像处理中,对于一个图像我们往往需要对其逐个像素的进行处理,对每个像素的处理使用相同的算法(或者是图像中的某个矩形部分)。即,对于图像f(x,y),其中0≤x≤M,0≤y≤N,图像为M*N大小,使用算法

相关主题
文本预览
相关文档 最新文档