高中数学 2.2.3 直线与平面平行的性质(1)教案 新人教A版必修2
- 格式:doc
- 大小:232.00 KB
- 文档页数:6
2.2.3 直线与平面平行的性质一、教学目标 1.知识与技能通过教师的适当引导和学生的自主学习,使学生由直观感知获得猜想,经过逻辑论证,推导出直线与平面平行的性质定理,并掌握这一定理. 2.过程与方法(1)通过直观感知和操作确认的方法,发展几何直觉、运用图形语言进行交流的能力; (2)体会和感受通过自己的观察、操作等活动进行合情推理发现并获得数学结论的过程; (3)通过直线与平面平行的性质定理的实际应用,让学生体会定理的现实意义与重要性. 3.情感、态度与价值观通过主动参与、积极探究的学习过程,提高学生学习数学的自信心和积极性,培养合作意识和交流能力,领悟化归与转化的数学思想,提高学生分析、解决问题的能力. 二、教学重点与难点教学重点:直线与平面平行的性质定理.教学难点:综合应用线面平行的判定定理和性质定理. 三、授课类型:新授课 四、教学方法:师生合作探究 五、教具准备:三角板、小黑板 六、课时安排:1课时 七、教学过程教学内容师生互动【回顾旧知】1.直线与平面的位置关系;线在面内;线面平行、线面相交(统称为“线在面外”) 2.直线与平面平行判定定理的内容.通过复习直线与平面平行的判定定理,温故而知新,为后面线线平行与线面平行的相互转化做铺垫. ααα////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄思想方法:【新课引入】思考:1.如果一条直线a 与平面α平行,那么这条直线与这个平面内的直线有哪些位置关系?2.在平面α内,哪些直线与直线a 平行?3.在什么条件下,平面α内的直线与直线a 平行呢? 通过演示实验,让学生观察、发现规律,并对发现的结论进行归纳.引导学生结合直观感知,层层递进,逐步探索,体会数学结论的发现过程.学生根据问题进行直观感知,进而提出合理猜想.并逐步探索,认真思考,画出相应图形,进行观察、感知、猜想.发现:过直线a 的某一平面,若与平面α相交,则直线a 就平行于这条交线. 已知://a α,a β⊂,b αβ=.求证://a b .证明:因为 b αβ=,所以 b α⊂.又因为 //a α, 所以 a 与b 无公共点. 又因为ββ⊂⊂b a ,, 所以 b a //.引导学生得出猜想,形成经验性结论,体会与感受数学结论的发现与形成过程:直观感知→操作确认→逻辑证明→形成经验.要求学生用语言描述发现的结论,并给出证明.【直线与平面平行的性质定理】一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βαβα要求学生总结归纳,并能用文字语言、符号语言图形语言描述直线与平面平行的性质定理,为学生正确使用定理打下基础.【定理探微】1.定理可以作为直线与直线平行的判定方法;2.定理中三个条件缺一不可....; 3.提供了过已知平面内一点作与该平面的平行线相平行的直线的方法,即:辅助平面法.明确定理的条件和结论及定理的用途.【例题讲解】例1(教材P59例3) 如图所示的一块木料中,棱BC 平行于面''A C . (1)要经过面''A C 内的一点P 和棱BC 将木料锯开,应怎样画线?(2)所画的线与平面AC 是什么位置关系? ★思路点拔1.怎样确定截面?过点P 所画的线应怎样画? 2.“线面平行” 与“线线平行”之间有怎样的联系? ★解答过程 解:(1)在平面''A C 内,过点P 作直线EF ,使//''EF B C ,并分别交棱''A B ,''C D 于点E ,F .连接BE ,CF ,则EF ,BE ,CF 就是应画的线. (2)因为棱BC 平行于平面''A C ,平面'BC 与平面''A C 交于''B C ,所以//''BC B C ,由(1)知,//''EF B C ,所以,//EF BC ,因此引导学生分析画截面的关键是确定截面与上底面的交线,怎样过P 点作BC 的平行线是作图的难点.学生经过认真思考,运用所学知识找到作图方法,体会到解决问题后成功的喜悦,认识到数学来源于实践又反过来为实践服务,加强用数学的意识.////EF BCEF AC EF AC BC AC ⎫⎪⊄⇒⎬⎪⊂⎭平面平面平面BE ,CF 显然都与平面AC 相交.例2(教材P59例4) 已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面. ★思路点拔1.文字性命题的解题步骤是什么? 2.“线面平行”与“线线平行”之间有怎样的联系?★解答过程已知:如图所示,已知直线a 、b ,平面α,引导学生分析问题的条件与结论,并结合图形写出己知和求证.通过分析寻找解题途径.本题思想方法:且//a b ,//a α,a α⊄,b α⊄. 求证://b α. 证明:过a 作平面β,使c αβ=.因为//a α,a β⊂,c αβ=,所以//a c .又因为//a b ,所以//b c .因为c α⊂,b α⊄,所以//b α. 的解题关键是实现线线平行与线面平行的转化.通过教师的板书,规范解题步骤与格式.【课堂练习】1.如图,α∩β=CD ,α∩γ=EF ,β∩γ=AB ,AB ∥α 求证:CD ∥EF .学生独立完成练习l ,检查学习效果,使学生掌握证明线面平行问题的方法、步骤与格式,提高综合运用所学知识的能力.2.如图,ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 中点,在DM 上取一点G ,过G 和AP 的平面交平面BDM 于GH ,求证://PA GH .练习2是证明线线平行问题,本题需作辅助线,比练习1要难,因此组织同学之间进行讨论,通过合作学习、寻找解题途径,最后选择学生上黑板板演证明过程,教师最后进行点评.【小结】(1)直线与平面平行的性质定理的内容及应用.(2)直线与平面平行的性质定理与判定定理的区别和联系.小结回顾:注意线面平行的性质定理与判定定理联系和区别,“线面平行”与“线线平行”问题是互相联系的,在解题时要善于将问题进行转化.【板书设计】【布置作业】教材P62 习题2.2 A 组 5、6【教学反思】八、备用习题1.判断下列说法的正误.(1)如果a 、b 是两条直线,并且a ∥b ,那么a 平行于过b 的任何平面. (2)如果直线a 和平面α满足a ∥α,那么a 与平面α内的任何直线平行. (3)如果直线a 、b 和平面α满足a ∥α,b ∥α,那么a ∥b . (4)如果b a a //,=βα ,那么β//b 或α//b . 2.三个平面两两相交有三条交线,如果其中两条交线平行,则第三条交线也和它们分别平行.3.求证:如果一条直线和两个相交平面平行, 那么这条直线和它们的交线平行.4.如图,已知异面直线AB 、CD 都与平面α平行,CA 、CB 、 DB 、DA 分别交α于点E 、F 、G 、H .试判断四边形EFGH 的形状,并证明你的结论.2.2.3 直线与平面平行的性质定理 一、线面平行的性质定理 二、例题讲解 三、课堂练习 1.文字语言 例1 练习1 2.图形语言 例2 练习2。
§2.2 直线、平面平行的判定及其性质§2.2.1 直线与平面平行的判定一、教材分析空间里直线与平面之间的位置关系中,平行是一种非常重要的关系,它不仅应用较多,而且是学习平面与平面平行的基础.空间中直线与平面平行的定义是以否定形式给出的用起来不方便,要求学生在回忆直线与平面平行的定义的基础上探究直线与平面平行的判定定理.本节重点是直线与平面平行的判定定理的应用.二、教学目标1.知识与技能(1)理解并掌握直线与平面平行、平面与平面平行的判定定理;(2)进一步培养学生观察、发现的能力和空间想象能力;2.过程与方法学生通过观察图形,借助已有知识,掌握直线与平面平行、平面与平面平行的判定定理.3.情感、态度与价值观(1)让学生在发现中学习,增强学习的积极性;(2)让学生了解空间与平面互相转换的数学思想.三、教学重点与难点如何判定直线与平面平行.四、课时安排1课时五、教学设计(一)复习复习直线与平面平行的定义:如果直线与平面没有公共点叫做直线与平面平行.(二)导入新课思路1.(情境导入)将一本书平放在桌面上,翻动书的封面,封面边缘AB所在直线与桌面所在平面具有什么样的位置关系?思路2.(事例导入)观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与长方体ABCD—A′B′C′D′的侧面C′D′DC所在平面的位置关系吗?图1(三)推进新课、新知探究、提出问题①回忆空间直线与平面的位置关系.②若平面外一条直线平行平面内一条直线,探究平面外的直线与平面的位置关系.③用三种语言描述直线与平面平行的判定定理.④试证明直线与平面平行的判定定理.活动:问题①引导学生回忆直线与平面的位置关系.问题②借助模型锻炼学生的空间想象能力.问题③引导学生进行语言转换.问题④引导学生用反证法证明.讨论结果:①直线在平面内、直线与平面相交、直线与平面平行.②直线a在平面α外,是不是能够断定a∥α呢?不能!直线a在平面α外包含两种情形:一是a与α相交,二是a与α平行,因此,由直线a在平面α外,不能断定a∥α.若平面外一条直线平行平面内一条直线,那么平面外的直线与平面的位置关系可能相交吗?既然不可能相交,则该直线与平面平行.③直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.符号语言为:.图形语言为:如图2.图2④证明:∵a∥b,∴a、b确定一个平面,设为β.∴a⊂β,b⊂β.∵a⊄α,a⊂β,∴α和β是两个不同平面.∵b⊂α且b⊂β,∴α∩β=b.假设a与α有公共点P,则P∈α∩β=b,即点P是a与b的公共点,这与已知a∥b矛盾.∴假设错误.故a∥α.(四)应用示例思路1例1 求证空间四边形相邻两边中点的连线平行于经过另外两边的平面.已知空间四边形ABCD中,E、F分别是AB、AD的中点.求证:EF∥面BCD.活动:先让学生思考或讨论,后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.证明:如图3,连接BD,图3EF∥面BCD.所以,EF∥面BCD.变式训练如图4,在△ABC所在平面外有一点P,M、N分别是PC和AC上的点,过MN作平面平行于BC,画出这个平面与其他各面的交线,并说明画法.图4画法:过点N在面ABC内作NE∥BC交AB于E,过点M在面PBC内作MF∥BC交PB于F,连接EF,则平面MNEF为所求,其中MN、NE、EF、MF分别为平面MNEF与各面的交线.证明:如图5,图5.所以,BC∥平面MNEF.点评:“见中点,找中点”是证明线线平行常用方法,而证明线面平行往往转化为证明线线平行. 例2 如图6,已知AB 、BC 、CD 是不在同一平面内的三条线段,E 、F 、G 分别为AB 、BC 、CD 的中点.图6求证:AC∥平面EFG ,BD∥平面EFG.证明:连接AC 、BD 、EF 、FG 、EG.在△ABC 中,∵E、F 分别是AB 、BC 的中点,∴AC∥EF.又EF ⊂面EFG ,AC ⊄面EFG,∴AC∥面EFG.同理可证BD∥面EFG.变式训练已知M 、N 分别是△ADB 和△ADC 的重心,A 点不在平面α内,B 、D 、C 在平面α内,求证:MN∥α. 证明:如图7,连接AM 、AN 并延长分别交BD 、CD 于P 、Q ,连接PQ.图7∵M、N 分别是△ADB、△ADC 的重心, ∴NQAN MP AM ==2.∴MN∥PQ. 又PQ ⊂α,MN ⊄α,∴MN∥α.点评:利用平面几何中的平行线截比例线段定理,三角形的中位线性质等知识促成“线线平行”向“线面平行”的转化.思路2例题 设P 、Q 是边长为a 的正方体AC 1的面AA 1D 1D 、面A 1B 1C 1D 1的中心,如图8,(1)证明P Q∥平面AA 1B 1B ;(2)求线段PQ 的长.图8(1)证法一:取AA 1,A 1B 1的中点M,N,连接MN,NQ,MP, ∵MP∥AD,MP=AD 21,NQ∥A 1D 1,NQ=1121D A , ∴MP∥ND 且MP=ND.∴四边形PQNM 为平行四边形.∴PQ∥MN.∵MN ⊂面AA 1B 1B,PQ ⊄面AA 1B 1B,∴PQ∥面AA 1B 1B.证法二:连接AD 1,AB 1,在△AB 1D 1中,显然P,Q 分别是AD 1,D 1B 1的中点,∴PQ∥AB 1,且PQ=121AB . ∵PQ ⊄面AA 1B 1B,AB 1⊂面AA 1B 1B,∴PQ∥面AA 1B 1B.(2)解:方法一:PQ=MN=a N A M A 222121=+. 方法二:PQ=a AB 22211=. 变式训练如图9,正方体ABCD —A 1B 1C 1D 1中,E 在AB 1上,F 在BD 上,且B 1E=BF.图9求证:EF∥平面BB 1C 1C.证明:连接AF 并延长交BC 于M ,连接B 1M.∵AD∥BC,∴△AFD∽△MFB. ∴BFDF FM AF =. 又∵BD=B 1A ,B 1E=BF,∴DF=AE. ∴BFDF FM AF =. ∴EF∥B 1M ,B 1M ⊂平面BB 1C 1C. ∴EF∥平面BB 1C 1C.(五)知能训练已知四棱锥P —ABCD 的底面为平行四边形,M 为PC 的中点,求证:PA∥平面MBD.证明:如图10,连接AC 、BD 交于O 点,连接MO,图10∵O 为AC 的中点,M 为PC 的中点,∴MO 为△PAC 的中位线.∴PA∥MO.∵PA ⊄平面MBD,MO ⊂平面MBD,∴PA∥平面MBD.(六)拓展提升如图11,已知平行四边形ABCD 和平行四边形ACEF 所在的平面相交于AC,M 是线段EF 的中点.图11求证:AM∥平面BDE.证明:设AC∩BD=O ,连接OE ,∵O、M 分别是AC 、EF 的中点,ACEF 是平行四边形,∴四边形AOEM 是平行四边形.∴AM∥OE.∵OE ⊂平面BDE ,AM ⊄平面BDE ,∴AM∥平面BDE.(七)课堂小结知识总结:利用线面平行的判定定理证明线面平行.方法总结:利用平面几何中的平行线截比例线段定理,三角形的中位线性质等知识促成“线线平行”向“线面平行”的转化.(八)作业课本习题2.2 A组3、4.§2.2.3 直线与平面平行的性质一、教材分析上节课已学习了直线与平面平行的判定定理,这节课将通过例题让学生体会应用线面平行的性质定理的难度,进而明确告诉学生:线面平行的性质定理是高考考查的重点,也是最难应用的两个定理之一.本节重点是直线与平面平行的性质定理的应用.二、教学目标1.知识与技能掌握直线与平面平行的性质定理及其应用.2.过程与方法学生通过观察与类比,借助实物模型性质及其应用.3.情感、态度与价值观(1)进一步提高学生空间想象能力、思维能力.(2)进一步体会类比的作用.(3)进一步渗透等价转化的思想.三、教学重点与难点教学重点:直线与平面平行的性质定理.教学难点:直线与平面平行的性质定理的应用.四、课时安排1课时五、教学设计(一)复习回忆直线与平面平行的判定定理:(1)文字语言:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(2)符号语言为:(3)图形语言为:如图1.图1(二)导入新课思路1.(情境导入)教室内日光灯管所在的直线与地面平行,是不是地面内的所有直线都与日光灯管所在的直线平行?思路2.(事例导入)观察长方体(图2),可以发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与长方体ABCD—A′B′C′D′的侧面C′D′DC所在平面平行,你能在侧面C′D′DC所在平面内作一条直线与A′B 平行吗?图2(三)推进新课、新知探究、提出问题①回忆空间两直线的位置关系.②若一条直线与一个平面平行,探究这条直线与平面内直线的位置关系.③用三种语言描述直线与平面平行的性质定理.④试证明直线与平面平行的性质定理.⑤应用线面平行的性质定理的关键是什么?⑥总结应用线面平行性质定理的要诀.活动:问题①引导学生回忆两直线的位置关系.问题②借助模型锻炼学生的空间想象能力.问题③引导学生进行语言转换.问题④引导学生用排除法.问题⑤引导学生找出应用的难点.问题⑥鼓励学生总结,教师归纳.讨论结果:①空间两条直线的位置关系:相交、平行、异面.②若一条直线与一个平面平行,这条直线与平面内直线的位置关系不可能是相交(可用反证法证明),所以,该直线与平面内直线的位置关系还有两种,即平行或异面.怎样在平面内作一条直线与该直线平行呢(排除异面的情况)?经过这条直线的平面和这个平面相交,那么这条直线和交线平行.③直线与平面平行的性质定理用文字语言表示为:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.这个定理用符号语言可表示为:这个定理用图形语言可表示为:如图3.图3④已知a∥α,a β,α∩β=b.求证:a∥b.证明:⑤应用线面平行的性质定理的关键是:过这条直线作一个平面.⑥应用线面平行性质定理的要诀:“见到线面平行,先过这条直线作一个平面找交线”.(四)应用示例思路1例1 如图4所示的一块木料中,棱BC平行于面A′C′.图4(1)要经过面A′C′内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线与面AC是什么位置关系?活动:先让学生思考、讨论再回答,然后教师加以引导.分析:经过木料表面A′C′内的一点P和棱BC将木料锯开,实际上是经过BC及BC外一点P作截面,也就是找出平面与平面的交线.我们可以由线面平行的性质定理和公理4、公理2作出.解:(1)如图5,在平面A′C′内,过点P作直线EF,使EF∥B′C′,图5并分别交棱A′B′、C′D′于点E、F.连接BE、CF.则EF、BE、CF就是应画的线.(2)因为棱BC平行于面A′C′,平面BC′与平面A′C′交于B′C′,所以BC∥B′C′.由(1)知,EF∥B′C′,所以EF∥BC.因此BE 、CF 显然都与平面AC 相交.变式训练如图6,a∥α,A 是α另一侧的点,B 、C 、D ∈a ,线段AB 、AC 、AD 交α于E 、F 、G 点,若BD=4,CF=4,AF=5,求EG.图6解:A ∉a ,∴A、a 确定一个平面,设为β.∵B∈a ,∴B∈β.又A ∈β,∴AB ⊂β.同理AC ⊂β,AD ⊂β.∵点A 与直线a 在α的异侧,∴β与α相交.∴面ABD 与面α相交,交线为EG.∵BD∥α,BD ⊂面BAD ,面BAD∩α=EG,∴BD∥EG.∴△AEG∽△ABD. ∴ACAF BD EG =.(相似三角形对应线段成比例) ∴EG=920495=⨯=∙BD AC AF . 点评:见到线面平行,先过这条直线作一个平面找交线,直线与交线平行,如果再需要过已知点,这个平面是确定的.例2 已知平面外的两条平行直线中的一条平行于这个平面,求证另一条也平行于这个平面.如图7.图7已知直线a,b,平面α,且a∥b,a∥α,a,b 都在平面α外.求证:b∥α.证明:过a 作平面β,使它与平面α相交,交线为c.∵a∥α,a ⊂β,α∩β=c,∴a∥c.∵a∥b,∴b∥c.∵c ⊂α,b ⊄α,∴b∥α.变式训练如图8,E 、H 分别是空间四边形ABCD 的边AB 、AD 的中点,平面α过EH 分别交BC 、CD 于F 、G.求证:EH∥FG.图8证明:连接EH.∵E、H 分别是AB 、AD 的中点,∴EH∥BD.又BD ⊂面BCD ,EH ⊄面BCD,∴EH∥面BCD.又EH ⊂α、α∩面BCD=FG,∴EH∥FG.点评:见到线面平行,先过这条直线作一个平面找交线,则直线与交线平行.思路2例 1 求证:如果两个相交平面分别经过两条平行直线中的一条,那么它们的交线和这条直线平行.如图9.图9已知a∥b,a ⊂α,b ⊂β,α∩β=c.求证:c∥a∥b.证明:变式训练求证:一条直线与两个相交平面都平行,则这条直线与这两个相交平面的交线平行.图10已知:如图10,a∥α,a∥β,α∩β=b ,求证:a∥b.证明:如图10,过a 作平面γ、δ,使得γ∩α=c ,δ∩β=d ,那么有点评:本题证明过程,实际上就是不断交替使用线面平行的判定定理、性质定理及公理4的过程.这是证明线线平行的一种典型的思路.例2 如图11,平行四边形EFGH 的四个顶点分别在空间四边形ABCD 的边AB 、BC 、CD 、DA 上,求证:BD∥面EFGH ,AC∥面EFGH.图11证明:∵EFGH 是平行四边形变式训练如图12,平面EFGH 分别平行于CD 、AB ,E 、F 、G 、H 分别在BD 、BC 、AC 、AD 上,且CD=a ,AB=b ,CD⊥AB.图12(1)求证:EFGH 是矩形;(2)设DE=m,EB=n,求矩形EFGH 的面积.(1)证明:∵CD∥平面EFGH ,而平面EFGH∩平面BCD=EF,∴CD∥EF.同理HG∥CD,∴EF∥HG.同理HE∥GF,∴四边形EFGH 为平行四边形.由CD∥EF,HE∥AB,∴∠HEF 为CD 和AB 所成的角.又∵CD⊥AB,∴HE⊥EF.∴四边形EFGH 为矩形.(2)解:由(1)可知在△BCD 中EF∥CD,DE=m ,EB=n, ∴DB BE CD EF =.又CD=a,∴EF=a nm n +. 由HE∥AB,∴DBDE AB HE =. 又∵AB=b,∴HE=b n m m +. 又∵四边形EFGH 为矩形,∴S 矩形EFGH =HE·EF=ab n m mn a n m n b n m m 2)(+=+∙+. 点评:线面平行问题是平行问题的重点,有着广泛应用.(五)知能训练求证:经过两条异面直线中的一条有且只有一个平面和另一条直线平行.已知:a 、b 是异面直线.求证:过b 有且只有一个平面与a 平行.证明:(1)存在性.如图13,图13在直线b 上任取一点A ,显然A ∉a.过A 与a 作平面β,在平面β内过点A 作直线a′∥a,则a′与b 是相交直线,它们确定一个平面,设为α,∵b ⊂α,a 与b 异面,∴a ⊄α.又∵a∥a′,a′⊂α,∴a∥α.∴过b 有一个平面α与a 平行.(2)唯一性.假设平面γ是过b 且与a 平行的另一个平面,则b ⊂γ.∵A∈b ,∴A∈γ.又∵A∈β,∴γ与β相交,设交线为a″,则A ∈a″.∵a∥γ,a ⊂β,γ∩β=a″,∴a∥a″.又a∥a′,∴a′∥a″.这与a′∩a″=A 矛盾.∴假设错误,故过b 且与a 平行的平面只有一个.综上所述,过b 有且只有一个平面与a 平行.变式训练已知:a∥α,A ∈α,A ∈b ,且b∥a.求证:b ⊂α.证明:假设b ⊄α,如图14,图14设经过点A 和直线a 的平面为β,α∩β=b′, ∵a∥α,∴a∥b′(线面平行则线线平行). 又∵a∥b,∴b∥b′,这与b∩b′=A 矛盾.∴假设错误.故b ⊂α.(六)拓展提升已知:a,b 为异面直线,a ⊂α,b ⊂β,a∥β,b∥α,求证:α∥β.证明:如图15,在b 上任取一点P ,由点P 和直线a 确定的平面γ与平面β交于直线c ,则c 与b 相交于点P.图15变式训练已知AB 、CD 为异面线段,E 、F 分别为AC 、BD 中点,过E 、F 作平面α∥AB.(1)求证:CD∥α;(2)若AB=4,EF=5,CD=2,求AB 与CD 所成角的大小.(1)证明:如图16,连接AD交α于G,连接GF,图16∵AB∥α,面ADB∩α=GF AB∥GF.又∵F为BD中点,∴G为AD中点.又∵AC、AD相交,确定的平面ACD∩α=EG,E为AC中点,G为AD中点,∴EG∥CD.(2)解:由(1)证明可知:∵AB=4,GF=2,CD=2,∴EG=1,EF=5.在△EGF中,由勾股定理,得∠EGF=90°,即AB与CD所成角的大小为90°.(七)课堂小结知识总结:利用线面平行的性质定理将直线与平面平行转化为直线与直线平行.方法总结:应用直线与平面平行的性质定理需要过已知直线作一个平面,是最难应用的定理之一;应让学生熟记:“过直线作平面,把线面平行转化为线线平行”.(八)作业课本习题2.2 A组5、6.§2.2.2 平面与平面平行的判定§2.2.4 平面与平面平行的性质一、教材分析空间中平面与平面之间的位置关系中,平行是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中平面与平面平行的判定定理给出了由线面平行转化为面面平行的方法;面面平行的性质定理又给出了由面面平行转化为线线平行的方法,所以本节在立体几何中占有重要地位.本节重点是平面与平面平行的判定定理及其性质定理的应用.二、教学目标1、知识与技能(1)理解并掌握平面与平面平行的判定定理;(2)掌握两个平面平行的性质定理及其应用(3)进一步培养学生观察、发现的能力和空间想象能力;2、过程与方法学生通过观察与类比,借助实物模型理解及其应用3、情感、态度与价值观(1)进一步提高学生空间想象能力、思维能力;(2)进一步体会类比的作用;(3)进一步渗透等价转化的思想。
课题:§2.2.3直线与平面平行的性质一、教材简析:在上一章学生通过整体观察,对空间几何体的结构特征已有了认识,并在本节之前学生已学习了空间两直线的位置关系,空间直线与平面的位置关系,还有线面平行的判定定理以及面与面平行的判定定理,这是学习本节内容的基础,直线与平面的位置关系中平行关系应用最多,而直线与平面平行的性质是本大节的难点,本节内容与下一节面面平行的性质有着密切的联系,在描述直线与直线,直线与平面,平面与平面的位置关系中起着重要的作用.二、教学目标(一)知识与技能通过观察探究,进行合情推理发现直线和平面平行的性质定理,并能准确地用数学语言表述该定理;能够对直线与平面平行的性质定理作出严密的逻辑论证,并能进行一些简单的应用.(二)过程与方法通过直观感知和操作确认的方法,培养和发展学生的几何直觉、运用图形语言进行交流的能力;体会和感受通过学生自己的观察、操作等活动进行合情推理发现并获得数学结论的过程.(三)情感态度价值观通过自主探究、主动参与的学习过程,激发学生学习数学的自信心和积极性,培养学生良好的思维习惯,渗透化归与转化的数学思想,体会事物之间相互转化和理论联系实际的辩证唯物主义思想方法.三、教学重点、难点、疑点及解决方法(一)教学重点:直线和平面平行的性质定理.(二)教学难点:直线和平面平行的性质定理的证明及应用.(三)教学疑点:由线面平行⇒线线平行,并不意味着平面内的任意一条直线都与已知直线平行.即://a b,则由公理4,平面α内与b平行的所⊂且//aα,若bα有直线都与a平行(有无数条),否则都与是异面直线.四、教学方法和教学手段的运用(一)建构主义学习理论认为:学生的认知结构是通过同化和顺化而不断发展,学习不是对教师所授予的知识被动接受,而是一个以学生已有的知识和经验为基础的主动的建构过程.学生真正获得知识的消化,是把新的学习内容正确纳入已有的认知结构,使其成为整个认知结构的有机组成部分,所以在教学中,我以长方体为载体,按照“直观感知----操作确认-----思辩论证”的认识过程展开.通过创设良好的问题情境,不断引导学生观察、实验、思考、探索,通过自己的亲身实践,充分发挥学生学习的主动性,培养学生的自主、合作、探索能力.同时采用电脑课件的教学手段,加强直观性和启发性,提高课堂效益.(二)学法指导根据本节课特点及学生的认知心理,我把重点放在如何让学生“会学习”这一方面,学生在教师营造的“可探索”环境里,积极参与、生动活泼地获取知识、掌握规律、主动发现、积极探索,从而培养学生观察能力、空间想象能力、探索思维能力,分析问题及解决问题的能力.五、课时安排:1课时六、课前准备:多媒体、课件、实物模型(细棍子2根、小木块30个)七、教学基本流程:环节教学内容设计师生双边互动创设情境1.复习线面位置关系与线面平行的判定.(1)直线与平面的位置关系的各种情况;(2)直线与平面平行的判定定理.2.思考:(1)如果一条直线与平面平行,那么这条直线是否与这个平面内的所有直线都平行?(2)教室内日光灯管所在的直线与地面平行,如何在地面上作一条直线与灯管所在直线平行?师:复习引入,温故知新,为学习新知做铺垫.引导学生通过思考和实际问题,进行观察、感知、实践操作,提高学生学习兴趣,激发学生的求知欲望和探索精神.生:根据问题进行直观感知,进而提出合理猜想.组织探究探索:多媒体课体演示观察:在长方体ABCD-A1B1C1D1中,思考下列问题:(1)两条直线平行的条件是什么?(2)平行于平面的一条直线与该平面内的直线的位置关系有几种可能?(3)平行于平面的一条直线与该平面内一条直线平行,需附加什么条件?(4)平面内的这条直线具有什么特殊地位?发现:1)两直线平行的条件是:⎩⎨⎧无公共点在同一平面内;师:引导学生结合上面的直观感知,层层递进,逐步探索,体会数学结论的发现过程.生:逐步探索,认真思考,画出相应图形,进行观察,感知、猜想.师:引导学生猜想、发现,并画出图形进行操作确认.生:根据探索问题,提出大胆猜想.创设情境组织探究探索研究巩固练习作业回馈课外活动实际问题引入,激发学生探索兴趣和求知欲望.结合实际问题主动参与,通过直观感知、提出猜想进而操作确认获得定理;然后结合例题体会定理的应用.结合例题,总结线线平行与线面平行的相互转化,体会线面平行的判定定理和性质定理的综合运用.综合应用判定定理和性质定理解决简单问题,规范解题步骤与格式,培养学生良好的学习习惯.进一步巩固定理,深化基本方法.结合线线平行与线面平行的转化,思考线线平行、线面平行、面面平行的联系,提出合理猜想,主动探究并操作验证.A1C1B1D1BCDA作业与回馈教材P651.习题2.2(A组)第5、6题;2.由上述两题你能发现线面平行还具有什么性质?3.如图,已知异面直线AB、CD都与平面α平行,CA、CB、DB、DA分别交α于点E、F、G、H.求证:四边形EFGH是平行四边形.课外活动前面学习了平面与平面平行的定义及其判定方法,类比本节课的学习,通过直观感知、获得猜想、操作确认的方法自主探究平面与平面平行具有何种性质;结合线线平行与线面平行的转化,思考线线平行、线面平行、面面平行的联系,提出合理猜想,主动探究并操作验证.培养学生良好的思维品质及自主学习,主动探究的意识.判定定理:…………………………………………性质定理:证明:………………………………例1:…………………………………………例2:…………………………………………十、教学设想:本课我以“找线”为线索,在教学中,让学生找线—得线---用线,先从一个问题入手,引发学生在线面平行的前提下,在面内找该线的一条平行线,同时以长方体为载体,通过对问题的探索,让学生在找线的过程中发现:其实,并不是面内所有的线都会与该线平行,而与该线平行的线也不只一条,从而得出直线与平面平行的性质的猜想,然后让学生通过逻辑论证,证明猜想的正确性,进而得到性质定理,找到与该线平行的线都是过该直线的平面与原来平面的交线,接着,让学生运用该性质去解决例3这样与实际生活有关的问题,在解决例3的过程中通过实物模型和多媒体辅助教学,有目的的把学生的思维引导到用性质定理解决问题上来,即过已知直线和点P作一个平面与已知平面相交,交线和已知直线平行,此交线就是所要找的线,在这过程中,通过师生合作讨论研究,充分让学生表述自己的观点,共同分析解答,找到解决问题的方法。
课题:2.2.2.3直线与平面、平面与平面平行的性质课 型:新授课 一、教学目标: 1、知识与技能(1)掌握直线与平面平行的性质定理及其应用; (2)掌握两个平面平行的性质定理及其应用。
2、过程与方法学生通过观察与类比,借助实物模型理解性质及应用。
3、情感、态度与价值观(1)进一步提高学生空间想象能力、思维能力; (2)进一步体会类比的作用; (3)进一步渗透等价转化的思想。
二、教学重点、难点 重点:两个性质定理 。
难点:(1)性质定理的证明;(2)性质定理的正确运用。
三、学法与教学用具1、学法:学生借助实物,通过类比、交流等,得出性质及基本应用。
2、教学用具:投影仪、投影片、长方体模型 四、教学思想1. 教学线面平行的性质定理:① 讨论:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线的位置关系如何?② 给出线面性质定理及符号语言://,,//l l m l m αβαβ⊂=⇒I . ③ 讨论性质定理的证明:∵ //l α,∴l 和α没有公共点,又∵m α⊂,∴l 和m 没有公共点;即l 和m 都在β内,且没有公共点,∴//l m .④ 讨论:如果过平面内一点的直线平行于与此平面平行的一条直线,那么这条直线是否在此平面内? 如果两条平行直线中的一条平行于一个平面,那么另一条与平面有何位置关系? 教学例题:例1:已知直线a ∥直线b ,直线a ∥平面α,b ⊄α, 求证:b ∥平面α分析:如何作辅助平面? → 怎样进行平行的转化? → 师生共练 → 小结:作辅助平面;转化思想“线面平行→线线平行→线线平行→线面平行”② 练习:一条直线和两个相交平面平行,求证:它和这两个平面的交线平行。
(改写成数学符号语言→试证)已知直线a ∥平面α,直线a ∥平面β,平面αI 平面β=b ,求证//a b .caαβbd c b a δγβα例2:有一块木料如图,已知棱BC 平行于面A ′C ′.要经过木料表面A ′B ′C ′D ′ 内的一点P 和棱BC 将木料锯开,应怎样画线?所画的线和面AC 有什么关系?例3:已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面。
《直线与平面平行的性质定理》教学设计一.教材内容与学情分析:本节课内容是人教A版数学必修2第二章第二节第三课时《直线与平面平行的性质定理》,“直线与平面平行的位置关系〞是“空间直线平行关系〞和“空间平面平行关系〞的桥梁和纽带。
“直线与平面平行的性质〞是立体几何的第一节性质定理课,揭示了“直线与平面平行的判定定理〞与“直线与平面平行的性质定理〞的内在关系,构建了新的知识与方法体系。
本节课也是在学生已经学习了“空间直线与平面的位置关系〞“直线与平面平行的判定〞等知识的根底上展开的,这为学习“直线与平面平行的性质〞作了必要的知识准备。
其次学生通过“空间几何体〞,“空间点,直线,平面之间的位置关系〞“直线与平面平行的判定〞的学习,已经初步形成了一定的空间思维和想象能力,以及初步具备了逻辑思维和推理论证能力,从而提高了学习的效率。
二、教学目标:1.知识与技能:学生初步学会应用直线与平面平行的性质定理解决简单问题;2.过程与方法:学生通过对线面平行性质的学习,进一步掌握直线与平面平行的判定和性质定理;通过对探究成果的归纳,整理,分析,从而认清结论的地位和作用,建立知识之间的联系;3.情感态度、价值观:学生通过对线面平行的性质的学习,进一步提高空间想象能力和严谨的思维习惯,养成实事求是的学习态度。
三、教学重点、难点:1.重点:线面平行的性质定理及应用。
2.难点:发现线面平行的性质,理解性质定理与判定定理的关系,并把它们整合到数学知识方法体系中。
四、教法与教具选择:1.教学方法:开放式探究、启发式引导、互动式讨论2.教学手段:多媒体、三角板、纸棒。
五、教学过程设计:〔一〕导直线与平面平行的判定定理〔符号描述〕线线平行→线面平行【设计意图】“温故而知新,可以为师也〞,回忆上节课的内容既可以对上节课内容作以稳固,也可为本节内容的展开做铺垫。
尤其是“线线平行→线面平行〞要板书在黑板的左方,等线面平行的性质定理得出后,提炼为“线面平行→线线平行〞只需要在原根底上加上反向箭头即可。
§2.2.3 — 2.2.4直线与平面、平面与平面平行的性质一、教学目标:1、知识与技能(1)掌握直线与平面平行的性质定理及其应用;(2)掌握两个平面平行的性质定理及其应用。
2、过程与方法学生通过观察与类比,借助实物模型理解性质及应用。
3、情感、态度与价值观(1)进一步提高学生空间想象能力、思维能力;(2)进一步体会类比的作用;(3)进一步渗透等价转化的思想。
二、教学重点、难点重点:两个性质定理。
难点:(1)性质定理的证明;(2)性质定理的正确运用。
三、学法与教学用具1、学法:学生借助实物,通过类比、交流等,得出性质及基本应用。
2、教学用具:投影仪、投影片、长方体模型四、教学思想(一)创设情景、引入新课1、思考题:教材第60页,思考(1)(2)学生思考、交流,得出(1)一条直线与平面平行,并不能保证这个平面内的所有直线都与这个直线平行;(2)直线a与平面α平行,过直线a的某一平面,若与平面α相交,则直线a就平行于这条交线。
在教师的启发下,师生共同完成该结论的证明过程。
于是,得到直线与平面平行的性质定理。
定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行则线线平行。
符号表示:a∥αa β a∥bα∩β= b作用:利用该定理可解决直线间的平行问题。
2、例3 培养学生思维,动手能力,激发学习兴趣。
例4 性质定理的直接应用,它渗透着化归思想,教师应多做引导。
3、思考:如果两个平面平行,那么一个平面内的直线与另一个平面内的直线具有什么样的位置关系?学生借助长方体模型思考、交流得出结论:异面或平行。
再问:平面AC内哪些直线与B'D'平行?怎么找?在教师的启发下,师生共同完成该结论及证明过程,于是得到两个平面平行的性质定理。
定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。
符号表示:α∥βα∩γ= a a∥bβ∩γ= b教师指出:可以由平面与平面平行得出直线与直线平行4、例5以讲授为主,引导学生共同完成,逐步培养学生应用定理解题的能力。
2、2、3 直线与平面平行的性质教案【教学目标】1、探究直线与平面平行的性质定理;2、体会直线与平面平行的性质定理的应用;3、通过线线平行与线面平行转化,培养学生的学习兴趣. 【教学重难点】重点 通过直观感知、提出猜想进而操作确认,获得直线与平面平行的性质定理. 难点 综合应用线面平行的判定定理和性质定理进行线线平行与线面平行的相互转化.【教学过程】1、提出问题:木工小罗在处理如图所示的一块木料时,发现该木料表面ABCD 内有一条裂纹DP ,已知BC ∥平面AC .他打算经过点P 和BC 将木料锯开,却不知如何画线,你能帮助他解决这个问题吗?2、探索:1) 两条直线平行的条件是什么?2) 平行于平面的一条直线与该平面内的直线的位置关系有几种可能? 3) 平行于平面的一条直线与该平面内一条直线平行,需附加什么条件? 4) 平面内的这条直线具有什么特殊地位?3、发现:1) 两直线平行的条件是:⎩⎨⎧无公共点在同一平面内; 2) 平行于平面的一条直线与该平面内的直线无公共点,位置关系有两种:平行或异面; 3) 平行于平面的一条直线与该平面内一条直线平行,需附加条件:它们在同一平面(β)内;4) 平面内的这条直线是这个平面与过已知直线的平面(β)的交线. 4、提出猜想:1) 由以上的探索与发现你能得出怎样的结论? 2) 你能否用数学符号语言描述你所发现的结论? 3) 可否画出符合你的结论的图形?4) 你能否对你发现的结论给出严格的逻辑证明? 5、直线与平面平行的性质定理:C ′A B DA ′B ′ D ′C · P1)文字叙述一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行. 2)符号语言描述b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βαβα3)图形语言描述 如右图.定理探微:1)定理可以作为直线与直线平行的判定方法; 2)定理中三个条件缺一不可; 3)提供了过已知平面内一点作与该平面的平行线相平行的直线的方法,即:辅助平面法. 6、定理应用举例: 例1.引入问题解决: 探索:1)怎样确定截面(由哪些条件确定)?2)过P 点所画的线有什么特殊意义,具有什么性质,具体应怎样画?解:如图所示变式训练1: 如图:四面体A -BCD 被一平面所截,截面EFGH 是一个矩形,(1)求证:CD//平面EFGH ;(2)求异面直线AB 、CD 所成的角。
2019-2020年人教A 版高中数学必修二 2-2-3 直线与平面平行的性质 教案【教学目标】1.知识与技能:(1)通过实例,了解直线与平面平行的特点;(2)理解直线与平面平行的性质;(3)会用直线与平面平行的性质解决实际问题.2.过程与方法:通过实例初步了解概念,通过探究深入理解概念的实质,关键是要培养学生分析问题、解决问题和转化问题的能力.3.情感态度价值观:(1)平面与平面间的位置关系的判定与证明的核心问题是让学生学会转化思想,灵活应用所学知识,加强与实际生活的联系,以科学的态度评价身边的一些现象;(2)用有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。
培养学生掌握“理论来源于实践,并把理论应用于实践”的辨证思想【重点难点】1.教学重点:理解直线与平面平行的性质2.教学难点:利用直线与平面平行的性质解决实际问题.【教学策略与方法】1.教学方法:启发讲授式与问题探究式.2.教具准备:多媒体【教学过程】(一)创设情景、引入新课复习:直线与平面平行的判定定理:ααα////,,a b a b a ⇒⊂⊄。
思考:(1)如果一条直线与一个平面平行,那么这条直线与这个平面内的直线有哪些位置关系?(2)教室内日光灯管所在的直线与地面平行,如何在地面上作一条直线与灯管所在的直线平行?(二)研探新知问题1:命题“若直线a 平行于平面α ,则直线a 平行于平面α内的一切直线”对吗?直线会与平面内哪些直线平行呢?问题2:在上面的论述中平面α的直线b 满足什么条件时可以与直线a 平行?没有公共点——共面(平行)。
归纳(直线与平面平行的性质定理):一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
符号语言:b a b a a //,,//⇒=⊂βαβα 。
证明:因为b =βα ,所以α⊂b ,因为α//a ,所以a 与b 没有公共点,又因为ββ⊂⊂b a ,,所以a // b 。
2.2.3 直线与平面平行的性质一、教材分析上节课已学习了直线与平面平行的判定定理,这节课将通过例题让学生体会应用线面平行的性质定理的难度,进而明确告诉学生:线面平行的性质定理是高考考查的重点,也是最难应用的两个定理之一.本节重点是直线与平面平行的性质定理的应用.二、教学目标1.知识与技能掌握直线与平面平行的性质定理及其应用.2.过程与方法学生通过观察与类比,借助实物模型性质及其应用.3.情感、态度与价值观(1)进一步提高学生空间想象能力、思维能力.(2)进一步体会类比的作用.(3)进一步渗透等价转化的思想.三、教学重点与难点教学重点:直线与平面平行的性质定理.教学难点:直线与平面平行的性质定理的应用.四、课时安排1课时五、教学设计(一)复习回忆直线与平面平行的判定定理:(1)文字语言:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(2)符号语言为:(3)图形语言为:如图1.图1(二)导入新课思路1.(情境导入)教室内日光灯管所在的直线与地面平行,是不是地面内的所有直线都与日光灯管所在的直线平行?思路2.(事例导入)观察长方体(图2),可以发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与长方体ABCD—A′B′C′D′的侧面C′D′DC所在平面平行,你能在侧面C′D′DC所在平面内作一条直线与A′B平行吗?图2(三)推进新课、新知探究、提出问题①回忆空间两直线的位置关系.②若一条直线与一个平面平行,探究这条直线与平面内直线的位置关系.③用三种语言描述直线与平面平行的性质定理.④试证明直线与平面平行的性质定理.⑤应用线面平行的性质定理的关键是什么?⑥总结应用线面平行性质定理的要诀.活动:问题①引导学生回忆两直线的位置关系.问题②借助模型锻炼学生的空间想象能力.问题③引导学生进行语言转换.问题④引导学生用排除法.问题⑤引导学生找出应用的难点.问题⑥鼓励学生总结,教师归纳.讨论结果:①空间两条直线的位置关系:相交、平行、异面.②若一条直线与一个平面平行,这条直线与平面内直线的位置关系不可能是相交(可用反证法证明),所以,该直线与平面内直线的位置关系还有两种,即平行或异面.怎样在平面内作一条直线与该直线平行呢(排除异面的情况)?经过这条直线的平面和这个平面相交,那么这条直线和交线平行.③直线与平面平行的性质定理用文字语言表示为:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.这个定理用符号语言可表示为:这个定理用图形语言可表示为:如图3.图3④已知a∥α,a β,α∩β=b.求证:a∥b.证明:⑤应用线面平行的性质定理的关键是:过这条直线作一个平面.⑥应用线面平行性质定理的要诀:“见到线面平行,先过这条直线作一个平面找交线”.(四)应用示例思路1例1 如图4所示的一块木料中,棱BC平行于面A′C′.图4(1)要经过面A′C′内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线与面AC是什么位置关系?活动:先让学生思考、讨论再回答,然后教师加以引导.分析:经过木料表面A′C′内的一点P和棱BC将木料锯开,实际上是经过BC及BC外一点P作截面,也就是找出平面与平面的交线.我们可以由线面平行的性质定理和公理4、公理2作出.解:(1)如图5,在平面A′C′内,过点P作直线EF,使EF∥B′C′,图5并分别交棱A′B′、C′D′于点E、F.连接BE、CF.则EF、BE、CF就是应画的线.(2)因为棱BC平行于面A′C′,平面BC′与平面A′C′交于B′C′,所以BC∥B′C′.由(1)知,EF∥B′C′,所以EF∥BC.因此BE 、CF 显然都与平面AC 相交. 变式训练如图6,a∥α,A 是α另一侧的点,B 、C 、D ∈a ,线段AB 、AC 、AD 交α于E 、F 、G 点,若BD=4,CF=4,AF=5,求EG.图6解:A ∉a ,∴A、a 确定一个平面,设为β. ∵B∈a ,∴B∈β. 又A ∈β,∴AB ⊂β. 同理AC ⊂β,AD ⊂β. ∵点A 与直线a 在α的异侧, ∴β与α相交.∴面ABD 与面α相交,交线为EG. ∵BD∥α,BD ⊂面BAD ,面BAD∩α=EG, ∴BD∥EG. ∴△AEG∽△ABD.∴AC AFBD EG =.(相似三角形对应线段成比例) ∴EG=920495=⨯=∙BD AC AF . 点评:见到线面平行,先过这条直线作一个平面找交线,直线与交线平行,如果再需要过已知点,这个平面是确定的.例2 已知平面外的两条平行直线中的一条平行于这个平面,求证另一条也平行于这个平面.如图7.图7已知直线a,b,平面α,且a∥b,a∥α,a,b都在平面α外.求证:b∥α.证明:过a作平面β,使它与平面α相交,交线为c.∵a∥α,a⊂β,α∩β=c,∴a∥c.∵a∥b,∴b∥c.∵c⊂α,b⊄α,∴b∥α.变式训练如图8,E、H分别是空间四边形ABCD的边AB、AD的中点,平面α过EH分别交BC、CD 于F、G.求证:EH∥FG.图8证明:连接EH.∵E、H分别是AB、AD的中点,∴EH∥BD.又BD⊂面BCD,EH⊄面BCD,∴EH∥面BCD.又EH⊂α、α∩面BCD=FG,∴EH∥FG.点评:见到线面平行,先过这条直线作一个平面找交线,则直线与交线平行.思路2例1 求证:如果两个相交平面分别经过两条平行直线中的一条,那么它们的交线和这条直线平行.如图9.图9已知a∥b,a⊂α,b⊂β,α∩β=c.求证:c∥a∥b.证明:变式训练求证:一条直线与两个相交平面都平行,则这条直线与这两个相交平面的交线平行.图10已知:如图10,a∥α,a∥β,α∩β=b,求证:a∥b.证明:如图10,过a作平面γ、δ,使得γ∩α=c,δ∩β=d,那么有点评:本题证明过程,实际上就是不断交替使用线面平行的判定定理、性质定理及公理4的过程.这是证明线线平行的一种典型的思路.例2 如图11,平行四边形EFGH的四个顶点分别在空间四边形ABCD的边AB、BC、CD、DA 上,求证:BD∥面EFGH,AC∥面EFGH.图11证明:∵EFGH是平行四边形变式训练如图12,平面EFGH分别平行于CD、AB,E、F、G、H分别在BD、BC、AC、AD上,且CD=a,AB=b,CD⊥AB.图12(1)求证:EFGH是矩形;(2)设DE=m,EB=n,求矩形EFGH 的面积.(1)证明:∵CD∥平面EFGH ,而平面EFGH∩平面BCD=EF, ∴CD∥EF.同理HG∥CD,∴EF∥HG.同理HE∥GF,∴四边形EFGH 为平行四边形. 由CD∥EF,HE∥AB,∴∠HEF 为CD 和AB 所成的角. 又∵CD⊥AB,∴HE⊥EF. ∴四边形EFGH 为矩形.(2)解:由(1)可知在△BCD 中EF∥CD,DE=m ,EB=n,∴DB BE CD EF =.又CD=a,∴EF=a nm n+. 由HE∥AB,∴DBDEAB HE =. 又∵AB=b,∴HE=b nm m+. 又∵四边形EFGH 为矩形, ∴S 矩形EFGH =H E·EF=ab n m mna n m nb n m m 2)(+=+∙+. 点评:线面平行问题是平行问题的重点,有着广泛应用.(五)知能训练求证:经过两条异面直线中的一条有且只有一个平面和另一条直线平行. 已知:a 、b 是异面直线.求证:过b 有且只有一个平面与a 平行. 证明:(1)存在性.如图13,图13在直线b上任取一点A,显然A∉a.过A与a作平面β,在平面β内过点A作直线a′∥a,则a′与b是相交直线,它们确定一个平面,设为α,∵b⊂α,a与b异面,∴a⊄α.又∵a∥a′,a′⊂α,∴a∥α.∴过b有一个平面α与a平行.(2)唯一性.假设平面γ是过b且与a平行的另一个平面,则b⊂γ.∵A∈b,∴A∈γ.又∵A∈β,∴γ与β相交,设交线为a″,则A∈a″.∵a∥γ,a⊂β,γ∩β=a″,∴a∥a″.又a∥a′,∴a′∥a″.这与a′∩a″=A矛盾.∴假设错误,故过b且与a平行的平面只有一个.综上所述,过b有且只有一个平面与a平行.变式训练已知:a∥α,A∈α,A∈b,且b∥a.求证:b⊂α.证明:假设b⊄α,如图14,图14设经过点A和直线a的平面为β,α∩β=b′,∵a∥α,∴a∥b′(线面平行则线线平行).又∵a∥b,∴b∥b′,这与b∩b′=A矛盾.∴假设错误.故b⊂α.(六)拓展提升已知:a,b为异面直线,a⊂α,b⊂β,a∥β,b∥α,求证:α∥β.证明:如图15,在b上任取一点P,由点P和直线a确定的平面γ与平面β交于直线c,则c与b相交于点P.图15变式训练已知AB、CD为异面线段,E、F分别为AC、BD中点,过E、F作平面α∥AB.(1)求证:CD∥α;(2)若AB=4,EF=5,CD=2,求AB与CD所成角的大小.(1)证明:如图16,连接AD交α于G,连接GF,图16∵AB∥α,面ADB∩α=GF⇒AB∥GF.又∵F为BD中点,∴G为AD中点.又∵AC、AD相交,确定的平面ACD∩α=EG,E为AC中点,G为AD中点,∴EG∥CD.(2)解:由(1)证明可知:∵AB=4,GF=2,CD=2,∴EG=1, EF=5.在△EGF中,由勾股定理,得∠EGF=90°,即AB与CD所成角的大小为90°.(七)课堂小结知识总结:利用线面平行的性质定理将直线与平面平行转化为直线与直线平行.方法总结:应用直线与平面平行的性质定理需要过已知直线作一个平面,是最难应用的定理之一;应让学生熟记:“过直线作平面,把线面平行转化为线线平行”.(八)作业课本习题2.2 A组5、6.。
第二课时 直线与平面平行的性质(一)教课目的1.知识与技术掌握直线与平面平行的性质定理及其应用.2.过程与方法学生经过察看与类比,借助实物模型性质及其应用.3.感情、态度与价值观( 1)进一步提升学生空间想象能力、思想能力.( 2)进一步领会类比的作用 .( 3)进一步浸透等价转变的思想 .(二)教课要点、难点要点:直线和平面平行的性质 .难点:性质定理的证明与灵巧运用.(三)教课方法 讲练联合教课过程教课内容师生互动1.直线与平面平行的判断 投影幻灯片,师生共同复定理习,并议论思虑题 .新课导入2.直线与平面的地点关系3.思虑:假如直线和平面平行、那么这条直线与这个平面 内的直线是有什么地点关系?直线与平面平行的性质师:投影问题,学生回答 . 1.思虑题:一条直线与一 生:当平面内的直线与这 个平面平行,那么在什么条件条直线共面时两条直线平行 .下,平面 内的直线与这条直线 师:为何?平行?生:由条件知两条直线没2.例 1 如图 a ∥ a, 有公共点,假如它们共面,那探究新知I = b .求证: a ∥ b .么它们必定平行 .师投影例 1 并读题,学生解析,教师板书,得出定理 .证明:由于 I=b ,所以师:直线与平面平行的性 b.质定理揭露了直线与平面平行由于 ∥ ,所以 a 与 b 无 中包含直线与直线平行. 经过a公共点 .直线与平面平行可获得直线与设计企图复习稳固通 过议论板书加深对知识的理解 .培育学生书写的能力.又由于, b,所以直线平行,这给出了一种作平a∥ b.行线的重要方法.3.定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行 .简证为:线面平行则线线平行 .符号表示:a Pa a Pba I b例 2 如师投影例 2 并读题,学生图所示的一思虑 .块林猜中,棱 BC平行平面师解析:经过木材表面A′C′. A′ C′内一点 P和棱 BC将木锯( 1)要经过面A′C′内一开,其实是经过 BC 及 BC 外的点 P 和棱 BC将木材锯开,应一点 P 作截面,也就是作出平如何画线?面与平面的交线,此刻请大家( 2)所画的线与平面AC是思虑截面与平面 A′ C′的交线巩固什么地点关系?EF与 BC的地点关系如何?如何所学知识解:(1)如图,在平面作?培育学生′ ′,过点生:由直线与平面平行的空间想象A C典例解析P 作直线 EF,能力,转变性质定理知 BC∥ EF,又 BC∥使EF ∥B′ C′,故只须过点 P 作 EF∥化归能力′ ′,并分′ ′即可. 及书写表B C B C别交棱′′,′′于点,教师板书第一问,学生完达能力 .A B C D E. 连结,. 则、、成第二问,教师赐予评论 .F BE CF EF BE CF就是应画的线.( 2)由于棱BC平行于平面A′C′,平面BC′与平面A′ C′交于B′ C′,所以, BC∥B′ C′.由(1)知,EF∥BC,所以EF PBCEF 平面A C EF P平面 AC .BC 平面 ACBE、 CF明显都与平面AC订交.例 3 已知平面外的两条平教师投影例 3 并读题,师巩固行直线中的一条平行于这个平生共同画出图形,写出已知,所学知识面,求证:另一条也平行于这个求证 . 培育学生平面 . 师:要证 bP ,可转证什空间想象如图,已知么问题 . 能力,转变直线 a、b,平面生:转证直线 b 与平面内化归能力,且 a∥ b, a 的一条直线平行 . 及书写表∥, a、 b 都在平面外 . 师:但这类直线在已知图达能力 .例题解析求证: b∥线中不存在,怎么办呢?证明:过 a 作平面,使它生:利用条件 a P ,先作与平面订交,交线为c. 一平面与订交 c,则 a 与交线因为 a ∥, a , c 平行,又 a∥ b ∴ b∥ cI =c,所以a∥c 师夸奖,并共同达成板书由于 a∥ b,所以 b∥ c 过程又由于 c , b ,所以 b∥ .1.如图,正方体的棱长是学生独立达成a, C, D分别是两条棱的中点. 1.答案:( 1)如图,CD∥EF,EF∥( 1)证明四边形ABCD(图随堂练习中暗影部分)是一个梯形;( 2)求四边形ABCD的面积 .2.如图,平面, ,两两订交, a, b, c 为三条交线,且a∥ b.那么,a与c,b与c有什么关系?为何?AB, CD∥ AB.又CD≠ AB,所以四边形ABCD是梯形 . 巩固所( 2)9a2学知识82 .答案:由于I a,I b, I c, 且a∥b,由b , a ,得 a // ;又a, a, I a c, 得a∥c,所以 a∥ b∥ c.构 建1.线线平行 判断定理 线面平行知识系统概括总结性质定理学生概括后教师总结完美思想的严2.在学习惯质准时注意事项谨性 . 课后作业2.2 第二课时 习案学生独立达成提升知识 整合能力备选例题例 1 如图,∥ ,A 是 另一侧的点,、、∈,线段、 、 交 于 、 、aB C D aAB AC AD aE FG 点,若= 4 , = 4 , = 5 ,求 .BD CF AF EG解: Aa ∴ A 、 a 确立一个平面,设为. ∵ B ∈a ,∴ B ∈ ,又 A ∈ , ∴ AB同理 AC, AD∵点 A 与直线 a 在 的异侧 ∴ 与 订交,∴面 ABD 与面订交,交线为 EG∵ BD ∥ , BD 面 BAD ,面 BAD I =EG∴ BD ∥EG , ∴△ AEG ∽△ ABD .∴ EG AF( 相像三角形对应线段成比率)BD AC∴ EGAFBD 5420.AC99。