当前位置:文档之家› 最新昆明理工大学检测技术(光纤传感器)课程设计

最新昆明理工大学检测技术(光纤传感器)课程设计

最新昆明理工大学检测技术(光纤传感器)课程设计
最新昆明理工大学检测技术(光纤传感器)课程设计

精品文档

课程设计报告

光纤传感器原理、结构线路及其应用

学院: 信息工程与自动化

班级:

姓名:

学号:

指导老师: 陈焰

2014年12月25日

目录

摘要 (1)

1. 光纤传感器概述 (1)

1.1光纤传感器研究背景 (1)

1.2研究的目的及意义 (2)

2. 原理 (3)

2.1光导纤维导光的基本原理 (3)

2.1.1 斯乃尔定理(Snell's Law) (3)

2.1.2 光纤结构 (4)

2.1.3 光纤导光原理及数值孔径NA (5)

2.2光纤传感器结构原理 (6)

2.3光纤传感器的分类 (7)

2.3.1 根据光纤在传感器中的作用 (8)

2.3.2 根据光受被测对象的调制形式 (9)

3. 光纤传感器的应用 (10)

3.1温度的检测 (10)

3.1.1 遮光式光纤温度计 (10)

3.1.2 透射型半导体光纤温度传感器 (11)

3.2压力的检测 (12)

3.2.1 采用弹性元件的光纤压力传感器 (12)

3.2.2 光弹性式光纤压力传感器 (14)

3.3液位的检测 (16)

3.3.1 球面光纤液位传感器 (16)

3.3.2 斜端面光纤液位传感器 (17)

3.3.3 单光纤液位传感器 (18)

3.4流量、流速的检测 (19)

3.4.1 光纤涡街流量计 (19)

3.4.2 光纤多普勒流速计 (20)

总结 (21)

参考文献: (22)

摘要

光纤传感器(FOS Fiber Optical Sensor)是20世纪70年代中期发展起来的一种基于光导纤维的新型传感器。它是光纤和光通信技术迅速发展的产物,它与以电为基础的传感器有本质区别。光纤传感器用光作为敏感信息的载体,用光纤作为传递敏感信息的媒质。因此,它同时具有光纤及光学测量的特点。近年来,传感器朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能;绝缘、无感应的电气性能;耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区或者对人有害的地区,如核辐射区),起到人的耳目作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。

关键词:光纤传感器测量结构原理应用

1. 光纤传感器概述

1.1 光纤传感器研究背景

近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能;绝缘、无感应的电气性能;耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。

光纤光栅是利用光纤材料的光敏性,外界入射光子和纤芯内锗离子相互作用引起的折射率永久性变化,在纤芯内形成空间相位光栅,其作用的实质是在纤芯内形成,利用空间相位光栅的布拉格散射的波长特性,一个窄带的,投射或反射,滤光器或反射镜。

1978年加拿大通信研究中心的K O Hill及其合作者首次从接错光纤中观察到了光子诱导光栅。Hill的早期光纤是采用488nm可见光波长的氛离子激光器,通过增加或延长注入光纤芯中的光辐照时间而在纤芯中形成了光栅。后来Meltz 等人利用高强度紫外光源所形成的干涉条纹对光纤进行侧面横向曝光在该光纤芯中产生折射率调制或相位光栅。1989年第一支布拉格诺振波长位于通信波段的光纤光栅研制成功。

光纤传感就是将被测量的变化转化为光纤中传输光参数(如光强、波长、相位以及偏振态)的变化,通过测量光纤的输出光来确定被测量的大小。光纤传感技术在国际上是七十年代后期迅速发展起来的新技术。而光纤传感器就是随光纤通

讯及光纤传感等相关技术而飞速发展起来的一类新型传感器。

光纤传感器与传统的传感器相比主要差别在于传统的传感器是以应变—电量为基础,以电信号为转换及传输的载体,用导线传输电信号,因而使用时受到环境的限制,如环境湿度太大可能引起短路,特别是在高温和易燃、易爆环境中容易引起事故等。而光纤传感器是以光信号为变换和传输的载体,利用光纤传输信号,它具有许多独特的优点:

(1)不受电磁干扰光信息在光纤中传输时,它不会与电磁场产生作用。因而,信息在传输过程中抗电磁干扰能力强,使其特别适合于电力系统。

(2)绝缘性能高。现在普遍使用的光纤是由石英玻璃制成的,是一种不导电的非金属材料,其外层的涂覆材料硅胶也不导电,很方便测量带高压电设备的各种参数。

(3)防爆性能好、耐腐蚀。由于光纤内部传输的是能量很小的光信息不会产生火花、高温、漏电等不安全因素。因此,光纤传感器的安全性能好,适用于有强腐蚀性对象的参数测量。

(4)导光性能好。对传输距离较短的光纤传感器来说,其传输损耗可忽略不计,目前利用这一特性制成了锅炉火焰监测器监视火焰的状态。

(5)可绕,光纤细而柔软,可制成非常小巧的光纤传感器,用于测量特殊对象及场合的参数。

(6)光纤传感器的载体是光,其频率数量级为从而使传感器频带范围很宽,动态范围很大。

(7)便于复用,便于成网,有利于与现有光通信技术组成遥测网和光纤传感网络。

(8)光纤材料简单,便于获得,所以成本低。

1.2 研究的目的及意义

光纤光栅具有体积小、波长选择性好、不受非线性效应影响、极化不敏感、易于与光纤系统连接、便于使用和维护、带宽范围大、附加损耗小、器件微型化、耦合性好、可与其他光纤器件融成一体等特性。而且光纤光栅制作工艺比较成熟,易于形成规模生产,成本低,因此它具有良好的实用性,其优越性是其他许多器件无法替代的。这使得光纤光栅以及基于光纤光栅的器件成为全光网中理想的关键器件。1978年K.O.Hill等人首先在掺锗光纤中采用驻波写入法制成第一只光纤光栅经过二十多年来的发展,在光纤通信、光纤传感等领域均有广阔的应用前景。随着光纤光栅制造技术的不断完善,光纤光敏性逐渐提高各种特种光栅相继问世,光纤光栅某些应用已达到商用化程度。

光纤传感器的优越性使其在军事、国防、航天航空、工矿企业、能源环保、工业控制、医药卫生、计量测试、建筑、家用电器等领域有着广阔的市场。目前,世界上已有光纤传感器上百种,诸如温度、压力、流量、位移、振动、转动、弯曲、液位、速度、加速度、声场、电流、电压、磁场及辐射等物理量都实现了不同性能的传感。而今,光纤传感器正处于发展阶段,人们正在探索新的方法和新的结构。同时,也存在着许多问题要解决。例如,常规光纤具有偏振态漂移、模间干扰等特点,使光纤传感器的应用受到了限制,为此急需寻找新的光纤为光纤传感器注入活力,光子晶体光纤就是人们寄予希望的新型光纤之一。

光纤传感器凭借着其大量的优点已经成为传感器家族的后起之秀,并且在各

种不同的测量中发挥着自己独到的作用,是在生产实践中值得注意的一种传感器,为传感器家族中不可缺少的一员。

2. 原理

2.1 光导纤维导光的基本原理

光是一种电磁波,一般采用波动理论来分析导光的基本原理。然而根据光学理论指出:在尺寸远大于波长而折射率变化缓慢的空间,可以用“光线”即几何光学的方法来分析光波的传播现象,这对于光纤中的多模光纤是完全适用的。为此, 采用几何光学的方法来分析。

2.1.1 斯乃尔定理(Snell's Law )

当光由光密物质(折射率大)入射至光疏物质时发生折射,如图1,其折射角大于入射角,即n 1>n 2时,θr >θi 。

n 1、n 2、θr 、θi 之间的数学关系为

n 1sin θi =n 2sin θr

可见,入射角θi 增大时,折射角θr 也

随之增大,且始终θr >θi 。

当θr =90o时,θi 仍<90o,此时,出射光线沿界面传播如图2,称为临界

状态。这时有 sin θr =sin90o=1

sin θi0=n 2/n 1

θi0=arcsin(n 2/n 1)

式中:θi0——临界角 当θi >θi0并继续增大时,θr >90o,这时便发生全反射现象,如图3 ,其出射光不再折射而全部反射回来。

n 1

n 2 θr θi

图1—光的折射示意图 图2—临界状态示意图

图3—光全反射示意图

2.1.2 光纤结构

分析光纤导光原理,除了应用斯乃尔定理外还须结合光纤结构来说明。

光纤呈圆柱形,它由玻璃纤维芯(纤芯)和玻璃包皮(包层)两个同心圆柱的双层结构组成。如图4。

图4—光纤结构

纤芯位于光纤的中心部位,光主要在这里传输。纤心折射率n1比包层折射率n2稍大些.两层之间形成良好的光学界面,光线在这个界面上反射传播。

2.1.3 光纤导光原理及数值孔径NA

入射光线AB 与纤维轴线OO 相交角为θi ,入射后折射(折射角为θj )至纤

芯与包层界面C 点,与C 点界面法线DE 成θk 角,并由界面折射至包层,CK

与DE 夹角为θr ,如图5。则

图5—光纤导光示意图

n 0sin θi =n 1sin θj n 1sin θk =n 2sin θr

sin θi =(n 1/n 0)sin θj

sin θk =(n 2/n 1)sin θr

因θj =90o-θk 所以

n 0为入射光线AB 所在空间的折射率,一般为空气,故n 0≈1,n l 为纤芯折射

率,n 2为包层折射率。当n 0=1时

K K k i n n n n n n θθθθ201

0101sin 1cos )90sin(sin -==-?=

r r i n n n n n n n θθθ22221021201sin 1sin 1sin -=???? ??-= r i n n θθ22221sin sin -=

当θr =90o的临界状态时,θi =θi0

22210sin n n i -=θ

上式sin θi0为“数值孔径” NA(Numerical Aperture)。由于n 1与n 2相差

较小,即n 1+n 2≈2n 1,故又可因式分解为

?≈2sin 10n i θ

其中,Δ=(n1-n2)/n1称为相对折射率差

当θr=90o时

sinθi0=NA θi0=arcsin NA

当θr>90o时,光线发生全反射,则

θi<θi0=arcsin NA

当θr<90o时,sinθi>NA,θi>arcsin NA,光线消失。

这说明arcsinNA是一临界角,凡入射角θi>arcsinNA的那些光线进

入光纤都不能传播而在包层消失;相反,只有入射角θi<arcsinNA的光线才可进入光纤被全反射传播

2.2 光纤传感器结构原理

以电为基础的传统传感器是一种把测量的状态转变为可测的电信号的装置。它的电源、敏感元件、信号接收和处理系统以及信息传输均用金属导线连接,见图6。光纤传感器则是一种把被测量的状态转变为可测的光信号的装置。由光发送器、敏感元件(光纤或非光纤的)、光接收器、信号处理系统以及光纤构成,见图7。

图6—传统传感器

图7—光纤传感器

由光发送器发出的光经源光纤引导至敏感元件。这时,光的某一性质受到被测量的调制,已调光经接收光纤耦合到光接收器,使光信号变为电信号,最后经信号处理得到所期待的被测量。

可见,光纤传感器与以电为基础的传统传感器相比较,在测量原理上有本质的差别。传统传感器是以机—电测量为基础,而光纤传感器则以光学测量为基础。

光是一种电磁波,其波长从极远红外的lmm 到极远紫外线的10nm 。它的物理作用和生物化学作用主要因其中的电场而引起。因此,讨论光的敏感测量必须考虑光的电矢量E 的振动,即

()?ω+=t A E sin

A ——电场E 的振幅矢量;ω——光波的振动频率;

φ——光相位;t ——光的传播时间。

可见,只要使光的强度、偏振态(矢量A 的方向)、频率和相位等参量之一随被测量状态的变化而变化,或受被测量调制,那么,通过对光的强度调制、偏振调制、频率调制或相位调制等进行解调,获得所需要的被测量的信息。

2.3 光纤传感器的分类

2.3.1 根据光纤在传感器中的作用

光纤传感器分为功能型、非功能型和拾光型三大类。

1)功能型(全光纤型)光纤传感器

利用对外界信息具有敏感能力和检测能力的光纤(或特殊光纤)作传感元件,将“传”和“感”合为一体的传感器,如图8。光纤不仅起传光作用,而且还利用光纤在外界因素(弯曲、相变)的作用下,其光学特性(光强、相位、偏振态等)的变化来实现“传”和“感”的功能。因此,传感器中光纤是连续的。由于光纤连续,增加其长度,可提高灵敏度。

图8—功能型(全光纤型)光纤传感器

2)非功能型(或称传光型)光纤传感器

光纤仅起导光作用,只“传”不“感”,对外界信息的“感觉”功能依靠其他物理性质的功能元件完成,如图9。光纤不连续。此类光纤传感器无需特殊光纤及其他特殊技术,比较容易实现,成本低。但灵敏度也较低,用于对灵敏度要求不太高的场合。

图9—非功能型(或称传光型)光纤传感器

3)拾光型光纤传感器

用光纤作为探头,接收由被测对象辐射的光或被其反射、散射的光,如图10。其典型例子如光纤激光多普勒速度计、辐射式光纤温度传感器等。

图10—拾光型光纤传感器

2.3.2 根据光受被测对象的调制形式

形式:强度调制型、偏振调制、频率调制、相位调制。

1)强度调制型光纤传感器

是一种利用被测对象的变化引起敏感元件的折射率、吸收或反射等参数的变化,而导致光强度变化来实现敏感测量的传感器。有利用光纤的微弯损耗;各物质的吸收特性;振动膜或液晶的反射光强度的变化;物质因各种粒子射线或化学、机械的激励而发光的现象;以及物质的荧光辐射或光路的遮断等来构成压力、振动、温度、位移、气体等各种强度调制型光纤传感器。

优点:结构简单、容易实现,成本低。

缺点:受光源强度波动和连接器损耗变化等影响较大

2)偏振调制光纤传感器

是一种利用光偏振态变化来传递被测对象信息的传感器。有利用光在磁场中媒质内传播的法拉第效应做成的电流、磁场传感器;利用光在电场中的压电晶体内传播的泡尔效应做成的电场、电压传感器;利用物质的光弹效应构成的压力、振动或声传感器;以及利用光纤的双折射性构成温度、压力、振动等传感器。这类传感器可以避免光源强度变化的影啊,因此灵敏度高。

3)频率调制光纤传感器

是一种利用单色光射到被测物体上反射回来的光的频率发生变化来进行监测的传感器。有利用运动物体反射光和散射光的多普勒效应的光纤速度、流速、振动、压力、加速度传感器;利用物质受强光照射时的喇曼散射构成的测量气体浓度或监测大气污染的气体传感器;以及利用光致发光的温度传感器等。

4)相位调制传感器

其基本原理是利用被测对象对敏感元件的作用,使敏感元件的折射率或传播常数发生变化,而导致光的相位变化,使两束单色光所产生的干涉条纹发生变化,通过检测干涉条纹的变化量来确定光的相位变化量,从而得到被测对象的信息。通常有利用光弹效应的声、压力或振动传感器;利用磁致伸缩效应的电流、磁场传感器;利用电致伸缩的电场、电压传感器以及利用光纤赛格纳克(Sagnac)效应的旋转角速度传感器(光纤陀螺)等。这类传感器的灵敏度很高。但由于须用特殊光纤及高精度检测系统,因此成本高。

3. 光纤传感器的应用

3.1 温度的检测

光纤温度传感器有功能型和传光型两种。

3.1.1 遮光式光纤温度计

图11为一种简单的利用水银柱升降温度的光纤温度开关。可用于对设定温度的控制,温度设定值灵活可变

图11

图12为利用双金属热变形的遮光式光纤温度计。当温度升高时,双金属片的变形量增大,带动遮光板在垂直方向产生位移从而使输出光强发生变化。这种形式的光纤温度计能测量10℃~50℃的温度。检测精度约为0.5℃。它的缺点是输出光强受壳体振动的影响,且响应时间较长,一般需几分钟。

检测技术课程设计

检测技术课程设计 一、课程设计的目的 综合应用已修课程所学知识,完成被测信号的提取、转换、处理的一次综合性设计实践。它的作用如下: 获得工程师基本训练,培养学生综合运用所学理论和技术知识,解决工程实际问题的能力。 (1)提高学生查阅科技文献资料能力。 (2)开发学生的主观能动性与创造性。 (3)加深学生对课程内容的理解,拓展所学知识面。 (4)使学生初步建立正确的设计思想。掌握系统的设计方法和设计步骤。 二、课程设计时间 检测技术课程设计为1周。 三、课程设计的任务 以任务书的形式给出。 任务书的主要内容有: (1)给予的对象; (2)设计题目; (3)设计要求; (4)撰写的设计报告要求; (5)时间安排。 设计报告内容包括:目录,设计题目,前言,设计方案与设计工艺流程,各部分设计原理,设计计算及说明,器件、仪器设备的选择,设计图纸,参考文献,附录。设计图用专用计算机软件绘制,打印。 四、课程设计报告的一般格式 课程设计报告包括封面、目录、绪论、主体部分、结尾部分。 1、绪论 主要说明设计的目的、设计的任务和要求等。 2、主体部分 (1)总体设计方案的设计

(2)软硬件电路的设计 (3)设计结果(实验数据等) (4)参考文献 2、结束语 阐述本次设计的收获与体会,课题进一步完善的建议与意见。致谢等。如有附录可放在结尾处。

设计题目一电机自动监控系统设计 一、电机控制系统描述 电机作为一种拖动动力设备,在机床加工、运输、电力等领域有着广泛的应用。为了保证电机系统的正常运行,需要通过检测控制装置对它进行监控。重点监控的参数是电机 A、B、C三相线圈的温度、电机轴的径向振动振幅、电机轴的转速。 二、控制要求 上图为电机供电主电路。三相电经过空气开关KQ、交流接触器Z、热继电器PT,加到电机上,当接触器常开触点接通时,电机得电,运转。可以通过控制接触器线圈的方式控制接触器主常开触点的通断。正常接触器线圈得电,接触器主常开触点接通,异常接触器线圈断电,接触器主常开触点断开。 常规电机控制电路如图。 START STOP

光电检测原理与技术课程设计光学准直系统

光电检测原理与技术课程设计 光电准直系统

一、引言 准直系统是利用光学自准原理,利用小角度测量或可转化位小角度测量的一种常用技术测试仪器。所谓光电准直系统就是光学准直系统与光电技术结合的产物。它具有测量精度高的优点,在精密,超精密定位方面有重要的作用。 小角度测量有多种方法,本实验主要采用平面反射镜的光学杠杆原理,在探测光斑移动时使用CCD来经行图像的采集。 关键字:光学杠杆光学准直系统望远镜系统照明系统 CCD 二、基本原理: (一)光学准直系统的基本原理 这部分系统,通常是由光源,位于物镜焦平面上的分划板和物镜三部分组成,望远镜实际上是准直装置的你应用,它是将入射的平行光在其焦平面上,然后再用目镜直接观察光斑的变化。 图2.1 准直系统原理 图2.2 望远镜系统工作原理 一个准直管和一个望远镜组合,两个装置的光轴在一条直线上,我们将看到从发光点F发出的光线通过准直管的物镜变为平行于主光轴的光束,进入望远镜的物镜之后在汇聚到F点;同样发自焦平面上另一点F1的光线射出准直管后变成方向平行与光轴的光束,它在进入望远镜后汇聚于其焦平面的F1点。因此,线位移之比等于两系统焦距之比。由于平行光束成像的位置位移的由他的方向所确定,而不受平行光束在进入透镜前所走过的距离的影响,所以与发光点F及F1相关的像F及F的位置不依赖于准直管和望远镜之间的距离。 在准直管的前面放置一个全反射镜,准直管发出的平行光束再由它本身来接受,就相当与集准直管与望远镜一体,这就是准直的原理。 将一个刻度线的图像以平行光束(准直光)的形式投射到反射镜上,该反射镜将其光束反射回准直系统。如果反射镜与光轴垂直则光束将返回其自身。如果反射镜倾斜一个角度α,则其反射光将于2α反射回来。根据反射光的倾斜程度,自准图像将会以更大的角度发生位移。通过测量自准直图像在X轴Y轴上的唯一可以测量得反射镜的角度变化。自准直已为平行光。其测量结果不受距离的影响。 图2.3 准直管简易图 2.1.2 高斯系统 为了使目镜不受光源遮挡,高斯系统的自准直仪光路在其光轴上加有析光镜。测微平行光管具有类似的光学系统,只是用立方棱镜代替了析光镜,立方棱镜由两个直角镜胶合而成,其中一棱镜的胶合面镀有析光膜。这种光学系统有一个盲区,当这自准直像与原中心十字丝靠得很近或有重叠部分时便无法使双刻线瞄准,因而也就测不出相应的反射镜偏转角。 图2.4 高斯自准(1) l、光源2、聚光镜3、分光镜4、分划板5、准直镜 6、反射镜7、目镜组8、目镜焦平面 下图是高斯系统的另一种光路安排,其特点是把析光镜(立方棱镜)放在物镜组的焦平面之前,这样由于其分光作用物镜就有两个共轭的焦平面。一个焦平面放置十字线分划板l并被光源照明,另一焦平面放置双刻线分划板5。这种安排能使自准直象与原分划板分开(在视场中不再直接看到原分划板1),从而避

光纤传感器的设计1

HARBIN ENGINEERING UNIVERSITY 物理实验报告 实验题目:光纤传感器的设计 姓名: 物理实验教学中心

实 验 报 告 一、实验题目:光纤传感器的设计 二、实验目的: 1.了解光纤传感器设计实验系统的基本构造和原理及应用; 2.了解光纤传感器设计实验系统的补偿机理,验证补偿效果; 3.设计光纤位移传感器,给出定标曲线。 三、实验仪器: 光纤传感设计实验系统主机、三光纤补偿式传感探头、精密机械调节架。 四、实验原理(原理图、公式推导和文字说明): 图1 在纤端出射光场的远场区,为简便计,可用接收光纤端面中心点处的光强来作为整个纤芯面上的平均光强。在这种近似下,得到在接收光纤终端所探测到的光强公式为 2 022(,)exp[](2)(2) SI d I x d x x πωω=?- (1) 考虑到光纤的本征损耗,光纤所接收到的反射光强可进一步表示为 00(,)(,)I x d I K KRf x d = 式中 I 0——注入光源光纤的光强; K 0,K ——光源光纤和反射接收光纤的本征损耗系数; R ——反射器的反射系数;

d ——两光纤的间距; f (x ,d )——反射式特性调制函数。结合式(1),f (x ,d )由下式给出,即 22 022(,)exp[](2)(2) a d f x d x x πωω=?- 其中 3/2 00 ()[1()] x x a a ωξ =+ 为了避免光源起伏和光纤损耗变化等因素所带来的影响。采用了双路接收的主动补偿方式可有效地补偿光源强度的变化、反射体反射率的变化以及光纤损耗等因素所带来的影响。补偿式光纤传感器的结构由图1给出。由(1)式可知 1002 00(,)(,) (,2)(,2)I x d I K KRf x d I x d I K KRf x d =?? =? 则两路接收光纤接收光强之比为 ]) 2()2(exp[22 221x d d I I ω--= 通过实验建立两路接收光强的比值与位移的关系(标定)后,即可实现补 偿式位移测量。

检测技术及仪表课程设计报告

第一章绪论 1.1 课程设计目的 针对“应用技术主导型”普通工科高等教育的特点,从工程创新的理念出发,以工程思维模式为主,旨在培养突出“实践能力、创新意识和创业精神”特色的、适应当前经济社会发展需要的“工程应用型人才”。 通过在模拟的实战环境中系统锻炼,使学生的学习能力、思维能力、动手能力、工程创新能力和承受挫折能力都得到综合提高。以增强就业竞争力和工作适应力。 1.2课题介绍 本课设题目以多功能动态实验装置为对象,要求综合以前所学知识,完成此实验装置所需参数的检测。设计检测方案,包括检测方法,仪表种类选用以及需要注意事项,并分析误差产生的原因等等。 1.3 实验背景知识 换热设备污垢的形成过程是一个极其复杂的能量、质量和动量传递的物理化学过程,污垢的存在给广泛应用于各工业企业的换热设备造成极大的经济损失,因而污垢问题成为传热学界和工业界十分关注而又至今未能解决的难题之一。 1.4 实验原理 1.4.1 检测方法 按对沉积物的监测手段分有:热学法和非传热量的污垢监测法。 热学法中又可分为热阻表示法和温差表示法两种; 非传热量的污垢监测法又有直接称重法、厚度测量法、压降测量法、放射技术、时间推移电影法、显微照相法、电解法和化学法。 这些监测方法中,对换热设备而言,最直接而且与换热设备性能联系最密切的莫过于热学法。这里选择热学法中的污垢热阻法。

1.4.2 热阻法原理简介 表示换热面上污垢沉积量的特征参数有:单位面积上的污垢沉积质量mf,污垢层平均厚度δf和污垢热阻Rf。这三者之间的关系由式表示: (1-1) 图1-1 清洁和有污垢时的温度分布及热阻 通常测量污垢热阻的原理如下: 设传热过程是在热流密度q为常数情况下进行的,图1a为换热面两侧处于清洁状态下的温度分布,其总的传热热阻为: (1-2) 图1b为两侧有污垢时的温度分布,其总传热热阻为: (1-3)忽略换热面上污垢的积聚对壁面与流体的对流传热系数影响,则可认为 (1-4)于是两式相减得: (1-5)该式表明污垢热阻可以通过清洁状态和受污染状态下总传热系数的测量而间接测量出来。 实验研究或实际生产则常常要求测量局部污垢热阻,这可通过测量所要求部位的壁温表示。为明晰起见,假定换热面只有一侧有污垢存在,则有: (1-6) f f f f f f m Rδ λ λ ρ 1 = = c w c c R R R U 2 1 /1+ + = f f w f f f R R R R R U 2 2 1 1 /1+ + + + = f c f c R R R R 2 2 1 1 ,= = c f f f U U R R 1 1 2 1 - = + q T T R R R R U b f s f f w c f /) ( /1 ,1 2 1 - = + + + =

课程设计报告【模板】

模拟电子技术课程设计报告设计题目:直流稳压电源设计 专业电子信息科学与技术 班级电信092 学号 200916022230 学生姓名夏惜 指导教师王瑞 设计时间2010-2011学年上学期 教师评分 2010年月日

昆明理工大学津桥学院模拟电子技术课程设计 目录 1.概述 (2) 1.1直流稳压电源设计目的 (2) 1.2课程设计的组成部分 (2) 2.直流稳压电源设计的内容 (4) 2.1变压电路设计 (4) 2.2整流电路设计 (4) 2.3滤波电路设计 (8) 2.4稳压电路设计 (9) 2.5总电路设计 (10) 3.总结 (12) 3.1所遇到的问题,你是怎样解决这些问题的12 3.3体会收获及建议 (12) 3.4参考资料(书、论文、网络资料) (13) 4.教师评语 (13) 5.成绩 (13)

昆明理工大学津桥学院模拟电子技术课程设计 1.概述 电源是各种电子、电器设备工作的动力,是自动化不可或缺的组成部分,直流稳压电源是应用极为广泛的一种电源。直流稳压电源是常用的电子设备,它能保证在电网电压波动或负载发生变化时,输出稳定的电压。一个低纹波、高精度的稳压源在仪器仪表、工业控制及测量领域中有着重要的实际应用价值。 直流稳压电源通常由变压器、整流电路、滤波电路、稳压控制电路所组成,具有体积小,重量轻,性能稳定可等优点,电压从零起连续可调,可串联或关联使用,直流输出纹波小,稳定度高,稳压稳流自动转换、限流式过短路保护和自动恢复功能,是大专院校、工业企业、科研单位及电子维修人员理想的直流稳压电源。适用于电子仪器设备、电器维修、实验室、电解电镀、测试、测量设备、工厂电器设备配套使用。几乎所有的电子设备都需要有稳压的电压供给,才能使其处于良好的工作状态。家用电器中的电视机、音响、电脑尤其是这样。电网电压时高时低,电子设备本身耗供电造成不稳定因家。解决这个不稳定因素的办法是在电子设备的前端进行稳压。 直流稳压电源广泛应用于国防、科研、大专院校、实验室、工矿企业、电解、电镀、充电设备等的直流供电。 1.1直流稳压电源设计目的 (1)、学习直流稳压电源的设计方法; (2)、研究直流稳压电源的设计方案; (3)、掌握直流稳压电源的稳压系数和内阻测试方法。 1.2课程设计的组成部分 1.2.1 设计原理

(2014春版)《现代检测技术》实验指导书

《现代检测技术》实验指导书 李学聪冯燕编 广东工业大学自动化学院 二0一四年二月

实验一 热电偶测温及校验 一、 实验目的 1.了解热电偶的结构及测温工作原理; 2.掌握热电偶校验的基本方法; 3.学习如何定期检验热电偶误差,判断是否及格。 二、 实验内容和要求 观察热电偶,了解温控电加热器工作原理; 通过对K 型热电偶的测温和校验,了解热电偶的结构及测温工作原理;掌握热电偶的校验的基本方法;学习如何定期检验热电偶误差,判断是否合格。 三、 实验主要仪器设备和材料 1. CSY2001B 型传感器系统综合实验台(下称主机) 1台 2. 温度传感器实验模块 1块 3. 热电偶 镍铬 ― 镍硅热电偶(K,作被校热电偶) 1支 镍铬 ― 锰白铜热电偶(E,作控温及标准热电偶) 1支 4. 2 1 3位数字万用表 1只 四、 实验方法、步骤及结果测试 1.观察热电偶,了解温控电加热器工作原理。 ①拿起热电偶并握紧黑柄,然后旋开热电偶的金属保护套,缓慢抽出,观察热电偶的外形。观察完后,将其旋紧并注意不可以让热电偶和金属保护套接触。 ②温控器:作为热源的温度指示、控制、定温之用。温度调节方式为时间比 例式,绿灯亮时表示继电器吸合电炉加热,红灯亮时加热炉断电。 2.仪器连线(如图1所示) ① 首先将综合实验台的电源开关置“关”, 然后将电源插头(实验桌前面)和加热炉电源插座插入综合实验台面板上的“220V 加热电源出”处; ② 将热电偶工作端插进温度传感器实验模块上的加热炉炉膛内, E 和K 分度热电偶的冷端按极性(注意区分“+”和“—”)分别接在“温控”和“测试”端。 3.开启电源 将综合实验台和加热炉的电源开关打“开”。 4.设定温度和测量数据将功能开关置“设定”,调节旋钮设定温度为50℃, 然后将开关拨至“测量”位置;当炉温达到设定值时, 等待3―5分钟炉温恒定后,分别测量“温控”和“测试”的电压(开关保持在“温控”状态),交互测量四次,把输出的热电势记录于表2中。 5. 继续将炉温提高到70℃、90℃、110℃、130℃和150℃,将热电偶输出的热电势记录于表2。

光电检测课程设计-激光测厚度

《光电检测课程设计》 2016 年 12 月

目录 摘要 (3) 1绪论 (4) 1.1课题研究的意义 (4) 1.2国内外现状 (4) 2视觉测量系统 (5) 2.1直射型激光三角法测位移原理 (5) 2.2双光路激光三角法测厚原理 (6) 2.3测厚原理及特点 (6) 2.4光路系统特点 (8) 3图像处理部分 (9) 3.1图像预处理 (9) 3.2阈值的确定 (10) 3.3厚度的确定 (10) 4结论 (12) 参考文献 (13)

摘要:精确测量薄板类材料的厚度,讨论了激光器光束轴心线与成像透镜光轴夹角与系统分辨率的关系,并基于最小二乘法拟合得出了光斑距离与被测物厚度的函数关系式,最后通过标定实验对系统精度进行了实验论证。结果表明,该系统消除了双光路激光三角法上下测量系统难以同步的问题,分辨率高,精度控制在 10μm,良好地满足了工业测量的需求。 关键词:激光三角法最小二乘法薄板厚度

1.绪论: 1.1课题研究的意义 随着材料加工技术的发展和测试计量技术水平的提高,材料厚度的检测对仪器测量精度提出了更高的要求,同时也由在线测量逐步取代离线机械式测量。冷轧钢板作为汽车制造、机械加工、船舶制造、土木建筑和轻工业等领域的原材料具有广泛的用途,热镀锌工艺常用来进行钢板的防锈处理,据统计,全球每年产锌量大约一半被用在于钢板防锈处理上,因而,镀锌板厚度的高精度检测关系到镀锌工艺的优化和锌层用量的合理规划。针对镀锌板厚度高精度在线检测问题,提出了一种单镜头双光路激光三角测厚模型,该模型相对传统双光路激光三角测厚法而言,通过改进光路设计将分置于上下两条光路中的光电探测器合二为一,避免了两条独立光路中图像探测器难以同步工作的问题,使得测量结果不受被测物抖动的影响. 激光测厚的优势在于不接触被测物且测量精度高,可解决一些以往难以解决的问题,因此在实际应用中受到广泛青睐.激光三角法在线厚度测量通常都在C型机架上进行,而C型机架在大震动环境里自身难以避免震动,这导致上、下两组测量探头相对位置发生变化,产生测量误差.目前消除震动的方法有:震动隔离、震动补偿[1]等,其中震动隔离方法硬件设计较复杂,且不能消除C型机架自身震动[1];传统的震动补偿法不能满足上、下探头测量数据与C型机架微位移变化厚度补偿数据的同步性.因此,仍不能很好地满足在线动态高精度测量的要求. 1.2国内外现状 现在,世界上激光三角法薄板在线测厚过程存在两个典型的问题:(1)被测工件在工件传输线上向前运动时伴有沿着激光束方向的前后轻微跳动;(2)C型机架在大震动环境里自身震动,这些问题会引起测量误差.对此,提出了三同步激光三角法厚度测量方法.该法利用CCD同步驱动技术[2],在同一时刻采集3组测量探头数据,其中,上、下两组测量探头对被测物体厚度进行测量;

传感器实验报告

金属箔式应变片——半桥性能实验 一. 实验目的:比较半桥与单臂电桥的不同性能,了解其特点。 二. 基本原理:不同受力方向的两片应变片接入电桥作为邻边,电桥输出 三. 灵敏度提高,非线性得到改善。当两片应变片阻值和应变量相同时,其桥路输出电 压U02=EK/ε2。 四. 需用器件和单元:应变式传感器实验模板、应变式传感器、砝码、数显表、+15V 电源、+-4V 电源、万用表 五. 实验步骤: ① 按要求将应变式传感器装与传感器模板上。 ② 按要求进行电路接线,将两个应变片接入桥路。 ③ 进行测量,将数据记录到表格中。 六.实验数据 所以可知灵敏度δ=0.3639,非线性误差为δf1=Δm/Y F.s =1.112/65=1.71% 七、思考题: 1、半桥侧量时两片不同受力状态的电阻应变片接入电桥时,应放在: (1)对边 (2)邻边。 2、桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性 (2)应变片应变效应是非线性的 (3)调零值不是真正为零。 答:都是。但是调零值可以通过记录最初的非零值来消除此误差

金直流全桥的应用——电子秤实验 一. 实验目的:了解应变片直流全桥的应用电路的标定。 二. 基本原理:电子秤实验原理为实验三全桥测量原理,通过对电路调节 三. 使电路输出的电压值为重量对应值,电压量纲(V)改为重量量纲(g)即成为一台原始 电子秤。 四. 需用器件和单元:应变式传感器实验模板、应变式传感器、砝码、±15V 电源、± 4V 电源 五. 实验步骤: 1、按实验一中2的步骤将差动放大器调零:参考图1-2将四个应变片按正确的接法接成全桥形式,合上主控箱电源开关调节电桥平衡电位器Rw1,使数显表显示0.00V 。 2、将10只砝码全部置于传感器的托盘上,调节电位器Rw3(增益即满量程调节),使数显表显示为0.200V(2V 档测显)或-0.200V 。 3、拿去托盘上的所有法码,调节电器Rw4(零位调节),使数显表显示为0。000V 或—0。000V 。 4、重复2、3步骤的标定过程,一直到精确为止,把电压量纲V 改为重量量纲g ,就可秤重,成为一台原始的电子秤。 6、根据上表计算误差与非线性误差。 所以可知灵敏度δ=1,非线性误差为δ f1=Δm/Y F.s =0

昆明理工大学课程设计报告

课程设计报告 位移传感器 学院信息工程与自动化学院 学科专业测控121 姓名 学号201 指导教师许晓平 起止周期 2014年12月—2015年1月提交日期

目录 摘要 (2) 一.位移传感器的工作原理及组成结构 (2) 一.电感式位移传感器 (2) 1.分类 (2) 2.电感式传感器特点 (2) 4.产品特性 (3) 5.变磁阻式传感器——自感式 (3) 6.差动变压器式传感器——互感式 (6) 7.电涡流式传感器——电涡流式 (9) 二.电容式位移传感器 (13) 1.简介 (13) 2.应用范围 (13) 3.性能 (13) 4.工作原理 (13) 5.组成结构 (14) 6.主要特点 (14) 三.霍尔式位移传感器 (14) 1. 工作原理 (14) 2.霍尔元件的主要特性及材料 (14) 四.光纤位移传感器 (16) 1. 结构及工作原理 (16) 2.光纤探头的端部,发射光纤与接收光纤分布 (17) 3.光的全反射定义 (17) 4.光纤位移传感器的一个典型范例 (18) 总结与体会 (19) 参考文献 (20)

摘要 位移传感器又称为线性传感器,是一种属于金属感应的线性器件,传感器的作用是把各种被测物理量转换为电量。在生产过程中,位移的测量一般分为测量实物尺寸和机械位移两种。按被测变量变换的形式不同,位移传感器可分为模拟式和数字式两种。模拟式又可分为物性型和结构型两种。常用位移传感器以模拟式结构型居多,包括电位器式位移传感器、电感式位移传感器、自整角机、电容式位移传感器、电涡流式位移传感器、霍尔式位移传感器等。数字式位移传感器的一个重要优点是便于将信号直接送入计算机系统。这种传感器发展迅速,应用日益广泛。 位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用。 关键词: 电感式位移传感器、电容式位移传感器、霍尔式位移传感器、光纤位移传感器 一.位移传感器的工作原理及组成结构 一.电感式位移传感器 电感式传感器(inductance type transducer)是利用电磁感应把被测的物理量如位移,压力,流量,振动等转换成线圈的自感系数和互感系数的变化,再由电路转换为电压或电流的变化量输出,实现非电量到电量的转换。 1.分类 (1)变磁阻式传感器——自感式 (2)差动变压器式传感器——互感式 (3)电涡流式传感器——电涡流式 2.电感式传感器特点 (1)结构简单,传感器无活动电触点,因此工作可靠寿命长。 (2)灵敏度和分辨力高,能测出0.01微米的位移变化。传感器的输出信号强,电压

现代检测技术作业

现代检测技术 学院: 专业: 姓名: 学号: 指导教师: 2014年12月30日

一现代检测技术的技术特点和系统的构成 1、现代检测技术特点 (1)测量过程软件控制 智能检测系统可以是新建自稳零放大,自动极性判断,自动量程切换,自动报警,过载保护,非线性补偿,多功能测试和自动巡回检测。由于有了计算机,上述过程可采用软件控制。测量过程的软件控制可以简化系统的硬件结构,缩小体积,降低功耗,提高检测系统的可靠性和自动化程度。 (2)智能化数据处理 智能化数据处理是智能检测系统最突出的特点。计算机可以方便、快捷地实现各种算法。因此,智能检测系统可用软件对测量结果进行及时、在线处理,提高测量精度。另一方面,智能检测系统可以对测量结果再加工,获得并提高更多更可靠的高质量信息。 智能检测系统中的计算机可以方便地用软件实现线性化处理、算术平均值处理、数据融合计算、快速的傅里叶变换(FFT)、相关分析等各种信息处理功能。(3)高度的灵活性 智能检测系统已以软件工作为核心,生产、修改、复制都比较容易,功能和性能指标更加方便。而传统的硬件检测系统,生产工艺复杂,参数分散性较大,每次更改都涉及到元器件和仪器结构的改变。 (4)实现多参数检测与信息融合 智能检测系统设备多个测量通道,可以有计算对多路测量通进行检测。在进行多参数检测的基础上,依据各路信息的相关特性,可以实现智能检测系统的多传感器信息融合,从而提高检测系统的准确性、可靠性和容错性。 (5)测量速度快 高速测量时智能检测系统追求的目标之一。所谓高速检测,是指从检测开始,经过信号放大、整流滤波、非线性补偿、A/D转换、数据处理和结果输出的全过程所需要的时间。目前,高速A/D转换的采样速度在2000MHz以上,32位PC机的时钟频率也在500MHz以上。随着电子技术的迅猛发展,高速显示、高速打印、高速绘图设备也日臻完善。这些都为智能检测系统的快速检测提供了条件。(6)智能化功能强 以计算机为信息处理核心的智能检测系统具有较强的智能功能,可以满足各类用户的需要。典型的智能功能有: 1)测量选择功能 智能检测系统能够实现量程转换、信号通道和采样方式的自动选择,使系统具有对被测量对象的最优化跟踪检测能力。 2)故障诊断功能 智能检测系统结构复杂,功能较多,系统本身的故障诊断尤为重要,系统可以根据检测通道的特性和计算机本身的自诊断能力,检查个单元故障,显示故障部位,故障原因和应采取的故障排除方法。 3)其他智能功能 智能检测系统还可以具备人机对话、自校准、打印、绘图、通信、专家知识查询和控制输出等智能功能。 2、系统的构成

课程设计 光电脉搏检测电路设计报告

光电脉搏检测电路设计报告 脉搏波的概述 1.脉搏波的定义 脉搏波是以心脏搏动为动力源, 通过血管系的传导而产生的容积变化和振动现象。当心脏收缩时, 有相当数量的血液进入原已充满血液的主动脉内, 使得该处的弹性管壁被撑开,此时心脏推动血液所作的功转化为血管的弹性势能; 心脏停止收缩时, 扩张了的那部分血管也跟着收缩, 驱使血液向前流动, 结果又使前面血管的管壁跟着扩张, 如此类推。这种过程和波动在弹性介质中的传播有些类似, 因此称为脉搏波(pulse wave) 。 2.脉搏信息 血液在人体内循环流动过程中,经历过心脏的舒张、内脏流量的涨落、血管各端点的阻滞、血管内波的折一反射以及血管壁的黏弹等过程。脉搏波不仅受到心脏状况的影响,同时要受到内环境调控功能器官(脏器) 状态所需血液参数以及系统状态参数等的影响。所以脉搏波所呈现出的形态、强度、速率和节律等方面的综合信息富含有关心脏、内外循环和神经等系统的动态信息,很大程度上反映出人体心血管系统中许多生理病理的血流特征。 3.脉搏测量的意义 脉搏是临床检查和生理研究中常见的生理现象,包含了反映心脏和血管状态的重要生理信息。人体内各器官的健康状态、病变等信息将以某种方式显现在脉搏中即在脉象中。人体脉象中富含有关心脏、内外循环和神经等系统的动态信息。通过对脉搏波检测得到的脉波图含有出许多有诊断价值的信息,可以用来预测人体某些器脏结构和功能的变换趋势,如:血管几何形态和力学性质的变异会引起脉搏波波形和波速等性质的改变,而脉搏的病理生理性改变常引发各种心血管事件,脉搏生理性能的改变可以先于疾病临床症状出现,通过对脉搏的检测可以对如高血压和糖尿病等引起的血管病变进行评估。同时脉搏测量还为血压测量,血流测量及其他某些生理检测技术提供了一种生理参考信号。 设计目的与意义 ?目的 应用光电式传感器、放大滤波电路组成的脉搏测量电路 通过示波器显示人体指端动脉脉搏信息 ?意义 通过观测到的脉搏的次数、跳动的波形为临床提供部分 诊断价值的信息,为人体某些器脏结构和功能的变换趋势提供生理参考信号 系统设计 1.测量信号的特征

机电系统控制实验报告

穿销单元工件穿销实验报告 一、前言 模块化柔性制造综合实训系统最大特点是以机器人技术为核心的技术综合性和系统性,又兼顾模块化特征。综合性体现在机器人技术、机械技术、微电子技术、电工电子技术、传感测试技术、接口技术、PLC工控技术、信息变换技术、网络通信技术等多种技术的有机结合,并综合应用到生产设备中;而系统性指的是,生产线的传感检测、传输与处理、控制、执行与驱动等机构在微处理单元的控制下协调有序地工作,有机地融合在一起。 系统模块化结构,各工作单元是相对独立的模块,并具有较强的互换性。可根据实训需要或工作任务的不同进行不同的组合、安装和调试,达到模拟生产性功能和整合学习功能的目标,十分适合教学实训考核或技能竞赛的需要。 通过该系统,学生经过实验了解生产实训系统的基本组成和基本原理,为学生提供一个开放性的,创新性的和可参与性的实验平台,让学生全面掌握机电一体化技术的应用开发和集成技术,帮助学生从系统整体角度去认识系统各组成部分,从而掌握机电控制系统的组成、功能及控制原理。可以促进学生在掌握PLC技术及PLC网络技术、机械设计、电气自动化、自动控制、机器人技术、计算机技术、传感器技术等方面的学习,并对电机驱动及控制技术、PLC控制系统的设计与应用、计算机网络通信技术和高级语言编程等技能得到实际的训练,激发学生的学习兴趣,使学生在机电一体化系统的设计、装配、调试能力等方面能得到综合提高。体现整体柔性系统教学的先进性。 二、实验目的 1、了解PLC的工作原理; 2、掌握PLC编程与操作方法; 3、了解气缸传感器的使用方法; 4、掌握PLC进行简单装配控制的方法。 三、实验设备 1、模块化柔性制造综合实训系统一套; 2、安装西门子编程软件STEP7-MicroWIN SP6的计算机一台; 3、西门子S7-200 PLC编程电缆一条。 四、实验原理 学生可通过实验验证工业现场中如何使用PLC对控制对象进行控制,我公司提供PLC源程序,学生可在源程序的基础上进行进一步编程,将编写好的程序通过编

现代检测技术教案

绪论 ?教学要求 1.掌握检测等基本概念。 2.了解工业检测技术涉及的内容。 3.掌握自动检测系统的组成。 4.明确本课程的任务。 5.了解检测技术的发展趋势。 ?教学手段多媒体课件,实物演示 ?教学课时1学时 ?教学内容 一.检测(Detection)的定义(联系具体、日常生活的例子,如举“操冲秤象”的例子过程来说明检测的定义) 检测是利用各种物理、化学效应,选择合适的方法与装置,将生产、科研、生活等各方面的有关信息通过检查与测量的方法赋予定性或定量结果的过程。能够自动地完成整个检测处理过程的技术称为自动检测与转换技术。 二.检测技术在国民经济中的地位和作用 举例说明:检测技术是现代化领域中很有发展前途的技术,它在国民经济中起着极 其重要的作用。 三.工业检测技术的内容(了解) 四.自动检测系统的组成(掌握) 1. 系统框图(0-1) 2. 传感器(Transducer)及定义 3. 显示器 4. 数据处理装置 5. 执行机构 6. 自动检测系统举例(0-2) 五.检测技术的发展趋势(举例介绍)

当前,检测技术的发展主要表现在以下几个方面: 1.不断提高检测系统的测量精度、量程范围、延长使用寿命、提高可靠性 2.应用新技术和新的物理效应,扩大检测领域 3.发展集成化、功能化的传感器 4.采用计算机技术,使检测技术智能化 5.发展网络化传感器及检测系统 六.本课程的任务和学习方法 本课程的任务是:在阐明测量基本原理的基础上,逐一分析各种传感器是如何将非电量转换为电量的,并介绍相应的测量转换电路、信号处理电路及各种传感器在工业中的应用。 本课程的学习方法是:要理论联系实际,要举一反三(演示光电开关,提问和讨论可以哪有几种用途,启发!),富于联想,善于借鉴,关心和观察周围的各种机械、电气等设备,重视实验和实训,这样才能学得活、学得好,才有利于提高今后解决实际问题的能力。 留一个问题给学生回去思考:举出课堂上演示过的光电开关共有哪几种用途,第二次上课时,回答得越多越好。

光电课程设计报告2012

课程设计总结报告 课程名称:《光电技术》课程设计学生姓名:邓跃斌、付炜、黑阳超、林松系别:物理与电子学院 专业:电子信息科学与技术 指导教师:雷立云 2012年11月29日

目录 一、设计任务书 (3) 1、课题 (3) 2、目的 (3) 3、设计要求 (3) 二、实验仪器 (3) 三、设计框图及整体概述 (4) 四、各单元电路的设计方案及原理说明 (4) N E定时器构成多谐振荡器作调制电源 (5) 1、用555 N E电路结构 (5) (1)555 N E定时器组成的多谐振荡器 (5) (2)由555 (3)发射端电路 (6) L F放大器构成接收放大电路 (7) 2、用353 (1)光放大器 (7) (2)光比较放大器 (7) 五、调试过程及结果 (8) 1、调试的过程及体会 (8) 2、调试结果 (8) 六、设计、安装及调试中的体会 (9) 七、对本次课程设计的意见及建议 (9) 八、参考文献 (10) 九、附录 (10) 1、整体电路图 (10) 2、课程设计实物图 (10) 3、元器件清单 (11)

一、设计任务书 1、课题 光电报警系统设计与实现。 2、目的 本课程设计的基本目的在于巩固电子技术、光电技术、感测技术以及传感器原理等方面的理论知识,从系统角度出发,培养综合运用理论知识解决实际问题的能力,并养成严谨务实的工作作风。通过个人收集资料,系统设计,电路设计、安装与调试,课程设计报告撰写等环节,初步掌握光电系统设计方法和研发流程,逐步熟悉开展工程实践的程序和方法。 3、设计要求 (1)基本要求 用555 N E构成占空比为0.5多谐振荡器作发光二极管的调制电源,并对参数选择进行分析说明;选用324 L M构成比较放大器进行报警电路设计;画出所做实验的全部电路图,并注明参数;记录调试完成后示波器输出的各测量点电压波形。 (2)扩展要求(选做) 分析影响作用距离的因素,提出提高作用距离的措施;设想光电报警系统的应用场合,并根据不同应用提出相应电路的设计方案。如需要闪烁报警,电路如何设计? 二、实验仪器 多功能面包板………………………………………………………………1块T D S.60M H z.1Gs s双通道数字存储波示器………………………1台1002 YB A A直流稳压电源…………………………………………………1台17333 万用表………………………………………………………………………1台

光纤压力传感器实验

光纤压力传感器实验 一、实验目的 1、了解并掌握传导型光纤压力传感器工作原理及其应用 二、实验内容 l、传导型光纤压力传感光学系统组装调试实验; 2、发光二极管驱动及探测器接收实验; 3、传导型光纤压力传感器测压力原理实验。 三、实验仪器 1、光纤压力传感器实验仪1台 2、气压计1个 3、气压源l套 4、光纤1根 5、2#迭插头对若干 6、电源线1根 四、实验原理 通常按光纤在传感器中所起的作用不同,将光纤传感器分成功能型(或 称为传感型)和非功能型(传光型、结构型)两大类。功能型光纤传感器使 用单模光纤,它在传感器中不仅起传导光的作用,而且又是传感器的敏感元件。但这类传感器的制造上技术难度较大,结构比较复杂,且调试困难。 非功能型光纤传感器中,光纤本身只起传光作用,并不是传感器的敏感元件。它是利用在光纤端面或在两根光纤中间放置光学材料、机械式或光学式的敏感元件感受被测物理量的变化,使透射光或反射光强度随之发生变化。所以这种传感器也叫传输回路型光纤传感器。它的工作原理是:光纤把测量对象辐射的光信号或测量对象反射、散射的光信号直接传导到光电元件上,实现对被测物理量的检测。为了得到较大的受光量和传输光的功率,这种传感器所使用的光纤主要是孔径大的阶跃型多模光纤。光纤传感器的特点是结构简单、可靠,技术上容易实现,便于推广应用,但灵敏度较低,测量精度也不高。 本实验仪所用到的光纤压力传感器属于非功能型光纤传感器。 本实验仪重点研究传导型光纤压力传感器的工作原理及其应用电路设计。在传导型光纤压力传感器中,光纤本身作为信号的传输线,利用压力一电一光一光一电的转换来实现压力的测量。主要应用在恶劣环境中,用光纤代替普通电缆传送信号,可以大大提高压力测量系统的抗干扰能力,提高测量精度。 相关参数: l、光源 高亮度白光LED,直径5mm

自动检测课程设计报告

课程设计报告湿度传感器及应用

摘要 在现代社会信息科技的不断迅速发展中,计算机技术、网络技术和传感器技术的高速更新,使得湿度的测量正朝着自动化、智能化、网络化发展。随着2011年物联网作为新兴产业列入国家发展战略,传感器技术作为物联网的最前端—感知层,在其发展中占了举足轻重的地位。而湿度作为日常生产、生活中最重要的参数之一,它的检测在各种环境,各个领域都对起了重要作用。 湿度是表示空气中水蒸气含量的物理量,湿度传感器是指检测外界环境湿度的传感器,它将所测环境湿度转换为便于处理、显示、记录的电(频率)信号等。它与人们的生产、生活密切相关。湿度的检测广泛应用于工业、农业、国防、科技、生活等各个领域。例如,集成电路的生产车间相对湿度低于30%时,容易产生静电感应而影响生产;粉尘大的车间由于湿度小产生静电易发生爆炸;纺织厂的湿度低于65~70%RH时会断线。它是一类重要的化学传感器,在仓贮、工业生产、过程控制、环境监测、家用电器、气象等方面有着广泛的应用。 测量电路由湿度传感器,差动放大器,同相加法放大器等主电路组成;为了实现温度补偿功能,选择铂电阻温度传感器采集环境温度,通过转换电桥和差动放大,输入同相加法器实现加法运算,补偿环境温度对湿度传感器的影响,其中转换电桥工作电压由差动放大器输出电压通过电压跟随器提供。 应用IH3605型温度传感器与集成运放设计测量湿度的电路,测量相对湿度(RH)的范围为0%~l00%,电路输出电压为0~10V。要求测量电路具有调零功能和温度补偿功能。使用环境温度为0℃~85℃。 本次设计的是湿度传感器,主要对湿度传感器的工作原理、组成结构加以论述,并对其测量原理图进行分析,进而使我们能够更深层的对湿度传感器进行理解;除此之外,在本次设计中也简要介绍了湿度传感器的相关特性以及参数如何选择,以便于用户能够正确选用相应的种类和型号。 另外,我又结合了实际案例对湿度传感器的应用技术和应用领域加以分析,并概括了其日后的发展趋势。 关键词:工作原理;组成结构;测量原理图;特性及参数选择;应用;发展趋势

学生选课管理信息系统课程设计—昆明理工大学

课程设计 课程名称:管理信息系统课程设计 设计题目:学生选课管理学课程设计 学院:机电工程学院 专业:工业工程 年级: 2 0 1 1 级 学生姓名: 学号: 201110303*** 指导教师:孔令波 日期: 2014年12月10日至2014年1月4日 教务处制

一、项目的开发背景及意义 1.1项目的背景及基本介绍 就目前对于学校而言,学生选课作为高校工作的重要一部分,学生选课管理信息化是现在学校人力资源和学校管理的重要手段,学生选课管理系统,在学生选课的规范管理、科学统计和快速查询方面拥有重大的意义。当今时代是飞速发展的信息时代。在各行各业中离不开信息处理,这正是计算机被广泛应用于信息管理系统的环境。计算机的最到好处在于利用它能够进行信息管理。使用计算机进行信息控制,不仅提高了工作效率,而且大大的提高了其安全性。 尤其对于复杂的信息管理,计算机能够充分发挥它的优越性。计算机进行信息管理与信息管理系统的开发密切相关,系统的开发是系统管理的前提。本系统就是为了管理好学生选课信息而设计的。 在学籍管理中,需要从大量的日常教学活动中提取相关信息,以反映教学情况。传统的手工操作方式,易发生数据丢失,统计错误,劳动强度高,且速度慢。使用计算机可以高速,快捷地完成以上工作。规范教学管理行为,从而提高了管理效率和水平。 网上选课与传统的选课方式相比更加节约资源,同时,随着学生选课自主权的增加,网上选课有效的避免了许多不良现象,使教学更加透明。为了加强对学生选课的规范管理,减轻教学管理人员的工作量, 同时更好地利用网络和信息化手段做到对学生选课工作更及时和更规范,系统设计开发了基于B/S模式的学生在线选课系统。该系统从学生网上自主选课,以及教师的课程发布两个大方面进行设计,实现了学生的在线信息查询、选课功能以及教务处对课程信息发布的管理等功能它提高了信息的开放性,大大改善了学生、教师对其最新信息的查询的准确性。它对学生开展选课和学信息查询的一种相当先进的选课模式,对于发挥学生选课的自主性、对于提高学生的选课速度和学校课程管理方面均有重大的意义。 1. 2存在的问题 学生选课作为一种信息资源的集散地,包含很多的信息数据的管理。由于数据繁多,容易丢失,且不易查找。总的来说,缺乏系统,规范的信息管理手段。

现代检测技术大作业

2015年—2016年度第1学期 课程名称:现代检测技术 专业:控制工程 研究生姓名:陈俊亚 学号:2016232011 任课教师姓名:冯晓明

第一部分:现代检测技术的内容 一、概述 随着现代科学技术的不断发展、社会的日益进步,现代化生产的规模越来越大,管理的形式和方式趋于多样性,管理也更加科学,人们对产品的产量和质量的要求也越来越高,这就导致常规的检测参数、检测手段、检测仪表难以满足现代生产和生活的需求。从一般的单参数测量到相关多参数的综合自动检测,从一般的参数量值测量到参数的状态估计,从确定性测量到模糊的判断等,已成为当前检测领域中的发展趋势,正受到越来越广泛的关注,从而形成了各种新的检测技术和新的检测方法,这些技术和方法统称为现代检测技术。 二、传感器的基本原理及检测技术的特点 利用某种转换功能,将物理的、化学的、生物的等外界信号变成可直接测量的信号的器件称为传感器。由于电信号易于放大、反馈、滤波、微分、存储和远距离传输,加上计算机只能处理电信号,所以,从狭义上说,传感器又可以定义为可唯一而重视性好的将外界信号转换成电信号的元器件;从广义上讲,传感器就是能感知外界信息并能按一定规律将这些信息转换成可用信号的装置;简单说传感器是将外界信号转换为电信号的装置。所以它由敏感元器件(感知元件)和转换器件两部分组成,有的半导体敏感元器件可以直接输出电信号,本身就构成传感器。敏感元器件品种繁多,就其感知外界信息的原理来讲,可分为:①物理类,基于力、热、光、电、磁和声等物理效应。②化学类,基于化学反应的原理。③生物类,基于酶、抗体、和激素等分子识别功能。通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。检测技术的特点可以归纳为: (1)从待测参数的性质看,现代检测技术主要用于非常见的参数的测量,对于这些参数的测量目前还没有合适的传感器对应,难以实现常规意义的“一一对应”的测量;另一种情况是待测参数虽已有传感器,但测量误差比较大,受各种因素的影响比较大,不能满足测量要求。 (2)从应用的领域看,现代检测技术主要用于复杂设备、复杂过程的影响性

光纤传感器基础实验

光纤传感器基础实验 王帅 (哈尔滨工程大学13-3班75号,黑龙江省哈尔滨市 150001) 摘要:光纤传感实验仪开发研制的目的是将光纤传感这一现代技术进行广泛的普及和渗透。了解光纤传感仪试验仪的基本构造和原理,学习和掌握其正确使用方法;了解光纤端光场的径向分布和轴向分布的特点;定量了解一种光纤的纤端光场的径向分布和轴向分布;学习掌握最基本的光纤位移传感器的原理。通过对光纤接受端电压的测量,可以间接测量光纤端轴向和径向的光场强度的分布。 关键词:光纤传感器;轴向;径向;光强分布 Optical Fiber Sensor Based Experiment Wang shuai (Harbin Engineering University, Harbin,150001,Chnia) Abstract:The purpose of the development of fiber optic sensing experimental kits is to make this technology popularization. Understanding the basic structure and principle of fiber optic sensing experimental kits,learning and mastering the correct using method; Understand the radial and axial distribution characteristic of the fiber end; Learning to master the basic principle of optical fiber displacement sensor. By measuring the voltage of the optical fiber acceptting, optical fiber end light field intensity distribution of the axial and radial can be measured indirectly. Key words:fiber optic sensing experimental kits;axial; radial; light intensity distribution 0 引言 光纤传感实验仪是由多种形式的光纤传感器组成,是集教学和实验于一体的传感测量系统。它具有结构简单,灵敏度高,稳定性好,切换方便应用范围广等特点。在实验过程中,我们用光纤传感实验仪构成反射式光纤微位移传感器,可用于测量多种可转换成位移的物理量。 1 实验原理 1.1光在光纤中传输的原理 光在光纤中的传输依据是光学中的全反射定律。普通石英光纤的结构包括纤芯、包层和

相关主题
文本预览
相关文档 最新文档