当前位置:文档之家› 单向可控硅与双向可控硅结构电原理图及测试方法

单向可控硅与双向可控硅结构电原理图及测试方法

单向可控硅与双向可控硅结构电原理图及测试方法
单向可控硅与双向可控硅结构电原理图及测试方法

单向可控硅与双向可控硅结构电原理图及测试方法

可控硅的检测

1.单向可控硅的检测

万用表选用电阻R×1档,用红黑两表笔分别测任意两引脚间正反向电阻直至找出读数为数十欧姆的一对引脚,此时黑笔接的引脚为控制极G,红笔接的引脚为阴极K,另一空脚为阳极A。此时将黑表笔接已判断了的阳极A,红表笔仍接阴极K。此时万用表指针应不动。用短接线瞬间短接阳极A和控制极G,此时万用表指针应向右偏转,阻值读数为10欧姆左右。如阳极A接黑表笔,阴极K接红表笔时,万用表指针发生偏转,说明该单向可控硅已击穿损坏

2.双向可控硅的检测

用万用表电阻R×1档,用红黑两表笔分别测任意两引脚正反向电阻,结果其中两组读数为无穷大。若一组为数十欧姆时,该组红黑表笔所接的两引脚为第一阳极A1和控制极G,另一空脚即为第二阳极A2。确定A、G极后,再仔细测量A1、G极间正反向电阻,读数相对较小的那次测量的黑表笔所接的引脚为第一阳极A1,红表笔所接引脚为控制极G。将黑表笔接已确定了的第二阳极A2,红表笔接第一阳极A1,此时万用表指针应不发生偏转,阻值为无穷大。再用短接线将A2、G极瞬间短接,给G极加上正向触发电压,A2、A1间阻值约为10欧姆左右。随后断开A2、G极短接线,万用表读数应保持10欧姆左右。互换红黑表笔接线,红表笔接第二阳极A2,黑表笔接第一阳极A1。同样万用表指针应不发生偏转,阻值为无穷大。用短接线将A2、G极间再次瞬间短接,给G极加上负向的触发电

压,A1、A2间阻值也是10欧姆左右。随后断开A2、G极间短接线,万用表读数应不变,保持10欧姆左右。符合以上规律,说明被测双向可控硅管未损坏且三个引脚极性判断正确。

检测较大功率可控硅管是地,需要在万用表黑笔中串接一节1.5V干电池,以提高触发电压。双向可控硅(TRIAC)在控制交流电源控制领域的运用非常广泛,如我们的日光灯调光电路、交流电机转速控制电路等都主要是利用双向可控硅可以双向触发导通的特点来控制交流供电电源的导通相位角,从而达到控制供电电流的大小[1]。然而对其工作原理和结构的描述,以我们可以查悉的资料都只是很浅显地提及,大部分都是对它的外围电路的应用和工作方式、参数的选择等等做了比较多的描述,更进一步的--哪怕是内部方框电路--内容也很难找到。

由于可控硅所有的电子部件是集成在同一硅源之上,我们根本是不可能通过采用类似机械的拆卸手段来观察其内部结构。为了深入了解和运用可控硅,依据现有可查资料所给P

型和N型半导体的分布图,采用分离元器件--三极管、电阻和电容--来设计一款电路,使该电路在PN的连接、分布和履行的功能上完全与双向可控硅类似,从而通过该电路来达到深入解析可控硅和设计实际运用电路的目的。

1 双向可控硅工作原理与特点

从理论上来讲,双向可控硅可以说是有两个反向并列的单向可控硅组成,理解单向可控硅的工作原理是理解双向可控硅工作原理的基础[2-5]。

1.1单向可控硅

单向可控硅也叫晶闸管,其组成结构图如图1-a所示,可以分割成四个硅区P、N、P、N和A、K、G三个接线极。把图一按图1-b 所示切成两半,就很容易理解成如图1-c所示由一个PNP三极管和一个NPN三极管为主组成一个单向可控硅管。

在图1-c的基础上接通电源控制电路如图2所示,当阳极-阴极(A-K)接上正向电压V后,只要栅极G接通触发电源Vg,三极管Q2就会正向导通,开通瞬间Q1只是类似于

接在Q1集电极的一个负载与电源正极接通,随后Q1也在Q2的拉电流下导通,此时由于C被充电,即便断开G极的触发电源Vg,Q1和Q2在相互作用下仍能维持导通状态,只有当电源电压V变得相当小之后Q1和Q2才会再次截止。

1.2 双向可控硅

相比于单向可控硅,双向可控硅在原理上最大的区别就是能双向导通,不再有阳极阴极之分,取而代之以T1和T2,其结构示意图如图3-a所示,如果不考虑G级的不同,把它分割成图3-b所示,可以看出相当于两个单向可控硅反向并联而成[1-2],如图3-c所示连接。

当T1与T2之间接通电源后,给G极正向触发信号(相对于T1、T2所接电源负极而言),其工作原理如前面单向可控硅完全相同。当G极接负触发信号时,其工作过原理如图4所示,此时Q3的基极B和发射极E处于正偏电压而致使Q3导通,继而Q1导通给电容C充电后致Q2导通

并保持导通状态。

1.3 双向可控硅的主要特点

双向可控硅的英文简称TRIC是英文Triad AC semiconductor switch的缩写,其意思是三端交流半导体开关,目前主要用于对交流电源的控制,主要特点表现在能在四个象限来使可控硅触发导通和保持导通,直到所接电源撤出或反向[6][7]。

第一象限是T2接电源V的正极T1接电源V的负极,G触发信号Vg的正。

第二象限是T2接电源V的正极T1接电源V的负极,G触发信号Vg的负。

第三、四象限是T1接电源V的正极T2接电源V的负极,G触发信号分别接Vg的正、负极。

2 类双向可控硅电路设计

在理解了前面所述双向可控硅的内部结构和工作原理之后,依据其内部结构采用我们熟悉的晶体管来设计一种类似有双向可控硅工作的双向可触发电路。如图5所示,电路采用用7个三极管和几个电阻组成。把图5电路中PN结的结构按图6所示结构图描出,与图3-a、b比较很是相似。在图5所示电路中,内部电流在外界所接电源的极性不同而有两种流向,如It12 和It21所示,It12流向是从P2流入经N2-P1-N1流出,It21从P1流入经N2-P2-N32流出;G极触发电流Ig+由P2流入或Ig- 从N31流出。下面是所设计电路在四个象限的触发导通工作过程。

2.1 T2接电源Vt21正极,T1接通电源Vt21负

此时当G极接Vg+为正电压,Q4、Q5、Q6、Q7处于反向截止,Q1的B极和E

极之间无正偏压也处于截止状态,Vg+由P2输入后经R3使Q2的B极和E极之间产生正偏电压而导通,从而促使Q3导通,这时即使撤出Vg+,在电容C1的的作用下,Q2、Q3也仍然能处于导通状态,只有当Vt21先反向或撤除才重回截止。当G极接Vg为负,Q4、Q5、Q6、Q7同样处于反向截止状态,Q1的B极和E极之间因Vg产生正偏电压而导通,从而使Q3、Q2导通并得以保持导通状态。

2.2 T1接电源Vt12正极,T2接通负电源Vt12的负极

此时G极接Vg为正,Q1因B极和E极之间处于反向偏压而截止,Q3处于反向截止,Q2因B极和E极之间处于正向偏压导通而导致Q4、Q7的导通,从而Q6、Q7导通并保持导通状态,只有当Vt12先反向或撤除才重回截止。当G极接Vg为负,Q1、Q2、Q3和Q4处于反向截止,Q5的B极和E极之间因Vg而处于正偏导通,从而使Q6导通,继而Q7、Q6导通并得以保持导通状态。

3 电路制作与实验验证

为了验证所设计电路,采用比较常用的NPN三级管S8050和PNP三极管S8550来设计制作实际的测试电路板(PCB),如图5所示。图6 中所标识的T2、T1和G与图5所示的相同,也类似于双向可控硅的T2、T1和G三个接线极。利用该模块电路串入负载接通正或负的直流电源和触发信号来测试,所得结果如图7所示,在正或负触发信号接入前电流表上的指示为0,当正或负触发信号接通并撤离后电流表指示依然保持原来的电流值。该实验表明该电路在正负电源供电情况下能双向触发导通。

该模块电路在接通交流电源和脉冲控制信号时,其测验结果如图8所示。示波器探针1接触发信号,探针2接模块电路的两端T1-T2之间的电压。在触发信号为0是,T1-T2之间的电压等于电源电压值,表明该电路没有导通,当触发信号脉冲到来时,T1-T2两端的电压值为0,表明模块电路已经导通。

如图是一个由双向可控硅组成的交流稳压器电路。与单向可控硅稳压器相比较,其线路简单,性能可靠。当电网电压小于220V时,双向可控硅SCR2控制极上的电压也随电网电压减小而降低,致使VD2导通角小,C1端电压上升,从而使双向可控硅SCRl 控制极电压升高,使输出电压上升。反之,输出电压下降,达到稳压。

注;双向晶闸管的T1和T2不能互换。否则会损坏管子和相关的控制电路。

检查晶闸管的触发能力(方法之一)

要使晶闸管导通,必须满足下述条件:

第一:晶闸管处于正向接法,即阳极接电源正极,阴极接电源负极;

第二:给门要加上正触发信号VGT。

晶闸管一旦导通,门极就失去控制作用,仅当阳极电压VA降某一规定值或施加反向电压时,晶闸管才能关断。

检查晶闸管触发能力的电路见图1。万用表选择R×1(或R×10)档。因表内电池电压仅1.5V低于正常的VGT值,(一般为2.5~4V),故不会损坏晶闸管。测量分两步进行:

第一步,先断开开关S,此时晶闸管尚未导通,测出的电阻值较大,表针应停在无穷大处。然后合上开关,将门极与阳极接通,使门极电位升高,这相当于加上正触发信号,因此晶闸管导通,电阻读数为几欧至十几欧。

第二步,再把开关断开,若读数不变,证明晶闸管质量良好。

图中的开关可用一根导线代替,导线的一端固定在阳极上,另一端搭在门极上时相当于开关闭合。

本方法仅适宜检查3CT1~3CT5等小功率晶闸管或小功率快速晶闸管(亦称高频晶闸管)。

检查晶闸管的触发能力(方法之二)

对于大功率晶闸管,因其通态压降较大,加之R×1档提供的阳极电流低于维持电流IH,所以晶闸管不能完全导通,在开关断开时晶闸管会随之关断。

检查3CT10~3CT100型晶闸管,可采用双表法,把两块万用表的R×1档上再串联两节1.5V电池,把电源电压提升到4.5V左右。

实例:按图1所示电路检查一只3CT20/500型晶闸管。把MF10型万用表均拨到R×1档,然后串联使用。用一根导线将门极与阳极知路,这时MF30型万用表的读数为2W。再撤掉短路导线,晶闸管仍保持导通状态。

检查晶闸管的触发能力(方法之三)

利用图1的电路也可以检查晶闸管的触发能力。万用表Ⅰ拨到R×10k档,该档电池电压较高,以提高阳极电压。万用表Ⅱ选择R×10档,该档电池电压为1.5V。不接表Ⅱ时,表Ⅰ测出的电阻值很大。接表Ⅱ后晶闸管导通,表Ⅰ的电阻读数很小。此法只能检查小功率晶闸管。

检查晶闸管的触发能力(方法之四)

利用兆欧表和万用表检查晶闸管触发能力的电路见图1。将万用表拨至1mADC档,串联在电路中。首先断开开关,按额定转速摇兆欧表,兆欧表上的读数很快趋于稳定,说明晶闸管已正向击穿,把兆欧表的输出电压钳位于直流转折电压V(BO)上。此时晶闸管并未导通,所以毫安表读数为零。然后闭合开关,晶闸管导通,兆欧表读数变成零,毫安表指示出通态电流值。

实例:用ZC25-4型兆欧表检查一只3CT20/500型晶闸管,万用表选择MF10型

1mADC档。断开开关,按120r/min摇兆欧表时,兆欧表读数为25MW,毫安表无指示。闭合开关时,毫安表读数为0.21mA,兆欧表指零,证明晶闸管已导通。注间事项:

(1)由于兆欧表提供的阳极电流很小,管子导通的并不理想,尤其对于大功率晶闸管,所需维持电流较大(例如3CT100型的IH=801mA),所以一旦断开开关,晶闸管又变成断态了。

(2)晶闸管的导通时间应尽量缩短,以防兆欧表短中时间过久而烧毁发电机绕检查大功率双向晶闸管触发能力的方法

由于小功率双向晶闸管的触发电流只有几十毫安,因此可用R×1档检查其触发能力。大功率双向晶闸管则不然,例如BA40-700型40A/700V双向晶闸管的

IGT=100mA,利用R×1档已无法使管子触发。为此可采用图5.9.13所示电路,给万用表R×1档外接一节1.5V电池E′,将测试电压升到3V,同时增加测试电流(I′M=3V/R0)。

以500型万用表R×1档为例,将E′接在万用表“+”插孔与红表笔之间,这时总电压E+ E′=3V。该电阻档的欧姆中心值R0=10Ω,改装后的短路电流I′M=(E+ E′)/ R0=3V/10Ω=300 mA,实际可提供100 mA左右的测试电流。图1

中的虚线表示在测量时T1极与G 极可以短路,也可以开路。具体检查步骤见5.9.7。

注意事项:

本方法对检查大功率单向晶闸管也适用。

双向晶闸管(TRIAC)

普通晶闸管实质上属于直流器件。要控制交流负载,必须将两只晶闸管反极性并联,让每只SCR控制一个半波,为此需两套独立的触发电路,使用感到不便。双向晶闸管是在普通晶闸管的基础上发展起来的,它不仅能代替两只反极性并联的晶闸管,而且仅用一个触发电路,是目前比较理想的交流开关器件。其英文名称TRIAC就是三端双向交流开关的意思。尽管从形式上可以把双向晶闸管看成两只普通晶闸管的组合,但实际上它是由七只晶体管和多只电阻构成的功率集成器

件。小功率双向晶闸管一般采用塑料封存装,有的还带小散热极,外形如图1

所示。典型产品有BCM1AM(1A/600V)、BCM3AM (3A/600V)、2N6075(4A/600V)、MAC218-10(8A/800V)等。大功率双向晶闸管大多采用RD91型封装,例如

BTA40-700型的主要参数是:IT=40A,VDRM=700V,IGT=100mA。双向晶闸管可广泛用于工业、交通、家电领域,实现交流调压、交流调速、交流开关、舞台调光、台灯调光等多种功能。此外,它还被用在固态继电器和固态接触器的电路中。双向晶闸管的结构与符号见图2。它属于NPNPN五层器件,三个电极分别是T1、T2、G。因该器件可以双向导通,故门极G以外的两个电极统称为主端子,用T1、T2表示,不再划分成阳极或阴极。其特点是,当G极和T2极相对于T1的电压均为正时,T2是阳极,T1是阴极。反之,当G极和T2极相对于T1 的电压均为负时,T1变成阳极,T2为阴极。

双向晶闸管的伏发特性见图3,由于正、反向特性曲线具有对称性,所以它可在任何一个方向导通。

下面介绍利用万用表R×1档判定双向晶闸管电极的方法,同时还检查触发能力。1.判定T2极

由图2(a)可见,G极与T1极靠近,距T2极较远。因此,G-T1之间的正、反向电阻都很小。在用R×1档测任意两脚之间的电阻时,只有G- T1之间呈现低阻,正、反向电阻仅几十欧。而T2-G、T2- T1之间的正、反向电阻均为无穷大。这表明,如果测出某脚和其它两脚都不通,就肯定是T2极。

另外,采用TO-220封装的双向晶闸管,T2极通常与小散热板连通。据此亦可确定T2极。

2.区分G极和T1极

(1)找出T2极之后,首先假定剩下两脚中某一脚为T1极,另一脚为G极。(2)把黑表笔接T1极,红表笔接T2极,电阻为无穷大。接着用红表笔尖把T2与G短路,给G极加上负触发信号,电阻值应为十欧左右(参见图4(a))证明管子已经导通,导通方向为T1→T2。再将红表笔尖与G极脱开(但仍接T2),如果电阻值保持不变,就表明管子在触发之后能维持之后能维持导通状态(见图4(b))

(3)把红表笔接T1极,黑表笔接T2极,然后使T2与G短路,给G极加上正触发信号,电阻值仍为十欧左右,与G极脱开后若阻值不变,则说明管子经触发后,在T2→T1方向上也能维持导通状态,因此具有双向触发性质。由此证明上述假定正确。否则是假定与实际不符,需从新作出假定,重复以上测量。

显见,在识别G、T的过程中,也就检查了比向晶闸管的触发能力。

实例:选择500型万用表档R×1档检测一只由日本三菱公司生产的BCR3AM型双向晶闸管,外形见图1中。测量结果与上述规律完全相符,证明管子质量良好。注意事项:

如果按哪种假定去测量,都不能使双向晶闸管触发导通,证明管子已损坏。为可靠起见,这里规定只用R×1档检测,而不用R×10档。这是因为R×10档的电流较小,采用上述方法检查1A的双向晶闸管还双较可靠,但在检查3A或3A以上的双向晶闸管时,管子很难导通状态,一旦脱开G极,即自行关断,电阻值又变成无穷大。

双向晶闸管(TRIAC)

普通晶闸管实质上属于直流器件。要控制交流负载,必须将两只晶闸管反极性并联,让每只SCR控制一个半波,为此需两套独立的触发电路,使用感到不便。双

向晶闸管是在普通晶闸管的基础上发展起来的,它不仅能代替两只反极性并联的晶闸管,而且仅用一个触发电路,是目前比较理想的交流开关器件。其英文名称TRIAC就是三端双向交流开关的意思。尽管从形式上可以把双向晶闸管看成两只普通晶闸管的组合,但实际上它是由七只晶体管和多只电阻构成的功率集成器件。小功率双向晶闸管一般采用塑料封存装,有的还带小散热极,外形如图1

所示。典型产品有BCM1AM(1A/600V)、BCM3AM (3A/600V)、2N6075(4A/600V)、MAC218-10(8A/800V)等。大功率双向晶闸管大多采用RD91型封装,例如

BTA40-700型的主要参数是:IT=40A,VDRM=700V,IGT=100mA。双向晶闸管可广泛用于工业、交通、家电领域,实现交流调压、交流调速、交流开关、舞台调光、台灯调光等多种功能。此外,它还被用在固态继电器和固态接触器的电路中。双向晶闸管的结构与符号见图2。它属于NPNPN五层器件,三个电极分别是T1、T2、G。因该器件可以双向导通,故门极G以外的两个电极统称为主端子,用T1、T2表示,不再划分成阳极或阴极。其特点是,当G极和T2极相对于T1的电压均为正时,T2是阳极,T1是阴极。反之,当G极和T2极相对于T1 的电压均为负时,T1变成阳极,T2为阴极。

双向晶闸管的伏发特性见图3,由于正、反向特性曲线具有对称性,所以它可在任何一个方向导通。

下面介绍利用万用表R×1档判定双向晶闸管电极的方法,同时还检查触发能力。1.判定T2极

由图2(a)可见,G极与T1极靠近,距T2极较远。因此,G-T1之间的正、反向电阻都很小。在用R×1档测任意两脚之间的电阻时,只有G- T1之间呈现低阻,正、反向电阻仅几十欧。而T2-G、T2- T1之间的正、反向电阻均为无穷大。这表明,如果测出某脚和其它两脚都不通,就肯定是T2极。

另外,采用TO-220封装的双向晶闸管,T2极通常与小散热板连通。据此亦可确定T2极。

2.区分G极和T1极

(1)找出T2极之后,首先假定剩下两脚中某一脚为T1极,另一脚为G极。(2)把黑表笔接T1极,红表笔接T2极,电阻为无穷大。接着用红表笔尖把T2与G短路,给G极加上负触发信号,电阻值应为十欧左右(参见图4(a))证明管子已经导通,导通方向为T1→T2。再将红表笔尖与G极脱开(但仍接T2),如果电阻值保持不变,就表明管子在触发之后能维持之后能维持导通状态(见图4(b))

(3)把红表笔接T1极,黑表笔接T2极,然后使T2与G短路,给G极加上正触发信号,电阻值仍为十欧左右,与G极脱开后若阻值不变,则说明管子经触发后,在T2→T1方向上也能维持导通状态,因此具有双向触发性质。由此证明上述假定正确。否则是假定与实际不符,需从新作出假定,重复以上测量。

显见,在识别G、T的过程中,也就检查了比向晶闸管的触发能力。

实例:选择500型万用表档R×1档检测一只由日本三菱公司生产的BCR3AM型双向晶闸管,外形见图1中。测量结果与上述规律完全相符,证明管子质量良好。注意事项:

如果按哪种假定去测量,都不能使双向晶闸管触发导通,证明管子已损坏。为可靠起见,这里规定只用R×1档检测,而不用R×10档。这是因为R×10档的电流较小,采用上述方法检查1A的双向晶闸管还双较可靠,但在检查3A或3A以上的双向晶闸管时,管子很难导通状态,一旦脱开G极,即自行关断,电阻值又

变成无穷大。

可控硅快速测试器;

控硅测试仪

测试仪由脉冲信号发生器、闭合导通环路、发光二极管、可控硅SCR等组成。脉冲信号发生器即为由时基电路555和R1、R2、C等组成的多谐振荡器,其振荡频率为f=1.44/(R1+2R2)C。图示参数对应的振荡频率约为1Hz。由于R1<

插上可控硅SCR,当按下按钮AN后,在555输出高电平时,发光二极管LED1、电阻R4、可控硅SCR、晶体管BG2形成闭合回路,发光管LED1发光;当555输出低电平时,LED2、R4、SCR、BG1形成闭合回路,发光管LED2发光,说明可控硅是好的。

在测试时插上可控硅SCR后,发光管LED1、LED2应不亮,否则说明T1、T2的两极已短接。

555构成的简易恒温控制器

如图所示为简易恒温控制电路。该控制器由降压整流电源电路、温度传感器和RS触发控制电路等组成。降压整流电源电路输出6V电压。温度传感器Rt1、Rt2由日光灯启动器改制而成,其中Rt1控制温度的下限值,Rt2控制温度的上限值,并利用温度计对其间隙进行校正。。

刚通电时,IC(555)因②脚和⑥脚均为低电平(地电位)而自3脚输出高电平,双向可控硅SCR触发导通,从而接通电热丝电源,对其进行加热,温度升高。当温度升至下限温度值

时。Rt1因受热膨胀而接触触点,但IC⑥脚因Rt2断开仍处于低电平,从而触发电路自保。温度继续上升,当升至上限值时,Rt2触点接通,相应⑥脚电位为高电平(6V),大于

6×2/3=4V触发电平,从而使IC复位,由③脚输出低电平,SCR截止,断开电热丝电源,停止加热。当温度下降后,Rt2断开。因555电路仍自保而由③脚输出低电平。当温度继续下降至下限值时,Rt1断开,②脚为低电平(地电位)。使IC重新置位,由③脚输出高电平,SCR导通。电热丝加热。如此循环,保持一定的温度。

可控硅串联逆变中频电炉技术说明书

可控硅串联逆变中频电炉 技术说明书 高效节电大功率可控硅串联逆变中频电炉 引言 90年代我国工业飞速发展,大容量、高功率,低能耗的中频电炉越来越被 人们所关注,尤其在铸造领域中,中频电炉能提供高质量的铁水和钢水,便于在 熔化过程中控制温度和化学成份,因此近年大量引进国外制造的大容量可控硅中 频电炉,已达数百台之多,几乎国内上规模的机械制造厂、机床厂、汽车制造厂 的高端技术市场都被国外厂商占有,,目前国内产品比较国外,在控制技术上,按 装工艺上仍有相当差距。 铸造厂的传统熔化设备冲天炉,出铁温度低,铁水在炉中增碳较多,不易生 产出高质量铸铁件,且冲天炉严重污染环境,在城市区域内不容许存在,目前国 内铸造用焦价格猛涨,与中频电炉熔化成本相当。因此大容量中频电炉是铸造厂 节能、高效、清洁环保型熔化设备,所以我们研制,开发大熔量高功率的中频电 炉起点高,技术指标以国外最先进的电炉为目标。串联逆变中频电源具有功率因素 高,我公司生产的中频电源功率因素不低于0.98.高效节能,谐波小。 一、元器件的选择 目前已经研制成功的具有一拖二功能的可控硅中频熔化炉,是高效节电最佳的 熔化设备。 我国电器工业经过多年的发展,目前按装大容量中频电炉元器件己具备相当 条件,大电流耐高压可控硅,高压电热电容己能生产,满足需求。 中频逆变电源的开关元件,目前有二种,可控硅SCR和绝缘栅双极型场效 应晶体管IGBT,根据国外文献所载,大功率,较低频率(<1 000Hz)的逆变电源, 选用可控硅的关闭时间要求较低,TOT可以在5 0~60微秒级,这样硅片的厚 度可以厚些,可控硅的耐压便可以提高,且可控硅的价格比IGBT低得多,.而且 工作稳定性和可靠性比IGBT高,我们设计的逆变器选用 KK2500A/2 5 00V可控 硅。目前世界上技术最先进、规模最大的美国应达电炉公司仍采用大功率可控硅 组装。 图1依据功率和频率选择逆变开关元件 IGBT特别适用于频率高,功率较小的变频加热设备,如小容量中频真空熔 炼炉,工件表面淬火和小件透热等。目前国内200A以上的IGBT都需依赖进口, 还受到出口国的限制,最大容量为500A/1 5 0 0V。组装大功率电源时,不得不把 I GBT串联后再多组并联,对用户来说,元件损坏时就得长期依赖于设备制造厂 商供应备件,根据图1我们选用国产大功率可控硅是合理的。 二、串并电路的比较 串并联逆变中频电源相比具有以下优点 1、可控硅并联线路是并联谐振电路,在熔炼过程中,尤其对熔炼铝、铜等材料,负载很轻,它的 功率输出很小,与负载的性质有很大关系,所以其熔化速度慢、升温困难。而可控硅串联中频熔炼炉是通过调频方式调节功率,所以受负载性质的影响相对小,熔炼全过程近乎保持恒功率输出,

可控硅中频电源安全操作规程(标准版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 可控硅中频电源安全操作规程 (标准版)

可控硅中频电源安全操作规程(标准版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 存在安全隐患:高温热辐射、烤伤、热源对眼睛的伤害、烫伤 1、工作前认真检查设备各系统部分状况,如中频冷却水压力(0.2MPa),水位是否合格、水泵和风机是否工作正常等。还应检查各电气操作开关。 2、打开水泵电源,设备接通冷却水,并保证冷却水的流量和压力足够(0.15MPa),且水质清洁。然后启动中频冷却塔,使中频设备处于通水状态。 3、在确保水路正常后才可以给设备送电。合上可控硅中频的电源,按下控制合按钮,接触器吸合,调节门上电位器至零位。 4、按下主电合按钮,主电源交流接触器吸合,然后按下中频合按钮,把调功电位器调至中频启动成功,看阻抗等值合适后再升功。 5、关机时首先将调功电位器调至零位,依次按下中频分按钮、主电分按钮、控制分按钮。 6、切记出现过流、过压等故障动作,要重新工作,必须将调功电

晶闸管的结构以及工作原理

一、晶闸管的基本结构 晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。

图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。

图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <,A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。 三、晶闸管的静态特性 晶闸管共有3个PN 结,特性曲线可划分为(0~1)阻断区、(1~2)转折区、(2~3)负阻区及(3~4)导通区。如图5所示。

晶闸管触发电路设计

摘要 为了控制晶闸管的导通,必须在控制级至阴极之间加上适当的触发信号(电压及电

流),完成此任务的就是触发电路。 本课题针对晶闸管的触发电路进行设计,其电路的主要组成部分由触发电路,交流电路,同步电路等电路环节组成。有阻容移相桥触发电路、正弦波同步触发电路、单结晶体触发电路、集成UAA4002、KJ004触发电路。包括电路的工作原理和电路工作过程以及针对相关参数的计算。 关键词:晶闸管;触发电路;脉冲;KJ004

目录 第1章绪论 (1) 第2章课程设计的方案 (1) 2.1 概述 (1) 2.2 系统组成整体结构 (2) 2.3 设计方案 (2) 第3章电路设计 (4) 3.1 UAA4002集成芯片构成的触发器 (4) 3.2 阻容移相桥触发电路 (5) 3.3正弦波同步触发电路 (6) 3.4单结晶体管触发电路 (8) 3.5集成KJ004触发电路 (9) 第4章课程设计总结 (12) 参考文献 (14)

绪论晶闸管是晶体闸流管的简称,又称为可控硅整流器,以前被简称为可控硅。在电力二极管开始得到应用后不久,1956年美国贝尔实验室发明了晶闸管,到1957年美国通用电气公司开发出世界上第一只晶闸管产品,并在1958年达到商业化。由于其开通时刻可以控制,而且各方面性能均明显胜过以前的汞弧整流器,因而立即受到普遍欢迎,从此开辟了电力电子技术迅速发展和广泛应用的崭新时代,其标志就是以晶闸管为代表的电力半导体器件的广泛应用,有人称之为继晶体管发明和应用之后的又一次电子技术革命。自20世纪80年代以来,晶闸管的地位开始被各种性能更好的全控型器件取代,但是由于其所能承受的电压和电流容量仍然是目前电力电子器件中最高的,而且工作可靠,因此在大容量的应用场合仍然具有比较重要的地位。 20世纪80年代以来,信息电子技术与电力电子技术在各自发展的基础上相结合而产生了一代高频化、全控型、采用集成电路制造工艺的电力电子器件,从而将电力电子技术又带入一个崭新时代。门极可关断晶闸管、电力晶体管、电力场效应晶体管和绝缘栅双极晶体管就是全控型电力电子器件的典型代表。晶闸管的种类较多,有单向晶闸管、双向晶闸管、光控晶闸管、直流开关晶闸管(即门级可关断晶闸管)、寄生晶闸管(即功率场效应管IGBT)、无控制极晶闸管等。 晶闸管在电力电子技术上有很广泛的应用,整流电路(交流变直流)、逆变电路(直流变交流)、交频电路(交流变交流)、斩波电路(直流变直流),此外,还可用作无触点开关。 又晶闸管是半控型器件,因此在控制极和阴极间的触发信号是必不可少的。而触发电路的作用是产生符合要求的门级触发脉冲,保证在需要是晶闸管立即由阻断状态变为导通状态。广义上讲,触发电路包括对其触发时刻进行控制的相位控制环节、放大和输出环节。而触发电路的形成又有许多种形式。 本课程设计研究的是基于螺旋式晶闸管KP50的触发电路。 课程设计的方案 概述要使晶闸管开始导通,必须施加触发脉冲,在晶闸管触发电路中必须有触 发电路,触发电路性能的好坏直接影响晶闸管电路工作的可靠性,也影响系统的控制精度,正确设计触发电路是晶闸管电路应用的重要环节。

可控硅的工作原理

可控硅中频电源的工作原理 可控硅中频电源的基本工作原理,就是通过一个三相桥式整流电路,把50 Hz的工频交流电流整流成直流,再经过一个滤波器(直流电抗器)进行滤波,最后经逆变器将直流变为单相中频交流以供给负载,所以这种逆变器实际上是一只交流—直流—交流变换器,其基本线路如图2 。 下面分整流电路,逆变电路及保护回路分别进行一些介绍。 一三相桥式全控整流电路的工作原理 1 三相桥式全控整流电路的工作过程。 三相桥式全控整流电路共有六个桥臂,在每一个时刻必须2个桥臂同时工作,才能够成通路,六个桥臂的工作顺序如图3 。现假定在时刻t1-t2(t1-t2的时间间隔为60o电角度,既相当于一个周波的1/6)此时SCR 1和SCR6同时工作(图3(a)中涂黑的SCR),输出电压即为VAB。到时刻t2-t3可控硅SCR2因受脉冲触发而导通,而SCR6则受BC反电压而关闭,将电流换给了SCR2,这时SCR1和SCR2同时工作,输出电压即为VAC,到时刻t3-t4,SCR3因受脉冲触发而导通,SCR1受到VAB的反电压而关闭,将电流换给了SCR3,SC R2和SCR3同时工作,输出电压为VBC,据此到时刻t4-t5, t5-t6, t6-t1分别为SCR3和SCR4, SCR4和S CR5, SCR5和SCR6 同时工作,加到负载上的输出电压分别为VBA,VCA,VCB,这样既把一个三相交流进行了全波整流,从上述分析可以看出,在一个周期中,输出电压有六次脉冲。这种整流电路由于在每一瞬间都有两个桥臂同时导通,而且每个桥臂导通时间间隔为60o,故对触发脉冲有一定要求,即脉冲的时间间隔必须为60o,而且如果采用单脉冲方式,脉冲宽度必须大于60o,如果采用窄脉冲,则必须采用双脉冲的方法, 既在主脉冲的后面60o的地方再出现一次脉冲。 2 三相同步及触发线路 1)三相同步的选取及整形 根据三相桥式全控整流过程的有关要求,首先要保证触发电路与三相电源严格同步。既有A相产生的触发脉冲必须接于整流电路1号,4号可控硅(称为正A负A ),B相产生的触发脉冲接于3号,6号可控硅(称为正B负B),C相产生的触发脉冲接于5号,2号可控硅(称为正C负C)。本系统(如图4整流触发线路)整流触发线路里,三相同步信号直接取之380V电压,接入主控板的同步输入端,X10(A),X20(B),X30(C)。通过降压电阻降压,进入由W1,W2,W3,C1,C2,C3组成的三相同步滤波,整形,平衡电路。它的特点是由W1,C1(单相说明)组成积分电路。电容量一定,改变阻值大小就可改变时间常数。其作用有:(1)滤除网电杂乱尖峰波干扰,使同步信号纯正,定位准确,避免整流可控硅误动作。(2) 调整三相不平衡度,调节移相范围可达12o使整流桥输出平衡。 2)整流触发的形成

晶闸管过零触发电路

精心整理 TSC 的触发电路 1.介绍晶闸管投切电容器的原理和快速过零触发要求 晶闸管投切电容器组的关键技术是必须做到电流无冲击。晶闸管投切电容器组的机理如图一所示,信息请登陆:输配电设备网 当电路的谐振次数n 为2、3时,其值很大。 式(2)的第三项给出当触发角偏离最佳点时的振荡电流的幅值;式(2)中的第二项给出当偏离最佳予充电值时振荡电流的幅值。若使电容器电流ic=C*du/dt=0,则du/dt=0,即晶闸管必须在电源电压的正或负峰值触发导通投切电容器组,电容器预充电到峰值电压。 1. 当得到TSC 电管+高。如果 MOC3083芯片内部有过零触发判断电路,它是为220V 电网电压设计的,芯片的双向可控硅耐压800V ,在4、6两端电压低于12V 时如果有输入触发电流,内部的双向可控硅就导通。 用在380V 电网的TSC 电路上要串联几只3083。在2控3的TSC 电路应用如图四: 图四2控3的TSC 电路 用2对晶闸管开关控制3相电路,电路简单了,控制机理复杂了。这种触发电路随机给触发命令要出现下面的许多麻烦问题。 快速动作时,有触发命令,一对晶闸管导通另一对晶闸管不通电压反而升高了,限于篇幅和重点,本文不分析为什么电压反而高了,只是从测量的2控3电路中看到了确实存在电压升高的现象和危险,这种现象如同倍压整流电路直流电压升高了一样。图五测量不正常工作的两对晶闸管的电压波形。此试验晶闸管存在高压击穿的可能,所以用调压器将电网电压调低。晶闸管导通时两端电压

为零,不导通,晶闸管有电容器的直流电压和电网的交流电压。测量C相停止时峰峰值电压为540V,其有效值=,图中C相升高的电压峰值为810V,升高电压约为电网电压有效值的倍数:。推算,400V 电压下工作,晶闸管有可能承受的电压,400V电网的TSC电路多数是采用模块式的晶闸管,模块的耐压不高,常规为1800V,升高的管压降很容易击穿晶闸管元件。信息请登陆:输配电设备网图五不正常的两对晶闸管的电压波形信息来自:输配电设备网*在晶闸管电压波形过零点,串联的MOC3083由于分压不均匀,使得3083有的导通有的停止。电网电压升高时,原先导通的依然导通,不同的要承受更高的电压,3083有可能击穿。信息请登陆:输配电设备网 *在初次投切时有一定的冲击。下面是国外着名产品的首次投切的电流波形。 图六:国外公司产品的第一次触发冲击波形 记录C相晶闸管两端电压,A相电流。电流投切冲击很大,使得电网电压都产生了变形。信息来自: * * * * 3. 努力, 源: 切停止后,电容器上有电网峰值电压,晶闸管在电网电压和电容器直流电压的合成下,存在着过零电压,在过零点触发晶闸管是理想状态,应该没有冲击电流。 新触发电路达到了快速20ms动作,两路晶闸管都动作,无电流冲击,晶闸管在停止时的承受电压低,最大为3倍的有效值电压。 用双踪示波器测试波形.一只表笔测量晶闸管两端的电压和另一只测量晶闸管的电流波形,这样,可以看出晶闸管是否在过零点投入,又可以看出投入时的电流冲击。由于使用两个开关控制三相电路,用双踪示波器分别测量两路的电压电流,就可以完整的观察到触发器运行的效果。A探头为电压,B探头为电流。 图十二为:连续投切的A相晶闸管电压和C相电流的动作波形。 横轴为时间200ms/格,纵轴电压500V/格,电流20A/格。可控硅工作时两端的电压零,线路中有电流,停止时可控硅两端有电压,电流为零。在连续动作中,电流没有冲击。

igbt中频电源节能优势完整资料

IGBT中频电源的节能优势 我国是铸造大国,铸铁件年产量几年来均居世界各国之首位,而其能耗在成本中所占比例却比工业发达国家高出2—3倍,冲天炉的能耗占了其中的大部分。主要原因是小容量冲天炉所占比例太大,而其中采用烟尘净化和余热回收装置的微乎其微,实现高水平熔炼和计算机控制的更少了。我国铸铁生产车间一万多个,每个车间年平均产量不足1000t,冲天炉开炉时间短。在冲天炉结构方面,由于我国铸造厂点过多,限制了大容量冲天炉的使用。由于产量低,效益差,限制了性能优越的现代化冲天炉及其配套设备的采用。操作不当不但对冲天炉性能造成不良影响,也是增加冲天炉能耗和环境污染的重要原因,在我国为数众多的小容量冲天炉上,更是普遍存在的现象。中频技术应用于铸造行业给铸造推广高质量、高效率、节能环保、低碳的中、高频科技技术应用与中国的铸造行业,是保持中国铸造业可持续发展的一项重大举措。与传统的冲天炉熔炼相比,中频技术应用于熔炼、精铸诠释了科技的力量。 中频感应电炉经历了两次根本的变革,第一次变革源于20世纪60年代后期开发的晶闸管静态变频电源,第二次源于20世纪70年代中期开发的逆变变频及其控制技术。这样使中频感应电炉的优越性得以充分的发挥。随着大功率晶闸管变频电源的开发和可靠性的提高,中频感应电炉正在逐步替代工频感应电炉而在铸造业获得愈来愈广泛的应用。 中频电源的基本工作原理,就是通过一个三相桥式整流电路,把50 Hz的工频交流电流整流成直流,再经过一个滤波器(直流电抗器)进行滤波,最后经逆变器将直流变为单相中频交流以供给负载,所以这种逆变器实际上是一只交流—直流—交流变换器,其基本线路如图: 中频炉的感应加热原理,它是利用电磁感应原理将电能转变为热能,当交变电流i感应线圈时,感应线圈便产生交变磁通Φ,使感应中的工件受到电磁感应而产生感应电动势e。 感应电动势e = dΦ/dt 如果磁通Φ是呈正弦变化的,即Φ = -Φm sinwt 则 e = -dΦ/dt=-Φm sinwt E的有效值 E=4.44fΦM (伏) 感应电动势E在工件中产生电流I, i使工件内部开始加热,其焦耳热为; Q=0.24I2Rt I--工件中感应电流的有效值(安) R--工件电阻(欧); t—时间(秒) 中频电源从最初的发展到今天应用于铸造行业,电源种类从原理上可以分为两类,一传统的可控硅中频

可控硅中频电源作用原理__可控硅中频电源优点

可控硅中频电源作用原理__可控硅中频电源优点 可控硅中频电源想必大家都有一定的了解和认识,很多人都来咨询小编关于可控硅中频电源作用原理,看来大家认识的还是皮毛知识。可控硅中频电源装置简称可控硅中频装置,是利用可控硅的开关特性把50Hz的工频电流变换成中频电流的一种电源装置,主要是在感应熔炼,感应加热,感应淬火等领域中广泛应用。说了这么多,是不是觉得认识可控硅中频电源很有用呢,今天小编给大家讲解一下关于可控硅中频电源作用原理以及可控硅中频电源优点的相关知识,希望可以帮助大家更好的选择可控硅中频电源生产厂家。 可控硅中频电源控制部分主要由电源、调节器、移相控制、保护电路、相序自适应电路、启动演算电路、逆变频率跟踪、逆变脉冲形成、脉冲放大及脉冲变压器组成.可控硅中频电源核心部件采用美国生产的高性能高密度大规模专用ASIC-2集成电路,使其内部电路除调节器外,其余均实现数字化,整流触发器部分不需要任何调整,而且可靠性高、脉冲对称度高、抗干扰能力强、反应速度快等特点,又由

于有相序自适应电路,可控硅中频电源无需同步变压器,所以,现场调试中免去了调相序、对同步的工作,仅需把KP可控硅的门极线接入控制板相应的接线端上,整流部分便能投入运行。 【可控硅中频电源优点】 1、可控硅中频电源效率高,可控硅电源装置具有相当高的变换效率(百分之90-95),输出功率低时,电源转换效率并不降低,特别是在热处理行业中,有些被加热工件需要分段加热,频繁开机和停机,在停机状态下无损耗。因此,在感应加热行业中采用可控硅中频装置可节约能源。 2、可控硅中频电源体积小重量轻,可控硅变频装置由半导体元件组成,没有复杂的机械旋转部分无震动,噪音小,安装时对地面基础无特殊要求。 3、可控硅中频电源操作方便,可控硅装置的功率调节范围大。频率可随负载参数改变而自动变化(既所谓频率跟踪)。负载回路保持在近乎谐振状态,既在很好状态下工作。再加上它有一系列的自动保护装置,使它的工作稳定可靠。 4、可控硅中频电源启动灵活,可控硅变频装置一般采用零压软启动,启动成功率高无冲击,快而平稳。基于以上几个方面,并伴随着新的专有集成电路的开发成功,其高度的稳定性及结构紧凑性,深受广大

单向双向可控硅触发电路设计原理

单向/双向可控硅触发电路设计原理 1,可以用直流触发可控硅装置。 2,电压有效值等于U等于开方{(电流有效值除以2派的值乘以SIN二倍电阻)加上(派减去电阻的差除以派)}。 3,电流等于电压除以(电压波形的非正弦波幅值半波整流的两倍值)。 4,回答完毕。 触摸式台灯的控制原理 这种台灯的主要优点是没有开关,使用时通过人体触摸,完成开启、调光、关闭动作,给使用带来方便。 一、电路设计原理 人体感应的信号加在电源电路可控硅的触发极,使电路导通,并给负载——灯泡或灯管供电,使灯按弱光、中光、强光、关闭4个状态动作,达到调光的目的。电路见图1,该电路的关键器件是采用CMOS工艺制造的集成电路BA210l。 二、降压稳压电路 由R3、VDl、VD4、C4组成。输出9V直流电,供给BA2101,由③⑦脚引入。 三、触发电路 由触发电极M将人体的感应信号,经c3、R8、R7送至④脚的sP端,经处理后,由⑥脚输出触发信号,经cl、R1加至可控硅VS的G极,VS导通,电灯H点亮。第二次触摸,可改变触发脉冲前沿的到达时间,而使电灯亮度改变。反复触摸,可按弱光、中光、强光和关闭四个动作状态循环,达到调节亮度的目的。可控硅VS在动作中其导通角分别为120度、86度、17度。 四、辅助电路 VD2和vD3为保护集成电路而设。防止触摸信号过大而遭破坏。C3为隔离安全电容。R4为取得同步交流信号而设。R5为外接振荡电阻。 五、使用中经常出现的故障 (1)由震动引发的故障。触摸只需轻轻触及即可。但在家庭使用中触击的强度因人而异,小孩去触摸可能是重重的一拳。性格刚烈的人去触摸,可能引起剧烈震动。因此经常出现灯泡断丝。 (2)集成块焊脚由震动而产生脱焊。如③脚脱焊,使电源切断而停止工作;④、⑥脚脱焊,使触摸信号中断,都会引起灯泡不亮。因此要检查集成块各脚是否脱焊。 (3)可控硅VS一般采用MAC94A4型双向可控硅,由于反复触发,或意外大信号触发,会引起可控硅击穿而停止工作。 触摸式台灯的控制原理 这种台灯的主要优点是没有开关,使用时通过人体触摸,完成开启、调光、关闭动作,给使用带来方便。 一、电路设计原理 人体感应的信号加在电源电路可控硅的触发极,使电路导通,并给负载——灯泡或灯管供电,使灯按弱光、中光、强光、关闭4个状态动作,达到调光的目的。电路见图1,该电路的关键器件是采用CMOS工艺制造的集成电路BA210l。 二、降压稳压电路 由R3、VDl、VD4、C4组成。输出9V直流电,供给BA2101,由③⑦脚引入。 三、触发电路 由触发电极M将人体的感应信号,经c3、R8、R7送至④脚的sP端,经处理后,由⑥脚输出触发信号,

KGPS可控硅中频电源与IGBT晶体管中频电源的比较解析

KGPS可控硅中频电源与IGBT晶体管中频 电源的比较 一、新型IGBT中频电源的特点 IGBT(绝缘栅双极晶体管)是MOSFET(双极型晶体管)与GTR(大功率晶体管)的复合器件。因此,它既具有MOSFET的工作速度快、输入阻抗高、驱动电路简单、热温度性好的优点,又包含了GTR的载流量大,阻断电压高等多项优点,是取代GTR和SCR( 可控硅)的理想开关器件。从1996年至今,尤其是最近几年来IGBT发展很快,目前已被广泛地应用于各种逆变器中。 (1)IGBT控制是采用导通宽度及频率来实现对输出功率进行无级调节的中频电源,且采用串联谐振,无需加启动电路及前级调压装置,因此启动相当方便,启动成功率百分之百,调节输出功率极为方便。 (2)整流部分采用二极管三相全桥整流,使得控制电路极为简单,维修技术量降低。 (3)目前大部分厂家采用德国西门子公司产品作逆变器,中频电源寿命在3万次以上,采用了限压过流过压保护电路,使得故障率极低,并且过流过压保护动作时报警器马上报警显示且保护停机。 综上所述,IGBT中频电源作为铸造熔炼中频感应加热电源,是电力电子技术发展的必然趋势,它将成为二十一世纪铸造行业现代化的重要标志。 二、一拖二感应电炉系统 一拖二感应电炉系统即功率共享电源系统的感应电炉,。即一台中频电源能同时向二台电炉供电,并能在额定功率范围内自由分配向各台电炉的输入功率。它从上世纪90年代初在国外问世,恰好遇到我国经济改革开放的大发展年代,因此这种电炉系统几乎同步进入我国的铸造业,并且得到铸造界的青睐和认同。但碍于当时国内电炉制造商尚未开发出该项技术,而进口设备的昂贵价格又使许多铸造厂望而怯步,限制了它在我国铸造业的广泛应用。据相关资料介绍,从我国1993年引进第一台一拖二电炉系统起到目前为止,全国现有一拖二电炉系统大约共计有近100套左右,其中功率最大的一套为6000kW功率共享电源配置二台8吨电炉。 一拖二电炉的优点

晶闸管(可控硅)的结构与工作原理

一、晶闸管的基本结构 晶闸管(Semi co ndu cto rC ont roll ed Re ctifier 简称SCR)是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K)和门极(G)。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。 图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定

的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。 图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V左右,特性曲线CD段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <, A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。

可控硅中频电源安全操作规程(通用版)

可控硅中频电源安全操作规程 (通用版) The safety operation regulations are the guiding documents for the safe operation of the post. It stipulates the specific details of the safe operation methods of the post. ( 操作规程) 单位:_______________________ 部门:_______________________ 日期:_______________________ 本文档文字可以自由修改

可控硅中频电源安全操作规程(通用版) 存在安全隐患:高温热辐射、烤伤、热源对眼睛的伤害、烫伤 1、工作前认真检查设备各系统部分状况,如中频冷却水压力(0.2MPa),水位是否合格、水泵和风机是否工作正常等。还应检查各电气操作开关。 2、打开水泵电源,设备接通冷却水,并保证冷却水的流量和压力足够(0.15MPa),且水质清洁。然后启动中频冷却塔,使中频设备处于通水状态。 3、在确保水路正常后才可以给设备送电。合上可控硅中频的电源,按下控制合按钮,接触器吸合,调节门上电位器至零位。 4、按下主电合按钮,主电源交流接触器吸合,然后按下中频合按钮,把调功电位器调至中频启动成功,看阻抗等值合适后

再升功。 5、关机时首先将调功电位器调至零位,依次按下中频分按钮、主电分按钮、控制分按钮。 6、切记出现过流、过压等故障动作,要重新工作,必须将调功电位器调至零位,最后按下中频分按钮,然后进行第二次启动。 处置方法及其措施:穿戴好劳动防护用品;配戴耐高温手套、工作时人员不能离开岗位。 可在本位置填写公司名或地址 YOU CAN FILL IN THE COMPANY NAME OR ADDRESS IN THIS POSITION

晶闸管触发驱动电路设计-张晋远

宁波广播电视大学 机械设计制造及其自动化专业 《机电接口技术》 课程设计 题目晶闸管触发驱动电路设计 姓名张晋远学号1533101200119 指导教师李亚峰 学校宁波广播电视大学 日期2017 年 4 月20 摘要 晶闸管是一种开关元件,能在高电压、大电流条件下工作,为了控制晶闸管的导通,必须在控制级至阴极之间加上适当的触发信号(电压及电流),完成此任务的就是触发电路。本课题针对晶闸管的触发电路进行设计,其电路的主要组成部分由触发电路,交流电路,同步电路等电路环节组成。有阻容移相桥触发电路、正弦波同步触发电路、单结晶体触发电路、集成

UAA4002、KJ006触发电路。包括电路的工作原理和电路工作过程以及针对相关参数的计算。 关键词:晶闸管;触发电路;脉冲;KJ006; abstract Thyristor is a kind of switch components, can work under high voltage, high current conditions, in order to control thyristor conduction, must be between control level to the cathode with appropriate trigger signal (voltage and current), complete the task is to trigger circuit. This topic in view of the thyristor trigger circuit design, the main part of the circuit by the trigger circuit, communication circuit, synchronous circuit and other circuit link. There is a blocking phase bridge trigger circuit, the sine wave synchronous trigger circuit, the single crystal trigger circuit, the integrated UAA4002, the KJ006 trigger circuit. This includes the working principle of the circuit and the circuit working procedure and the calculation of the relevant parameters. Keywords: thyristor; Trigger circuit; Pulse; KJ006; 目录 第一章绪论 1.1设计背景与意义…………………………………… 1.2 晶闸管的现实应用……………………………………

可控硅元件的工作原理及基本特性

可控硅元件的工作原理及基本特性 1、工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示 图1 可控硅等效图解图 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1 状态条件说明 从关断到导通1、阳极电位高于是阴极电位 2、控制极有足够的正向电压和电流 两者缺一不可 维持导通1、阳极电位高于阴极电位 2、阳极电流大于维持电流 两者缺一不可 从导通到关断1、阳极电位低于阴极电位 2、阳极电流小于维持电流 任一条件即可 2 可控硅的基本伏安特性见图2 图2 可控硅基本伏安特性 (1)反向特性 当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。此时,可控硅会发生永久性反向击穿。

中频电源原理图及调试方法、故障排除与实例

中频电源原理图及调试方法、故障排除与实例

中频电源调试步骤 首先把调节板中W1过流、W2过压电位器右旋到底;W6电位器右旋到底少回旋;W3、W4电位器调到中间基本水平位置;启动中频电源,调到直流电压到200V,再调W3,直到中频电压是直流电压的倍,停止中频电源,把控制板DIP-1开关拨到下侧(开)再启动中频电源,调到直流电压到200V,再调W4,直到中频电压是直

流电压的倍,停止中频电源,频电压是直流电压的倍,停止中频电源,把控制板DIP-1开关拨到上侧(关),启动中频电源,看中频电压是否能升到750V,直流电压是否能升到500V,如果达不到以上数值,可调节W2达到以上额定值;中频电压再调到200V,加料使电流升高,左旋W1电位器,使电流调至额定电流。

中频电源的故障排除与实例 1 维修前的准备工作 a) 维修时所需的工具有:数字万用表或指针万用表、20M以上双踪示波器、500V摇表、25W 电烙铁、螺丝刀、扳手等。 b) 维修时所需的资料有:设备有关电气图、说明书等技术资料。 c) 维修前应先了解设备的故障现象,出现故障时所发生的情况,以及查看设备的记录资料。 d) 备一些易损件和常用的元器件。 e) 维修前有必要对设备进行一下全面检查,紧固所有连接线和端子,看一下有无出现发黑、打火、短接、虚接等。 2 故障排除 初调的电源出现故障,整机启动失败,并伴随一定的现象,现说明如下: A) 按下中频启动按钮,调节功率电位器,电源毫无反应或只有直流电压无中频电压,其原因可能是: a.负载开路及感应器未接入; b.逆变脉冲功率过小或无脉冲,逆变管未被触发; c.整流电路发生故障,无整流输出。 B) 按下中频启动按钮后,过流保护动作,整流拉入逆变状态。 对新安装的电源,应检查电压极性是否正确,逆变脉冲的极性是否正确,引前角是否太小。 对已运行的电源不存在极性问题,可以从以下几方面分析: a. 晶闸管有无损坏,用万用表测量判断

中频电源的原理与维修

晶闸管中频感应加热电源是利用晶闸管将三相工频交流电能变换成几百或几千赫兹的 单相交流电能。具有控制方便、效率高、运行可靠、劳动强度低的特点,广泛用于铸钢、不锈钢或合金钢的冶炼、真空冶炼、锻件的加热和钢管的弯曲、挤压成型、工件 的预热、钢件表面淬火、退火热处理、金属零件的焊接、粉末冶金、输送高温工质的 管道加热、晶体的生长等不同场合。在我厂,中频电源装置主要用于铸钢、不锈钢和 青铜等的冶炼。 中频电源的工作原理为:采用三相桥式全控整流电路将交流电整流为直流电,经电抗器平波后,成为一个恒定的直流电流源,再经单相逆变桥,把直流电流逆变成一定 频率(一般为1000至8000Hz)的单相中频电流。负载由感应线圈和补偿电容器组成,连接成并联谐振电路。 一般情况下,可以把中频电源的故障按照故障现象分为完全不能起动和起动后不 能正常工作两大类。作为一般的原则,当出现故障后,应在断电的情况下对整个系统 作全面检查,它包括以下几个方面: (一)电源:用万用表测一下主电路开关(接触器)和控制保险丝后面是否有电,这将排除这些元件断路的可能性。 (二)整流器:整流器采用三相全控桥式整流电路,它包括六个快速熔断器、六 个晶闸管、六个脉冲变压器和一个续流二极管。在快速熔断器上有一个红色的指示器,正常时指示器缩在外壳里边,当快熔烧断后它将弹出,有些快熔的指示器较紧,当快 熔烧断后,它会卡在里面,所以为可靠起见,可以用万用表通断档测一下快熔,以判 断它是否烧断。 测量晶闸管的简单方法是用万用表电阻挡(200Ω挡)测一下其阴极—阳极、门极—阴极电阻,测量时晶闸管不用取下来。正常情况下,阳极—阴极间电阻应为无穷大,门极—阴极电阻应在10—50Ω之间,过大或过小都表明这只晶闸管门极失效,它将不能被触发导通。 脉冲变压器次边接在晶闸管上,原边接在主控板上,用万用表测量原边电阻约为50Ω。续流二极管一般不容易出现故障,检查时用万用表二极管挡测其二端,正向时 万用表显示结压降约有500mV,反向不通。 (三)逆变器:逆变器包括四只快速晶闸管和四只脉冲变压器,可以按上述方法 检查。

可控硅中频电源安全操作规程示范文本

可控硅中频电源安全操作规程示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

可控硅中频电源安全操作规程示范文本使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 存在安全隐患:高温热辐射、烤伤、热源对眼睛的伤 害、烫伤 1、工作前认真检查设备各系统部分状况,如中频冷 却水压力(0.2MPa),水位是否合格、水泵和风机是否工 作正常等。还应检查各电气操作开关。 2、打开水泵电源,设备接通冷却水,并保证冷却水 的流量和压力足够(0.15MPa),且水质清洁。然后启动中频 冷却塔,使中频设备处于通水状态。 3、在确保水路正常后才可以给设备送电。合上可控 硅中频的电源,按下控制合按钮,接触器吸合,调节门上 电位器至零位。 4、按下主电合按钮,主电源交流接触器吸合,然后

按下中频合按钮,把调功电位器调至中频启动成功,看阻抗等值合适后再升功。 5、关机时首先将调功电位器调至零位,依次按下中频分按钮、主电分按钮、控制分按钮。 6、切记出现过流、过压等故障动作,要重新工作,必须将调功电位器调至零位,最后按下中频分按钮,然后进行第二次启动。 处置方法及其措施:穿戴好劳动防护用品;配戴耐高温手套、工作时人员不能离开岗位。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

可控硅电源说明书

KGPS晶闸管淬火加热中频电源技术说明书 概述:KGPS型可控硅中频电源是一种静止变频装置,利用可控硅元件将工频三相交流电源变换成中频单相交流电源,主要应用于感应加热.感应熔炼及其他需要中频电源供电的场合.由于它具有整机效率高,重量轻,噪音小,起停迅速而且对电网无冲击,频率自动跟踪负载参数变化,功率调节方便等一系列优点.因而,它正在逐步取代中频发电机组.本装置主电路采用"交流——直流——交流"变换系统由三相全控桥式整流电路,电感虑波电路,并联逆变电路组成.可控硅元件用水冷却.其控制系统由集成 电路组成性能稳定,可靠.启动采用先进的扫频式零电压方式,安全,方便.维修简便,经济,特别使用于金属弯管、焊接、加热及热处理工况. MPU—7恒功率晶闸管中频电源控制板,主要由电源、调节器、移相控制电路、保护电路、启动演算电路、逆变频率跟踪、逆变脉冲形成、脉冲放大及脉冲变压器组成。其核心部件采用美国生产的高性能、高密度、超大规模专用MPU集成电路,使其电路除调节器外,其余均实现数字化,整流触发器部分不需要任何调整,而且可靠性高、脉冲对称度高、抗干扰能力强、反应速度快等特点,又由于有相序自适应电路,无需同步变压器,所以,现场调试中免去了调相序、对同步的工作,仅需把K P晶闸管的门极线接入控制相应的接线端上,整流部分便能投入运行。 逆变采用特殊的扫频式零压软启动方式,启动性能优于普通的扫频式零压软启动电路和零压软启动电路。并设有自动重复启动电路和全电压启动电路,自动重复启动可防止中频电源偶尔的启动失败,使启动成功率达到100%;全电压启动电路设有给定限幅电路,当电源偶尔启动失败时,它能使电源电流控制在一定范围内,并在电源启动成功后使中频电流电压平稳上升。因此本控制板可以满足电源频繁快速启动的功能。 2、正常使用条件 2.1海拔不超过2000米。 2.2环境温度不低于-10℃,不高于+40℃。 2.3空气最大相对湿度不超过90%(20℃±5℃时)。 2.4运行地点无导电及爆炸性尘埃,无腐蚀金属和破坏绝缘的气体或蒸汽。 2.5无剧烈振动和冲击。 3、主要技术参数 3.1主电路进线额定电压:380V(50HZ) 3.2控制供电电源:单相17V/3A。 3.3中频电压反馈信号:AC 15V/15mA。 3.4电流反馈信号:AC 15V/5mA三相输入。 3.5整流触发脉冲移相范围:α=0~130°。 3.6整流触发脉冲不对称度:小于1°。

相关主题
文本预览
相关文档 最新文档