当前位置:文档之家› 论步进电机与开关磁阻电机

论步进电机与开关磁阻电机

论步进电机与开关磁阻电机
论步进电机与开关磁阻电机

论步进电机与开关磁阻电机

电气1101班

110301107

王文博

磁阻式步进电机

磁阻式步进电机,也叫反应式(BF)步进电动机。是由磁性转子铁芯通过与由定子产生的脉冲电磁场相互作用而产生转动。

磁阻式步进电机的转子由软磁材料重制、叠压而成,转子上无任何绕组,转子圆周外表面均匀分布若干齿和槽。定子上安有多相励磁绕组,并且定子上均匀分布若干个大磁极,每个大磁极上有数个小齿和槽。定子磁极上绕有三组绕组,每组绕组由相互串联的两个线圈构成,磁阻式步进电机的定子上有六个极,转子有四个极。一组绕组叫做一相。磁阻式步进电动机相数一般为三相、四相、五相、六相。

应用领域:磁阻式步进电机主要应用于计算机外部设备、摄影系统、光电组合装置、阀门控制、核反应堆、银行终端、数控机床、自动绕线机、电子钟表及医疗设备等领域中。

开关磁阻电动机

开关磁阻电动机(Switched Reluctance Drive :SRD)是继变频调速系统、无刷直流电动机调速系统之后发展起来的最新一代无级调速系统,是集现代微电子技术、数字技术、电力电子技术、红外光电技术及现代电磁理论、设计和制作技术为一体的光、机、电一体化高新技术。它具有调速系统兼具直流、交流两类调速系统的优点。英、美等经济发达国家对开关磁阻电动机调速系统的研究起步较早,并已取得显著效果,产品功率等级从数w直到数百kw,广泛应用于家用电器、航空、航天、电子、机械及电动车辆等领域。

1 简介

开关磁阻电机是一种新型调速电机,调速系统兼具直流、交流两类调速系统的优点,是继变频调速系统、无刷直流电动机调速系统的最新一代无极调速系统。它的结构简单坚固,调速范围宽,调速性能优异,且在整个调速范围内都具有较高效率,系统可靠性高。主要有开关磁阻电机、功率变换器、控制器与位置检测器四部分组成。控制器内包含功率变换器和控制电路,而转子位置检测器则安装在电机的一端。

现如今,开关磁阻电机的应用和发展取得了明显的进步,已成功地应用于电动车驱动、通用工业、家用电器和纺织机械等各个领域,功率范围从10W到5MW,最大速度高达100,000 r/min

2通用系列

我国对开关磁阻电动机调速系统的研究与试制起步于20世纪80年代末90年代初,取得了从基础理论到设计制造技术多方面的成果与进展,但产业化及应用性研究工作相对滞后。由于SRD的产业化,人们通常将其产品称为“开关磁阻调速电动机”。

3 SRD系统

开关磁阻电动机调速系统主要由开关磁阻电动机(SRM)、功率变换器、控制器、转子位置检测器四大部分组成,系统框图如图1。控制器内包含控制电路与功率变换器,而转子位置检测器则安装在电机一端,电动机与国产Y系列感应电动机同功率同机座号同外形。

4工作原理

开关磁阻电动机调速系统所用的开关磁阻电动机(SRM)是SRD中实现机电能量转换的部件,也是SRD有别于其他电动机驱动系统的主要标志。SRM系双凸极可变磁阻电动机,其定、转子的凸极均由普通硅钢片叠压而成。转子既无绕组也无永磁体,定子极上绕有集中绕组,径向相对的两个绕组联接起来,称为“一相”,SR电动机可以设计成多种不同相数结构,且定、转子的极数有多种不同的搭配。相数多、步距角小,有利于减少转矩脉动,但结构复杂,且主开关器件多,成本高,现今应用较多的是四相(8/6)结构和三相(12/8)结构。

图2示出四相(8/6)结构SR电动机原理图。为简单计,图中只画出A相绕组及其供电电路。SR电动机的运行原理遵循“磁阻最小原理”—…磁通总要沿着磁阻最小的路径闭合,而具有一定形状的铁心在移动到最小磁阻位置时,必使自己的主轴线与磁场的轴线重合。图2中,当定子D-D?极励磁时,1-1'向定子轴线D-D'重合的位置转动,并使D相励磁绕组的电感最大。若以图中定、转子所处的相对位置作为起始位置,则依次给D→A→B→C相绕组通电,转子即会逆着励磁顺序以逆时针方向连续旋转;反之,若依次给B→A→D→C相通电,则电动机即会沿顺时针方向转动。可见,SR电动机的转向与相绕组的电流方向无关,而仅取决于相绕组通电的顺序。另外,从图2可以看出,当主开关器件S1、S2导通时,A 相绕组从直流电源US吸收电能,而当S1、S2关断时,绕组电流经续流二极管VD1、VD2继续流通,并回馈给电源US。因此,SR电动机传动的共性特点是具有再生作用,系统效率高。

由此可见,通过控制加到SR电动机绕组中电流脉冲的幅值、宽度及其与转子的相对位置(即导通角、关断角),即可控制SR电动机转矩的大小与方向,这正是SR电动机调速控制的基本原理。

5系统特点

开关磁组电动机调速系统之所以能在现代调速系统中异军突起,主要是因为它卓越的系统性能,主要表现在:

结构简单;电动机结构简单、成本低、可用于高速运转。SRD的结构比鼠笼式感应电动机还要简单。其突出的优点是转子上没有任何形式的绕组,因此不会有鼠笼感应电机制造过程中铸造不良和使用过程中的断条等问题。其转子机械强度极高,可以用于超高速运转(如每分钟上万转)。在定子方面,它只有几个集中绕组,因此制造简便、绝缘结构简单。

电路可靠;功率电路简单可靠。因为电动机转矩方向与绕组电流方向无关,即只需单方相绕组电流,故功率电路可以做到每相一个功率开关。对比异步电动机绕组需流过双向电流,向其供电的PWM变频器功率电路每相需两个功率器件。因此,开关磁阻电动机调速系统较PWM变频器功率电路中所需的功率元件少,电路结构简单。另外,PWM变频器功率电路中每桥臂两个功率开关管直接跨在直流电源侧,易发生直通短路烧毁功率器件。而开关磁阻电动机调速系统中每个功率开关器件均直接与电动机绕组相串联,根本上避免了直通短路现象。因此开关磁阻调速电动机调速系统中功率电路的保护电路可以简化,即降低了成本,又有较高的工作可靠性。

系统可靠性高;系统可靠性高。从电动机的电磁结构上看,各项绕组和磁路相互独立,各自在一定轴角范围内产生电磁转矩。而不像在一般电动机中必须在各相绕组和磁路共同作用下产生一个旋转磁场,电动机才能正常运转。从控制结构上看,各相电路各自给一相绕组供电,一般也是相互独立工作。由此可知,当电动机一相绕组或控制器一相电路发生故障时,只需停止该相工作,电动机除总输出功率能力有所减小外,并无其他妨碍。

起动优点;起动转矩大,起动电流低。控制器从电源侧吸收较少的电流,在电机侧得到较大的起动转矩是本系统的一大特点。典型产品的数据是:起动电流为额定电流的15%时,获得起动转矩为100%的额定转矩;起动电流为额定电流的30%时,起动转矩可达其额定转矩的250%。而其他调速系统的起动特性与之相比,如直流电机为100%的电流,鼠笼感应电动机为300%的电流,获得100%的转矩。起动电流小而转矩大的优点还可以延伸到低速运行段,因此本系统十分合适那些需要重载起动和较长时间低速重载运行的机械。

频繁起停;适用于频繁起停及正反向转换运行。本系统具有的高起动转矩、低起动电流的特点,使之在起动过程中电流冲击小,电动机和控制器发热较连续额定运行时还要小。可控参数多使其制动运行能与电动运行具有同样优良的转矩输出能力和工作特性。二者综合作用的结果必然使之适用于频繁起停及正反向转换运行,次数可达1000次/小时。

性能好;可控参数多,调速性能好。控制开关磁阻电动机的主要运行参数和常用方法至少有四种:相导通角、相关断角、相电流幅值、相绕组电压。可控参数多,意味着控制灵活方便。可以根据对电动机的运行要求和电动机的情况,采取不同控制方法和参数值,即可使

之运行于最佳状态(如出力最大、效率最高等),还可使之实现各种不同的功能的特定曲线。

如使电动机具有完全相同的四象限运行能力,并具有最高起动转矩和串励电动机的负载能力曲线。由于SRD速度闭环是必备的,因此系统具有很高的稳速精度,可以很方便的构成无静差调速系统。

效率高损耗小;效率高,损耗小。本系统是一种非常高效的调速系统。这是因为一方面电动机绕组无铜损;另一方面电动机可控参数多,灵活方便,易于在宽转速范围和不同负载下实现高效优化控制。以3kW SRD为例,其系统效率在很宽范围内都在87%以上,这是其它一些调速系统不容易达到的。将本系统同PWM变频器鼠笼型异步电动机的系统进行比较,本系统在不同转速和不同负载下的效率均比变频器系统高,一般要高5~10个百分点。

满足各种要求;可通过机和电的统一协调设计满足各种特殊使用要求。

6优缺点

开关磁阻电动机传动系统综合了感应电动机传动系统和直流电动汽车电机传动系统的优点,是这些传动系统的有力竞争者,其主要优点如下:

1、开关磁阻电动机有较大的电动机利用系数,可以是感应电动机利用系数的1.2~1.4

倍。

2、电动机的结构简单,转子上没有任何形式的绕组;定子上只有简单的集中绕组,端

部较短,没有相间跨接线。因此,具有制造工序少、成本低、工作可靠、维修量小等特点。

3、开关磁阻电动机的转矩与电流极性无关,只需要单向的电流激励,理想上公率变换

电路中每相可以只用一个开关元件,且与电动机绕组串联,不会像PWM逆变器电源那样,存在两个开关元件直通的危险。所以,开关磁阻电动机驱动系统SED线路简单,可靠性高,成本低于PWM交流调速系统。

4、开关磁阻电动机转子的结构形式对转速限制小,可制成高转速电动机,而且转子的

转动惯量小,在电流每次换相时又可以随时改变相匝转矩的大小和方向,因而系统有良好的动态响应。

5、SRD系统可以通过对电流的导通、断开和对幅值的控制,得到满足不同负载要求的

机械特性,易于实现系统的软启动和四象限运行等功能,控制灵活。又由于SRD系统是自同步系统运行,不会像变频供电的感应电动机那样在低频时出现不稳定和振荡问题。

6、由于SR开关磁阻电动机采用了独特的结构和设计方法以及相应的控制技巧,其单

位处理可以与感应电动机相媲美,甚至还略占优势。SRD系统的效率和功率密度在宽广的速度和负载范围内都可以维持在教导水平。

开关磁阻电动机驱动系统SRD系统的主要缺点是:

1、有转矩脉动。从工作原理可知,S开关磁阻电动机转子上产生的转矩是由一些列脉

冲转矩叠加而成的,由于双凸极结构和磁路饱和非线性的影响,合成转矩不是一个恒定转矩,而有一定的谐波分量,这影响了SR电动机低速运行性能。

2、SR电动机传动系统的噪声与震动比一般电动机大。

3、SR电动机的出线头较多,如三相SR 电动机至少有四根出线头,四相SR电动机

至少有五根出线头,而且还有位置检测器出线端。

上述缺点通过对电动汽车电机进行精心设计,采取适当措施,并从控制角度考虑采用合理策略可以得到改进。

7家电原理

由SRD的结构、原理及特点介绍可见其有着极其广泛的应用领域,现仅就SRD在家用电器领域的应用作简单介绍如下[2]。

当今世界家用电器的发展趋势可归结为两句话:“黑色家电数字化,白色家电调速化。”

“白色家电”是指空调、冰箱、洗衣机等,其共同特点是都用电动机作动力。老一代的白色家电一般均采用不调速的电动机。这对于进一步提高其功能和档次已成为障碍,这类家用电器技术进步的总趋势是采用具有现代调速系统的电动机来取代不调速的电动机。这里最具资格的当数无刷直流电动机调速系统和开关磁阻调速电动机系统。而在某些性能及性价比方面,开关磁阻调速电动机系统占有一定的优势。

洗衣机应用

现今,世界上使用面广、为广大用户所接受的洗衣机主要有两大类:一类是波轮式全自动洗衣机;另一类是滚筒式全自动洗衣机。

这两类洗衣机对电动机有着共同的性能要求:洗涤时要电动机低转速转动,且能频繁地正反转;脱水时要电机能高速旋转。

长期以来,这两类洗衣机基本上都采用了一种变极双速单相感应电动机而勉强达到使用要求,但缺点是很明显的:

● 调速性能差,在洗涤时只有一种转速难以适应各种织物对洗涤转速的要求,而所谓

的“强洗”、“弱洗”、“轻柔洗”等洗涤程序的变化仅仅是靠改变正反转的持续时间而已。而且为

了照顾洗涤时对转速的要求,往往使得脱水时的转速偏低,一般仅为400转/分钟至600转/分钟。

● 单相变极双速感应电动机的效率很低,一般均为30%以下。而其起动电流竟是额定电流的7~8倍以上,这会对电网造成冲击。

如果用开关磁阻调速电动机来取代单相变极双速感应电动机则可以取得十分满意的效果。

南京瑞鹏科技有限公司成功开发了用于5kg滚筒洗衣机的SRD专用系统,取得了令人振奋的效果。

系统的“标准洗”,滚筒的转速为57转/分钟;而“轻柔洗”、“丝绒洗”滚筒转速则为25转/分钟。真正做到高档织物不损伤。“脱水”时滚筒转速可在400转/分钟至1200转/分钟之间任意设定选取。

系统还为洗衣机的各种动作设计了专用程序。如为正转、反转洗涤设计了特定的起动、加速、减速程序,可有效的提高衣物的洗净率。为漂洗和脱水分别设计了特定的起动、均布升速程序,有效避免在脱水时由于衣物在滚筒上分布不均而造成的振动和噪声;而对于根本不可能均匀分布的洗涤物,则可智能地为其选择较低的脱水转速。

经测试比较,同样的衣物,同样一个“标准洗”,本系统的用电量仅为普通滚筒洗衣机(双速感应电动机为动力)的44%;其耗电、耗水、洗净度、脱水率、噪声等一系列指标都达到了欧洲A类洗衣机的标准。

家电中应用

空调、电冰箱的核心部件是压缩机,可是如今进入千家万户的普通空调、电冰箱的压缩机大都是由单相异步电动机来驱动的。它的缺点表现为:一、由于他们采用简单的通断式来进行控温,这样将带来许多毛病,如系统效率低、功率因素低、温度起伏大、因起动电流大而对电网产生冲击等。二、如今出现了“变频空调”新产品,它采用异步电动机变频调速系统来取代单相异步电动机。相比较而言,变频空调具有制冷速度快、环境舒适度好、对电网无冲击、运行噪声小、效率高和节能等一系列优点,是空调升级换代的革命性措施。但变频调速系统在运行中、低速时,机械特性通常变差,系统效率和功率因素下降明显。而变频空调系统压缩机的电动机恰恰绝大多数时间在中、低转速状态下运行,只是刚开始时是高速运转。因此,这给变频空调系统的节能优越性大大的打了个折扣。

而开关磁阻调速电动机系统除了具有变频调速系统的一系列优点外,它具有比变频调速系统更高的电能—机械能转换效率,特别是在中、低转速运行时,这一优势就更加明显。这一点在此就不再赘述。

8发展展望

作为一种新型调速驱动系统,开关磁阻电机以其结构简单、低成本、高效率、优良的调速性能和灵活的可控性,愈来愈得到人们的认可和应用。已成功应用于在电动车用驱动系统、家用电器、工业应用、伺服系统、高速驱动、航空航天等众多领域中,成为交流电机调速系统、直流电机调速系统和无刷直流电机调速系统的强有力竞争者。

美国、加拿大、南斯拉夫、埃及等国家都开展了SRD系统的研制工作。在国外的应用中,SRD一般用于牵引中,例如电瓶车和电动汽车。同时高速性能是SRD的一个特长的方向。据报道,美国为空间技术研制了一个25000r/min、90kW的高速SRD样机。SRD系统的研究已被列入我国中、小型电机“八五”、“九五”和“十五”科研规划项目。

华中科技大学开关磁阻电机课题组在“九五”项目中研制出使用SRD的纯电动轿车,在“十五”项目中将SRD应用到混合动力城市公交车,均取得了较好的运行效果。纺织机械研究所将SRD应用于毛巾印花机、卷布机,煤矿牵引及电动车辆等,取得了显著的经济效益。

现如今功率电子技术,数字信号处理技术和控制技术的快速发展,而且随着智能技术的不断成熟及高速高效低价格的数字信号处理芯片(DSP)的出现,利用高性能DSP开发各种复杂算法的间接位置检测技术,无需附加外部硬件电路,大大提高了开关磁阻电机检测的可靠性和适用性,必将更大限度地显示SRD的优越性。

90年代进一步以计算机控制的柔性制造系统、主体仓库、机器人进行装配等组合起来,由计算机控制材料、部件的供应管理、达到全厂高效率、高质量的全自动化均衡生产,设计和制造水平不断提高,专用控制芯片和集成功率器件不断被开发出来,开关磁阻电机性能和适用性不断增强。随着国民经济建设的日益发展,各行各业的机械化、自动化程度越来越高,为开关磁阻电机提供了巨大的潜在市场。

9前景

开关磁阻调速电动机作为最新一代无级调速系统尚处于深化研究开发、不断完善提高的阶段,其应用领域也在不断拓展之中。由于SRD优良的调速性能和极高的性能价格比,一旦推广普及可产生很好的经济效益和社会效益,这有待于我国从事SRD科研、开发与制造的高等院校、科研院所、企业以及为数更多的用户中的有识之士共同努力。

车用电机的发展现状

电动车用电机及其控制技术的现状及趋势 电动汽车是以车载电源为动力,并采用电动机驱动的一种交通工具。电机及其驱动系统是电动汽车的核心部件之一,由于电动汽车在运行过程中频繁起动和加减速操作,对驱动系统的有着很高的要求。生产制造方面要求电机的可靠性好、结构简单、维修方便、成本低、体积小、重量轻;性能方面要求车用电机具有瞬时功率大、过载能力强、范围宽、续驶里程长等优点。 电动汽车的驱动电机按其类型来划分,可分为直流电机和交流电机两大类。直流电机的驱动特性是在基本转速以下运行于恒转矩区,基本转速以上运行于恒功率区。它的这种特性很适合汽车对动力源低速高转矩、高速低转矩的要求,而且直流电机结构简单,易于平滑调速,所以直到20世纪80年代中期,它仍是国内外的主要研发对象。几乎所有早期的电动车都采用直流电机驱动系统。如日本东京大学的UOT电动汽车采用直流串励电动机,意大利菲亚特公司的900E/E2电动汽车用直流他励电动机驱动,日本马自达汽车公司的BANGO 电动汽车则采用直流并励电动机。但是直流电机的效率和转速相对较低,其换向器维护困难,直流电机价格高、体积和重量大。随着控制理论和电力电了技术的发展,直流驱动系统与其它驱动系统相比,己大大处于劣势。因此,目前国外各大公司研制的电动车电气驱动系统己逐渐淘汰了直流驱动系统。 20世纪90年代后,交流电机驱动系统的研制和开发有了新的突破。相比直流电机,交流电机体积小、质量轻、效率高、调速范围宽、可靠性高、价格便宜、维修简单方便,在电动汽车上得到了广泛应用。交流电机包括异步电机、永磁电机以及开关磁阻电机。 美国以及欧洲研制的电动汽车多采用这种电动机,如Chrysler公司生产的Epic Van; Ford 公司生产的Ranger EV,通用汽车公司生产的IMPACT和EH电动汽车。国内也采用感应电动机作为电动汽车的驱动电机也比较多,如胜利SL6700DD电动客车,郑州华联ZK6820HG-1电动轻型客车。但其最大缺点是驱动电路复杂,相对永磁电机而言,其效率和功率密度偏低,因此有被其它新型永磁电机逐步取代的趋势。 永磁电机包括永磁无刷直流电机和永磁无刷同步电机两种。永磁无刷直流电机是在直流电机的基础上不再用电刷和换向器,起动转矩大、过载能力强,非常适合电动车的运行特性。香港大学研制的U 2001电动车采用的永磁无刷直流电机,最高车速为110krn/h,本田研制EV PLU S电动车采用的永磁无刷直流电机,最高车速为128krn/h。永磁无刷同步电机的恒转矩区比较长,这对提高汽车的低速动力性能有很大帮助,电机最高转速较高,能达到10 000 r/min。永磁无刷同步电机功率密度高调速性能好、在宽转速范围内运行效率高.它的主要缺点是电机造价较高,永磁材料会有退磁效应,要想增大电机的功率其体积会很大。随着稀土永磁材料的开发和应用,永磁无刷电机的性能有了很大的提高,是未来最有发展前景的驱动电机之一。 开关磁阻电机(SRM )是英国于1983年首次正式推出的,经过多年的研制开发,现己成为现代电动汽车交流驱动的又一个新支,它具有可控相数多、实现四象限控制方便、成本低。开关磁阻电机结构和控制简单、出力大,可靠性高,起动制动性能好,运行效率高,但电机噪声高,转矩脉动严重,非线性严重,在电动汽车驱动中有利有弊,目前在电动汽车应用较少。 上述几种电动机各有自己的优势和不足,并各有侧重,'已们在现有的电动汽车中均有应用,其中,交流异步电机主要应用在纯电动汽车(包括轿车及客车),永磁同步电机主要应用在混合动力汽车(包括轿车及客车)中,开关磁阻电机目前主要应用在客车中,而以交流异步电动机和永磁直流电动机的应用稍微居多一些。 要想使电机驱动并发挥出其优良的性能必须与合理的控制策略相配合。目前电机的控制

开关磁阻电机的原理及其控制系统

开关磁阻电机的原理及其控制系统 开关磁阻电机80年代初随着电力电子、微电脑和控制理论的迅速发展而发展起来的一种新型调速驱动系统。具有结构简单、运行可靠、成本低、效率高等突出优点,目前已成为交流电机调速系统、直流电机调速系统、无刷直流电机调速系统的强有力的竞争者。 一、开关磁阻电机的工作原理 开关磁阻电机的工作原理遵循磁磁阻最小原理,即磁通总是要沿着磁阻最小路径闭合。因此,它的结构原则是转子旋转时磁路的磁阻要有尽可能大的变化。所以开关磁阻电动机采用凸极定子和凸极转子的双凸极结构,并且定转子极数不同。 开关磁阻电机的定子和转子都是凸极式齿槽结构。定、转子铁芯均由硅钢片冲成一定形状的齿槽,然后叠压而成,其定、转子冲片的结构如图1所示。

图1:开关磁阻电机定、转子结构图 图1所示为12/8极三相开关磁阻电动机,S1. S2是电子开关,VD1, VD2 是二极管,是直流电源。 电机定子和转子呈凸极形状,极数互不相等,转子由叠片构成,定子绕组可根据需要采用串联、并联或串并联结合的形式在相应的极上得到径向磁场,转子带有位置检测器以提供转子位置信号,使定子绕组按一定的顺序通断,保持电机的连续运行。电机磁阻随着转子磁极与定子磁极的中心线对准或错开而变化,因为电感与磁阻成反比,当转子磁极在定子磁极中心线位置时,相绕组电感最大,当转子极间中心线对准定子磁极中心线时,相绕组电感最小。 当定子A相磁极轴线OA与转子磁极轴线O1不重合时,开关S1, S2合上,A 相绕组通电,电动机内建立起以OA为轴线的径向磁场,磁通通过定子扼、定子极、气隙、转子极、转子扼等处闭合。通过气隙的磁力线是弯曲的,此时磁路的

控制电机:开关磁阻电机

题目:开关磁阻电机

开关磁阻电机 学习《特种电机及其控制》这门课程,这要介绍了无刷直流电机及其控制、开关磁阻电机及其控制系统、步进电机及其控制,其中我最感兴趣的开关磁阻电机。下面我将对我所了解的开关磁阻电机做一总结。 一、发展背景 开关磁阻电机是80年代初随着电力电子、微电脑和控制技术的猛烈发展而发展起来的一种新型调速驱动系统,具有结构简单、运行可靠及效率高等突出优点,成为直流电机调速系统、交流电机调速系统和无刷直流电机调速系统强有力的竞争者,引起各国学者和企业界的广泛关注,目前开关磁阻电机已开始应用于工业、航空业和家用电器等各个领域。 开关磁阻电机的基本概念可追溯到19世纪40年代,1842年,英国的Aberdeen和Dafidson用两个U型电磁铁制造了由蓄电池供电的机车电动机。20世纪60年代,大功率晶闸管的出现为SR电机的研究发展提供了重要的物质条件。1967年,英国的Leeds大学开始对SR电机进行深入研究;直到1970年左右,研究结果表明:SR电机可以在单相电流下四象限运行,功率变换器无论是用晶体管还是用普通晶闸管,所需开关数都是最少的;电动机成本也明显低于同容量的感应电动机。20年代70年代初,美国福特公司研制出最早开关磁阻电机的调速系统,其结构为轴向气隙电动机,具有电动机和发电机运行状态和较宽范围调速的能力,适合于蓄电池供电的电动车辆的转动。1980年Leeds大学的Lawrenson教授及其同事总结出了自己的研究成果,发表了题为“Variable--Speed Switched Reluctance Motors”的论文,系统阐述了开关磁阻电机的基本原理与设计特点,并得出了新型磁阻电机的单位出力可以与交流感应电机相媲美甚至还略占优势的结论。1983年英国TASC公司推出了Oulton系列通用SRD调速产品,问世不久便受到了各国电气传动界的广泛重视。从1984年开始,我国许多单位先后开展了SRD研究,在借鉴国外经验的基础上,我国SR电机的研究发展很快。2000年,国内100KW以上的SR电机已应用于煤矿的采煤机,目前已将180KW的SR电机应用于地铁机车的牵引,应形成一些SRD系列商品,最

步进电机与开关磁阻电机

开关磁阻电机: 开关磁阻电动机驱动系统(SRD)是较为复杂的机电一体化装置,SRD的运行需要在线实时检测的反馈量一般有转子位置、速度及电流等,然后根据控制目标综合这些信息给出控制指令,实现运行控制及保护等功能。转子位置检测环节是SRD的重要组成部分,检测到的转子位置信号是各相主开关器件正确进行逻辑切换的根据,也为速度控制环节提供了速度反馈信号。 开关磁阻电机具有再生的能力,系统效率高: 对开关磁阻电机的理论研究和实践证明,该系统具有许多显著的优点: (1)电机结构简单、坚固,制造工艺简单,成本低,可工作于极高转速;定子线圈嵌放容易,端部短而牢固,工作可靠,能适用于各种恶劣、高温甚至强振动环境。 (2)损耗主要产生在定子,电机易于冷却;转子无永磁体,可允许有较高的温升。 (3)转矩方向与电流方向无关,从而可最大限度简化功率变换器,降低系统成本。 (4)功率变换器不会出现直通故障,可靠性高。 (5)起动转矩大,低速性能好,无感应电动机在起动时所出现的冲击电流现象。 (6)调速范围宽,控制灵活,易于实现各种特殊要求的转矩-速度特性。 (7)在宽广的转速和功率范围内都具有高效率 (8)能四象限运行,具有较强的再生制动能力。 (9)容错能力强。开关磁阻电机的容错体现在电机某一相损坏,电机照样可以运行。 开关磁阻电机的应用: 近年来,开关磁阻电机的应用和发展取得了明显的进步,已成功地应用于电动车驱动、通用工业、家用电器和纺织机械等各个领域,功率范围从10W到5MW,最大速度高达100000 r/min。

开关磁阻电机电动车应用 开关磁阻电机最初的应用领域就是电动车。目前电动摩托车和电动自行车的驱动电机主要有永磁无刷及永磁有刷两种,然而采用开关磁阻电机驱动有其独特的优势。当高能量密度和系统效率为关键指标时,开关磁阻电机变为首选对象。 SRD开关磁阻电机驱动系统的电机结构紧凑牢固,适合于高速运行,并且驱动电路简单成本低、性能可靠,在宽广的转速范围内效率都比较高,而且可以方便地实现四象限控制。这些特点使SRD开关磁阻电机驱动系统很适合电动车辆的各种工况下运行,是电动车辆中极具有潜力的机种。SRD的最大特点是转矩脉动大,噪声大;此外,相对永磁电机而言,功率密度和效率偏低;另一个缺点是要使用位置传感器,增加了结构复杂性,降低了可靠性。因此无传感器的SRD也是未来的发展趋势之一。其优点主要表现在以下几个方面: (1)开关磁阻电机不仅效率高,而且在很宽的功率和转速范围内都能保持高效率,这是其它类型驱动系统难以达到的。这种特性对电动车的运行情况尤为适合,有利于提高电动车的续驶里程。 (2)开关磁阻电机很容易通过采用适当的控制策略和系统设计满足电动车四象限运行的要求,并且还能在高速运行区域保持强有力的制动能力。 (3)开关磁阻电机有很好的散热特性,从而能以小的体积取得较大的输出功率,减小电机体积和重量。 (4)通过调整开通角和关断角,开关磁阻电机完全可以达到它激直流电机驱动系统良好的控制特性,而且这是一种纯逻辑的控制方式,很容易智能化,从而能通过重新编程或替换电路元件,方便地满足不同运行特性的要求。 (5)开关磁阻电机无论电机还是功率变换器都十分坚固可靠,无需或很少

开关磁阻电机速度控制

Journal of Electrical Engineering 电气工程, 2016, 4(1), 55-62 Published Online March 2016 in Hans. https://www.doczj.com/doc/2417477537.html,/journal/jee https://www.doczj.com/doc/2417477537.html,/10.12677/jee.2016.41008 Speed Control Strategy of Switched Reluctance Motor Zhou Du1,2, Dingxiang Wu2,3, Lijun Tang1,2 1School of Physics and Electronic Sciences, Changsha University of Science & Technology, Changsha Hunan 2Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-Earth Eletromagnetic Environments, Changsha Hunan 3Billion Set Electronic Technology Co, Ltd., Changsha Hunan Received: Mar. 1st, 2016; accepted: Mar. 19th, 2016; published: Mar. 24th, 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/2417477537.html,/licenses/by/4.0/ Abstract Aimed at research on starting mode and speed control of switched reluctance motor speed control system, a two-phase starting is adopted to start the electric, in order to increase the torque and reduce the torque ripple. A fuzzy adaptive PID control algorithm is proposed, and a switched re-luctance motor speed control system with STM32 + FPGA as the main controller is designed, ap-plying current chopping in low speed and angle position control mode in high speed, which has a certain effect on solving the problems of high overshoot, slow dynamic response and low accuracy. The experimental results show that the precision of the system speed is within 10 r/min, and the maximum overshoot is 15 r/min. Keywords Switched Reluctance Motor, Torque Ripple, Fuzzy Adaptive Tuning PID 开关磁阻电机速度控制 杜舟1,2,吴定祥2,3,唐立军1,2 1长沙理工大学物理与电子科学学院,湖南长沙 2近地空间电磁环境监测与建模湖南省普通高校重点实验室,湖南长沙 3长沙亿旭机电科技有限公司,湖南长沙

径向磁通开关磁阻电机的发展历史及趋势

文献检索 径向磁通开关磁阻电机的发展历史及趋势 姓名 学号825 所在学院电气与电子工程学院 专业班级12电气7班 日期2014年12月26日

一、开关磁阻电机发展简介 开关磁阻电机是80年代初随着电力电子、微电脑和控制技术的迅猛发展而发展起来的一种新型调速驱动系统,具有结构简单、运行可靠及效率高等突出特点,成为交流电机调速系统、直流电机调速系统和无刷直流电机调速系统的强有力的竞争者,引起各国学者和企业界的广泛关注。跨国电机公司Emerson电气公司还将开关磁阻电机视为其下世纪调速驱动系统的新的技术、经济增长点。目前开关磁阻电机已广泛或开始应用于工业、航空业和家用电器等各个领域。 1970年,英国Leeds大学步进电机研究小组首创一个开关磁阻电机(Switched Reluctance Motor, SRM)雏形,这是关于开关磁阻电机最早的研究。1972年,进一步对带半导体开关的小功率电动机(10w~1kw)进行了研究。到了1975年有了实质性的进展,并一直发展到可以为50kw的电瓶汽车提供装置。1980年在英国成立了开关磁阻电机驱动装置有限公司(SRD Ltd.),专门进行SRD系统的研究、开发和设计。1983年英国(SRD Ltd.)首先推出了SRD系列产品,该产品命名为OULTON。1984年TASC驱动系统公司也推出了他们的产品。另外SRD Ltd. 研制了一种适用于有轨电车的驱动系统,到1986年已运行500km。该产品的出现,在电气传动界引起不小的反响。在很多性能指标上达到了出人意料的高水平,整个系统的综合性能价格指标达到或超过了工业中长期广泛应用的一些变速传动系统。 从上世纪90年代国际会议的上有关SRD系统的文章来看,对SRD系统的研究工作已经从论证它的优点、开发应用阶段进入到设计理论、优化设计研究阶段。对SR电机、控制器、功率变换器等的运行理论、优化设计、结构形式等方面进行了更加深入的研究。 二、开关磁阻电机的分类 按气隙磁通方向分类方法将开关磁阻电机分为两类:径向磁通开关磁阻电机和横向磁通开关磁阻电机。这里,着重分析径向磁通开关磁阻电机。 1、径向气隙磁通 发电机依靠转子对定子的相对运动来发电,在定子与转子之间的间隙称为气隙。在传统电机结构中,定子在外围,转子在中间旋转,见图1右图,定子与转

开关磁阻电机驱动系统的运行原理及应用

开关磁阻电机驱动系统的运行原理及应用(二) (低轴阻发电机参考资料) 1 引言 开关磁阻电机驱动系统(SDR)具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,启动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率访问内都具有高输出和高效率而且有很好的容错能力。这使得SR电机系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用。 SR电机是一种机电能量转换装置。根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能—电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能—发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程。本文将从SR电机电动和发电运行这两个角度阐述SR电机的运行原理。 2 电动运行原理 2.1 转矩产生原理 控制器根据位置检测器检测到的定转子间相对位置信息,结合给定的运行命令(正转或反转),导通相应的定子相绕组的主开关元件。对应相绕组中有电流流过,产生磁场;磁场总是趋于“磁阻最小”而产生的磁阻性电磁转矩使转子转向“极对极”位置。当转子转到被吸引的转子磁极与定子激磁相相重合(平衡位置)时,电磁转矩消失。此时控制器根据新的位置信息,在定转子即将达到平衡位置时,向功率变换器发出命令,关断当

前相的主开关元件,而导通下一相,则转子又会向下一个平衡位置转动;这样,控制器根据相应的位置信息按一定的控制逻辑连续地导通和关断相应的相绕组的主开关,就可产生连续的同转向的电磁转矩,使转子在一定的转速下连续运行;再根据一定的控制策略控制各相绕组的通、断时刻以及绕组电流的大小,就可使系统在最隹状态下运行。 图1 三相sr电动机剖面图 从上面的分析可见,电流的方向对转矩没有任何影响,电动机的转向与电流方向无关,而仅取决于相绕组的通电顺序。若通电顺序改变,则电机的转向也发生改变。为保证电机能连续地旋转,位置检测器要能及时给出定转子极间相对位置,使控制器能及时和准确地控制定子各相绕组的通断,使srm能产生所要求的转矩和转速,达到预计的性能要求。 2.2 电路分析

行程开关解读

行程开关解读 基本简介 行程开关行程开关,位置开关(又称限位开关)的一种,是一种常用的小电流主令电器。利用生产机械运动部件的碰撞使其触头动作来实现接通或分断控制电路,达到一定的控制目的。通常,这类开关被用来限制机械运动的位置或行程,使运动机械按一定位置或行程自动停止、反向运动、变速运动或自动往返运动等。 在电气控制系统中,位置开关的作用是实现顺序控制、定位控制和位置状态的检测。用于控制机械设备的行程及限位保护。构造:由操作头、触点系统和外壳组成。 在实际生产中,将行程开关安装在预先安排的位置,当装于生产机械运动部件上的模块撞击行程开关时,行程开关的触点动作,实现电路的切换。因此,行程开关是一种根据运动部件的行程位置而切换电路的电器,它的作用原理与按钮类似。 行程开关广泛用于各类机床和起重机械,用以控制其行程、进行终端限位保护。在电梯的控制电路中,还利用行程开关来控制开关轿门的速度、自动开关门的限位,轿厢的上、下限位保护。 行程开关可以安装在相对静止的物体(如固定架、门框等,简称静物)上或者运动的物体(如行车、门等,简称动物)上。当动物接近静物时,开关的连杆驱动开关的接点引起闭合的接点分断或者断开的接点闭合。由开关接点开、合状态的改变去控制电路和机构的动作。 种类特点 常规国产行程开关: 常规行程开关中LX19系列中的LX19-001/111,LXK3系列中的LXK3-20S/T,JLXK1系列JLXK1-111/411/511最具代表力,这些产品有结构简单、功能实用、价格低廉的优势深受广 大使用者的青睐。 进口行程开关: 进口行程开关中WL系列、HL系列、D4V系列、SZL-WL系列最具代表力,此类产品做工精细、性能优越、在极端环境中的表现更为突出,赢得了大批的粉丝,但价格高昂也令不少用户咋舌

开关磁阻电机及其调速系统

第二章开关磁阻电机及其调速系统 2.1 开关磁阻电机的发展概况 磁阻式电机诞生于160年前,一直被认为是一种性能不高的电机。然而通过近20年的研究与改进,使磁阻式电机的性能不断提高,目前已能在较大功率范围内不低于其它型式的电机[9]。 70年代初,美国福特电动机(Ford Motor)公司研制出最早的开关磁阻电机调速系统。其结构为轴向气隙电动机、晶闸管功率电路,具有电动机和发电机运行状态和较宽范围调速的能力,特别适用于蓄电池供电的电动车辆的传动。 70年代中期,英国里兹(Leeds)大学和诺丁汉(Nottingham)大学,共同研制以电动车辆为目标的开关磁阻电机调速系统。样机容量从10W至50KW,转速从750 r/min至10000 r/min,其系统效率和电机利用系数等主要指标达到或超过了传统传动系统。该产品的出现,在电气传动界引起了不小的反响。在很多性能指标上达到了出人意料的高水平,整个系统的综合性能价格指标达到或超过了工业中长期广泛使用的一些变速传动系统。 近年来,国内外已有众多高校、研究所和企业投入了开关磁阻电机调速系统的研究、开发和制造工作。至今已推出了不同性能、不同用途的几十个系列的产品,应用于纺织、冶金、机械、汽车等行业中。 目前,在汽车行业意大利FIAT公司研制的电动车和中国第二汽车制造厂研制的电动客车都采用了开关磁阻电机。SRM是没有任何形式的转子线圈和永久磁铁的无刷电动机,它的定子磁极和转子磁极都是凸的。由于SRM具有集中的定子绕组和脉冲电流,其功率变换器可以采用更可靠的电路拓扑形式。SRM具有简单可靠、在较宽转速和转矩范围内高效运行、控制灵活、可四象限运行、响应速度快、成本较低等优点,这是其它调速系统难以比拟的,作为具有潜力的电动车电气驱动系统日益受到重视。然而目前SRM还存在转矩波动大、噪声大、需要位置检测器、系统非线性等缺点,所以,它的广泛应用还受到限制。 2.2 开关磁阻电机的基本结构与特点 开关磁阻电机为定、转子双凸极可变磁阻电机。其定、转子铁心均由硅钢片

压力开关工作原理

压力开关工作原理是:外机械力通过传动元件(按销、按钮、杠杆、滚轮等)将力作用于动作簧片上,并将能量积聚到临界点后,产生瞬时动作,使动作簧片末端的动触点与定触点快速接通或断开。当传动元件上的作用力移去后,动作簧片产生反向动作力,当传动元件反向行程达到簧片的动作临界点后,瞬时完成反向动作。微动开关的触点间距小、动作行程短、按动力小、通断迅速。其动触点的动作速度与传动元件动作速度无关。微动开关以按销式为基本型,可派生按钮短行程式、按钮大行程式、按钮特大行程式、滚轮按钮式、簧片滚轮式、杠杆滚轮式、短动臂式、长动臂式等等。微动开关在电子设备及其他设备中用于需频繁换接电路的自动控制及安全保护等装置中。微动开关分为大型、中型、小型,按不同的需要分有可以有防水型(放在液体环境中使用)和普通型,开关连接两个线路,为电器、机器等提供通断电控制,广泛应用在鼠标,家用电器,工业机械,摩托车等地方,开关虽小,但起着不可替代的作用。有的也称触点开关,就是一种由物体的位移来决定电路通断的开关,压力开关在日常生活中我们最易碰到的例子就是冰箱了。不知你注意到没有,当你打开冰箱时,冰箱里面的灯就会亮了起来,而关上门就又熄灭了,这是因为门框上有个开关,被门压紧时灯的电路断开,门一开就放松了,于是就自动把电路闭合使灯点亮。这个开关就是行程开关。 行程开关又称限位开关,可以安装在相对静止的物体上或者运动的物体(如行车、门等,简称动物)上。当动物接近静物时,开关的连杆驱动开关的接点引起闭合的接点分断或者断开的接点闭合。由开关接点开、合状态的改变去控制电路和机构的动作。 行程开关的应用方面很多,很多电器里面都有它的身影。那这么简单的开关能起什么作用呢?它主要是起连锁保护的作用。最常见的例子莫过于其在洗衣机和录音机中的应用了。 在洗衣机的脱水(甩干)过程中转速很高,如果此时有人由于疏忽打开洗衣机的门或盖后,再把手伸进去,很容易对人造成伤害,为了避免这种事故的发生,在洗衣机的门或盖上装了个电接点,一旦有人开启洗衣机的门或盖时,就自动把电机断电,甚至还要靠机械办法联动,使门或盖一打开就立刻“刹车”,强迫转动着的部件停下来,免得伤害人身。 行程开关真正的用武之地是在工业上,在那里它与其它设备配合,组成更复杂的自动化设备。机床上有很多这样的行程开关,用它控制工件运动或自动进刀的行程,避免发生碰撞事故。有时利用行程开关使被控物体在规定的两个位置之间自动换向,从而得到不断的往复运动。比如自动运料的小车到达终点碰着行程开关,接通了翻车机构,就把车里的物料翻倒出来,并且退回到起点。到达起点之后又碰着起点的行程开关,把装料机构的电路接通,开始自动装车。总是这样下去,就成了一套自动生产线,用不着人管,压力传感器日以继夜地工作,节省了人的体力劳动。空压机压力开关工作原理 压力开关用在空压机上面主要是来调节空压机的起停状态,通过调节储气罐内的压力来让空压机停机休息,对机器有保养作用.在空压机工厂调试的时候,根据客户需要调节到指定压力,然后设定一个压差.例如,压缩机开始启动,向储气罐打气,到压力10kg的时候,空压机停机或者卸载,当压力到7kg的时候空压机又开始启动,此间有一个压力差,这个过程就可以让压缩机休息一下,达到保护空压机的作用。由电动机直接驱动压缩机,使曲轴产生旋转运动,带动连杆使活塞产生往复运动,引起气缸容积变化。由於气缸内压力的变化,通过进气阀使空气经过空气滤清器(消声器)进入气缸,在压缩行程中,由於气缸容积的缩小,压缩空气经过排气阀的作用,经排气管,单向阀(止回阀)进入储气罐,当排气压力达到额定压力0.7MPa时由压力开关控制而自动停机。当储气罐压力降至0.5--0.6MPa时压力开关自动联接启动。温度开关的结构 对于不同的温度测量范围,应选用结构不同的温度开关,在0℃~100℃的温度范围内,通常采用固体膨胀式的温度开关,在100℃~250℃的温度范围内,大多采用气体膨胀式温度开关,对于250℃以上的温度范围,则只能采用热电偶或热电阻温度计,经过测量变送

我国驱动电机类型及其发展现状

我国驱动电机类型及其发展现状 1.驱动电机类型及其发展 驱动电机是电动汽车的关键部件,直接影响整车的动力性及经济性。驱动电机主要包括直流电机和交流电机。目前电动汽车广泛使用交流电机,主要包括:异步电机、开关磁阻电机和永磁电机(包括无刷直流电机和永磁同步电机)。各类型电机主要特点见表1. 车用电机的发展趋势如下:(1)电机本体永磁化:永磁电机具有高转矩密度、高功率密度、高效率、高可靠性等优点。我国具有世界最为丰富的稀土资源,因此高性能永磁电机是我国车用驱动电机的重要发展方向。 (2)电机控制数字化:专用芯片及数字信号处理器的出现,促进了电机控制器的数字化,提高了电机系统的控制精度,有效减小了系统体积。 (3)电机系统集成化:通过机电集成(电机与发动机集成或电机与变速箱集成)和控制器集成,有利于减小驱动系统的重量和体积,可有效降低系统制造成本。 2.国外发展情况根据国外资料介绍 近年来美、欧开发的电动客车多采用交流异步电机,国外典型产品技术参数请见表 2.为了降低车重,电机壳体大多采用铸铝材料,电机恒功率范围较宽,最高转速可达基速的2~2.5倍。 日本近年来问世的电动汽车大多采用永磁同步电机。产品功率等级覆盖3~123kW,电机恒功率范围很宽,最高转速可达基速的5倍。日本近几年开发的电动汽车驱动电机概况见表3. 3.我国发展现状 (1)交流异步电机驱动系统我国已建立了具有自主知识产权异步电机驱动系统的开发平台,形成了小批量生产的开发、制造、试验及服务体系;产品性能基本满足整车需求,大功率异步电机系统已广泛应用于各类电动客车;通过示范运行和小规模市场化应用,产品可靠性得到了初步验证。 (2)开关磁阻电机驱动系统已形成优化设计和自主研发能力,通过合理设计电机结构、改进控制技术,产品性能基本满足整车需求;部分公司已具备年产2000套的生产能力,能满足小批量配套需求,目前部分产品已配套整车示范运行,效果良好。 (3)无刷直流电机驱动系统国内企业通过合理设计及改进控制技术,有效提高了无刷直流电机产品性能,基本满足电动汽车需求;已初步具有机电一体化设计能力。 (4)永磁同步电机驱动系统已形成了一定的研发和生产能力,开发了不同系列产品,可应用于各类电动汽车;产品部分技术指标接近国际先进水平,但总体水平与国外仍有一定差距;基本具备永磁同步电机集成化设计能力;多数公司仍处于小规模试制生产,少数公司已投资建立车用驱动电机系统专用生产线。 (5)永磁电机材料永磁电机的主要材料有钕铁硼磁钢、硅钢等。部分公司掌握了电机转子磁体先装配后充磁的整体充磁技术。国内研制的钕铁硼永磁体最高工作温度可达280℃,但技术水平仍与德国和日本有较大差距。 硅钢是制造电机铁芯的重要磁性材料,其成本占电机本体的20%左右,其厚度对铁耗有较大影响,日本已生产出0.27mm硅钢片用于车用电机,我国仅开发出0.35mm硅钢片。 (6)电机控制器关键部件电机控制器用位置/转速传感器多为旋转变压器,目前基本采用进口产品,我国部分公司已具备旋转变压器的研发生产能力,但产品精度、可靠性与国外仍有差距。IGBT基本依赖进口,价格昂贵,国产车用IGBT尚处于研究阶段。 4.我国驱动电机及其控制器存在的主要问题 (1)电机原材料、控制器核心部件研发能力较弱,依赖进口,如硅钢片、电机高速轴承、位置/转速传感器、IGBT模块等。进口产品成本高,影响电机系统产业化。 (2)我国车用电机的机电集成水平与国外差距较大。控制器集成度较低,体积、重量相对偏大。 (3)我国车用电机系统尚处于起步阶段,制造工艺水平落后,缺乏自动化生产线,造成产品可靠性、

开关磁阻电机控制系统软件设计

开关磁阻电机控制系统软件设计 开关磁阻电机SRM(Switched Reluctance Motor)是随着电力电子、微电脑和控制技术的迅猛发展而出现的一种新型调速系统,具有结构简单、运行可靠及效率高等突出优点,成为交流、直流和无刷直流电动机调速系统强有力的竞争者,引起各国学者和企业的广泛关注。 1 基本控制策略 开关磁阻电机基本控制策略主要包括电流斩波控制(CCC)、电压PWM 控制、角度位置控制(APC)三种控制策略。 电流斩波控制的优点是可限制电流峰值的增长,保护开关器件的安全,并起到良好有效的调节效果,因此适用于低速调速系统。当相电流超过约定的上限电流值时,则主开关关断,当相电流低于约定的下限电流值时,则组合开关开通,从而实现电流斩波控制效果。 电压PWM控制是通过调整占空比,来调节相绕组的平均电压,以改变相绕组电流的大小,从而实现转速和转矩的调节,电压PWM控制的特点是通过调节相绕组电压的平均值,进而能间接地限制和调节相电流,因此既能用于高速调速系统,又能用于低速调速系统,而且控制也较简单。 角度位置控制是指对开通角和关断角的控制。它的实质就在于输入电压保持不变而通过改变主开关的开通角和关断角来调节电流,以达到调节电机转矩的目的。角度控制的优点是转矩调节范围较大,可允许多相同时通电,以增加电机输出转矩,可实现效率最有控制和转矩

最优控制。 为了实现开关磁阻电机良好的调速性能,该软件设计采用以下组合控制策略,即电机基速以下运行时,采用电流斩波控制方式;在中低速下,采用电压PWM控制方式;而在高速运行时,采用角度位置控制方式。 2 软件设计 软件采用前后台系统作为软件框架,分为主程序和中断程序两部分,相较于现有控制系统软件设计中的多中断程序,该软件设计仅采用了一个定时中断,是程序更简洁,增加了程序的可读性及可移植性,同时也有利于程序的进一步扩充与完善。现有控制系统软件中多数使用多中断设计,其中包括计算电机转速使用的捕获中断,获取电机位置使用一路或两路外部中断,电流采样时使用的DMA中断,以及一至两个定时中断,这些中断不仅增加了程序的复杂性,同时也降低了软件的可靠性。 在软件设计中,重点和难点就是如何获得较好的斩波效果,而软件设计的好坏直接影响了斩波效果的好坏。在现有的软件设计中,一般是将各相电流通过ADC采样,再经DMA通道传输,同时产生一个DMA 中断,然后在一个定时中断(定时中断时间一般为50us至100us)中实现电流斩波。而这种设计会产生两个问题。其一,因为要实现其他功能,定时中断时间不能进一步缩短,而这对电流斩波而言,时间间隔又太长,以50us为例,电流可能会在50us的时间中上升40A。其二,DMA中断优先级要高于定时中断,这可能会导致定时中断的执

开关磁阻电机特性的最优控制

开关磁阻电机特性的最优控制 摘要:本文介绍开关磁阻电机的特性,为获得电机或电机模拟转换的最大效率和电磁转矩的最小波动。控制曲线的变量—开通角和关断角(或是导通角),以及每一项的电压都可以通过一个简单的数学模型估算来获得。集中参数测量的模型需要考虑电机的磁路饱和,并且功率变换器参数的选择要确保系统的低功耗。共调查研究了两种典型开关磁阻电机,定转子齿数比分别为Ns/Nr=8/6 和6/4,310电源整流供电。时间曲线可以从数学模型和电机特性的最优估算得出,而且可以通过某种特殊的测试平台来验证其有效性。 关键字:磁阻电动机,模型,控制 绪论 对电力电子元件和设备的不断改进和其高速发展使得人们增强了对开关磁阻电机应用研究的兴趣。开关磁阻电机具有直流系列典型电机的特点,这使得它可以用于车辆的驱动部分。角速度的宽范围高效率调速使得它可以应用于大功率驱动和直流驱动。转子上无需供电并具有简单稳固的结构使得电机适用于超高速驱动。开关磁阻电机另一可取的特点是当电机停转时可直接控制电机的转子位置,也可以对开关磁阻电机进行转矩控制[2,6,7,10]。开关磁阻电机也有缺点,就是其在高速运行时会出现转矩脉动和振动[1]。 如图4所示,开关磁阻电机的一般功率变换结构都是一个不对称的半桥电路。电磁转矩的产生和电机定子绕组的电流方向无关,而且电机可实施()e T ,ω平面的四象限运行。对导通相通电的顺序可以改变电机的转向,相导通角的位置,是在提前与极轴还是落后与极轴决定着电机的启动/制动模式。角度控制和扭矩控制依赖于一下三个变量:开通角(on α),关断角(off α),或是导通角z α =on α-off α,相电压的控制方式是脉宽调制(PWM)模式。通过控制这三个变量,对他们不同的组合都可以在达到() T ,ω平面上的同一电机特性,但这会导致不同的电流,效率和转矩脉动[4, 5, 9, 10]。所以选择开关磁阻电机驱动系统的必备参数来找到最佳的控制特性是至关重要的。 在此论文中,研究用一种准最优控制方式控制开关磁阻电动机驱动来找到控制特性的最大效率和最小转矩脉动。实现这个目标需要用精确的原始的数学模型,在众多重复估算中具有简单、有效的特点,必须在动态过程中需找这个最佳控制特性。此集中参数测量模式要考虑到磁路的饱和,功率变换元器件的损耗以及因此对电机效率的影响。

家电电机的应用现状及发展趋势

电机是家电产品中的重要零部件,电机及其控制技术的发展对家电产品的升级换代起至关重要的作用。本文中,我们将具体探讨家电电机的应用现状和发展趋势。 家电电机一般采用B级或F级绝缘,应用场合十分广泛。B级绝缘电机的最高温度为130℃。F级绝缘的最高温度为155℃。对电机的性能要求往往包括在相应的家电电器中,例如,洗衣机的能耗标准就包括了对电机的效率要求。 用于各种家用电器的电机,一般均为单相电机,属分马力电机的范畴。如按电源分类,可以分为数种,具体见图1。 现有各种家电电机及其特点 (1)单相感应电机 尽管各种新型电机层出不穷,目前家电产品中使用最多的仍是单相感应电机,约占市场容量的80%以上。单相感应电机的结构简单、节能、容易生产成本低、技术成熟、没有电刷、运转噪音不大、寿命长。单相感应电机有自启动能力,但启动时冲击电流,速度与负载大小有关,效率一般,通常在50%~60%。罩极电机效率一般低于30%。 (2)单相变极感应电机 在家电电机中, 变极电机有一定应用,例如,在北美市场上的搅拌式洗衣机就采用了4/6极双速或4/6/8极三速电容起动电机。在中国国内的波轮式洗衣机则大部分采用4极单速电容运转电机。近年来,才开始出现由艾默生公司提供的4/6极共享绕组双速电容运转电机。长期以来,滚筒洗衣机大都采用2/16极或2/12极独立绕组电容运转电机。目前,单相变极感应电机正在逐渐被串激电机或三相变频感应电机所替代。 (3)无刷直流永磁电机(BLDC) 无刷直流永磁电机(BLDC)近年来在家电电机中得到越来越多的应用,如洗衣机、空调、洗碗机等。其优点是高效率与低噪声。与电子控制器相配合可以进行无级调速。日本在采用无刷直流电机上处于领先地位,其空调及洗衣机广泛地使用BLDC。但由于其没有自启动能力,通常不能脱离电子控制器而单独运行。与同样必须带电子控制的开关磁阻电机、三相感应调频电机相比,控制器的价格相差不大。由于这种电机在高速运转时需要进行弱磁控制,因而其应用受到限制。 (4)三相感应调频电机 由于三相感应调频电机的生产工艺比较成熟,其运行可靠性高。但是在需要兼顾较大范围速度调节时,其高速时的力矩及低速时的效率会受到限制。 (5)开头磁阻电机 开头磁阻电机的特点是转子结构简单,既没有绕组、磁钢,也没有电刷,因此特别适宜于高速及超高速运行,其效率及力矩在大范围调速中可保持较小的变化。缺点是较难控制其噪音,其电子控制器需要特殊的设计。 (6)永磁同步水泵电机 永磁同步水泵电机的特点是泵与电机结合成一体, 电机转子为 两极环形永磁体,没有电子控制器,靠振动启动,旋转方向不定,效率达60%~70%。比传统罩极电机效率提高一倍多,代表了无电子控制器的永磁电机的发展方向。 电机的发展趋势及研究方向 家电电机产品正在向高性能、轻薄短小化、永磁化、无刷化、机电一体化、智能化和组合化发展。 家电电机的应用现状及发展趋势 艾默生(中国)电机有限公司艾默生电机技术中心 费仁言 腾飞 家电电机分类 1 8

机电控制作业开关磁阻电机及matlab仿真

开关磁阻电机 一、概述 开关磁阻电动机结构简单、可靠性高、恒转矩、恒功率而且调速性能好(覆盖功率范围10W~5MW的各种高、低速驱动调速系统)、价格便宜、鲁棒性好等优点引起了各国电气传动界的广泛重视,由其构成的调速系统兼有直流传动和普通交流传动的优点,是继变频调速系统、无刷直流电动机调速系统的最新一代无级调速系统。这种新型调速系统使开关磁阻电机存在许多潜在的领域,在各种需要调速和高效率的场合均能得到广泛使用。 开关磁组电机调速系统之所以能在现代调速系统中异军突起,主要是因为它卓越的系统性能,主要表现在: (1) 电动机结构简单、成本低、可用于高速运转。 (2)功率电路简单可靠。 (3)系统可靠性高。 (4)起动转矩大,起动电流低。典型产品的数据是:起动电流为额定电流的15%时, 获得起动转矩为100%的额定转矩;起动电流为额定电流的30%时,起动转矩叮 达其额定转矩的250%。 (5)适用于频繁起停及正反向转换运行。 (6)可控参数多,调速性能好。控制开关磁阻电动机的主要运行参数和常用方法至少 有四种:相导通角、相关断角、相电流幅值、相绕组电压。 (7)效率高,损耗小。以3kw SRD为例,其系统效率在很宽范围内都是在87% 以上,这是其它一些调速系统不容易达到的。 (8)可通过机和电的统一协调设计满足各种特殊使用要求。 二、开关磁阻电动机的结构 图1-1开关磁阻电机结构图

典型的三相开关磁阻电动机的结构如图1-1所示。其定子和转子均为凸极结构,图示电机的定子有8个极,转子有6个极。定子极上套有集中线圈,两个空间位置相对的极 上的线圈顺向串联构成一相绕组,图2-1中只画出了A相绕组;转子由硅钢片叠压而成,转子上无绕组。该电机则称三相8/6极开关磁阻电动机。在结构形式及工作原理上,开关磁阻电动机与大步距反应式步进电机并无差别;但在控制方式上步进电机应归属于他控式变频,而开关磁阻电动机则归属于自控式变频;在应用上步进电机都用作“控制电机”而开关磁阻电机则是拖动用电机,因此电机设计时所追求的目标不同而使电机的设计参数不同。 与反应式步进电动机相似,开关磁阻电动机是双凸极可变磁阻电动机。图1-1给出了以8/6极开关磁阻电机为例的结构原理图,图中仅给出了一相的绕组及外围功率开关电路,从这个结构原理图中可以清晰的看到,开关磁阻电动机是双凸极结构,其转子上没有任何形式的绕组,也无永磁体,而定子上只有简单的集中绕组,其中径向相对的两个绕组构成一相。电动机每一相中流过的电流是由外围功率开关电路中的开关根据转子位置的变化,进行相应的通断而获得的。 图1-1中给出的开关磁阻电动机是四相的,通常情况下开关磁阻电动机可以设计成多种不同相数的结构,如两相、三相、四相或更多相,当相数增加时其结构将变得更复杂,相应的外围电路所使用的器件也相应增加。开关磁阻电动机极数的设计也有多种形式,但是定、转子极数和相数要遵循一定的关系。即定子极数应为相数的2倍或2的整数倍; 而转子极数应不等于定子极数且一般转子极数少于定子极数但都是偶数极[2]。由于开关磁阻电动机相数与极数的设计,低于三相的电动机没有自起动能力,对于有自启动、四象限运行要求的驱动场合,应选用表1-1所对应的定、转子极数组合方案。 表2-1 开关磁阻电动机各种方案

限位开关

行程限位开关又称限位开关,用于控制机械设备的行程及限位保护。在实际生产中,将行程限位开关安装在预先安排的位置,当装于生产机械运动部件上的模块撞击行程开关时, 行程限位开关的触点动作,实现电路的切换。因此, 行程限位开关是一种根据运动部件的行程位置而切换电路的电器,它的作用原理与按钮类似。行程开关广泛用于各类机床和起重机械,用以控制其行程、进行终端限位保护。在电梯的控制电路中,还利用行程限位开关来控制开关轿门的速度、自动开关门的限位,轿厢的上、下限位保护。 行程限位开关按其结构可分为直动式、滚轮式、微动式和组合式。 (1)直动式行程限位开关其结构原理如图1所示,其动作原理与按钮开关相同,但其触点的分合速度取决于生产机械的运行速度,不宜用于速度低于0.4m/min的场所。 直动式行程限位开关组成 1-推杆2-弹簧3-动断触点4-动合触点 (2)滚轮式行程限位开关其结构原理,当被控机械上的撞块撞击带有滚轮的撞杆时,撞杆转向右边,带动凸轮转动,顶下推杆,使微动开关中的触点迅速动作。当运动机械返回时,在复位弹簧的作用下,各部分动作部件复位。 滚轮式行程限位开关组成 1-滚轮2-上转臂3、5、11-弹簧4-套架6-滑轮7-压板8、9-触点10-横板 滚轮式行程限位开关又分为单滚轮自动复位和双滚轮(羊角式)非自动复位式,双滚轮行移开关具有两个稳态位置,有“记忆”作用,在某些情况下可以简化线路。 (3)微动开关式行程限位开关的组成:常用的有LXW-11系列产品 1.推杆 2.弹簧 3.压缩弹簧 4.动断触点 5.动合触点 限位开关 限位开关就是用以限定机械设备的运动极限位置的电气开关。这种开关有接触式的和非接触式的。接触式的比较直观,机械设备的运动部件上,安装上行程开关,与其相对运动的固定点上安装极限位置的挡块,或者是相反安装位置。当行程开关的机械触头碰上挡块时,切断了(或改变了)控制电路,机械就停止运行或改变运行。由于机械的惯性运动,这种行程开关有一定的“超行程”以保护开关不受损坏。非接触式的形式很多,常见的有干簧管、光电式、感应式等,这几种形式在电梯中都能够见到。当然还有更多的先进形式。 目录

相关主题
文本预览
相关文档 最新文档