当前位置:文档之家› 【电动力学课件】1-3-4 麦克斯韦方程组-介质的电磁性质

【电动力学课件】1-3-4 麦克斯韦方程组-介质的电磁性质

电动力学试卷

一、填空题(每小题4分,共40分): 1、稳恒电磁场的麦克斯韦方程组为: ; ; ; 。 2、介质的电磁性质方程为: ; ; 。 3、一般情况下电磁场法向分量的边值关系为: ; 。 4、无旋场必可表为 的梯度。 5、矢势A 的物理意义是: 。 6、根据唯一性定理,当有导体存在时,为确定电场,所需条件有两类型:一类是给定 ,另一类是给定 。 7、洛伦兹规范的辅助条件为: 。 8、根据菲涅耳公式,如果入射电磁波为自然光,则经过反射或折射后,反射光为 光,折射光为 光。 9、当用矢势A 和标势?作为一个整体来描述电磁场时,在洛仑兹规范的条件下,A 和?满足的微分方程称为达朗贝尔方程,它们分别为: 和 。 10、当不同频率的电磁波在介质中传播时,ε和μ随频率而变的现象称为介质的 。 二、选择题(单选题,每小题3分,共18分): 1、一般情况下电磁场切向分量的边值关系为:< > A: ()210n D D ?-=;()210n B B ?-=; B: ()21n D D σ?-=;()210n B B ?-= ; C: ()210n E E ?-=;()210n H H ?-=; D: ()210n E E ?-=;()21n H H α?-=。

2、微分方程?×J+ =0?t ρ ?表明:< > A :电磁场能量与电荷系统的能量是守恒的; B :电荷是守恒的; C :电流密度矢量一定是有源的; D :电流密度矢量一定是无源的。 3、电磁场的能流密度矢量S 和动量密度矢量g 分别可表示为:< > A :S E H =?和0g E B ε=?; B :S E B =?和00g E B με=?; C :0S E H μ=?和g E B =?; D :0S E B ε=?和g E H =?。 4、用电荷分布和电势表示出来的静电场的总能量为:< > A: 012W dV ερ?= ?; B: 212 W dV ρ?=?; C: 212W dV ρ?=?; D: 1 2 W dV ρ?=?。 5、在矩形波导中传播的10TE 波:< > A :在波导窄边上的任何裂缝对10TE 波传播都没影响; B: 在波导窄边上的任何裂缝对10TE 波传播都有影响; C :在波导窄边上的任何纵向裂缝对10TE 波传播都没影响; D :在波导窄边上的任何横向裂缝对10TE 波传播都没影响; 6、矩形谐振腔的本征频率:< > A :只取决于与谐振腔材料的μ和ε; B :只取决于与谐振腔的边长; C :与谐振腔材料的μ、ε及谐振腔的边长都无关; D :与谐振腔材料的μ、ε及谐振腔的边长都有关。 三、计算(证明)题(共42分) 1、(本题8分)设u 为空间坐标x,y,z 的函数。证明: ()df f u u du ?= ? 2、(本题8分)试用边值关系证明:在绝缘介质与导体的分界面上,在静 班 级: 姓名: 学号: 密 封

量子电动力学简介

量子电动力学简介 量子场论发展中历史最长和最成熟的分支。简写为QED。它主要研究电磁场与带电粒子相互作用的基本过程。在原则上,它的原理概括原子物理、分子物理、固体物理、核物理及粒子物理各领域中的电磁相互作用过程。它研究电磁相互作用的量子性质(即光子的发射和吸收)、带电粒子(例如正负电子)的产生和湮没以及带电粒子之间的散射、带电粒子与光子之间的散射等。从应用范围的广泛、基本假设的简单明确、与实验符合程度的高度精确等方面看,在现代物理学中是很突出的。 内容量子电动力学认为,两个带电粒子(比如两个电子)是通过互相交换光子而相互作用的。这种交换可以有很多种不同的方式。最简单的,是其中一个电子发射出一个光子,另一个电子吸收这个光子。稍微复杂一点,一个电子发射出一个光子后,那光子又可以变成一对电子和正电子,这个正负电子对可以随后一起湮灭为光子,也可以由其中的那个正电子与原先的一个电子一起湮灭,使得结果看起来像是原先的电子运动到了新产生的那个电子的位置。更复杂的,产生出来的正负电子对还可以进一步发射光子,光子可以在变成正负最终表现为两个电子之间的相互所有这些复杂的过程,电子对……而作用。量子电动力学的计算表明,不同复杂程度的交换方式,对最终作用的贡献是不一样的。它们的贡献随着过程中光子的吸收或发射次数呈指数式下降,而这个指数的底,正好就是精细结构常数。或者说,

在量子电动力学中,任何电磁现象都可以用精细结构常数的幂级数来表达。这样一来,精细结构常数就具有了全新的含义:它是电磁相互作用中电荷之间耦合强度的一种度量,或者说,它就是电磁相互作用的强度。 发展过程1925年量子力学创立之后不久,P.A.M.狄喇克于1927年、W.K.海森伯和W.泡利于1929年相继提出了辐射的量子理论,奠定了量子电动力学的理论基础。在量子力学范围内,可以把带电粒子与电磁场相互作用当作微扰,来处理光的吸收和受激发射问题,但却不能处理光的自发射问题。因为如果把电磁场作为经典场看待,在发射光子以前根本不存在辐射场。原子中处于激发态的电子是量子力学中的定态,没有辐射场作为微扰,它就不会发生跃迁。自发射是确定存在的事实,为了解释这种现象并定量地给出它的发生几率,在量子力学中只能用变通的办法来处理。一个办法是利用对应原理,把原子中处于激发态的电子看成是许多谐振子的总和,把产生辐射的振荡电流认定与量子力学的某些跃迁矩阵元相对应,用以计算自发射的跃迁几率。从这个处理办法可以得到M.普朗克的辐射公式,以此反过来说明对应原理的处理是可行的。另外一种办法是利用A.爱关于自发射几率和吸收几率间的关系。虽然这些办法所得的结因斯坦但在理论上究竟是与量子力学体系相矛盾的果可以和实验结果符合, ──量子力学的定态寿命为无限大。 狄喇克、海森伯和泡利对辐射场加以量子化。除了得到光的波粒二象性的明确表述以外,还解决了上述矛盾。电磁场在量子化以后,电

第三章 材料的磁学性能

一,一,基本概念 1. 1.磁畴:在未加磁场时铁磁金属内部已经磁化到饱和状态的小区域。 2. 2.磁导率:磁导率是磁性材料最重要的物理量之一,表示磁性材料传导和 通过磁力线的能力,用μ表示,其中μ=B/H.单位为亨利/米(H·m-1). 3. 3.自发磁化:在未加磁场时铁磁金属内部的自旋磁矩已经自发地排向了同 一方向的现象. 4. 4.磁滞损失:磁滞回线所包围的面积相当于磁化一周所产生的能量损耗。 5. 5.磁晶各向异性: 6. 6.退磁场:非闭合回路磁体磁化后,磁体内部产生一个与磁化方向相反的磁场。 第三章材料的磁学性能 随着近代科学技术的发展,金属和合金磁性材料,由于它的电阻率低、损耗大,已不能满足应用的需要,尤其是高频范围。 磁性无机材料除了有高电阻、低损耗的优点以外,还具有各种不同的磁学性能,因此它们在无线电电子学、自动控制、电子计算机、信息存储、激光调制等方面,都有广泛的应用。磁性无机材料一般是含铁及其它元素的复合氧化物,通常称为铁氧体(ferrite)。它的电阻率为10~106Ω·m,属于半导体范畴。目前,铁氧体已发展成为一门独立的学科。 本章介绍磁性材料的一般磁性能,着重讨论铁氧体材料的性能与应用。 7.1磁矩和磁化强度 7.1.1磁矩 (1)定义 在磁场的作用下,物质中形成了成对的N、S磁极,称这种现象为磁化。与讨论电场时的电荷相对应,引入磁量的概念,并把磁量叫做磁极强度或磁荷。将一对等量异号的磁极相距很小的距离,把这样的体系叫做磁偶极子。 在外磁场的影响下,磁偶极子沿磁场方向排列。为达到与磁场平行,该磁矩在力矩 T=Lq m Hsin (7.1) 的作用下,发生旋转。式中的系数Lq m定义为磁矩M(Wb·m)。 磁矩这一物理量是磁相互作用的基本条件,是物质中所有磁现象的根源。磁矩的概念可用于说明原子、分子等微观世界产生磁性的原因。 (2)原子磁矩 物质是原子核和电子的集合体,要理解物质的磁性起源,就要考虑原子具有的磁矩。现在我们可以从以下三方面来分析原子中的磁矩。 ①电子轨道运动产生的磁矩 ②电子自旋产生的磁矩 ③原子核的磁矩 7.1.2磁化强度 磁化强度的物理意义是单位体积中的磁矩总和。设体积元△V内磁矩的矢量和为∑M,则磁化强度M为 (7.2) 式中M i的单位为Wb·m,V的单位为m3,因而磁化强度M的单位为Wb·m2,即与磁场强度H的单位一致。

《电动力学(第二版)》(郭硕鸿)第二章习题

第二章 习 题 1. ε ε0 R (1) 2 2 323222323211r K r K r r K r K r r K r K r K r K P -=-?--=-?--=??-??? ? ???-=??? ????-=?-?=r r r r r P ρ ()2 P R K K R R σ∧ ∧ =?=?=r P R n r (2) E E P 0001εεεεχ??? ? ??-==e ()2 K r εε=ε= =ε-εε-ε00P r D E () 2r K f 0r D εεερ= ??-=??= (3) R r <<0 ()r K r E d r 2 2 4? ??-==?εεεπε0S D ()r K E 0εε-= R r > ()r K r E d R 2 2 04???-==?εεεπε0S D ()2 00r KR E εεεε-= ()()r KR dr r KR r out 002 00 εεεεεεεε?-=-=? ∞ ()()()()??? ? ??+??? ??-= ? ? ? ??-+-=-+-=??∞ 000000200ln ln εεεεεεεεεεεεεεεε?r R K r R K K dr r K dr r KR R R r in (4) ()()()()2 000202002 0200202 02 00212ln ln 2ln ln 2ln 24ln 2121 ? ??? ??-???? ? ?+=???? ??++--=???? ? ?++--= ???? ? ?+??? ??-= ???? ??+??? ??--== ??????εεεεπεεεεεπεεεεεπεεεεεπεπεεεεεεε?ρK R R R R R R R K dr R r K dr r R K dr r r R K r K dV W R R R in f e 0 2. (1) 边界条件:设未放置导体球时,原点电位 为0?,任意点电位则为 ?-=?-=z R E d 0 0001cos θ???0l E 球外空间0=ρ,电位?满足拉普拉斯方程 02=?? 解为:()∑∞ =+??? ? ? +=01cos n n n n n n P R b R a θ? 放入导体球后:01, ??→∞→R

§1.1介质的电磁性质

§1.1介质的电磁性质 从电学的角度,宏观物质大体可分为导体、绝缘体、半导体。其中,绝缘体一般又称为“电介质”。半导体则介于导体与绝缘体之间,根据研究的需要,常常将它纳入导体或电介质模型,或者两种模型都套用。 磁学则认为,一切物质材料都是“磁介质”,依据磁导率的大小,磁介质仅仅有“铁磁质”和“非铁 磁质”的区分。铁磁质的相对导磁率,它相当于磁场的“导体”;而非铁磁质的相对导磁率,它部分地相当于磁场的“绝缘体”。 通过电磁学课程,已对介质的电磁特性作了详尽的研究和讨论,述及的概念和规律正是电动力学起步的基础,因此,我们在这里仅对介质的电磁特性做一个总结性的概述。 1.介质的分类 从材料性质分:各向异性、各向同性介质;线性、非线性介质;均匀、非均匀介质; 从电磁行为分:电介质、导电介质;铁磁质、顺磁质、抗磁质等。 从场的作用分:磁介质、电介质。 介质是一个带电粒子系统,内部存在规则而迅速变化的微观电磁场。真空则被看作一种特殊的介质 (),现代物理认为,真空是“量子场的基态”,它也具有物质性。 2.介质的极化和磁化规律 在电磁场中,介质又可划分为两类情况,即电介质和磁介质。它们在电场和磁场中分别发生极化和磁化。下表虽然不能概括介质在场中行为的详尽情况,却反映了它们的主要特点与规律。从表中罗列的内容我们还可以看出,介质的极化与介质的磁化有着高度的对称性。不仅介质的极化与“分子电流模型描述的介质磁化”对称,而且介质极化也与“磁荷模型描述的磁极化”对称。清楚这种对称对我们的学习记忆是

在现代电磁理论中,实验和推理都赞成诠释磁场起源的“分子电流观点”,但这并不意味着古典的“磁荷观点”已经失效。虽然迄今还没有在现实中找到“磁单极子”,或许它根本不存在,但是“磁偶极子”却是真实存在的。因为一个微小的电流环既可以用“磁矩”表述,同时也可用“磁偶极矩”表述,这就是说,电流环可以等效于磁偶极子,即无论从“环流模型”还是从“磁偶极矩模型”计算研究磁场是等效的,殊途同归的。这在赵凯华先生的《电磁学》中有详尽的描写,这里不再赘述。 (1).电介质的极化规律 实验表明,电介质的极化强度与介质内的合成电场成正比,与电极化率成正比,这就是电 介质极化的极化规律,数学表述为。 交变的电场对介质作用时不但使介质能发生周而复始的极化,而且还使介质中的电荷进行反复的移动 而产生“极化电流”。极化电流常用量度。 (2).磁介质的磁化规律或 磁场的磁化规律与此对应,即(分子电流观点)和(磁荷观点)。两 式都表明,介质磁化后的效果(或)与介质中的合成场成正比。两式还暗示了另外一个关系 ,它是“分子电流”和“磁荷”两套观点所使用的公式间的“桥梁”,借助于这个关系,我们可以将磁荷观点下的某些公式过渡为分子电流观点下的公式。例如 由磁荷与电荷的对称性: 进而从可得出或者其变形。 3.介质的通量和环量 (1).从介质极化的模型可以推出的通量及其微分式

电磁场与电磁波讲义

Lect.1 0 引言 1.课程简介 1) 课程内容 “电磁场与电磁波”或者叫电磁学,涉及到很多方面的内容。翻开书本的话,会看到有矢量分析,电磁学的学习的数学基础,有静态电磁场、时变电磁场、电磁波、波导、天线等很多方面的内容。但可以用一句话来概括:电磁学研究静止及运动电荷相关效应的一门学科,它是物理学的一个分支。 由基础物理学的知识可知,电荷产生电场。电荷的移动构成电流,而电流则会在空间中产生磁场。静止的电荷产生静电场。恒定电流产生静磁场。如果电荷或者电流随时间变化,则产生时变电场及时变磁场。时变电场和时变磁场还可以相互激发,形成在空间中独立传播的时变电磁场,即电磁波。所有的电磁场的唯一来源就是静止或者运动状态的电荷。所以我们说《电磁场及电磁波》或者《电磁学》这门课程,不干别的,就是研究静止及运动电荷所产生的效应。 2) 核心概念 这门课程的核心概念有两个,一个是场(field),一个是波(wave)。那么,什么是场?场是一个数学概念,只某个量在空间中的分布。这个量可以不随时间变化,也可以随时间改变,前者称为静态场,后者称为时变场。例如,在地球表面或者附近,任意位置,任意一个有质量的物体都受到重力的吸引,我们说地球在其周围的空间中形成了重力场。例如,一个流体,流动的液体或者气体,每一个位置上流体的质点都对应一个速度,我们说,空间存在流体的一个速度场。对于物理学上的场而言,空间上,每个点都对应有某个物理量的一个值。这个物理学上的场,根据物理量本身的性质,有标量场和矢量场之分,我们之后会学到。 波(wave)的概念。振动在空间的传播,伴随能量的传播过程。举例:声波。 电磁波电磁波相关内容:波的描述、界面上的反射与折射、波在开放及封闭空间中的传播等。 3) 电磁理论的发展 早期:电及磁现象被视为两种独立的不同的现象。 希腊人琥珀中国《吕氏春秋》司南 富兰克林正负电荷、电荷守恒。风筝实验 库伦库伦定律定量电学 1820,Hans Christian Orsted: 电流可以造成磁针的偏转.即电流可以产生磁场。 1820-1827 Ampere的贡献:实验:两平行通电电线之间的吸引与排斥。安培定律 Farady的贡献:电磁感应:由磁产生电。 Maxwell:所有电磁现象用一组方程表示。光是一种电磁波。(对爱因斯坦的启发。)1873 电磁通论。

电动力学第一章

第一章 一、选择题 1、位移电流实质上是电场的变化率,它是(D )首先引入的。 A). 赫兹 B). 牛顿 C). 爱因斯坦 D). 麦克斯韦 3、两个闭合恒定电流圈之间的相互作用力,两个电流元之间的相互作用力,上述两个 相互作用力,哪个满足牛顿第三定律( C )。 A). 都满足 B). 都不满足 C). 前者满足 D). 后者满足 二、填空题 1. 麦克斯韦 在理论上预言了电磁波的存在,并指出光波就是一种电磁波。 2.电荷守恒定律的微分形式为 J 0t ρ ???+ =? 3、均匀线性介质中电磁场的能量密度w 的表达式为 1 ()2 w E D H B =?+?。 4、电磁波(电矢量和磁矢量分别为E 和H )在真空中传播,空间某点处的能流密度=S =S E H ? 5、线性介质的电磁能量密度w =___________,能流密度S =____ _______。 答:w =1 ()2 E D H B ?+?或2211()2E B +εμ; S =E H ?或1E B μ? 6、电场、磁场的切向分量的边值关系分别为:______________________________. 答:21?()0n e E E ?-=或21t t E E =;21 ?()n e H H ?-=α或21t t H H -=α 三、判断题 1.稳恒电流场中,电流线是闭合的。 ( )√ 2.电介质中E D ε=的关系是普遍成立的。 ( )× 3.跨过介质分界面两侧,电场强度E 的切向分量一定连续。 ( )√ 4.电磁场的能流密度S 在数值上等于单位时间流过单位横截面的能量,其方向代表能量传输方向。( )√ 5.电流元1、2分别属于两个闭合稳恒电流圈,则电流元1、2之间的相互作用力服从牛顿第三定律。 ( )

磁性材料的基本特性

一.磁性材料的基本特性 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 ?饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; ?剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; ?矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); ?磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关; ?初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp; ?居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度; ?损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r; ?在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3.软磁材料的磁性参数与器件的电气参数之间的转换 ?设计软磁器件通常包括三个步骤:正确选用磁性材料;

磁性材料特性

磁性材料 一.磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H 曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度T c:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗P h及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe f2 t2 / ∝,ρ降低, 磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1.软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳

费曼对量子电动力学的贡献

费曼对量子电动力学的贡献 理查德·费曼(Feynman Richard Philips,1918~1988)是现代乃至有史以来最受爱戴的科学家之一,他对科学有着异乎寻常的“感觉”,能够用洞察事物内在本质的方式来理解物理学。他具有别具一格的思维风格,这种风格为科学研究注入了无与伦比的活力。他不仅在量子电动力学领域以最卓越的科学贡献赢得了诺贝尔物理学奖,维格纳(Wigner Eugene Paul,1902~1995)称他是“第二个狄拉克。”他生来具有十分可爱的品格和个性,不仅是极其卓越的理论家,而且是才华横溢的教师,并以极为罕见的天赋和热情进行物理教学。通过他那著名的《物理学讲演录》,来向世界展示一位顶尖科学大师的思维方式;正是他鼓励了好几代大学生从一种全新的角度去重新思考物理学。 2、1 费曼路径积分 1927年之前,量子力学的创立工作已基本完成,它已很好地说明了原子和分子的结构,但在处理原子中光的自发辐射和吸收这类十分重要 的现象时,却遇到了困难;为了克服这一困难,1927 年,狄拉克首先提出将电磁场作为一个具有无穷维 自由度的系统,进行二次量子化的方案;1928年约 尔丹和维格纳提出了对于非相对论性多电子系统符 合于这个要求的正则量子化形式。1929年海森伯和 泡利把电磁场与电子场的相互作用理论推广到更为 普遍的形式,从而建立了量子电动力学。 到20世纪30年代,人们对量子理论的理解既 不彻底也不完美,而且需要新的思想。费曼从在麻 图10-13为理查德·费曼在讲课省理工学院做学生以来一直被一个想法所困扰。即 一个诸如电子那样的带电粒子,被认为是通过围绕它的力场而与其他带电粒子相互作用的。量子理论的最大困难就在于计算出来的电子自身能量和电磁场真空能量为无穷大。在用量子理论的微扰方法处理一些物理过程时,最低次近似往往都可得到与实验一致的结果;但要求如果作更高次的精确微扰计算时,得到的结果却常常是无穷大;无穷大的结果当然是没有物理意义的,这就是量子场论的发散困难。1935年,狄拉克出版的《论量子物理学》的书中的说道:“看来这里需要全新的物理思想。”这句话成了费曼尔后生活的一个信条,没有任何地方对于新思想的需要比在这个称为电子“自能”的谜题中更为明显。这个想法在麻省理工学院就已经深深地在他头脑中扎根,随后在普林斯顿开花结果;并对在康奈尔大学时期的学术生涯产生意义深远的影响。 1940年秋的一天,费曼接到惠勒(Wheeler John Archibald,1911~)打来的电话;惠勒告诉他说:“他已知道为什么所有的电子都有相同的电荷和相同的质量。原因是它们都是同一个电子!”他解释了他最新的光辉思想:一个正电子可以被简单地看做一个电子在时间上往回运动,即由将来返回过去,而宇宙中所有的电子和所有的正电子其实都对应于某种被切开的世界线线结的截面,在某个截面里,单个粒子通过一个复杂的扭结穿越时空,通过宇宙。惠勒的光辉思想中包含了一个重要概念的萌芽,即改变某个电子在时间上的运动方向等价于改变它所带电荷的符号,费曼后来用另一种方式发展了这一概念,即一个电子在时间上向前运动就是一个正电子在时间上往回运动。这就是惠勒-费曼(Wheeler-Feynman)的辐射理论。1941年春天,惠勒要求费曼就这一问题做一次专门演讲,演讲的听众有物理学家维格纳,天文学家罗素(Russell),数学家冯·诺依曼(von Neumann),量子理论的先驱者泡利,

磁性材料的基本特性

磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H 足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 磁性材料是一种重要的电子材料。早期的磁性材料主要采用金属及合金系统,随着生产的发展,在电力工业、电讯工程及高频无线电技术等方面,迫切要求提供一种具有很高电阻率的高效能磁性材料。在重新研究磁铁矿及其他具有磁性的氧化物的基础上,研制出了一种新型磁性材料——铁氧体。铁氧体属于氧化物系统的磁性材料,是以氧化铁和其他铁族元素或稀土元素氧化物为主要成分的复合氧化物,可用于制造能量转换、传输和信息存储的各种功能器件。

工程电磁场理论与应用讲义-3

第3章 电磁场分析的数学模型 3.1 电磁场控制方程的表述 电磁场数值分析的具体任务,就是要求解一个与特定问题相联系的偏微分方程定解问题。根据数学物理方程的理论,所谓定解问题指的是在某一确定区域内成立的微分方程加上定解条件。对于静态电磁场问题,或者可化为复数计算的正弦稳态电磁场问题,定解条件就是微分方程中的未知函数在该区域边界上所满足的条件,亦即边界条件;对于时变电磁场问题,则定解条件除了边界条件以外,还包括整个区域未知函数在初始时刻的值,亦即初始条件。针对这一定解问题的求解,发展了如上节所述的各种解算方法。因此,为了得到正确的解答,第一步工作就是要写出定解问题的表达式,也就是建立特定电磁场问题的恰当的数学模型。定解问题中的偏微分方程通常称为控制方程。选择哪种物理量作为控制方程中的未知函数,建立什么形式的微分方程,将影响问题求解的难易程度。本节将从麦克斯韦方程组出发,介绍各种情况下电磁场控制方程的表述方式。 3.1.1 麦克斯韦方程组 [54] 100多年前,麦克斯韦对前人在实验中得出的电磁场的基本定律进行了数学上的总结和提升,引入了位移电流的概念,创立了后来以其命名的方程组,完善了电磁场理论。其著作《Treatise on Electricity and Magnetism 》成书于1873年。从理论框架上看,麦克斯韦方程组加上洛仑兹力的计算公式,合起来构成了静止及运动媒质中电动力学的基础,概括了发电机、电动机和其它电磁装置的工作原理,也概括了电磁波的发射、传播和接收的原理。科学技术发展的实践证明,描述电磁场宏观性质的麦克斯韦方程组正确反映了电磁场中各物理量之间的相互关系,是电磁场的基本方程。 在大学普通物理和电类专业的电工原理课程中,都对麦克斯韦方程组作了基本的介绍。本节主要从电磁场数值计算的需要出发来加以说明。 麦克斯韦方程组的微分形式可以表述为: t ??+=??D J H (3-1) t ??- =??B E (3-2) 0=??B (3-3) ρ=??D (3-4) 式中,H 、B 、D 、E 、J 、ρ 分别为磁场强度(A/m )、磁感应强度(或称磁通密度,T )、电位移(或称电通密度,C/m 2)、电场强度(V/m )、电流密度(A/ m 2)和电荷密度(C/ m 3)。式(3-1)右端第二项t ??/D 具有电流密度的量纲,称为位移电流密度。事实上,上面的四个方程并不是独立的,可以证明(见文献[54]第1.3节),后两个方程(式(3-3)和(3-4))是基于高斯定理和斯托克斯定理从前两个方程导出的。前两个方程,即式(3-1)和(3-2),分别称为麦克斯韦第一方程和第二方程。在这两个矢量方程中,含有5个独立的矢量函数,为了得到确定的解答,还需要增加3个独立的矢量方程,这就是 E D ε= (3-5)

量子色动力学

量子色动力学 维基百科,自由的百科全书 量子色动力学(英语:Quantum Chromodynamics,简称QCD)是一个描述夸克胶子之间强相互作用的标准动力学理论,它是粒子物理标准模型的一个基本组成部分。夸克是构成重子(质子、中子等)以及介子(π、K等)的基本单元,而胶子则传递夸克之 间的相互作用,使它们相互结合,形成各种核子和介子,或者使它们相互分离,发生衰变等。 量子色动力学是规范场论的一个成功运用,它所对应的规范群是非阿贝尔的群,群量子数被称为“颜色”或者“色荷”。每一种夸克有三种颜色,对应着群的基本表示。胶子是作用力的传播者,有八种,对应着群的伴随表示。这个理论的动力学完全由它的规范对称群决定。 目录 [隐藏] ? 1 历史 ? 2 理论 ? 3 微扰量子色动力学 ? 4 非微扰量子色动力学 ? 5 参考文献 ? 6 外部链接

[编辑]历史 静态夸克模型建立之后,在重子质量谱和重子磁矩方面取得了巨大成功。但是,某些由一种夸克组成的粒子的存在,如等,与物理学的基本假设广义泡利原理矛盾。为解决这个问题,物理学家引入了颜色自由度,并且颜色最少有3种。这个时候颜色还只是引入的某种量子数,并没有被认为是动力学自由度。 静态夸克模型建立之后,经历了十年左右的各种实验,都没有发现分数电荷的自旋的夸克存在,物理学家被迫接受了夸克是禁闭在强子内部的现实。然而,美国的斯坦福直线加速器中心SLAC在七十年代初进行了一系列的轻强子深度非弹性散射实验,发现强子的结构函数具有比约肯无标度性(Bjorken Scaling)。为解释这个令人惊奇的结果,费曼由此提出了部分子模型,假设强子是由一簇自由的没有相互作用的部分子组成的,就可以自然的解释比约肯无标度性(Bjorken Scaling)。更细致的研究确认了部分子的自旋 为,并且具有分数电荷。 部分子模型和静态夸克模型都取得了巨大成功,但是两个模型对强子结构的描述有严重的冲突,具体来讲就是夸克禁闭与部分子无相互作用之间的冲突。这个问题的真正解决要等到渐近自由的发现。格娄斯,韦尔切克和休·波利策的计算表明,非阿贝尔规范场论 中夸克相互作用强度随能标的增加而减弱,部分子模型的成功正预示着存在的规范相互作用,N自然的就解释为原先夸克模型中引入的新自由度--颜色。 [编辑]理论 拉氏密度为 其中 是狄拉克矩阵

西安工程大学电动力学试题A

西安工程科技学院 一. 填空、判断与选择题( 70 分) 1. (1分)麦克斯韦电磁场理论的实验基础是 2. (2 分) 均匀极化介质中极化电荷体密度ρp 与自由电荷体密度ρf 的关系 是 。 3. (2分)在两种介质的分界面上,静电势满足的边值关系是 ,矢 势A 满足的边值关系是 。(均写出一个即可) 4. (2分)在匀强电场E 。中,若规定参考点的电势为“0”则空间任一点p 的电势 为 。 5. (2分)真空中半径为a ,带电量为Q 的导体球的静电场总能量为 。 6. (4分)描述电场的平面波函数为)(0),(wt x k i e E t x E -?= ,其散度 = ,旋度 = . 7. (2分)已知载电流为I 的圆线圈对场点所张的立体角为Ω,则场点处的磁标 势φm = 。 8. (3分)已知某磁场的矢势在直角坐标系下的表达式为 Z y x e Y Z e Z Y e Z X A )3()2()2(+++++=则磁场B= 9. (4分)电磁波在真空中传播,空间某一点的能流密度S= ,能 量密度W=

10. (6分)势场中库仑规范的条件是 ,洛仑兹规范的条件 是 ,在库仑规范下电磁场的标势φ所满足的微分方程 为 。 11. (4分)已知电磁场矢势A (x, t ),标势φ(x, t )的分布函数,可以计算电磁场, 其数学表达B= ,E= 。 12. (4分)在矩形波导管(a, b )(a>b)内,能够传播TE 10波的最长波长为λ 10= ,能够传 播TM 波的最低波形为 波 。 13. (2分)超导体的主要电磁性质包括 性和 效应。 14. (3分)电荷守恒定律的数学表达式是 从 中可知形成 稳恒电流的条件是 。 15. (2分)静电场中导体表面势的边界条件为 和 。 16. (3分)从导体内的电磁波方程 )(0wt z i aZ e e E E --?=β 来看,电磁波进入导体的 穿透深度d = ,波长λ= 。 17. (4分)请写出介质中麦克斯韦方程组的形式: , , , .

356602729_高电大纲07

ADVANCED ELECTRODYNAMICS Electromagnetic Theory for Microwaves and Optoelectronics 高等电动力学 -- 微波与光电子学中的电磁理论 1 Maxwell's equations, wave equations, Helmholtz equations and boundary conditions 麦克斯韦方程,波动方程,亥姆霍兹方程及边界条件(第I版 p.1–23, 第II版 p.1–28) 2 Boundary value problems for time-varying fields, Uniqueness 时变电磁场的边值问题,唯一性定理(第I版 p.235–239,第II版 p.173-179) 3 Solution of vector Helmholtz's equations in orthogonal curvilinear coordinates 矢量亥姆霍兹方程在正交曲坐标中的的求解(第I版 p.239–249, 第II版 p.179-192) 4 Sepration of variables, electromagnetic waves in cylindrical systems 分离变量,柱形系统中的电磁波(第I版 p.249–255, 第II版 p.192-197) 5 Solution of Helmholtz's equations in rectangular coordinates, rectangular waveguides and cavities 矩坐标系中的求解,矩形波导和谐振腔(第I版 p.255-258,279-293, 第II版 p.197–202,239-254) 6 Solution of Helmholtz's equations in rectangular and circular cylindrical coordinates, waveguides and cavities 圆柱坐标系中的求解,圆柱形波导和谐振腔(第I版 p.258-260, 293-314, 第II版 p.202–206, 254-277) 7 Solution of Helmholtz's equations in spherical coordinates, spherical cavity 球坐标系中的求解,球形谐振腔(第I版 p.260-265, 314–318, 第II版 p.206-213,277-284) 8 Solution of Helmholtz's equations with complicated boundary conditions,reentrant cavity 复杂边界条件下的求解,重入谐振腔(第I版 p.265-270, 319–327, 第II版 p.220-226, 284-293) 9 Dielectric waveguides and resonators 介质波导和介质谐振器(第I版 p.343–394, 第II版 p.314-379) 10 Uniform slow-wave systems, Corrugated conductor surface 均匀慢波系统,褶皱导体表面(第I版 p.397–401, 第II版 p.382-387) 11 Periodic systems and space harmonics, artificial photonic crystals 周期系统与空间谐波(第I版 p.405–412, 第II版 p.392-403) 12 Disk loaded waveguide 盘荷波导(第I版 p.401-404, 416–418, 第II版 p.387-392, 406-410) 13 Helix 螺旋线(第I版 p.418–433, 第II版 p.410-428) 14 Mode coupling theory 模式耦合(第I版 p.441–449, 第II版 p.437-448) 15 Distributed Feedback (DFB) Structures 周期性分布反馈结构(第I版 p.449–456, 第II版 p.448-457) 16 Electromagnetic waves in disperssive media 电磁波在色散媒质中的传播(第I版 p.460–473, 第II版 p.461-477) 17 Anisotropic media 各向异性媒质(第I版 p.474–483, 第II版 p.477-489) 18 Electromagnetic waves in reciprocal crystal media 互易晶体介质中的电磁波(第I版 p.483–505, 第II版 p.489-516) 19 Waves in electron beams, space charge wave 电子束中的波,空间电荷波(第I版 p.505–511, 第II版 p.516-524) 20 Gyrotropic media -- magnetized plasma 回旋媒质--磁化等离子体(第I版 p.511–516, 第II版 p.524-529) 21 Gyrotropic media -- magnetized ferrite 回旋媒质--磁化铁氧体(第I版 p.516–525, 第II版 p.529-539) 22 Electromagnetic wave propagation in gyrotropic media 回旋媒质中的电磁波(第I版 p.525–537, 第II版 p.539-554)

第五讲_岩土工程介质的电磁学特性

第五讲岩土工程介质的电磁学特性 在工程地球物理研究中将各类岩石、土、混凝土、木材、玻璃、塑料、金属等材料通称为工程介质。雷达探测的基本原理是使用电磁波穿透工程介质,当存在电磁性质差异界面时,电磁波发生反射,根据反射波的时程与动力学特征确定介质的结构。因而研究各类工程介质的电磁性质及差异,是了解电磁波在各类介质中传播、衰减、折射、反射规律的基础,是应用地质雷达的基础,也是资料解释的基础。介质的电磁学性质可用电导率、介电常数和磁导率来表征。 5.1介质的电导率、磁导率与介电常数 ★介电常数的物理含义 介电常数是一个无量纲物理量,它表征一种物质在外加电场情况下,储存极化电荷的能力。自然界中物质的介电常数最大的物质是水,介电常数为81,最小的是空气与金属,数值为1。工程状态下的岩土介质,其介电常数的主要差异决定其含水量的大小。介电常数不同的两种介质的界面,会引起电磁波的反射,反射波的强度与两种介质的介电常数及电导率的差异有关。即使介电常数的差异小到1时,也能产生雷达可以检测到反射。 ★磁导率的物理含义 磁导率是一个无量纲物理量,它表征介质在磁场作用下产生磁感应能力的强弱。绝大多数工程介质都是非铁磁性物质,磁导率都接近1,对电磁波传播特性无重要影响。纯铁、硅钢、坡莫合金、铁氧体等材料为铁磁性物质,其磁导率很高,达到102-104,电磁波在这些物质中传播时波速和衰减都受到重要影响。 ★电导率(电阻率)的物理含义 电导率(电阻率的倒数)是表征介质导电能力的参数,单位为S/m,它对于电磁波的传播有重要影响。 低电导:σ<10-7S/m 满足σ/εω〈〈1,电磁波衰减小,适宜雷达工作;此类介质有:空气,干燥花岗岩,干燥灰岩,混凝土,沥青,橡胶,玻璃,陶瓷等; 中电导:10-7S/m<σ<10-2S/m,电磁波衰减较大,雷达勉强工作; 此类介质有:淡水,淡水冰,雪,砂,淤泥,干粘土,含水玄武岩,湿花岗岩,土壤,冻土,砂岩,粘土岩,页岩等; 高电导:σ>10-2S/m,满足σ/εω?1,电磁波衰减极大,难于传播; 此类介质有:湿粘土,湿页岩,海水,海水冰,湿沃土,含水砂岩,含水灰岩,金属物等; 5.2岩土工程介质的电磁性质 各类岩石、各类土的电磁学性质有了很多的研究和测定。空气是自然界中电阻率最大、介电常数最小的介质,电磁波速最高,衰减最小。水是自然界中介电常数最大的介质,电磁波速最低。干燥的岩石、土和混凝土其电磁参数虽有差异,但差异不大,基本上多数属于高阻介质,介常数在4-9之间,属中等波速介质。但是由于各类岩土不同的孔隙率和饱水程度,显现出较大的电磁学性质差异。这些差异表现在介电常数和电导率方面,决定了不同岩性对应不同的波速和不同的

相关主题
文本预览
相关文档 最新文档