当前位置:文档之家› Phase diagram and properties of Pb(In12Nb12)O3

Phase diagram and properties of Pb(In12Nb12)O3

Phase diagram and properties of Pb(In12Nb12)O3
Phase diagram and properties of Pb(In12Nb12)O3

Available online at

https://www.doczj.com/doc/2b17716609.html,

Journal of the European Ceramic Society32(2012)

433–439

Phase diagram and properties of

Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3polycrystalline ceramics

Dawei Wang a,b,Maosheng Cao a,??,Shujun Zhang b,?

a School of Materials Science and Engineering,Beijing Institute of Technology,Beijing100081,China

b Materials Research Institute,Pennsylvania State University,University Park,PA16802,USA

Received21July2011;received in revised form8August2011;accepted11August2011

Available online3September2011

Abstract

y Pb(In1/2Nb1/2)O3–(1?x?y)Pb(Mg1/3Nb2/3)O3–x PbTiO3(y PIN–(1?x?y)PMN–x PT)polycrystalline ceramics with morphotropic phase bound-ary(MPB)compositions were synthesized using columbite precursor method.X-ray diffraction results indicated that the MPB of PIN–PMN–PT was located around PT=0.33–0.36,con?rmed by their respective dielectric,piezoelectric and electromechanical properties.The optimum prop-erties were found for the MPB composition0.36PIN–0.30PMN–0.34PT,with dielectric permittivityεr of2970,piezoelectric coef?cient d33of 450pC/N,planar electromechanical coupling k p of49%,remanent polarization P r of31.6?C/cm2and T C of245?C.According to the results of dielectric and pyroelectric measurements,the Curie temperature T C and rhombohedral to tetragonal phase transition temperature T R–T were obtained,and the“?at”MPB for PIN–PMN–PT was achieved,indicating that the strongly curved MPB in PMN–PT system was improved by adding PIN component,offering the possibility to grow single crystals with high electromechanical properties and expanded temperature usage range(limited by T R–T).

?2011Elsevier Ltd.All rights reserved.

Keywords:Sintering;Dielectric properties;Piezoelectric properties;Ferroelectric properties;PIN–PMN–PT

1.Introduction

Relaxor-PbTiO3(PT)based single crystals,

such as Pb(Mg1/3Nb2/3)O3–PbTiO3(PMN–PT)and

Pb(Zn1/3Nb2/3)O3–PbTiO3(PZN–PT),were found to pos-

sess extra high electromechanical coupling factor(k33>0.9)

and piezoelectric coef?cient(d33>1500pC/N)that far out

perform polycrystalline PZT-based ceramics(k33~0.7and d33~400–600pC/N),making them promising candidates for medical ultrasonic imaging,sonar transducers,and solid-state

actuators.1–3Although relaxor-PT based single crystals have

excellent piezoelectric and electromechanical properties,their

relatively low Curie temperature(T C~130–170?C)becomes a critical limitation for applications,where the thermal stability is required,in terms of dielectric and piezoelectric property

?Corresponding author.

??Corresponding author.

E-mail addresses:caomaosheng@https://www.doczj.com/doc/2b17716609.html,(M.Cao),soz1@https://www.doczj.com/doc/2b17716609.html, (S.Zhang).variations and depolarization as a result of post-fabrication

process in transducers.3Their usage temperature ranges are

further restricted by ferroelectric rhombohedral to ferroelectric

tetragonal phase transition(T R–T~60–95?C),occurring at signi?cantly lower temperatures due to the strongly curved

morphotropic phase boundary(MPB).3–5

A broader temperature operating range would allow for

greater device design?exibility and therefore a wider range

of potential applications.Thus,new piezoelectric single crystal

compositions,which will be able to operate at higher tem-

perature than current state-of-the-art PMN–PT/PZN–PT single

crystals,are desirable.6In order to?nd the possibility of sin-

gle crystals for the next generation of transduction devices,

numerous studies are focused on exploring new high perfor-

mance ferroelectric systems with higher T C/T R–T over the past

few years.7–10

Perovskite Pb(In1/2Nb1/2)O3(PIN)is a typical relaxor fer-

roelectric material with a T C of about90?C.The solid

solution of the PIN–PT binary system exhibits a MPB near

37mol%PT,where high piezoelectric and dielectric prop-

erties can be obtained.The Curie temperature of PIN–PT

0955-2219/$–see front matter?2011Elsevier Ltd.All rights reserved. doi:10.1016/j.jeurceramsoc.2011.08.025

434 D.Wang et al./Journal of the European Ceramic Society32(2012)

433–439

Fig.1.Phase diagram of PIN–PMN–PT ternary system.Black dots are the selected compositions in this work.Other data is from the published papers (Red hollow squares:Hosona et al.11;Blue hollow triangles:Lin et al.15;Green hollow circles:Pham-Thi,et al.16).(For interpretation of the references to color in this?gure legend,the reader is referred to the web version of the article.) with MPB composition is about320?C,much higher than that of PMN–PT.11Consequently,it is promising to improve the T C/T R–T of PMN–PT system by adding PIN compo-nent.Recently,the new relaxor-PT based ternary single crystal system Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 (PIN–PMN–PT)was reported to possess higher T C>170?C and T R–T>120?C,and comparable piezoelectric properties to the binary crystal systems PMN–PT,indicating that PIN–PMN–PT crystals are promising candidates for electromechanical devices where high temperature usage and thermal stability are required.12–14However,studies of PIN–PMN–PT system have been focused on the PIN in the range of0.23–0.35,with T R–T less than135?C,T C/T R–T of PIN–PMN–PT are needed to be further improved to satisfy practical applications for higher

temperature Fig. 2.XRD patterns of(a)0.36PIN–(0.64?x)PMN–x PT and(b) 0.46PIN?(0.54?x)PMN–x PT.The space groups were determined to be P4mm and R3c for tetragonal and rhombohedral phases,respectively, according to the XRD patterns.

range.Thus,it is necessary to investigate the PIN–PMN–PT ternary system with higher PIN content level.

In this work,in order to obtain higher T C/T R–T in PIN–PMN–PT ternary system,PIN–PMN–PT ceramics

with Fig.3.SEM micrographs of the fracture surface for0.46PIN–(0.54?x)PMN–x PT:(a)x=0.33;(b)x=0.34;(c)x=0.35;(d)x=0.36.

D.Wang et al./Journal of the European Ceramic Society32(2012)433–439

435

Fig. 4.The piezoelectric and dielectric properties of y PIN–(1?x?y)PMN–x PT as a function of PT:(a)piezoelectric coef-?cient d33;(b)planar electromechanical coupling k p and(c)dielectric permittivityεr.

high PIN content were synthesized using columbite precursor method.Dielectric-and pyroelectric-temperature measurements were used to determine the T C/T R–T.Phase structure,dielec-tric,piezoelectric and ferroelectric properties of PIN–PMN–PT ceramics were studied in detail.

2.Experimental

The PIN–PMN–PT ternary ceramics with compositions of y Pb(In1/2Nb1/2)O3–(1?x?y)Pb(Mg1/3Nb2/3)O3–x PbTiO3 (y PIN–(1?x?y)PMN–x PT,x=0.28–0.37and y=0.36, 0.46)were prepared using two-step columbite

precursor Fig.5.The ferroelectric hysteresis of(a)0.36PIN–(0.64?x)PMN–x PT;(b) 0.46PIN–(0.54?x)PMN–x PT.

method.11,15–17The studied compositions are shown in Fig.1. Raw materials of MgCO3(99.9%,Alfa Aesar,Ward Hill,MA), Nb2O5(99.9%,Alfa Aesar)and In2O3(99.9%,Alfa Aesar) were used to synthesize columbite precursors of MgNb2O6 and InNbO4at1000?C and1100?C,respectively.Pb3O4 (99%,Alfa Aesar),TiO2(99.9%,Ishihara,San Francisco, CA),MgNb2O6and InNbO4powders were batched stoi-chiometrically according to the nominal compositions and wet-milling in alcohol for24h.The dried mixed powders were calcined at800?C for4h.The synthesized powders were subsequently vibratory milled in alcohol for12h.The powders were granulated and pressed into pellets with12mm in diameter.Following binder burnout at550?C,the pellets were sintered in a sealed crucible at1220–1280?C,where PbZrO3 was used as lead source to minimize PbO evaporation.

The density of the sintered samples was measured using the Archimedes method.The phase and morphologies of the sintered samples were determined using X-ray powder diffraction(XRD, PADV and X2diffractometers,Scintag,Cupertino,CA)and scanning electron microscope(SEM,Hitachi S-3500N,Japan). For electrical test,plane-parallel plates of sintered samples were polished using15?m SiC powder.Silver paste was printed to form electrodes on both sides of the disc samples and then?red at700?C for10min.Poling was carried out in silicon oil at 120?C for10min with an electric?eld of30kV/cm.Dielec-tric measurements were carried out on poled samples using a

436 D.Wang et al./Journal of the European Ceramic Society32(2012)

433–439

Fig. 6.(a)Remanent polarization P r and(b)coercive?eld E C of y PIN–(1?x?y)PMN–x PT as a function of PT.

multi-frequency precision LCRF meter(HP4184A,Hewlett Packard,Palo Alto,CA).Piezoelectric coef?cients were mea-sured on disk samples using a Berlincourt d33meter(ZJ-2, Institute of Acoustics Academia Sinica,Beijing,China). Polarization hysteresis and strain-electric?eld behavior were determined using a modi?ed Sawyer–Tower circuit driven by a lock-in ampli?er(Model SR830,Stanford Research System, Sunnyvale,CA)at a frequency of1Hz.The planar electrome-chanical coupling k p and mechanical quality factor Q m were determined from the resonance and antiresonance frequencies, which were measured using an Impedance/Gain-phase analyzer (HP4194A,Hewlett-Packard,Palo Alto,CA),according to IEEE standards.18,19The pyroelectric property was measured by the static Byer–Roundy method20and a picoammeter(HP 4140B,Hewlett Packard,Palo Alto,CA)was used to measure the pyroelectric current.

3.Results and discussion

XRD patterns of the studied compositions for y PIN–(1?x?y)PMN–x PT are shown in Fig.2.All the samples were found to be pure perovskite except the com-positions with0.36PIN,where small peaks of pyrochlore phase were indicated in Fig.2(a).The typical tetragonal phase symmetry for perovskite at room temperature is characterized by(200)peak splitting around2θ=45?,which was used

to Fig.7.The temperature dependence of dielectric permittivity for(a) 0.36PIN–(0.64?x)PMN–x PT and(b)0.46PIN–(0.54?x)PMN–x PT. determine the MPB compositions,separating rhombohedral and tetragonal phases.21,22It was found that with increasing PT content,the(200)peak gradually split,indicating the phase transition from rhombohedral phase to tetragonal phase.As

a result,the compositions with PT content of0.33,0.34and

0.35for0.36PIN–(0.64?x)PMN–x PT and0.34,0.35and0.36 for0.46PIN–(0.54?x)PMN–x PT belong to the MPB region according to the XRD patterns.

SEM micrographs of the fracture surface for 0.46PIN–(0.54?x)PMN–x PT with different PT contents are shown in Fig.3.It was clearly observed that all samples were highly dense,with a mixture of transgranular and inter-granular characteristics.23With increasing PT content,the grain size changed slightly,which was found to be on the order of 2–5?m.

The piezoelectric and dielectric properties of y PIN–(1?x?y)PMN–x PT with different PT contents are shown in Fig.4.It was found that the piezoelectric coef?cient d33,planar electromechanical coupling k p and dielectric per-mittivityεr reached the maxima in the range of PT=0.33–0.36, which is attributed to the enhanced polarizability for MPB compositions.

The ferroelectric hysteresis of y PIN–(1?x?y)PMN–x PT with different PT contents is shown in Fig.5.The correspond-ing remanent polarization P r and coercive?eld E C as a function of PT are shown in Fig.6.It was observed that with increas-ing PT content from0.28to0.36,P r increased?rstly,reaching

D.Wang et al./Journal of the European Ceramic Society 32(2012)433–439

437

Table 1

Piezoelectric,dielectric and ferroelectric properties of 0.36PIN–(0.64?x )PMN–x https://www.doczj.com/doc/2b17716609.html,position (PIN–PMN–PT)Density (g/cm 3)d 33(pC/N)k p (%)Q m εr tan δ(%)T C (?C)T R–T (?C)P r (?C/cm 2)E C (kV/cm)36/36/288.218032.32601030121016627.38.236/35/298.218033.927010400.921516327.58.436/34/308.222038.52401070121815929.88.636/33/318.224039.223012600.922516329.28.836/32/328.231042.12001650123315629.18.836/31/338.137044.61702120123915829.69.336/30/348.145049.01302970 1.1245/31.69.836/29/358.144047.415029901251/30.411.236/28/368.041045.115030601260/29.712.436/27/37

8.1

350

43.3

200

2630

0.7

266

/

27.7

14.8

d 33,piezoelectric coef?cient;k p ,planar electromechanical coupling;Q m ,mechanical quality factor;εr ,dielectric permittivity;tan δ,dielectric loss;T C ,Curi

e temperature;T R–T ,rhombohedral to tetragonal phase transition temperature;P r ,remanent polarization;E C ,coercive ?eld.

Table 2

Piezoelectric,dielectric and ferroelectric properties of 0.46PIN–(0.54?x )PMN–x https://www.doczj.com/doc/2b17716609.html,position (PIN–PMN–PT)Density (g/cm 3)d 33(pC/N)k p (%)Q m εr tan δ(%)T C (?C)T R–T (?C)P r (?C/cm 2)E C (kV/cm)46/26/288.216026.52401100 2.221517324.68.346/25/298.116028.92201000 2.222917425.67.846/24/308.119034.12101110 2.323217725.88.546/23/318.219034.51801050 2.124217425.98.546/22/328.320034.81801070 1.825316425.68.746/21/338.130041.21801470 1.826015827.711.246/20/348.242046.21202490 1.726515828.410.746/19/358.240042.31102840 1.5274/27.811.346/18/368.133036.61302270 1.4284/23.211.946/17/37

8.1

280

33.8

150

2030

1.2

291

/

20.8

11.3

the maxima at PT =0.34,above which,P r decreased.Due to the coexistence of ferroelectric rhombohedral and tetragonal phases in the MPB compositions of y PIN–(1?x ?y )PMN–x PT,the optimum domain reorientation during poling can be achieved,leading to the enhanced P r for MPB composition.Coercive ?eld E C ,however,was found to increase monotonously with increasing PT content,as shown in Fig.6(b),indicating that

the Fig.8.Rhombohedral to tetragonal phase transition temperature T R–T and Curie temperature T C of PIN–PMN–PT as a function of PT (C,cubic phase;R,rhom-bohedral phase;T,tetragonal phase).

domain switching becomes harder,attributed to the increase of the tetragonal phase.

The temperature dependence of the dielectric permittiv-ity for y PIN–(1?x ?y )PMN–x PT is shown in Fig.7.In most cases,two dielectric anomalies can be observed,corre-sponding to the rhombohedral to tetragonal phase transition temperature T R–T and Curie temperature T C ,

respectively.

Fig.9.The shape of MPB for the PIN–PMN–PT ternary system (*Choi et al.24;**Alberta 25).

438 D.Wang et al./Journal of the European Ceramic Society32(2012)433–439

The values of T C can be easily determined by the dielectric maxima,as shown in Fig.7,while the values of T R–T can be con?rmed by the pyroelectric measurements.24Consequently, the T C/T R–T dependence as a function of PT was obtained and given in Fig.8.It was clear that with increasing PT content, T C increased from166?C to266?C and215?C to291?C for y PIN–(1?x?y)PMN–x PT with0.36PIN and0.46PIN,respec-tively,while,T R–T changed slightly in a wide PT range.Of particular interest is that high T R–T>170?C was achieved for0.46PIN–(0.54?x)PMN–x PT,attractive for single crys-tal growth.Detailed piezoelectric,dielectric and ferroelectric properties for y PIN–(1?x?y)PMN–x PT with0.36PIN and 0.46PIN are listed in Tables1and2,respectively.

According to the data from dielectric and pyroelectric mea-surements in this work,including reported results,24,25the shape of MPB for the PIN–PMN–PT ternary system was obtained, as shown in Fig.9.It is evident that with increasing PIN con-tent,the T C/T R–T are improved greatly,due to the higher T C of PIN(90?C)than that of PMN(?10?C).11,24Of particu-lar signi?cance is that the strongly curved MPB in PMN–PT system became almost“?at”in a broad range of PT content (0.28–0.34)for PIN–PMN–PT ternary system,due to the addi-tion of PIN component,demonstrating that compositions with improved piezoelectric properties and broad temperature usage range are expected at MPB region,as shown in Figs.8and9,26 attractive for electromechanical applications with higher tem-perature usage range.

4.Conclusions

In conclusion,PIN–PMN–PT ternary ceramics with MPB compositions were prepared using two-step columbite precursor method.Phase structure,dielectric,piezoelectric and ferroelec-tric properties were investigated.The optimum properties were found for the MPB composition0.36PIN–0.30PMN–0.34PT, with d33of450pC/N,k p of49%,Q m of130,εr of2970, tanδof 1.1%,P r of31.6?C/cm2,E C of9.8kV/cm and T C of245?C.According to the dielectric-and pyroelectric-temperature measurements,the T C/T R–T were obtained as a function of PT,“?at”MPB in a broad PT range for the ternary PIN–PMN–PT system was achieved.It is signi?cant that high T R–T of170–180?C was achieved for PIN–PMN–PT ternary system,which is promising to grow high performance crystals with enhanced temperature usage range and thermal stability.

Acknowledgements

The authors thank Prof.Thomas R.Shrout for the help-ful discussion.Authors from Beijing Institute of Technology acknowledge the National Natural Science Foundation of China under Grant Nos.50742007,50872159and50972014,and the National High Technology Research and Development Program of China under Grant No.2007AA03Z103.The author(D.W. Wang)wishes to acknowledge the support from the China Schol-arship Council.The work was supported by ONR.References

1.Park SE,Shrout TR.Characteristics of relaxor-based piezoelectric sin-

gle crystals for ultrasonic transducers.IEEE Trans Ultrasonics Ferroelectr Frequency Control1997;44:1140–7.

2.Park SE,Shrout TR.Ultrahigh strain and piezoelectric behavior in relaxor

based ferroelectric single crystals.J Appl Phys1997;82:1804–11.

3.Zhang SJ,Shrout TR.Relaxor-PT single crystals:observations and

developments.IEEE Trans Ultrasonics Ferroelectr Frequency Control 2010;57:2138–46.

4.Davis M,Damjanovic D,Setter N.Electric-?eld,temperature,and stress-

induced phase transitions in relaxor ferroelectric single crystals.Phys Rev B2006;73:014115.

5.Zhang SJ,Luo J,Xia R,Rehrig PW,Randall CA,Shrout TR.Field-induced

piezoelectric response in Pb(Mg1/3Nb2/3)O3–PbTiO3single crystals.Solid State Commun2006;137:16–20.

6.Zhang SJ,Luo J,Hackenberger W,Shrout TR.Characterization

of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3ferroelectric crystal with enhanced phase transition temperatures.J Appl Phys2008;

104:064106.

7.Zhang SJ,Randall CA,Shrout TR.Characterization of perovskite piezo-

electric single crystals of0.43BiScO3–0.57PbTiO3with high Curie temperature.J Appl Phys2004;95:4291.

8.Zhang SJ,Lebrun L,Rhee S,Eitel RE,Randall CA,Shrout TR.

Crystal growth and characterization of new high Curie tempera-ture(1?x)BiScO3–PbTiO3single crystals.J Cryst Growth2002;236: 210–6.

9.Xu GS,Chen K,Yang DF,Li J.Growth and electrical properties of large

size PIN–PMN–PT crystals prepared by the vertical Bridgman technique.

Appl Phys Lett2007;90:032901.

10.Tian J,Han PD,Huang XL,Pan HX.Improved stability for piezoelectric

crystals grown in the lead indium niobate–lead magnesium niobate–lead titanate system.Appl Phys Lett2007;91:222903.

11.Hosona Y,Yamashita Y,Sakamoto H,Ichinose N.Dielectric and piezoelec-

tric properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3ternary ceramic materials near the morphotropic phase boundary.Jpn J Appl Phys 2003;42:535–8.

12.Li F,Zhang SJ,Lin DB,Luo J,Xu Z,Wei XY,Shrout TR.Electromechanical

properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3single crys-tals.J Appl Phys2011;109:014108.

13.Li F,Zhang SJ,Xu Z,Wei XY,Luo J,Shrout TR.Electromechanical

properties of tetragonal Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3fer-roelectric crystals.J Appl Phys2010;107:054107.

14.Zhang SJ,Luo J,Hackenberger W,Sherlock NP,Meyer

Jr RJ,Shrout TR.Electromechanical characterization of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3crystals as a func-tion of crystallographic orientation and temperature.J Appl Phys 2009;105:104506.

15.Lin DB,Li ZR,Li F,Xu Z,Yao X.Characterization and piezoelectric

thermal stability of PIN–PMN–PT ternary ceramics near the morphotropic phase boundary.J Alloys Compd2010;489:115–8.

16.Pham-Thi M,Augier C,Dammak H,Gaucher P.Fine grains ceramics

of PIN–PT,PIN–PMN–PT and PMN–PT systems:drift of the dielectric constant under high electric?eld.Ultrasonics2006;44:e627–31.

17.Swartz SL,Shrout TR.Fabrication of perovskite lead magnesium niobate.

Mater Res Bull1982;17:1245–50.

18.IEEE standard on piezoelectricity,ANSI/IEEE Std.176-1987.New York:

IEEE;1987.

19.Zhang SJ,Alberta EF,Eitel RE,Randall CA,Shrout TR.Elastic,

piezoelectric,and dielectric characterization of modi?ed BiScO3–PbTiO3 ceramics.IEEE Trans Ultrasonics Ferroelectr Frequency Control2005;

52:2131–9.

20.Byer RL,Roundy CR.Pyroelectric coef?cient direct measurement tech-

nique and application to a nsec response time detector.Ferroelectrics 1972;3:333–8.

21.Yuan J,Wang DW,Lin HB,Zhao QL,Zhang DQ,Cao MS.Effect of ZnO

whisker content on sinterability and fracture behaviour of PZT piezoelectric composites.J Alloys Compd2010;504:123–8.

D.Wang et al./Journal of the European Ceramic Society32(2012)433–439439

22.Hao H,Zhang SJ,Shrout TR.Dielectric and piezoelectric proper-

ties of the morphotropic phase boundary composition in the(0.8?x) Pb(Mg1/3Ta2/3)O3–0.2PbZrO3–x PbTiO3ternary system.J Am Ceram Soc 2008;91:2232–5.

23.Wang DW,Cao MS,Yuan J,Lu R,Li HB,Lin HB,Zhao QL,Zhang DQ.

Effect of sintering temperature and time on densi?cation,microstructure and properties of the PZT/ZnO nanowhisker piezoelectric composites.J Alloys Compd2011;509:6980–6.24.Choi SW,Shrout TR,Jang SJ,Bhalla AS.Dielectric and pyroelec-

tric properties in the Pb(Mg1/3Nb2/3)O3–PbTiO3system.Ferroelectrics 1989;100:29–38.

25.Alberta EF.Relaxor based solid solution for piezoelectric and electrostric-

tive applications.Ph.D.Thesis,The Pennsylvania State University,2003.

26.Li F,Zhang SJ,Xu Z,Wei XY,Luo J,Shrout TR.Temperature independent

shear piezoelectric response in relaxor-PbTiO3based crystals.Appl Phys Lett2010;97:252903.

基于jsp设计的人事管理系统(含源文件)

JSP课程设计 第1章课程设计目的与要求 (1) 1.1 课程设计目的 (1) 1.2 课程设计的实验环境 (1) 1.3 课程设计的预备知识 (1) 1.4 课程设计要求 (1) 第2章课程设计内容 (2) 2.1 系统设计 (2) 2.2 数据库模型 (3) 2.3 模块与功能设计 (4) 2.4 模块主要代码 (7) 第3章课程设计总结 (16) 参考文献 (17)

第1章课程设计目的与要求 1.1 课程设计目的 本课程的课程设计实际是网络技术专业学生学习完《JSP语言程序设计》课程后,进行的一次全面的综合训练,其目的在于加深对JSP语言程序设计的基础理论和基本知识的理解,掌握运用JSP动态网页编程技术开发应用程序的基本方法。 1.2 课程设计的实验环境 硬件要求:能运行Windows 9.X操作系统的微机系统。 软件要求:JDK、tomcat6.0、SQL Server 2000。 1.3 课程设计的预备知识 熟悉JSP语言程序设计的基本知识及应用开发的编程思想。 1.4 课程设计要求 按课程设计指导书提供的课题,应根据下一节给出的基本需求独立完成各个方面的设计,标有“可选”的部分可根据设计时间的安排及工作量的大小适当选择。选用其他课题或不同的数据库系统,可以组成设计小组,分模块进行,共同协作完成一个课题的开发任务。要求书写详细的设计说明书,对复杂的代码段和程序段,应画出程序流程图。在界面设计中,设计好每个窗口的布局,有多个窗口时,按模块调用的方式画出窗口调用图,用手工画好报表和标签样式,严禁相互抄袭。

第2章课程设计内容 2.1系统功能分析 2.1.1 系统功能分析 人事管理是企业管理的重要内容,如何管理好一个企业内部员工的信息,成为企业管理中的一个大的问题。此时,一个规范、自动的人事管理系统的使用显得尤为重要。根据人事管理的实际要求,结合人事信息管理的实际流程,“人事管理系统”可以满足以下要求: 1.能够掌握企业员工的基本信息,其中包括编号、姓名、性别、籍贯、民族、出生年月、政治面貌、专业、学历、家庭住址、婚姻状况、电话、身份证号等信息,除此之外还可以掌握每个员工的工作信息、调动信息、培训信息、奖惩信息等相关信息。 2.管理人员能够对本系统做相应的管理工作,可以对员工信息进行变动管理,如进行数据添加、查找和修改等操作。而浏览者只可以查看其相应的内容,不可以进行其他操作。 2.1.2 系统功能模块设计 由于人事管理系统主要面向的是小型企业的日常工作,所以设置的模块尽可能的满足企业的日常办公即可,其中设计的功能模块如图2.1所示。 图2.1 功能模块图

日立喷码机入门基础培训PB-C型号

HITACHI PB系列喷码机操作与维护——维修培训 爱杰特电子科技有限公司 2013年5月

目录 安全须知....................................................................................................................................................贰第一章设备介绍....................................................................................................................................叁 一、设备部件描述............................................................................................................................叁 二、喷码机技术规范........................................................................................................................伍第二章基本操作....................................................................................................................................柒 一、开机启动....................................................................................................................................柒 二、停机清洗....................................................................................................................................捌第三章信息编辑....................................................................................................................................玖 一、喷印格式....................................................................................................................................玖 二、字符输入....................................................................................................................................玖 三、喷印设置............................................................................................................................ 壹拾叁 四、登录.................................................................................................................................... 壹拾伍第四章参数设置............................................................................................................................ 壹拾柒 一、设备运行参数设定清单.................................................................................................... 壹拾柒 二、运行管理................................................................................................................................ 贰拾 三、强制喷印............................................................................................................................ 贰拾壹 四、振荡电压重新设定............................................................................................................ 贰拾壹 五、历史记录............................................................................................................................ 贰拾壹 六、循环控制............................................................................................................................ 贰拾贰 七、软件管理............................................................................................................................ 贰拾贰 八、功能限制............................................................................................................................ 贰拾贰第五章补充功能............................................................................................................................ 贰拾叁第六章维护保养............................................................................................................................ 贰拾肆第七章异常处理............................................................................................................................ 叁拾伍

人事管理系统源代码

#include #include #include #define N 100 struct member_info { char xm[7]; char xb[3]; char sr[15]; char whcd[13]; char zc[17]; char sfzh[19]; char lxdh[12]; int gl; int nl; }; struct member_info member[N+1]; int CurrentCount=0; void input() { char sfjx=1; while(sfjx!=0) { if(CurrentCount==N) { printf("\n人数已达上限,不能添加!!!\n"); sfjx=0; } else { CurrentCount++; printf("\n请输入员工信息(姓名性别生日年龄文化程度联系电话身份证号码工龄职称):\n"); scanf("%s%s%s%d%s%s%s%d%s",member[CurrentCount].xm,member[CurrentCount].xb,memb er[CurrentCount].sr,&member[CurrentCount].nl,member[CurrentCount].whcd,member[CurrentC ount].lxdh,member[CurrentCount].sfzh,&member[CurrentCount].gl,member[CurrentCount].zc); printf("\n是否继续(0--结束,其它--继续):"); scanf("%d",&sfjx); } } printf("人员已排序"); int i,j; for(i=1;i

人事管理系统(课程设计)源码

急需一个公司的人事管理系统源代码(vc++编程) 悬赏分:100 |解决时间:2008-1-8 09:58 |提问者:klak1 某小型公司,主要有两类人员:经理、员工。现在,需要存储这些人员的姓名、编号、身份证号码、业绩、级别(经理包括总经理、经理、副经理级别,员工包括高级员工、普通员工和临时工级别)、家庭住址、开始工作日期、所在部门、薪水等信息,并可以对这些信息进行检索。 要求: 1)人员编号在生成人员信息时同时生成,每输入一个人员信息编号顺序加1; 2)根据业绩的大小具有自动升降级别的功能; 3)输入员工身份证号码号码后自动获取员工生日; 4)输入员工开始工作日期后自动获取员工工龄; 5)能按姓名或者编号显示、查找、增加、删除和保存各类人员的信息 最佳答案 #include #include #include #include const int Maxr=100; class Employee //职工类 { int tag;//删除标记 int no;//职工编号 char name[20]; char zw[20];//职工姓名 int salary;//职工工资 public: Employee(){} char *getname() {return name;}//获取名字 int gettag() {return tag;}//获取标记 int getno() {return no;}//获取编号 int getsalary(){return salary;} void setzw(char q[])//设置名字 { strcpy(zw,q); } void setname(char na[])//设置名字 { strcpy(name,na); } void getsalary(int sa){salary=sa;} void delna(){tag=1;}//删除

人事管理系统数据库设计sql代码

建立数据库: create database 数据库 建表: create table 部门信息表 (部门编号 char(2) primary key , 部门名称 nchar(14) , 部门职能 nchar(14), 部门人数 char (4) ) go create table 管理员信息表 (用户名 nchar(4) primary key , 密码 char(10) , ) go create table 用户信息表 (用户名char(10) primary key , 用户类型char(10), 密码 char(10) ) go create table 员工工作岗位表 (姓名 nchar(4) primary key , 员工编号 char(4) 工作岗位 nchar(3) ,

部门名称 nchar(10), 参加工作时间 char (4) ) go create table 员工学历信息表 (姓名 nchar(4) primary key , 员工编号 char(4) 学历 nchar(2) , 毕业时间 char(10), 毕业院校 nchar (10), 外语情况 nchar(10), 专业 nchar(10) ) go create table 员工婚姻情况表 (姓名 nchar(4) primary key , 员工编号 char(4) 婚姻情况 nchar(2) , 配偶姓名 nchar(4), 配偶年龄 char (3), 工作单位 nchar(10), ) go create table 员工基本信息表 (员工编号 char(4) primary key , 姓名 nchar(4) ,

人事管理系统代码

package rsgl; import java.awt.* import java.awt.event.*; import java.sql.*; import java.util.*; import javax.swing.*; import javax.swing.border.*; public class A extends JFrame { protected JPanel p = new JPanel(); protected JPanel p1 = new JPanel(); protected JPanel p2 = new JPanel(); protected JPanel p3= new JPanel(); JMenuBar M =new JMenuBar(); JMenu m1 = new JMenu("基本信息模块"); JMenu m2 = new JMenu("考勤考评信息模块"); JMenu m3 = new JMenu("系统维护信息模块"); JMenuItem mm1 = new JMenuItem("员工基本信息"); JMenuItem mm2 = new JMenuItem("员工家庭成员基本信息"); JMenuItem mm3 = new JMenuItem("员工培训信息"); JMenuItem mm4 = new JMenuItem("员工考勤信息"); JMenuItem mm5 = new JMenuItem("员工考评信息"); JMenuItem mm6 = new JMenuItem("普通管理员"); JMenuItem mm7 = new JMenuItem("高级管理员"); JMenuItem mm8 = new JMenuItem("退出"); protected JLabel l1 = new JLabel("员工编号:"); protected JLabel l2 = new JLabel("姓名:"); protected JLabel l3 = new JLabel("性别:"); protected JLabel l4 = new JLabel("年龄:"); protected JLabel l5 = new JLabel("部门:"); protected JTextField t1 = new JTextField(10); protected JTextField t2 = new JTextField(10); protected JTextField t3 = new JTextField(10); protected JTextField t4 = new JTextField(10); protected JTextField t5 = new JTextField(10); private JButton b1 = new JButton("查询"); private JButton b2 = new JButton("插入"); private JButton b3 = new JButton("修改"); private JButton b4 = new JButton("删除"); private JButton b5 = new JButton("清除"); private JButton b6 = new JButton("下一条"); private Connection c; // @jve:decl-index=0: private Statement s; // @jve:decl-index=0: private ResultSet r; // @jve:decl-index=0: public A() { super("人事管理系统"); getContentPane().add(p); setJMenuBar(M);M.add(m1);M.add(m2);M.add(m3);m1.add(mm1); m1.add(mm2);m1.add(mm3);m1.addSeparator();m1.add(mm8);m2.add(mm4); m2.add(mm5);m3.add(mm6);m3.add(mm7); p.add(p1,BorderLayout.NORTH); p.add(p2,BorderLayout.CENTER); p.add(p3,BorderLayout.SOUTH); p1.setLayout(new GridLayout(5,2,1,3)); p1.add(l1);p1.add(t1); p1.add(l2);p1.add(t2); p1.add(l3);p1.add(t3); p1.add(l4);p1.add(t4); p1.add(l5);p1.add(t5); p2.add(b1);p1.add(b2); p2.add(b3);p1.add(b4); p2.add(b5);p3.add(b6); t1.setText("");t2.setText("");t3.setText("");t4.setText("");t5.setText(""); setSize(350,300);setVisible(true); try{ Class.forName("sun.jdbc.odbc.JdbcOdbcDrive"); c=DriverManager.getConnection("jdbc:odbc:sd","sa",null); s=c.createStatement(); r=s.executeQuery("select * from 员工基本信息表"); } catch (SQLException e){ JOptionPane.showMessageDialog(null ,e.getMessage(),"操作错误!",JOptionPane.ERROR_MESSAGE); System.exit(1); } catch(ClassNotFoundException e) { JOptionPane.showMessageDialog(null ,e.getMessage(),"驱动程序找不到!",JOptionPane.ERROR_MESSAGE); System.exit(1); } addWindowListener( new WindowAdapter(){ public void windowClosing(WindowEvent event) { try { s.close();c.close(); } catch(SQLException e) { JOptionPane.showMessageDialog(null,e.getMessage(),"不能关闭!",JOptionPane.ERROR_MESSAGE); System.exit(1); } } }); b1.addActionListener( new ActionListener(){ public void actionPerformed(ActionEvent event) { try{ r=s.executeQuery("select *

高校人事管理系统C++代码

#include #include #includepowered by https://www.doczj.com/doc/2b17716609.html, #include using namespace std; class employee { protected: int number; char name[20]; char sex[6]; char workplace[20]; char place[20]; char nation[6]; char birth[20]; char party[10]; char id[20]; float score[5]; public: Employee *nest; Employee(){} ~Employee(){} char* getname(){ return name; } int getnumber(){ return number; } double getscore(int i){ return score[i];} float get(){ return(score[0]+ score[1]+ score[2]+ score[3]+ score[4]);} void input() { int e=1; cout<<“\t\t\t按提示输入 :”<>workplace ; do { cout<< “\t\t输入性别 :” ; cin>>sex ; if(strcmp(sex,“man”)==0 || strcmp(sex,“woman”)==0) { cout<<“\t\t输入籍贯:”; cin >>place; cout<<“\t\t输入民族:”; cin >>nation;

asp 课程设计源代码-人事管理系统

附录:源程序代码 1).default.aspx <%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="Default2" %> 无标题页

日立喷码机的产品介绍以及使用常识

喷码机用户在使用过程中,不同品牌的不同型号的喷码机使用操作都各有讲究。我们先来看看两款日立喷码机的具体介绍。 1.日本日立RX2系列原装进口小字符喷码机 这款新型小字符喷码机提供了更长的持续运行时间,它采用了先进技术,具自动设置和自动清洁功能,维护更加简单。所有这些,使RX2系列小字符喷码机在其生命周期为客户带来的价值。并且稳定,操作简单,低维护。 2.日立UX小字符喷码机 其操作保养和环保性能有了提升减少耗材挥发减低客户的运行成本。”溶剂低消耗系统”通过对墨水回路和设备温度的控制,有效减少耗材挥发,显著降低客户成本,将以太网加入标准配置,减少设备线缆使用。同时,支持开放网络,简化系统结构。通过中央系统集中管理,轻松连接多台设备。10.4英寸彩色触摸屏,大屏幕显示,操作简便。编辑新的内容时,编辑完的内容可进行预览,有效避免错误喷印。 稍微了解了两款日立喷码机后,我们再来看看在使用日立喷码机过程中的几点注意事项: 1、同一台日立喷码机必须适用同一种墨水,并且要使用与之相对应型号的

溶剂和清洗液。否则,可能出现不可预测的问题。 2、日立喷码机耗材属于危险化学品,所以必须对使用喷码机墨水等耗材的人进行适当的培训,使其掌握墨水的使用方法。喷码机耗材应避免接触口腔。 3、日立喷码机耗材都具有易挥发,易燃烧的特性。在使用和存放的过程中要注意通风,防止高温,静电以及其他火灾隐患。 4、日立喷码机溶剂,清洗液具有刺激性和脱水性。喷码机维修时应该采取一定的防护措施,比如防护眼镜,橡胶手套等。如果有日立墨水站到皮肤,请勿用清洗液去冲洗。可以用酒精棉签去擦拭,然后用香皂洗净,并涂上护手霜。 5、在进行连续打印时应使用金属杯并使其接地,日立墨水应该存放在阴凉,同风的地方,附近严禁烟火,应配备相应的灭火器材。 6、及时清理沉积和喷溅出的日立喷码机耗材,包括粘染墨水的纸巾。 7、废弃日立喷码机耗材的处理,要符合当地政府的有关规定,不得进入排水、排污系统,注意环境保护。 如果大家有采购日立喷码机的意愿,可以咨询杭州安田科技有限公司。安田

人事管理系统实验报告

摘要 人事管理是企业管理中的一个重要内容,随着时代的进步,企业也逐渐变得庞大起来。如何管理好企业内部员工的信息,成为企业管理中的一个大问题。在这种情况下,开发一个人事管理系统就显得非常必要。本系统结合公司实际的人事、制度,经过实际的需求分析,采用功能强大的Visual Basic6.0作为开发工具而开发出来的单机版人事管人事理系统。整个系统从符合操作简便、界面友好、灵活、实用、安全的要求出发,本企业人事管理系统具有如下功能:员工基本信息的录入、修改、查询、删除模块,员工假条信息录入、修改、查询、删除模块,员工工资信息的录入,计算,查询,以及系统用户的设置以及系统的维护功能。为企业人事管理提供信息咨询,信息检索,信息存取等服务,基本上能够满足现代企业对人事管理的需要。本文系运用规范研究方法进行的专题研究。全文分六个部分:第一部分,是本课题的来源和课题研究的目的和意义;第二部分,是开发工具的选择,本系统主要运用的是Visual Basic 6.0作为系统前台应用程序开发工具,Access作为后台数据库;第三部分,是系统的需求分析,主要是人事管理系统的需求分析;第四部分,是系统分析与实现,包括系统功能模块的设计和数据库的设计;第五部分,是代码的设计与实现,系统事件运行的主要代码;第六部分,是系统的实现,最后,是软件的测试 关键词:人事管理系统设计SQL Server 2005数据库Visual Basic 6.0 维护测试

第一章绪论 1.1 引言 随着计算机技术的飞速发展,计算机在企业管理中应用的普及,利用计算机实现企业人事管理势在必行。人力资源管理是结合公司实际的人事、制度,经过实际的需求分析,采用功能强大的Visual Basic6.0作为开发工具而开发出来的单机版人事管人事理系统。整个系统从符合操作简便、界面友好、灵活、实用、安全的要求出发,本企业人事管理系统具有如下功能:员工基本信息的录入、修改、查询、删除模块,员工假条信息录入、修改、查询、删除模块,员工工资信息的录入,计算,查询,以及系统用户的设置以及系统的维护功能。为企业人事管理提供信息咨询,信息检索,信息存取等服务,基本上能够满足现代企业对人事管理的需要。 1.2 项目背景 本课题基于我国企业管理信息化建设现状,结合在实际工作中所遇到的问题和收获,对企业人事管理系统在设计开发等方面进行研究,重点研究系统开发中所采用的软硬件平台规范、数据库结构设计、开发工具的选择与使用,目的是从技术手段的角度阐述如何实现企业从传统经营管理模式向信息化管理模式转变的过程,以及人事管理系统在企业管理信息化中所起到的重要作用。本课题的开发主要是要花费相当多的人力和时间,虽然开发出来的软件可能离具体产生效益还有一定的距离。但是,出于通过毕业设计来丰富自己的专业知识,并从长远利益来考虑,本课题的设计开发还是具有相当大的经济可行性的。 1.3 实现意义 现代信息技术的发展,在改变着我们的生活方式的同时,也改变着我们的工作方式,使传统意义上的人事管理的形式和内涵都在发生着根本性的变化。在过去,一支笔和一张绘图桌,可能就是进行办公的全部工具。今天,电脑、扫描仪和打印机等,已基本取代了旧的办公用具。如今,人事管理己完全可以通过电脑进行,并在计算机辅助下准确快速地完成许多复杂的工作。这些都大大地缩短管理的时间。而今天,人事管理的内容己经转变为对更为广泛的系统价值的追求。信息管理,如今已是一个热门话题,它已为许

高校人事管理系统C++程序设计源代码

目录 新建一个头文件类,名字为:Person.h,再建一个源文件,名字随意,代码按顺序 粘贴进去即可运行。 (2) 头文件: (2) 源文件: (2)

新建一个头文件类,名字为:Person.h,再建一个源文件,名字随意,代码按顺序粘贴进去即可运行。 头文件: #include #include using namespace std; //基类 class Person { public: char name[20]; char sex[6]; int age; char zzmm[10]; char zgxl[10]; int rzsj; int lysj;

int gongzi; virtual void add() { cout<<"姓名:";cin>>name; cout<<"性别:";cin>>sex; cout<<"年龄:";cin>>age; cout<<"工资:";cin>>gongzi; cout<<"政治面貌:";cin>>zzmm; cout<<"最高学历:";cin>>zgxl; cout<<"任职时间:";cin>>rzsj; cout<<"来院时间:";cin>>lysj; } virtual void show() { cout<<"姓名:"<

基于Java的人事管理系统文献综述

学校代码:11517 学号:2 文献综述 题目基于的人事管理系统 的设计与实现 学生姓名许耀辉 专业班级信息与计算科学1042班 学号 2 系(部)理学院 指导教师(职称)董西广(讲师) 完成时间2014年3月4日

基于的人事管理系统的设计与实现 摘要:随着计算机的发展,科技的发展,现阶段的人事管理系统越来越不能满足企业的需要,特别是对于一些企业仍然采用人工管理的方式,这种方式不仅增加了企业的成本,而且极其容易出错,设计一种基于的人事管理系统就应运而生了,人事管理系统基本实现了企业人事管理的基本应用,包括人事信息管理的增、删、改、查,考勤信息管理的增、删、改、查,个人简历信息管理等基本应用,设计的人事管理涉及数据库的操作,以及数据库的连接等相关知识。 关键词:人事管理 1 引言 21世纪最激烈的竞争当属人才的竞争,一个具有多学科知识的复合性人才或许是一个企业发展壮大所不可或缺的重要因素。因此人力资源已逐步成为企业最重要的资源,人力资源管理(,)也成为现代企业管理工作中的重要内容之一。随着社会的发展,科技的进步,计算机的应用在社会各领域中都得到了普及,越来越多的人都感受到利用计算机进行各类管理的科学和便捷;认识到管理信息系统对于管理工作的重要性[1]。 本次论文创作的主要目的是设计一款简单、易操作的现代人事管理系统,在论文创作的过程中,我借助学校和个人收集的相关资料,利用图书馆和网络等渠道,广泛查阅相关资料,分析前人成果的基础上,明确系统设计思路。 2 人事管理系统的发展 2.1人事管理系统的国外的发展 人事管理系统的发展经过三个阶段的发展。 人事管理系统的发展历史可以追溯到20世纪60年代末期。由于当时计算机技术已经进入实用阶段,同时大型企业用手工来计算和发放薪资既费时费力又容易出差错,为了解决这个矛盾,第一代人事管理系统应运而生。 第二代的人事管理系统出现于20世纪70年代末。由于计算机技术的飞速发展,无论是计算机的普及性,还是计算机系统工具和数据库技术的发展,都为的

人事管理系统大数据库源代码

using System; using System.Collections; using System.Configuration; using System.Data; using System.Linq; using System.Web; using System.Web.Security; using System.Web.UI; using System.Web.UI.HtmlControls; using System.Web.UI.WebControls; using System.Web.UI.WebControls.WebParts; using System.Xml.Linq; namespace WebApplication1 { public partial class WebForm1 : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { } protected void Button1_Click(object sender, EventArgs e) { Response.Redirect("~/登录.aspx"); } protected void Button2_Click(object sender, EventArgs e) { Response.Redirect("~/人员信息查询.aspx"); } protected void Button3_Click(object sender, EventArgs e) { Response.Redirect("~/人员修改.aspx"); } protected void Button4_Click(object sender, EventArgs e) { Response.Redirect("~/部门信息.aspx"); } protected void Button5_Click(object sender, EventArgs e) { Response.Redirect("~/工资信息.aspx"); } } } using System; using System.Collections; using System.Configuration; using System.Data; using System.Linq;

人事管理系统——C语言

人事管理管理系统 [要求] 某高校主要人员有:在职人员(行政人员、教师、一般员工)、退休人员和临时工。现在,需要存储这些人员的人事档案信息:编号、姓名、性别、年龄、职务、职称、政治面貌、最高学历、任职时间、来院时间、人员类别。其中,人员编号唯一,不能重复。 (1)添加删除功能:能根据学院人事的变动情况,添加删除记录; (2)查询功能:能根据编号和姓名进行查询; (3)编辑功能(高级):根据查询对相应的记录进行修改,并存储; (4)统计功能:能根据多种参数进行人员的统计(在职人数、党员人数、女工人数、高学历高职称人数(硕士学位以上或者副教授以上)),统计要求同时显示被统计者的信息; (5)排序功能:按照年龄、来院时间进行排序; (6)保存功能:能对输入的数据进行相应的存储; 一、需求分析: 根据题目要求,职工信息是存放在文件中的,所以应该提供相应的文件的输入输出的功能,在程序中应该有添加删除,查询,编辑,统计,排序,保存等程序实现相应的操作,另外菜单式的选择方式选择程序的功能也是必须需的。另外程序中要求存储的模块,采用的方式均为将原文件中的所有数据读入内存,在内存中处理之后以覆盖的方式写入文件中重新储存,这样的方法容易理解、容易编写,但当文件中的数据量很大时,这种方法也存在一定的难度,在本程序中将N定为100,也即最多可储存的职工人数为100; 二、总体设计: 根据以上需求分析,将程序分成以下几个模块: 1、新建档案信息; 2、删除信息; 3、追加信息; 4、搜索查找信息(按姓名或者编号搜索); 5、浏览全部信息; 6、修改信息; 7、信息排序; 8、信息统计; 三、详细设计; 1、主函数: 〈1〉需求分析: 为使系统执行完每部分功能后能够方便的回到系统主界面,main()函数设计的很简单,只包含一个menu()函数,其余的全部功能都通过menu()函数调用来实现,并通过menu()函数的递归调用实现返回主界面的功能。 main()函数定义如下: main()

文本预览
相关文档 最新文档