当前位置:文档之家› RCC-M M6201 非合金球墨铸铁FGS350—22和合金球墨铸铁SNC20—2制成的2、3级设备用铸件

RCC-M M6201 非合金球墨铸铁FGS350—22和合金球墨铸铁SNC20—2制成的2、3级设备用铸件

RCC-M M6201 非合金球墨铸铁FGS350—22和合金球墨铸铁SNC20—2制成的2、3级设备用铸件
RCC-M M6201 非合金球墨铸铁FGS350—22和合金球墨铸铁SNC20—2制成的2、3级设备用铸件

M6000 铸铁件

M6100 球墨铸铁

M6200 铸铁件延性铸铁件

M6201 产品采购技术规范

非合金球墨铸铁EN—GJS350—22U—RT和合金球墨铸铁

FGS Ni20Cr2制成的2、3级设备用铸件

0 适用范围

本规范适用于非合金球墨铸铁EN—GJS350—22U—RT制成的3级承压铸件和Ni20Cr2奥氏体球墨铸铁制成的泵体铸件,以及非合金球墨铸铁EN—GJS350—22U—RT制成的非承压铸件泵罩(2、3级设备用)。

1 冶炼

采用化铁炉或电炉冶炼。

2 化学成分要求

2.1 规定值

2.1.1 非合金铸铁

铸造车间根据所使用的工艺选定化学成分.

2.1.2 奥氏体合金铸铁

化学成分应符合表I的规定。

2.2 化学分析

铸造车间应提供熔炼分析的化学成分单,该单由厂长或厂长正式委派的代表签证。若需对材料作更全面的分析,则对上述钢号材料测定规定元素外还需测定通常的残余元素含量。若需进行成品分析,则可在力学性能试验用的边角料上进行。

此项分析按MC1000的规定执行。

表I

AFNOR牌号FGS Ni20Cr2

元素浇包分析和成品分析%

C ≤3.0

Si 1.5~3.0

Mn 0.7~1.25

P ≤0.08

Cu ≤0.5

Ni 18.0~22.0

Cr 1.0~2.5

3 制造

3.1 制造程序

开始制造前,铸造车间须制订包括以下主要内容的制造程序:

——冶炼方式;

——铸造方式;

——带有试料位置的铸件采购图,该试料应与铸件整体相连接或与之邻近;

——热处理方式;

——试料上截取试样的平面图;

——水压试验方式;

——按时间先后为序列出热处理、试料截取、无损检验及焊补等各个操作过程。

样件

按M160的要求制造样件,对制造方法进行验证,并按下列措施执行:

——对这些样件不要求对整个体积进行检验。射线照相检验被限制在专门区域,该区域体验制造商和铸造车间按照铸件受到的应力、铸造方法和深加工区域来确定。

当对整个专门区域不能进行有效的射线照相检验时,或当该检验不能得出此样件是否完好的结论时,应对截面进行宏观截面检验。在制造程序中应说明恰当

的截面切取位置。 3.2 铸造

铸造方法由铸造车间选定。该方法须在制造程序中注明(见3.1)。 3.3 机加工

铸件按采购图的规定作机加工。 3.4 交货状态——热处理

铸件以稳定化处理的状态交货。热处理工艺应由铸造车间选择,并应获得本规范第4章所要求的力学性能。处理工艺应在制造程序中注明。 (1)此“工艺”指加热速度、保温温度、保温时间以及冷却速度。 与规定保温温度相比,整个炉料在保温期间所允许的最大温度偏差为±20℃。如果铸件热处理后性能达不到要求,可重新热处理(见4.4)。 供货商必须建立热处理记录分析卡。 4 力学性能 4.1 规定值

力学性能规定值列于表Ⅱ。

表Ⅱ

规定值

试验项目

试验温度℃

性能

EN —GJS350—22U —RT

FGS Ni20Cr2

R 0.002 ≥220MPa ≥210MPa Rm ≥350MPa ≥370MPa 拉伸 室温

A%(5D) ≥22

≥7 最小平均值 17J 17J KV 冲击

+20 个别最小值

14J 14J 硬度 室温

HB

≤160

140/200

4.2 取样

试验用试料应取自与铸件相连的加长部分,或在与铸件分开浇注或相连的锭块上截取。对于重量超过750kg 的铸件,试样应与铸件相邻或附在铸件上。

对于重量等于或小于750kg 的铸件,试样可与铸件分开浇注。

试料应具有足够的尺寸,以便能截取有关试验和可能复试所需的试样。试验用铸块的最小尺寸或加长部分的截面面积必须代表铸件的最大壁厚(法兰除外)。试料应符合附件1和附件2的规定。

锭块的尺寸以及试样在铸块中的取向和位置应在制造程序中注明(见3.1)。

4.3 试验

在试料上截取试样后不经任何热处理即作有关试验。

4.3.1 试验项目和数量

每批铸件应进行的试验项目及数量列于表Ⅲ。

表Ⅲ

试验项目试样状态试验温度

℃各试验项目试样

拉伸KV冲击硬度HTMP+STH

HTMP+STH

HTMP+STH

室温

+20

室温

1

3

HTMP:性能热处理

STH:稳定化热处理

批的定义

所谓批,是指来自同一炉罐号并作为同一炉料球化并进行同炉热处理的铸件组成。每批重量不超过2000kg。

铸件重量超过750kg时,一个铸件作为一批,重量等于或小于750kg的铸件,按批进行试验。

4.3.2 试验实施方式

A——室温拉伸试验

a)试样

使用直径为14mm按比例确定的试样(L0=5.65√S0)。

b)试验

必须按MC1000的规定进行拉伸试验,并记录以下数值:

——残余伸长0.2%条件下屈服强度,MPa;

——极限拉伸强度,MPa;

——断后伸长率,%;

——断后断面收缩率,%。

c)结果

测得的结果必须符合表Ⅱ中规定的要求

如果结果不是这样,且试样有物理缺陷(不影响制品的使用能力),或由于试样装夹不妥、或试验机运行失常而使试验结果不合格时则必须另取试样重作试验。如果第2次试验合格,该(批)铸件合格,反之则按下述规定执行。

如果其结果不合格,不是由于上述任何一种原因所致,则可对测得的每个不合格结果再取双倍试样进行复试。复试试样取自不合格试样的邻近部位,若复试结果均合格,则该(批)铸件予以验收,反之,则必须拒收(见4.4)。B——冲击试验

a)试样和试验

KV冲击试样必须邻近截取。试样的形状、尺寸及试验条件必须按MC1000规定施行。但推荐使用能提供49±2焦耳冲击能的摆式冲击试验机。

每组试验要冲断3根试样。试验温度为+20℃。

b)结果

必须满足表Ⅱ在20℃的规定。

c)复试

如果其中任一要求不满足,则可按以下方法进行复试:在邻近不合格试样的取样部位,截取3根一组的两组试样,使其在与原组试样相同温度下进行试验。如果两组试样中的任何一个结果不合格,则该零件须予拒收(见4.4)。

4.4 重新热处理

由于一项或几项力学性能试验结果不合格而被拒收时,可重作热处理。重新热处理的条件必须列入试验报告。

在此情况下,试样必须按4.2的规定截取。

要进行的试验内容须与4.3的规定相同。

重新热处理只允许一次。

5 表面缺陷检查

应在所有热处理结束后进行表面缺陷的最终检查。

检验要求

铸件须彻底清砂和表面修整,去除冒口、浇口、分型线和浇道。然后按MC7100的规定对铸件进行目检。

在制造和机加工的各个阶段中,为了保证金属完好性,应非常仔细地检查铸件。

铸件必须完好无损,不得有氧化皮、裂纹、疏松、夹砂或其它有害的缺陷。

在2级设备承压铸件的所有机加工面按MC4000的规定作液体渗透检验。

检查准则

尺寸等于或大于2mm的显示须予记录。

在任何情况下,按照AFNOR标准NF A04—191评定缺陷,且产生下列显示的所有缺陷都必须标明位置、清除或予以修补:

——不符合LR2准则的线状显示;

——不符合SR3和AR2准则的、孤立的或排列成行的显示。

6 体积检验

按以下方式进行内部缺陷检验:

——对非合金铸件,或射线照相检验或超声波检验。

——对合金奥氏体质检,用射线照相检验。

除非另有规定,所有检查应在铸件热处理之后进行。

按MC3200的规定做射线照相检验。按MC2200的规定作超声波检验。

6.1 检验区域

在最终零件图完成并对样件检验之后选定检验区域。

6.2 检验范围

对泵体铸件,按附录1示意图上规定的1区(蜗形嘴)进行检验。

检验1区时,须检验到离开蜗形嘴端部至少100mm长度处。

泵罩整个油压顶侧的法兰以射线照相法检验,加强肋以超声波法检验。

6.3 验收准则

6.3.1 射线照相检验

不管缺陷严重程度如何,下列缺陷均不与验收:裂纹、裂缝、残存芯撑、冷铁。

采用铸造工业标准高NO.330技术建议书规定的验收准则中的3级严重程度。

6.3.2 超声波检验

——幅度大于或等于距离——幅度曲线的25%的所有信号均需记录;

——幅度大于距离——幅度曲线的75%的任何信号不能验收。

7 其他检验

7.1 组织检验

按标准NF EN ISO945的规定,在本规范4.2所确定的试块上,或在取自该试块的冲击试样上进行试验。

按标准NF EN ISO945,规定的石墨球化为

——形态Ⅴ和Ⅵ:≥90%;

——形态Ⅰ、Ⅱ、Ⅲ:≤2%;

——其余石墨为形态Ⅳ。

7.2 水压试验

铸件应进行水压试验,试验方式和条件必须在制造程序中注明(见3.1)。

8 缺陷的清除

不允许作焊接修补。特殊情况下,当供应商和制造商备有数据包时,可由承包商授权进行这种操作。

由表面检查或液体渗透检验所发现的缺陷,只要缺陷部位打磨后的厚度仍在图纸规定的公差范围以内,且打磨后不影响该区的使用能力,则可用打磨法予以清除。

清除缺陷过程中必须避免打磨表面过热。

打磨区必须平滑地与周围表面衔接。

打磨区须经液体渗透检验,检验方法和验收准则按本规范第5章的规定执行。

9 尺寸检验

最终机加工后,铸件尺寸必须符合采购图中的规定。

10 标记

在制造的各个阶段,所有铸件应作识别标志。

标记必须包括:

——铸造车间标记;

——炉罐号;

——采购技术规范;

——系列号。

11 清洁—包装—运输

11.1 包装

包装应做到:

——产品被保护防止气候环境影响(湿度、蒸汽等)。

——产品在搬运、储存和运输过程中,均能保持保护涂层和(或)成品的外观。

外包装需作下列标记和贴以标签,使能容易识别而明确无误。:

——订货单;

——内容:产品的性质、数量和重量。

11.2 运输

供货商应负责检查运输方法和装载状态是否确切适合待运的货物。

除遵守所用鼓舞运输方法的有关规则外,供货商还应采取各种措施,以保证设备外形完整并避免由于撞击或污染而引起损坏。

12 试验报告

不论交货前的零件状况如何,供货商在每一项试验后必须建立以下相应的报告:

——熔炼分析和成品分析的化学成分单;

——热处理记录分析卡;

——力学性能试验报告;

——无损检验报告;

——尺寸检验单;

——热处理清单(温度范围和保温时间);

这些报告必须包括:

——炉罐号和铸件编号;

——供货商识别标志;

——订货单号;

——如有必要,检查机构的名称;

——试验和试验结果,以及规定值。

附件1

与铸件连成一体或邻近的试料

与铸件连成一体或邻近的试料的位置应考虑铸件形状和充填方式,避免发生邻近金属的逆向凝固顺序。

试料的形状和尺寸应符合图1规定的要求。

试料在铸件热处理全部完成前不得从铸件上分离。

型号铸件最大壁

t (mm)

Min a

(mm)

Min b

(mm)

Min c

(mm)

h

(mm)

Lt

(mm

)Ⅰt≤60 40 30 20

40~60(1) (1)Ⅱ 60<t≤200 70 52.5 35 70~

105(1)

(1)(1)Lt和H可以按照试料能够加工进行选择。

图1

附件2分浇的铸件试料

试料应在分开的砂型中铸造,使用与铸件的同一炉金属,和经受相同的球化

处理和孕育处理。

试料应符合供应商随意选择的图1或图2规定的要求。

试料的脱模温度应不高于铸件的脱模温度。

如果石墨的球化是在砂型中进行,允许试料浇注时:

——与铸件并排排列,并使用同一个浇注系统;

——或分开在一个试验砂型中铸造,然后使用与铸件相同的热处理方式。

型号Ⅰ,Ⅱa,Ⅲ和Ⅳ型号Ⅱb

类型

尺寸

mm Ⅰ(1)Ⅱa Ⅱb ⅢⅤ

u 12.5 25 25 50 75 v 40 55 90 90 125

40或50 60 65 x(2)30 40

y 80 100 100 150 165 z 根据试样的长度

(1)仅作为资料保存。

(2)z值和x的选择应保证试样能够加工。

试样周围砂型厚度应为:

——对于Ⅰ,Ⅱa和Ⅱb型最小40mm;

——对于Ⅳ型,最小80mm。

图1

附件2(续)

尺寸

类型

mm Ⅰ(1)Ⅱa ⅢⅤ

u 12.5 25 50 75 v 40 55 100 125 x(2)25 40 50 65 y 135 100 150 165 z 根据试样的长度

(1)仅作为资料保存。

(2)z值和x的选择应保证试样能够加工。

试样周围砂型厚度应为:

——对于Ⅰ,Ⅱa和Ⅱb型最小40mm;

——对于Ⅳ型,最小80mm。

图2

附件3泵壳

硬质合金刀具基础知识

硬质合金刀具材料基础知识 文章来源:中国刀具信息网添加人:阿刀 硬质合金是使用最广泛的一类高速加工(HSM)刀具材料,此类材料是通过粉末冶金工艺生产的,由硬质碳化物(通常为碳化钨WC)颗粒和质地较软的金属结合剂组成。目前,有数百种不同成分的WC基硬质合金,它们中大部分都采用钴(Co)作为结合剂,镍(Ni)和铬(Cr)也是常用的结合剂元素,另外还可以添加其他一些合金元素。为什么有如此之多的硬质合金牌号?刀具制造商如何为某种特定的切削加工选择正确的刀具材料?为了回答这些问题,首先让我们了解一下使硬质合金成为一种理想刀具材料的各种特性。 硬度与韧性 WC-Co硬质合金在兼具硬度和韧性方面具有独到优势。碳化钨(WC)本身具有很高的硬度(超过刚玉或氧化铝),而且在工作温度升高时其硬度也很少下降。但是,它缺乏足够的韧性,而这对于切削刀具是必不可少的性能。为了利用碳化钨的高硬度,并改善其韧性,人们利用金属结合剂将碳化钨结合在一起,从而使这种材料既具有远远超过高速钢的硬度,同时又能够承受在大多数切削加工中的切削力。此外,它还能承受高速加工所产生的切削高温。 如今,几乎所有的WC-Co刀具和刀片都采用了涂层,因此,基体材料的作用似乎显得不太重要了。但实际上,正是WC-Co材料的高弹性系数(衡量刚度的指标,WC-Co的室温弹性系数约为高速钢的三倍)为涂层提供了不变形的基底。WC-Co基体还能提供所需要的韧性。这些性能都是WC-Co材料的基本特性,但也可以在生产硬质合金粉体时,通过调整材料成分和微观结构而定制材料性能。因此,刀具性能与特定加工的适配性在很大程度上取决于最初的制粉工艺。 制粉工艺 碳化钨粉是通过对钨(W)粉进行渗碳处理而获得的。碳化钨粉的特性(尤其是其粒度)主要取决于原料钨粉的粒度以及渗碳的温度和时间。化学控制也至关重要,碳含量必须保持恒定(接近重量比为6.13%的理论配比值)。为了通过后续工序来控制粉体粒度,可以在渗碳处理之前添加少量的钒和/或铬。不同的下游工艺条件和不同的最终加工用途需要采用特定的碳化钨粒度、碳含量、钒含量和铬含量的组合,通过这些组合的变化,可以产生各种不同的碳化钨粉。例如,碳化钨粉生产商ATI Alldyne公司共生产23种标准牌号的碳化钨粉,而根据用户要求定制的碳化钨粉品种可达标准牌号碳化钨粉的5倍以上。 在将碳化钨粉与金属结合剂一起进行混合碾磨以生产某种牌号硬质合金粉料时,可以采用各种不同的组合方式。最常用的钴含量为3%-25%(重量比),而在需要增强刀具抗腐蚀性的情况下,则需要加入镍和铬。此外,还可以通过添加其他合金成分,进一步改良金属结合剂。例如,在

合金钢与特殊钢知识摘要

合金钢与特殊钢知识摘要 1.合金钢是指碳钢添加一种或一种以上合金元素所形成的钢料。碳 钢除了碳以外,若是含超过微量的其它元素,例如:含锰量在1.65%以上、含硅量在0.60%以上或含铜量在0.06%以上等等,就属于合金钢, 2.合金钢依其用途来区分,可分为构造用合金钢和特殊钢,构造用 合金钢是使用在一般机械的构成组件或建筑土木构造上,特殊钢是使用在需要高温硬度、耐蚀、耐热、磁性等特别的场合。 3.一般构造用合金钢由于使用的场合不同,可以分为非热处理型和 热处理型两类,前者大多是属于低含碳量和低合金量,构成之后也无法再实施热处理,包括高强度低合金钢、易切钢等,后者多属于热处理用中合金钢,包括镍钢、铬钢、镍铬钢、铬钼钢、镍铬钼钢等。 4.工具钢的材料大致包括:高碳工具钢、合金工具钢、高速钢、工 具用硬质合金等。除硬质合金之外,工具用钢料之中以高碳工具钢的合金量少,价钱比较便宜,而高合金量的工具钢或高速钢,价钱较昂贵。 5.工具钢必须强韧、耐磨耗、且具有常温及高温硬度等特性,以其 合金成份和构造用合金钢相较,则除了含碳量增加之外,Cr、Mo、Ni等仍然为基本元素(或是增加其含量),另外必要时在添加耐高温的W、V及Co等。

6.在钢中添加Cr和Ni可以增加钢的耐蚀性。钢的耐蚀性主要随Cr 的含量而增加,一般耐蚀钢的分类,含Cr量在12﹪以上之Fe-Cr 合金,几乎不会被侵蚀称为不锈钢,含Cr量在12﹪以下之Fe-Cr 合金,则称为耐蚀钢,实用上是以不锈钢为主。 7.弹簧用的钢料必须具备耐冲击、疲劳限高而且不产生永久变形的 特性,适用的钢料大致可以分为:碳钢、硅锰钢、硅锰铬钢三类。 弹簧的制造必须先韧化、成形,然后在实施热处理之后使用。

镍基焊条选用

镍基焊材的选用 镍基焊丝 镍基焊条图片 [1] ERNiCr-3 用于600,601以及800合金自身的焊接,及不锈钢和碳钢之间的异种钢焊接 ERNiCrFe-7 用于焊接ASTM B163,166,167和168标准内的镍铬铁合金 ERNiCrFe-6 用于钢和镍铬铁合金的焊接,钢及不锈钢和镍基合金的焊接 ERNiCrCoMo-1 用于焊接镍铬钴钼合金及各种高温合金的异种焊接 ERNiCrMo-3 用于镍合金,碳钢,不锈钢和低合金钢的一种焊接,最主要用于625,601,802合金的焊接及9%镍合金的焊接 ERNi-CI 工业纯镍,用于可锻铸铁及灰口铸铁的焊接 ERCuNi 用于70/30,80/20,90/10铜镍合金的焊接 ERNiCu-7 用于焊接镍铜合金B127,163,164和165等 ERNi-1 用于纯镍铸件和锻件的焊接,如:ASTM B160,161,162,163标准内的合金 ERNiFeMn-CI 用于结节铸铁,球墨铸铁,可锻铸铁和灰口铸铁自身的焊接或用于它们与不锈钢,碳钢,低合金钢及各种镍合金的焊接 ERNiCrMo-4 用于镍铬钼合金自身的焊接,或镍铬钼合金和钢及大多数其它镍基合金的焊接 ERNiCrMo-11 用于镍铬钼合金自身的焊接,或镍铬钼合金和钢及大多数其它镍基合金的焊接,还可以用于镍铬钼合金和钢焊接焊缝的堆焊 ERNiCrMo-13 用于焊接低碳镍铬钼合金 镍基焊条 ENiCrMo-3 用于焊接镍铬钼合金,如625,800,801,825和600 ENiCrFe-3 用于镍铬铁合金自身的焊接及与碳钢的焊接 ENiCrFe-2 用于奥氏体钢,铁素体钢及高镍合金之间的异种焊接, 还可用于9%镍合金的焊接 ENiCu-7 主要用于镍铜合金自身及其与钢之间的异种焊接 ENiCrFe-7 用于690(UNS N06690)镍铬铁合金自身的焊接 ENiCrMo-4 用于焊接C-276合金及大多数其它镍基合金 ENiCrCoMo-1 用于焊接镍铬钴钼合金以及各种的高温合金间的异种焊接 ERCuNi 焊接锻造或铸造的70/30,80/20,90/10铜镍合金 ENiCrMo-13 用于焊接低碳镍铬钼合金 ENiCrMo-11 用于焊接低碳镍铬钼合金纯镍焊条A5.11 ENi-1 EL-NiTi3 ≥ 92 - - Ti2.5 - 焊接200 、201 镍合金以及镀镍钢板;- 钢与镍异种材料的焊接;- 钢的表面堆焊。

铁碳合金相图教案

铁碳合金相图教案文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

课题:铁碳合金相图 【设计者】:浙江工业大学,周云中 【教材】:机械工业出版社《机械制造基础》第二版第四章 【课程标准】:学生通过本课程的学习,了解不同成分的钢和铸铁在不同温度下所具有的组织或状态,了解铁碳合金的成分,组织,性能之间的关系。并能根据铁碳合金相图选择合适的钢材。 【内容分析】: 铁碳合金相图是研究铁碳合金的重要工具,了解与掌握铁碳合金相图,对于钢铁材料的研究和使用,各种热加工工艺的制订以及工艺废品原因的分析等方面都有重要指导意义。铁碳合金相图描述了铁碳合金的组织随含碳量的变化规律,合金的性能决定于合金的组织,这样根据零件的性能要求来选择不同成分的铁碳合金;为制定热加工工艺提供依据。【学情分析】:

本节课是在学生通过《机械制造基础》前三章的学习,已经掌握了金属材料的力学性能和金属和合金的晶体结构及结晶的基础上,探究不同成分的钢和铸铁在不同温度下所具有的组织或状态。在教学时,可以让学生清楚了解不同的含碳量对铁碳合金性能的影响,知道各合金常温下的状态。在这一基础上,进一步让学生体会机械制造的魅力。教材的编写意图是通过本课时学习目标,使学生能把所学,运用到学生的实际生活,培养发展提出问题和解决问题的能力。 【学习目标】: 1:能绘制合金相图 2:学生能对典型铁碳合金的结晶过程分析 3:能应用铁碳合金相图选择合适的钢铁材料 【评价设计】: 1.针对目标1,通过教师在黑板上绘制铁碳合金相图并分析绘制的要点,让学生了解并能跟着教师的步骤一步一步绘制基本的铁碳合金相图2.针对目标2,教师对书本上铁碳合金的结晶过程做具体的分析,让学生了解典型铁碳合金的过程,教师解释完成后,允许学生以小组的形式互相讨论,5分钟后随机叫学生回答,看学生能否对典型铁碳合金的过程做出分析。 3.针对目标3,教师告诉学生具体的钢材选择原则,如建筑结构选用含碳量低的钢材,机器结构选用碳含量适中的钢等,之后给出实际案例让学生选用合适的钢材。考察学生能否根据机器不同的使用情况选择合适的钢材。

铁碳相图以及铁碳合金

铁碳相图以及铁碳合金 Post By:2009-12-6 16:33:51 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe和C能够形成Fe3C, Fe2C 和FeC等多种稳定化合物。所以,Fe-C相图可以划分成Fe-Fe3C, Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。由于化合物是硬脆相5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图1)。Fe-Fe3C 相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe3C相图,Fe -石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。 图1 铁碳双重相图 【说明】 图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。

铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下: 由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1 394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。 图2 工业纯铁的显微组织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2) 碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体

硬质合金与钨钢有什么区别

清河县润鼎硬质合金刀具有限公司 硬质合金与钨钢有什么区别 钨钢:成品中约含钨18%合金钢,钨钢归于硬质合金,又称之为钨钛合金。硬度为维氏10K,仅次于钻石。正因如此,钨钢的商品(多见的有钨钢手表),具有不易被磨损的特性。常用于车床刀具、冲击钻钻头、玻璃刀刀头、瓷砖割刀之上,坚固不怕退火,但质脆。 硬质合金:归于粉末冶金领域硬质合金又名金属陶瓷是以金属碳化物(WC、TaC,TiC、NbC等)或许金属氧化物(如Al2O3,ZrO2等)为首要成份,参加适量的金属粉末(Co、Cr、Mo、Ni、Fe等)通过粉末冶金方法制成,具有金属某些特质的陶瓷。钴(Co)是用来在合金中起粘结效果的,就是在烧结的过程中,它能把碳化钨(WC)粉末包围并紧紧地粘结在一起,冷却后,就成了硬质合金.(效果相当于混凝土中的水泥)。含量通常:3%--30%碳化钨(WC)是决议此硬质合金或金属陶瓷某些金属性质的首要成份,占总成份

清河县润鼎硬质合金刀具有限公司 70%---97%(分量比)广泛用于耐磨,耐高温,耐腐蚀,工作环境恶劣的零件或刀具,工具的刀头上。 钨钢归于硬质合金,但硬质合金纷歧定是钨钢,如今台湾和东南亚国家的客户喜欢用钨钢这个词,假如跟他们仔细谈深入,就会发现,大部分仍是指硬质合金。 钨钢与硬质合金差异在于:又名高速钢或工具钢,钨钢是用炼钢技术在钢水中参加钨铁作钨的质料熔炼而成的,又名高速钢或工具钢,其钨含量通常在15-25%;而硬质合金是用粉末冶金技术以碳化钨为主体与钴或其它粘结金属一起烧结而成的,其钨含量通常在80%以上。简略的说一切硬度超越HRC65的东西只要是合金都可以叫硬质合金,钨钢只是硬质合金的一种硬度在HRC85到92之间,常被用来做刀的。 硬质合金实业有限公司主要生产,研发硬质合金制品。以近20年领域专业技术,产品质量在国内处于领先水平。

铁碳相图以及铁碳合金

铁碳相图以及铁碳合金Post By:2009-12-6 16:33:51 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe和C能够形成Fe C, Fe2C 和FeC等多种稳定化合物。所以,Fe-C相图可以划分成Fe-Fe3C, 3 Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。由于化合物是硬脆相5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图1)。Fe-Fe3C 相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe3C相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。 图1 铁碳双重相图 【说明】 图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。 铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下:

由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1 394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。 图2 工业纯铁的显微组织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2) 碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。奥

硬质合金

硬质合金 由于切削速度不断提高,不少刀具的刃部工作温度已超过700℃,这时一般高速钢已不再适应,就要采用硬质合金了。 硬质合金是将一种或多种难熔金属的碳化物和粘接剂金属,用粉末冶金方法制成的金属材料。即将难熔的高硬度的WC,TiC,TaC(碳化钽)和钴、镍等金属(粘接剂)粉末经混合、压制成形,再在高温下烧结制成。 一、硬质合金的性能特点 1.硬度高、热硬性高、耐磨性好。硬质合金在室温下的硬度可达86HRA~ 93HRA,在900~1000℃温度下仍然有较高的硬度,故硬质合金刀具在 使用时,其切削速度、耐磨性及寿命均比高速钢显著提高。 2.抗压强度比高速钢高,但抗弯强度只有高速钢的1/3~1/2左右,韧性差 (约为淬火钢的30%~50%) 二、常用的硬质合金 按成分与性能特点不同,常用的硬质合金有三类: 1.钨钴类硬质合金 它的主要成分为碳化钨及钴。其代号用“硬”“钴”两字的汉语拼音字母字头“YG”加数字表示,数字表示钴的百分数。例如YG8,表示钨钴类硬质合金,含钴量为8%。 2.钨钴钛类硬质合金 它的主要成分为碳化钨、碳化钛及钴。其代号用“硬”“钛”两字的汉语拼音字母字头“YT”加数字表示,数字表示碳化钛的百分数。例如YT5,表示钨钴钛类硬质合金,含碳化钛5%。 硬质合金中,碳化物含量越多,钴含量越少,则合金的硬度、热硬性及耐磨性越高,合金的强度和韧性越低。含钴量相同时,YT类硬质合金由于碳化钛的加入,合金具有较高的硬度及耐磨性,同时,合金的表面会形成一层氧化薄膜,切削不易粘刀,具有较高的热硬性;但其强度和韧性比YG类硬质合金低。因此YG类硬质合金刀具挞合加工脆性材料(如铸铁),而YT类硬质合金刀具适合加工塑性材料(如钢等)。 3.通用硬质合金 它是以碳化钽或碳化铌取代YT类硬质合金中的一部分碳化钛钛制成的。由于加入碳化钽(碳化铌),显著提高了合金的热硬性,常用来加工不锈钢、耐热钢、高锰钢等难加工的材料。所以也称其为“万能硬质合金”。 万能硬质合金代号用“硬”“万”两字汉语拼音字母字头“YW”加顺序号表示。如YW1,YW2等。 上述硬质合金,硬度高,脆性大,除除磨削外,不能进行切削加工,一般不能制成形状复杂的整体刀具,故一般将硬质合金制成一定规格的刀片,使用前将其紧固(用焊接、粘接或机械紧固)在刀体或模具上。 近年来,又开发了一种钢结硬质合金,它与上述硬质合金的不同点在于其粘接剂为合金粉末(不锈钢或高速钢),从而使其与钢一样可以进行锻造、切削、热处理及焊接,可以制成各种形状复杂的刀具、模具及耐磨零件等。例如高速钢结硬质合金可以制成滚刀、圆锯片等刀具。

镍及镍基合金焊接对应焊丝和焊条

254SMO (S31254) ERNiCrMo-3 AWS A5.14 在宽泛的氧化和还原介质中耐超强腐蚀,耐应力腐蚀裂纹,点蚀和隙蚀。 哈氏合金(Hastelloy C-276) ERNiCrMo-4 AWS A5.14 焊接哈氏合金C-276及其他Ni-Cr-Mo 耐蚀合金。高钼成分,耐强腐蚀。 蒙乃尔Monel 400(N02200) ERNiCu-7 AWS A5.14 焊接镍铜合金——蒙乃尔Monel 系列材料。主要用于海洋工程,盐业,蒸 发器,冷凝器等设备。 Inconel 600(N06600) ERNiCr-3 AWS A5.14 应用于超低温到高温,不锈钢铬钼钢异材焊接等。 有较高的强度和较好的耐蚀性,在高温下具有较好的抗氧化能力和较高的 蠕变破裂强度。 317L 不锈钢 ER317L AWS A5.9 317L 配套焊丝。 SAF 2507双相钢 ER2594/P100 AWS A5.9 超级双相钢2507对应的焊接材料。 254SMO (S31254) ENiCrMo-3 AWS A5.11 在室温和高温下具有较高的强度和很强的耐蚀能力,包括耐点蚀,裂隙腐 蚀以及在多硫酸性介质中的应力腐蚀开裂等。 该焊条可用于异种金属的焊接,包括INCONEL 系列合金、INCOLOY 系列 合金、超级不锈钢和普通不锈钢等。

哈氏合金(N10276)ENiCrMo-4AWS A5.11焊接哈氏合金C-276及其他Ni-Cr-Mo耐蚀合金。高钼成分,耐强腐蚀。 蒙乃尔Monel 400(N02200)ENiCu-7AWS A5.11焊接镍铜合金——蒙乃尔Monel系列材料。主要用于海洋工程,盐业,蒸发器,冷凝器等设备。 Inconel 600(N06600)ENiCrFe-3AWS A5.11应用于超低温到高温,不锈钢铬钼钢异材焊接等。 有较高的强度和较好的耐蚀性,在高温下具有较好的抗氧化能力和较高的蠕变破裂强度。 317L不锈钢E317L AWS A5.4317L配套焊条。 SAF 2507双相钢E2594/P100-4D AWS A5.4超级双相钢2507对应的焊接材料。

硬质合金属性

WC硬质合金的属性 常用的硬质合金以WC为主要成分,根据是否加入其它碳化物而分为以下几类: 1、钨钴类(WC+Co)硬质合金(YG) 它由WC和Co组成,具有较高的抗弯强度的韧性,导热性好,但耐热性和耐磨性较差,主要用于加工铸铁和有色金属。细晶粒的YG类硬质合金(如YG3X、YG6X),在含钴量相同时,其硬度耐磨性比YG3、YG6高,强度和韧性稍差,适用于加工硬铸铁、奥氏体不锈钢、耐热合金、硬青铜等。 2、钨钛钴类(WC+TiC+Co)硬质合金(YT) 由于TiC的硬度和熔点均比WC高,所以和YG相比,其硬度、耐磨性、红硬性增大,粘结温度高,抗氧化能力强,而且在高温下会生成TiO 2,可减少粘结。但导热性能较差,抗弯强度低,所以它适用于加工钢材等韧性材料。 3、钨钽钴类(WC+TaC+Co)硬质合金(YA) 在YG类硬质合金的基础上添加TaC(NbC),提高了常温、高温硬度与强度、抗热冲击性和耐磨性,可用于加工铸铁和不锈钢。 4、钨钛钽钴类(WC+TiC+TaC+Co))硬质合金(YW) 在YT类硬质合金的基础上添加TaC(NbC),提高了抗弯强度、冲击韧性、高温硬度、抗氧能力和耐磨性。既可以加工钢,又可加工铸铁及有色金属。因此常称为通用硬质合金(又称为万能硬质合金)。目前主要用于加工耐热钢、高锰钢、不锈钢等难加工材料。 5、WC: 分子量195.86; Tungsten carbide 性质:化学式WC。黑色六方结晶。密度15.63g/cm3(18℃)。熔点(2870±50)℃。沸点6000℃。莫氏硬度约9。不溶于水,溶于硝酸和氢氟酸的混合液和王水。耐酸性强。硬度高。弹性模量大。导电度为金属的40%。化学性质稳定。低于400℃时不与氯气作用。用炭黑与钨粉加热至1400~1500℃制得。大量用作高速切削车刀、窑炉结构材料、喷气发动机部件、金属陶瓷材料、电阻发热元件等制得。 6、TiC: 分子式:TiC 沸点:4820℃ 中文名称:碳化钛 英文名称:Titanium carbide;titanium carbide 性质:灰黑色结晶。熔点约3200℃。不与盐酸作用。可由骨炭与二氧化钛在电炉中加热制得。TiC的热膨胀系数(7.4×10-6℃-1), TiC晶粒有五个滑移系,且在800℃以上呈延性; 是硬质合金的重要成分。用作金属陶瓷,具有高硬度、耐腐蚀、热稳定性好的特点。还可用来制造切削工具。在炼钢工业中用作脱氧剂。

镍基合金焊接材料

镍基合金焊接材料 镍及镍合金焊条

产品名称:镍及镍基合金焊材 产品说明: Ni102镍及镍合金焊条型号GB/T:ENi-0 说明:钛钙型药皮的纯镍焊条,具有较好的力学性能及耐热、耐腐蚀性,交、直流两用,采用直流反接。 用途:用于化工设备、食品工业,医疗器械制造中镍基合金和双金属的焊接,也可用作异种金属的过渡层焊条,具有良好的熔合性和抗裂性。 熔敷金属化学成份/% C≤0.03 Mn 0.6-1.1 Si≤1Ni≥92Fe≤0.5 Ti 0.7-1.2 Nb 1.8-2.3 S≤0.015P≤0.015 Ni112镍及镍合金焊条型号GB/T:ENi-0 相当于AWS:ENi-1 说明:钛钙型药皮的纯镍焊条,具有较好的力学性能及耐热、耐腐蚀性,交、直流两用,采用直流反接。 用途:用于化工设备、食品工业,医疗器械制造中镍基合金和双金属的焊接,也可用作异种金属的过渡层焊条,具有良好的熔合性和抗裂性。 熔敷金属化学成份/% C≈0.04Mn≈1.5Ni≥92Fe≈3Ti≈0.5Nb≈1S≤0.015P≤0.015 Ni202镍及镍合金焊条型号GB/T:ENiCu-7 相当于AWS:ENiCu-7 说明:钛钙型药皮的Ni70Cu30蒙乃尔合金焊条,含适量的锰、铌,具有较好的抗裂性,焊接时电弧燃烧稳定,飞溅小,脱渣容易,焊接成形美观,采用交流或直流反接,采用直流反接。用途:用于镍铜合金与异种钢的焊接,也可用作过渡层堆焊材料。 熔敷金属化学成份/% C≤0.15 Mn≤4Si≤1.5 Ni 62-69 Fe≤2.5Ti≤1Nb≤2.5 S≤0.015 P≤0.02Al≤0.75 Cu余量 Ni207镍及镍合金焊条型号GB/T:ENiCu-7 相当于AWS:ENiCu-7 说明:低氢型蒙乃尔合金焊条,具有良好的抗裂性和焊接工艺性能。 用途:用于焊接蒙乃尔合金焊条或异种钢,也可用作过渡层堆焊材料。 熔敷金属化学成份/% C≤0.15Mn≤4Si≤1.5 Ni 62-69 Fe≤2.5Ti≤1Nb≤2.5S≤0.015 P≤0.02 Cu余量 Ni307镍及镍合金焊条型号GB/T:ENiCrMo-0

合金结构钢资料

合金结构钢 合金钢是指钢中除含硅和锰作为合金元素或脱氧元素外,还含有其他合金元素(如铬、镍、钼、钒、钛、铜、钨、铝、钴、铌、锆和其他元素等),有的还含有某些非金属元素(如硼、氮等)的钢。合金钢中由于含有不同种类和数量的合金元素,并采取适当的工艺措施,便可分别具有较高的强度、韧性、淬透性、耐磨性、耐蚀性、耐低温性、耐热性、热强性、红硬性等特殊性能。 一、合金钢发展 合金钢已有一百多年的历史了。工业上较多地使用合金钢材大约是在19世纪后半期。当时由于钢的生产量和使用量不断增大,机械制造业需要解决钢的加工切削问题,1868年英国人马希特(R.F.Mushet)发明了成分为2.5%Mn-7%W的自硬钢,将切削速度提高到5米/分。随着商业和运输的发展,1870年在美国用铬钢(1.5~2.0%Cr)在密西西比河上建造了跨度为158.5米的大桥;由于加工构件时发生困难,稍后,一些工业国家改用镍钢(3.5%Ni)建造大跨度的桥梁。与此同时,一些国家还将镍钢用于修造军舰。随着工程技术的发展,要求加快机械的转动速度,1901年在西欧出现了高碳铬滚动轴承钢。1910年又发展出了18W-4Cr-1V型的高速工具钢,进一步把切削速度提高到30米/分。可见合金钢的问世和发展,是适应了社会生产力发展的要求,特别是和机械制造、交通运输和军事工业的需要分不开的。 20世纪20年代以后,由于电弧炉炼钢法被推广使用,为合金钢的大量生产创造了有利条件。化学工业和动力工业的发展,又促进了合金钢品种的扩大,于是不锈钢和耐热钢在这段期间问世了。1920年德国人毛雷尔(E.Maurer) 发明了18-8型不锈耐酸钢,1929年在美国出现了Fe-Cr-Al电阻丝,到1939年德国在动力工业开始使用奥氏体耐热钢。第二次世界大战以后至60年代,主要是发展高强度钢和超高强度钢的时代,由于航空工业和火箭技术发展的需要,出现了许多高强度钢和超高强度钢新钢种,如沉淀硬化型高强度不锈钢和各种低合金高强度钢等是其代表性的钢种。60年代以后,许多冶金新技术,特别是炉外精炼技术被普遍采用,合金钢开始向高纯度、高精度和超低碳的方向发展,又出现了马氏体时效钢、超纯铁素体不锈钢等新钢种。目前国际上使用的有上千个合金钢钢号,数万个规格,合金钢的产量约占钢总产量的10%,是国民经济建设和国防建设大量使用的重要金属材料。 二、合金钢分类 合金钢种类很多,通常按合金元素含量多少分为低合金钢(含量<5%),中合金钢(含量5%~10%),高合金钢(含量>10%);按质量分为优质合金钢、特质合金钢;按特性和

铁碳相图以及铁碳合金

铁碳相图以及铁碳合金 发布日期:[08-03-10 14:26:26] 浏览人次:[5779 ] https://www.doczj.com/doc/2017642782.html, 马棚网 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe 和C 能够形成Fe 3C, Fe 2C 和FeC 等多种稳定化合物。所以,Fe-C 相图可以划分成Fe-Fe 3C, Fe 3C-Fe 2C, Fe 2C-FeC 和FeC-C 四个部分。由于化合物是硬脆相5%),因此,通常所说的铁碳相图就是Fe-Fe 3C 部分。,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过 化合物Fe 3C 称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe 和C ,C 原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe 3C 和Fe-石墨双重相图(图1)。Fe-Fe 3C 相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe 3C 相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe 3C 。 图1 铁碳双重相图 【说明】 图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。 铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下:

由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。 图2 工业纯铁的显微组织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe 是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2) 碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。奥氏体的硬度(HB170~220)较低,塑性(延伸率δ为40%~50%)高。奥氏体的显微组织见图3,图4表示碳原子存在于面心立方晶格中正八面体的中心。

镍和镍合金无缝钢管的一般要求标准

镍和镍合金无缝钢管的一般要求标准 SB829 (除了已经强制认证的,其它与ASTM规范B 829 - 99一致) 1. 范围 1.1 该规格(不包括第5节和第4节中的规格)强制性按照以下ASTM镍和镍合金,无缝钢管标准来要求的各种规格。 规格ASTM 标示 无缝镍钢管B161 冷凝器和热交换器的镍和镍合金无缝钢管B163 镍铜合金(UNS N04400)无缝钢管B165 镍铬铁合金(UNS N06600,N06601,N06690)无缝钢管B167 镍铁铬合金无缝钢管B407 镍铁铬钼铜合金(UNS N08825 ,N08221)无缝钢管B423 镍铬钼钶合金(UNS N06625)无缝钢管B444 钼钨合金(UNS N06102)无缝钢管B445 镍铁铬硅合金(UNS N08330 和UNS N08332)无缝钢管B535 铜铍合金锻件和挤压件B570 无缝镍和镍钴合金管B622 UNS N08028无缝钢管B668 UNS N8904,UNS N08925 ,UNS N08926无缝钢管B677 铁镍铬钼合金(UNS N08366 UNS N08367)无缝钢管B690 NI-CR-MO-CO-W-FE-SI合金(UNS N06333)无缝钢管B722 无缝UNS N08020,UNS N08026,UNS N08024镍合金无缝钢管B729 1.2 第五节要求的一个或多个测试仅在产品规格或采购订单中有明确规定时适

用。 1.3 如果产品规格要求与本通用规范要求出现冲突,那么以产品规格需求为准。 1.4 英寸磅作为标准单位。括号内所给的值仅供信息。 1.5 以下安全隐患警告只适用于该规范的第五节测试需求部分:这个标准并不旨在解决所有的安全问题,如果有的话,与其使用有关。在使用前确定监管限制的适用性和建立适当的安全与健康行为,这是此标准的用户的责任。 2. 参考文件 2.1 ASTM标准 B 880 镍、镍合金和钴合金化学测试分析限制一般要求规范。 E 8 金属材料的张力测试的测试方法。 E 18 洛氏硬度和洛氏表面硬度的金属材料的测试方法。 E 29 使用有效数字测试数据,以确定符合规范的实践。 E 39 镍的化学分析方法。 E 76 镍铜合金的化学分析方法 E 112 确定平均晶粒尺寸的方法。 E213 超声波测试金属管材的实践。 E426 无缝和焊接管材产品,奥氏体不锈钢和类似的合金的电磁(涡流)检测实践。E571 镍和镍合金管材产品的电磁(涡流)检测实践。 E1473 镍,钴和高温合金的化学分析测试方法。 2.2 ANSI 标准 B 1.20.1 管螺纹 B 36.10 焊接和无缝锻钢管 B 36.19 不锈钢管 3. 术语 3.1 定义

GB10钢结硬质合金使用介绍-无图

GB10钢结硬质合金使用介绍 1前言 株洲硬质合金集团有限公司是1954年筹建的国家“一五”期间,56项重点工程之一,是中国最大的硬质合金生产、科研、经营和出口基地,也是行业大型骨干企业。主要产品有“钻石牌”硬质合金、钨钼制品、钽铌制品等三大系列。广泛应用于冶金、机械、矿山、石化、电子、轻纺、军工及家具制造等行业,产品畅销74个国家和地区。 集团公司建立了规范的现代化管理体系:1996年通过了IS09001质量管理体系认证,2004年通过了IS014001环境体系认证和OHSAS18001职业健康安全管理体系认证。公司“钻石牌”商标1999年被认定为中国驰名商标.并先后在美国、加拿大、德国和日本等47个国家和地区注册,受“马德里协定”保护。“钻石牌”硬质合金2004年被评为“中国名牌”。

2GB10钢结合金性能特点 GB10钢结硬质合金是以高锰钢钢为粘结相,以难熔金属碳化物——碳化钦为硬质相,用粉末冶金方法制备的一种新型组合材料,其主要性能特点如下: 2.1良好的可焊接性与可浇铸性。GB10合金基体是高锰钢类型,其常温 下是以单一的奥氏体相存在,强度高,有利于提高浇铸时热应力的抵抗能力。能用普通高锰钢焊条进行焊接,也可以采用浇铸的方式与基体连接,操作简单、便于生产,可以降低制造成本缩短生产周期。2.2高硬度高耐磨性。GB10钢结硬质合金中弥散状分布着大量的难熔金 属碳化物(碳化钛),具有很高的硬度;同时基体为高锰钢,具有加工硬化特性,大大地提高了产品的耐磨性。 2.3优良的性价比。与钨钴硬质合金相比,GB10钢结硬质合金的密度低 (为6.0g/cm3左右,为钨钴硬质合金的40%),有很好的性价比优势。 GB10钢结硬质合金因其独特的性能特点,构成了自己独特的综合性能优势。这种优异的综合性能,使得它在冲击及破碎工具、矿山、水泥、建筑等行业有着广阔的应用前景。 3GB10钢结合金牌号性能 钢结硬质合金的物理机械性能及金相组织

NS333(Hastelloy C)镍基耐腐蚀合金

上海商虎/张工:158 –0185 -9914 NS333(NS3303)镍基耐腐蚀合金 NS333是一种含钨的镍铬钼合金,其硅、碳的含量极低。 NS333的特点是: 在氧化和还原状态下,对大多数腐蚀介质具有优异的耐腐蚀性。 超卓的耐点腐蚀、缝隙腐蚀和应力腐蚀开裂性能。 NS333的应用范畴: 在化工和石化范畴得到了广泛的应用,如应用在接触含氯化物有机物的元件和催化体系中。这种资料特别适合在高温、混有杂质的无机酸和有机酸(如甲酸和乙酸)、海水腐蚀环境中运用。 其它应用范畴: 纸浆和造纸工业,如煮解和漂白容器 FGD体系中的洗涤塔、再加热器、湿汽电扇等 在酸性气体环境中作业的设备和元件 乙酸和酸性产品的反应器 硫酸冷凝器 亚甲二苯异氰酸盐(MDI) 不纯磷酸的生产和加工 NS333化学成分: NS333物理性能: 密度:ρ=8.9g/cm3熔化温度规模:1325~1370℃

产品:哈氏合金、高温合金、铜镍合金、英科耐尔、蒙乃尔、钛合金、沉淀硬化钢等各种中高端不锈钢,镍基合金等。 高温合金: GH3030、GH4169、GH3128、GH145、GH3039、GH3044、GH4099、GH605、GH5188等 软磁合金: 1J06、1J12、1J22、1J27、1J30、1J36、1J50、1J79、1J85等 弹性合金: 3J01、3J09、3J21、3J35等。蒙乃尔合金:Monel 400(N04400)、Monel K500(N05500)等 膨胀合金: 4J28、4J29(与玻璃烧结)、4J32、4J33、4J34、4J36、(与陶瓷烧结)4J38、4J42、4J50等 耐蚀合金: Inconel 600、601、617、625、686、690、713C、718、Inconel X-750等 因科洛伊合金: Incoloy 20、330、718、800、800H、800HT、825、925、Inconel 926【N08926/1.4529】等 哈氏合金: Hastelloy C、C-4、C-22(N06022)、C-276、C-2000、Hastelloy B、B-2、B-3等 纯镍 / 钛合金: N4、N5(N02201)N6、N7(N02200)TA1、TA2、TA9、TA10、TC4等 沉淀硬化钢/双相不锈钢 17-4PH(sus630)、17-7PH(sus631)、15-5PH/ 2205、2507、904L、254SMO、20#(N08020) 生产工艺:热轧、锻轧、精扎、机轧、挤压、连铸、冷拔、浇铸、冷拉等

铁碳相图和铁碳合金

铁碳相图和铁碳合金(一) 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe和C能够形成Fe3C, Fe2C 和FeC等多种稳定化合物。所以,Fe-C相图可以划分成Fe-Fe3C, Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。由于化合物是硬脆相,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。 化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图1)。Fe-Fe3C相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe3C相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。 图1 铁碳双重相图 【说明】 图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。 铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下:

由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。 图2 工业纯铁的显微组 织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2)碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。奥氏体的硬度(HB170~220)较低,塑性(延伸率δ为40%~50%)高。奥氏体的显微组织见图3,图4表示碳原子存在于面心立方晶格中正八面体的中心。

什么是钢结硬质合金

什么是钢结硬质合金 钢结硬质合金是近三十年来才发展起来的一种新型工模具材料,它是在合金钢的基体上均匀分布 30-50%硬质颗粒,经过烧结、锻造而成,因而既具有象硬质合金那样的高硬度、高强度、高耐磨性,又具有合金钢的可冷、热加工性能,如锻、车、铣、刨、磨、热处理等。它作为一种可加工、高耐磨的材料,已经广泛应用于各种拉伸模、冲裁模、挤压模、压型模、整形模、冷热轧辊、耐磨零件,使用寿命均比常用工模具钢提高十倍甚至几十倍以上,取得了非常显著的经济效果。 钢结硬质合金是以钢为粘结相,以碳化物(主要是碳化钛、碳化钨)做硬质相,用粉末冶金方法生产的复合材料。其微观组织是细小的硬质相,弥散均匀分布于钢的基体中(用于模具的钢结硬质合金,基体主要采用含铬、钼、钒的中高碳合金工具钢或高速钢)。 钢结硬质合金是介于钢和硬质合金之间的一种材料,具有以下特点: 工艺性能好具有可加工性和可热处理性,在退火状态下,可以可以采用普通切削加工设备和刀具进行车、铣、刨、磨、钻等机械加工。还可以锻造、焊接。与硬质合金相比,成本低,适用范围更广。良好的物理、力学性能 钢结硬质合金在淬硬状态具有很高的硬度。由于含有大量弥散分布的高硬度硬质相,其耐磨性可以与高钴硬质合金接近。与高合金模具钢相比,具有较高的弹性模量、耐磨性、抗压强度和抗弯强度。与硬质合金相比,具有较好的韧性。 具有良好的自润滑性、较低的摩擦系数、优良的化学稳定性。 钢结硬质合金在拉深模具中的应用 许多钢结硬质合金烧结坯件经退火后可进行普通的切削加工,经淬火、回火后有近似于金属陶瓷硬质合金的硬度和良好的耐磨性,也可以进行焊接和锻造,并具有耐磨、抗氧化等特性。尽管这类材料成本较高,制模难度较大,但使用后可显著提高模具的使用寿命,在大批量生产中具有很好的技术经济效果。因此,在更大范围、更深层次推广它,对模具行业具有非常重要的意义。 1、原生产中存在的问题 矿用自救器下外壳尺寸如图1所示,材料为08A1,料厚0.8mm,生产批量为大批量。成形该制件需两次拉深。原模具中,凹模材料均为Crl2,所用设备为普通双动压力机。生产中,模具使用一段时间后,制件表面就会出现明显的擦伤痕迹,严重影响了外观质量。观察发现:第一道拉深工序结束后,半成品外表面已有少量划痕,二次拉深后擦伤、划痕明显增多,而且凹模工作表面磨损严重,还常常粘附着制件材料。修模后也只能拉深几千个壳体。为解决这一问题,工厂曾尝试提高模具制造精度,降低表面粗糙度值,甚至抛光、镀铬,但仍不能从根本上解决产品表面拉伤、模具寿命短的问题。

相关主题
文本预览
相关文档 最新文档