当前位置:文档之家› InSb制备工艺的研究

InSb制备工艺的研究

InSb制备工艺的研究
InSb制备工艺的研究

InSb制备工艺的研究

Ⅲ-Ⅴ族化合物半导体是由周期表中ⅢA和ⅤA族元素化合而成。自从1952年H.Wellker研究了它们的半导体性质以后,50多年来,由于它们独特的能带结构与性质,获得很大的发展,目前在微波与光器件等领域得到广泛的应用。In 的化合物,一般都具有较大的电子迁移率,可用来做霍尔器件。InSb是研究的比较成熟的化合物半导体材料之一,它的禁带宽度仅有0.18eV,可用于红外光电器件和超低温下工作的半导体器件。由于InSb材料具有较高的室温电子迁移率和较小的禁带宽度,在电场作用下具有优异的电子输运性能,是制作3~5μm 红外探测器和成像系统的重要材料。另外,InSb及其合金的光发射与一些主要气体如CO、CO2等的基本吸收线相匹配,因而也可使用InSb基发光器件和探测器件制成气体传感系统。近年来,通过在硅基上生长高性能的InSb结构,充分利用硅基材料与InSb材料的优点,实现了功能器件和电路的融合,颇具工程价值而成为纳米尺度器件发展的重要方向。

InSb薄膜是一种III-VI族化合物半导体薄膜,是目前电子迁移率最高的一

种薄膜半导体材料,用该薄膜制做的InSb霍尔元件是磁敏传感元件中灵敏度最

高的,也是磁敏传感元件中用量最大的一种。主要用于电脑、录像机、VCD、DVD、

汽车、散热风扇等产品中的无刷直流电机上。同时,半导体磁阻型传感器广泛应

用于自动控制、测量等领域,如转速传感器,电流传感器,位置传感器和图像识别

传感器等,而高灵敏度半导体磁阻元件是这种磁阻传感器的核心部件。因此,具有

较高电子迁移率和良好的磁阻特性的InSb薄膜已成为制作半导体磁阻型传感器

的关键,具有广阔的市场前景和发展潜力。

目前,InSb薄膜的制备方法有真空蒸镀法(包括闪蒸法)、分子束外延法(MBE)、有机金属外延法(MOCVD)、磁控溅射法、电子束蒸镀法、离子束薄膜淀积技术等。

其中真空蒸镀法是国内外运用最广泛也最具代表性的方法。利用真空镀膜技

术,可以实现玻璃基片上制得电子迁移率为40000cm2/V.S的InSb薄膜;在氮气、

氦气等保护性气氛下,通过对InSb薄膜的两个阶段的热处理过程可以获得电子

迁移率为40000cm2/V.S的InSb薄膜,利用真空下氩气保护液相重结晶的方法对

InSb薄膜进行热处理,可以使电子迁移率提高到4.47×104cm2/V.s。

目前的InSb薄膜工艺技术研究解决了用In、Sb单质蒸镀工艺,在磁性和非磁性基底上替代InSb单晶蒸镀制作多晶膜的工艺技术,降低了成本,提高了成品率。工艺采用三温区法,控制两个蒸发源和基底的温度,使成膜后Sb的分子浓度较低,即处于富In状态。在热处理过程的后半部分,由于共晶点的退化,会析出

In固相,因此得到InSb-In共晶体。工艺还控制结晶条件和过程,使得析出的In 成为针状的排列而起到短路电极的作用,提高了灵敏度。同时采用选择性湿法刻蚀工艺,特别是InSb-Au欧姆接触膜层的选择性刻蚀工艺制作电极,工艺成品率达到70%以上。用该InSb薄膜开发的InSb霍尔元件已经大规模进行批量生产。

用热蒸镀或是溅射法制备的InSb薄膜,还存在大量的In、Sb两项单质,膜的晶粒尺寸很小,且为InSb、In、Sb各相的混合物。为了提高InSb薄膜的电子迁移率,要对所制得的薄膜进行热处理。热处理的温度非常关键,过去对InSb的热处理怕重熔后InSb的再次挥发,一般选择熔点下的某一温度。目前的处理工艺是先将真空中蒸镀好的InSb薄膜表面氧化,使之表面形成一层In2O3钝化膜,用来保护InSb膜在热处理过程中不被氧化,并防止热处理过程中Sb的挥发;然后将氧化过的InSb薄膜置于管式加热炉内,在高于InSb熔点的某一温度范围内,在Ar等惰性气体保护性气氛下或是真空条件下对InSb薄膜进行熔融热处理,以便彻底改变蒸发过程中使InSb薄膜纵向分布不均匀而造成的富Sb、InSb、In多层结构,使之形成理想的InSb化合物多晶薄膜。而且通过恰当的处理时间还可以使InSb的晶粒进一步长大,提高结晶性能,提高InSb薄膜的纯度,减小晶粒效应,从而提高其电子迁移率。

对InSb薄膜的表面形貌分析主要由能将微细物相放大成像的显微镜来完成。目前一些显微镜,如扫描电子显微镜(SEM)、扫描隧道显微镜(STM)、原子力显微镜(AFM)场离子显微镜(FIM)等都已达到原子分辨能力,可直接观察到InSb

表面原子的排列。InSb薄膜成分分析包括测定其元素组成,化学态及元素的分布。主要方法有俄歇电子能谱(AES)、X射线光电子能谱(XPS)、电子探针分析(EMA)、二次离子质谱等。分析InSb薄膜的结构大多科研机构主要采用X射线衍射的方法,对薄膜的原子排列、晶胞大小、晶体取向、结晶对称性等进行分析。

InSb薄膜的制备及其性质和应用的研究,在近几年引起了人们的广泛注意

和兴趣。化合物半导体薄膜在理论上是一个重要研究课题,因为它涉及到结晶学、金相学和晶体结构等一系列理论问题。同时薄膜的研究也给半导体器件的发展带来广阔的前途。在国外,InSb薄膜是从70年代初开始研究的。一些发达国家很重视该薄膜技术的研究。特别是日本,他们成功地研究了InSb薄膜并用其制成了性能价格比最高的InSb霍尔元件,因而使得日本的磁敏元件水平代表了当今的国际水平。他们生产的灵敏度最高,价格最低的InSb霍尔元件目前的国际市场中

几乎占垄断地位。如日本旭化成公司1986年生产InSb薄膜霍尔元件1.7亿只,到1993年年产量达5亿只,它垄断了世界市场的60~70%的需求量。我国已引进的记录仪、计算机外部设备、录像机等生产线,由于我们没有能力每年生产与之配套的数百万只性能先进、价格低廉的磁敏元件,所以只好全部依赖进口。要改变这种现状就必须首先研制出性能好,造价低的InSb薄膜。在这种情况下,我们从“七·五”、“八·五”以来对该InSb薄膜的制备技术进行了较系统的研究,解决了制造过程中的关键技术并成功地用该薄膜制造了薄膜型InSb霍尔元件。

InSb薄膜的制备及其性质和应用的研究,在近几年引起了人们的广泛注意和兴趣。化合物半导体薄膜在理论上是一个重要研究课题。在我国,台湾国立中山大学、沈阳仪器仪表工艺研究所、天津大学、浙江大学等单位对InSb薄膜的制备技术进行了比较系统和深入的研究,解决了薄膜制造过程中的关键技术,并成功的用该薄膜制造了薄膜型InSb磁阻型元件。

氨水制备工艺系统介绍

氨水制备工艺系统介绍 一、概述 在国家节能减排政策得要求下,全国各大电厂、钢厂与新建锅炉厂脱除烟气中二氧化硫以迫在眉睫,老企业不上脱除二氧化硫装置就要关闭,新建厂锅炉不上烟气脱除二氧化硫装置波批准建厂。采取何种工艺脱除锅炉烟气中二氧化硫已在国际特别就是在国内近两年形成共识------采用氨法脱除锅炉烟气中二氧化硫,投资省、效益好就是个企业脱除锅炉烟气中二氧化硫得唯一选择。 氨法脱硫所用得脱硫溶液就就是氢氧化铵俗称氨水,氨水在合成氨厂(或化肥厂)就是副产品,氨水至今在国际国内仍就是较好得液体肥料,制备氨水得工艺在国内根据各个厂得产品不同有不同得工艺制备方法,作为锅炉烟气采用氨法脱除二氧化硫在合成氨厂已司空见惯。在发电厂、钢厂采取氨法脱除二氧化硫认为危险、不安全等因素威胁企业得人员心理,实际上,在脱硫溶液中采用氨水(液氨)就是最为安全得脱硫溶液。因为,其她脱硫溶液如:氢氧化钙对人身体直接伤害能力强。 二、制备原理 化学反应方程式:NH3+H2O=NH4OH+Q 此反应为放热反应,每一吨液氨溶于水中放出300000千卡/吨 从反应方程式中分析得出:

1.放热反应参加反应得水得温度低,有利于生成氨水。 2.体积缩小反应:提高压力有利于生成氨水。 3.由于氨水就是强碱性要求水为化学软水最好,以防反应过程由于钙离子、镁离子得存在在60℃左右形成结垢堵塞管道等设备。 根据以上反应原理分析我们选用制备氨水条件为: 1.水温度小于32℃。 2.压力小于1、6MPa。 3.水选用化学软水。 三、氨水制备生产工艺流程 1、鼓泡吸收:依据氨易溶于水得特性,一般生产能力为减少投资采用此方法:一个罐内放水,从下面通入液氨经行鼓泡吸收,放热不取出,达到饱与后正常压力下NH3得浓度为5-6%、此法只能作尾气回收用。 2、泡罩塔吸收:此法为一加压(0、2-0、5MPa)泡罩塔吸收,主要用于合成吹除气(含NH312%左右)与贮罐气(NH360%左右)中得NH3回收氨水浓度一般在5%左右,此工艺设备投资高操作易发生液泛现象,主要用于合成氨厂含NH312-60%得回收利用。 3、用液氨直接吸收作氨水:用液氨直接于水接触生成氨水,此工艺在化肥厂氨加工产品不生产时普遍

软胶囊生产工艺技术及设备

软胶囊生产工艺技术及设备 一、概述 软胶囊是继片、针剂后发展起来的新剂型,系将油状药物、药物溶液或药物混悬液、糊状物甚至药物粉末定量压注并包封于胶膜内,形成大小、形状各异的密封胶囊,可用滴制法或压制法制备。软胶囊囊材是用明胶、甘油、增塑剂、防腐剂、遮光剂、色素和其它适宜的药用材料制成。其大小与形态有多种,有球形(0.15~0.3ml)、椭圆形(0.10~0.5ml)、长方形(0.3~0.8ml)及筒形(0.4~4.5ml)等,可根据临床需要制成内服或外用的不同品种,胶囊壳的弹性大,故又称弹性胶囊剂或称胶丸剂。 软胶囊的主要特点: 1、整洁美观、容易吞服、可掩盖药物的不适恶臭气味。 2、装量均匀准确,溶液装量精度可达±1%,尤适合装药效强、过量后副作用大的药物,如甾体激素口服避孕药等。 3、软胶囊完全密封,其厚度可防氧进入,故对挥发性药物或遇空气容易变质的药物可以提高其稳定性,并使药物具有长的存储期。 4、适合难以压片或贮存中会变形的低熔点固体药物。 5、可提高药物的生物利用度。

6、可做成肠溶性软胶囊及缓释制剂。 7、若是油状药物,还可省去吸收、固化等技术处理,可有效避免油状药物从吸收辅料中渗出,故软胶囊是油性药物最适宜的剂型。 8、此外,低熔点药物、生物利用度差的疏水性药物、不良苦味及臭味的药物、微量活性药物及遇光、湿、热不稳定及易氧化的药物也适合制成软胶囊。 二、软胶囊的制法 1、配料 (1)药物本身是油类的,只需加入适量抑菌剂,或再添加一定数量的玉米油(或PEG400),混匀即得。 (2)药物若是固态,首先将其粉碎过100~200目筛,再与玉米油混合,经胶体磨研匀,或用低速搅拌加玻璃砂研匀,使药物以极细腻的质点形式均匀的悬浮于玉米油中。 (3)软胶囊填充药物的非水溶液,若要添加与水相混溶的液体如聚乙二醇、吐温-80等时,因注意其吸水性,因胶囊壳水分会迅速向内容物转移,而使胶壳的弹性降低。 (4)在长期储存中,酸性内容物也会对明胶水解造成泄漏,碱性液体液体能使胶壳溶解度降低,因而内容物的PH值应控制在2.5~7.0为宜。醛类药物会使明胶固化而影响溶出;遇水不稳定的药物应采用何种保护措施等,均应在内容物的配方时考虑。

霍尔元件应用

霍尔元件应用 霍尔元件之作用原理也就是霍尔效应,所谓霍耳效应如图1 所示,系指将电流I 通至一物质,并对与电流成正角之方向施加磁场B 时,在电流与磁场两者之直角方向所产生的电位差V 之现象。此电压是在下列情况下所产生的,有磁场B 时,由于弗莱铭(Fleming)左手定则,使洛仁子力(即可使流过物质中之电子或正孔向箭头符号所示之方向弯曲的力量:(Lorentz force)发生作用,而将电子或正孔挤向固定输出端子之一面时所产生。电位差V 之大小通常决定于洛仁子力与藉所发生之电位差而将电子或正孔推回之力(亦即前者之力等于后者之力),而且与电流I 乘以磁场B 之积成比例。比例常数为决定于物质之霍耳常数除以物质在磁场方向之厚度所得之值。 图1 霍尔组件之原理 在平板半导体介质中,电子移动(有电场)的方向,将因磁的作用(有磁场),而改变电子进的方向。电场与磁场互相垂直时,其传导的载子(电子或电),将集中于平板的上下两边,因而形成电位差存在的现象。该电位差即霍尔 电压(霍尔电压)在实际的霍尔组件中,一般使用物质中之电流载子为电子的N 型半导体材料。将一定之输入施加至霍尔组件时之输出电压,利用上述之关系予以分析时,可以获致下列的结论:(1) 材料性质与霍尔系数乘以电子移动度之积之平方根成正比。(2) 材料之形状与厚度之平方根之倒数成正比。由于上述关系,实际的霍尔组件中,可将霍尔系数及电子移动度大的材料加工成薄的十字形予以制成。 图2 系表示3~5 端子之霍尔组件的使用方法,在三端子霍尔元件之输出可以产生输入端子电压之大致一半与输出信号电压之和的电压,而在四端子及五端子霍尔组件中,在原理上虽然可以免除输入端子电压的影响,但实际上即使

硬胶囊剂的制备工艺集锦

实验十三硬胶囊剂的制备 一.实验目的 1.掌握硬胶囊制备的一般工艺过程,用胶囊板手工填充胶囊的方法;2.掌握硬胶囊剂的质量检查内容及方法。 二.实验提示 硬胶囊剂系指将药物盛装于硬质空胶囊中制成的固体制剂。 药物的填充形式包括粉末、颗粒、微丸等,填充方法有手工填充与机械灌装两种。硬胶囊剂制备的关键在于药物的填充,以保障药物剂量均匀,装量差异合乎要求。 药物的流动性是影响填充均匀性的主要因素,对于流动性差的药物,需加入适宜辅料或制成颗粒以增加流动性,减少分层。本次实验采用湿法制粒:加入粘合剂将药物粉末制得颗粒后,采用胶囊板手工填充,将药物颗粒装入胶囊中即得。 制得硬胶囊按中国药典2000 年版胶囊剂通则中有关规定进行质量检查。 三.实验内容 1.药物颗粒的制备 【处方】双氯灭痛(双氯芬酸钠Diclofenac sodium )3.75g 淀粉浆10% (Starch paste )适量 淀粉(Starch )30.0g 【制法】将主药双氯灭痛研磨成粉末状,过80 目筛,与淀粉混匀,以10% 淀粉浆制软材,将软材过20 目筛制湿颗粒,将湿颗粒于

60~70 ℃烘干,干颗粒用20 目筛整粒,即得。 2.硬胶囊的填充 采用有机玻璃制成的胶囊板填充。板分上下两层,上层有数百孔洞。先将囊帽、囊身分开,囊身插入胶囊板孔洞中,调节上下层距离,使胶囊口与板面相平。将颗粒铺于板面,轻轻振动胶囊板,使颗粒填充均匀。填满每个胶囊后,将板面多余颗粒扫除,顶起囊身,套合囊帽,取出胶囊,即得。 3.质量检查 【外观】表面光滑、整洁、不得粘连、变形和破裂,无异臭。 【装量差异检查】中国药典2000 年版规定: 平均装量装量差异限度 小于0.3g ± 10% 大于或等于0.3g ± 7.5% 检查方法:取供试品20 粒,分别精密称定重量后,倾出内容物(不能损失囊壳),硬胶囊壳用小刷或其它适宜的用具(如棉签等)拭净,再分别精密称定囊壳重量,求得每粒内容物装量与平均装量。每粒装量与平均装量相比较,超出装量差异限度的胶囊不得多于2 粒。并不得有1 粒超出装量差异限度的1 倍。 【崩解时限】崩解系指固体制剂在检查时限内全部崩解溶散或成碎粒,除不溶性包衣材料或破碎的胶囊壳外,应通过筛网。凡规定检查溶出度、释放度或融变时限的制剂,不再进行崩解时限检查。根据中国药典2000 年版规定,硬胶囊剂的崩解时限为30 分钟。

常用霍尔元件封装图以及霍尔元件对应型号和霍尔的应用

常用霍尔元件封装图以及霍尔元件对应型号和霍尔的应用 三脚插片封装是霍尔元件常用的一种封装形式,它的英文简称是 TO-92或 者SlP-3。三脚插片封装都有标准尺寸,在厚度上会有细微的厚薄之分,但不影 响使用。常用的三脚插片封装霍尔元件型号有 YS4仆.YS43F,YS44E,YS188,YS282 等等。单极,双极锁存,全极性霍尔所用三脚插片封装形式最多,可用于无刷电 机,速度检测,家用电器,玩具设备,便携式电子等所有工控领域。 霍尔三脚插片 TO-92/SIP-3 封装图 管腿说明:1?电源2.地3?输出

霍尔三脚贴片SOT-23封装图 霍尔元件封装形式中的三脚贴片封装(SOT-23)是一种小型化的封装,它 的封装体积有大有小,贴片封装相比插片封装在安装上更便捷,也更节省人工。 常用的霍尔元件三脚贴片封装型号有: YS39E,YS1254,YS3254,YS282等。

霍尔四脚贴片 SOT-23-4封装图 狂9±口】 OE IE 0 方 霍尔元件四脚贴片(SOT-23-4)封装形式,这种封装形式的霍尔有四个管脚, 双输入,双输出。四脚贴片霍尔常用型号有: HG-106C,HG106A,HG166A,HW101A,HW108A 等等,并且以线性霍尔元件居多。 主要用于磁场检测,仪器仪表,电流传感器等。 一样接 F?ning _ ? ■;jFζκ; fc / 1-, 続 ,J 入力“ InPUt B) ■ ????g - 厂士 04 F≡= ∣?∣ L∩ ■ 0~0?1

霍尔四脚插片DIP-4封装图 霍尔元件四脚插片( DIP-4)封装形式,四脚插片霍尔常用 型号有: HG-302C,HG-302A,HG-362A,HW-300B,HW-302B,HW-322B 等等,四脚插片封装 是双输入,双输出。以线性霍尔元件居多。 HG 系列四脚霍尔主要用于恒流源, HW 系列四脚霍尔主要用于恒压源。多用于电流传感器,高斯计等磁检测产品中。 1 ---- - Γ M -?≡- NE b□ — Γ M r 熾一 接続 Pinning 入力 InPUt 出力 OUtPUt ??fc? ■ " ??, ? ? 4(+) _ _ 0.95-EJ 汁 02

胶囊生产工艺规程

目的:制订诺氟沙星胶囊生产工艺规程,以提供生产车间组织生产和进行生产操作的依据。 适用范围:诺氟沙星胶囊的生产。 责任:生产车间按该工艺规程组织生产和按该规程编制标准操作程序,生产部、质管部负责监督该规程的实施。 内容: 目录 1.品名 2.剂型 3.产品概述 4.处方 5.生产工艺流程 6.生产工艺操作要求及工艺技术参数 7.生产过程的质量控制

8.物料、中间产品、成品的质量标准 9.成品容器、包装材料要求,贮存条件 10.标签、使用说明书的内容 11.设备一览表及主要设备生产能力(包括仪表) 12.技术安全、工艺卫生及劳动保护 13.物料消耗定额 14.物料平衡计算公式 15.技术经济指标及其计算方法 16.劳动组织与岗位定员 17.操作工时与生产周期 18. 附录 1.品名 通用名称:诺氟沙星胶囊 汉语拼音:Nuofushaxing Jiaonang

英文名称:Norfloxacin Capsules 2.剂型 硬胶囊剂。 3.产品概述 本品为抗菌药;规格为0.1g,于1988年正式批准在我厂生产,批准文号为&卫药准字(1996)第&&&&&号。 本品为抗菌药原料类白色至淡黄色结晶性粉末;无臭,味微苦;在空气中能吸收水分,遇光色渐变深;生产过程注意防潮及避光。 4.处方 以原料含量为99.5%计算,生产19.9万粒的生产处方是(单位:kg): 原料:诺氟沙星20.0 22.4 淀粉内加辅料: 10.0 微晶纤维素 24.8 预胶化淀粉浆粘合剂:15%1.68 羧甲淀粉钠外加辅料: 0.32 硬脂酸镁5.生产工艺流程 用示意图描述如下:

外包装外包装材料 入库 内操作。)万级(30注:背景图框内的流程,必须在洁净区 6.生产工艺要求及工艺技术参数 6.1原辅料过筛 6.1.1原料粉碎过140目筛,过筛后外观检查无异物。 6.1.2内加辅料淀粉、微晶纤维素过100目筛,外加辅料羧甲淀粉钠过100目筛,硬脂酸镁过60目筛,外观检查无异物。 6.2内加辅料与原料的混合:用高速混合制粒机混合,混合时间为180秒。 6.3加入粘合剂的混合要求:加入粘合剂后,混合制粒60秒。 6.4制粒:粒度应细小均匀,外观检查无异物。 6.5干燥 6.5.1采用GFG-500高效沸腾干燥机干燥。 6.5.2干燥过程最高温度不能超过55℃。 6.5.3颗粒水分须低于9.0%。 6.6整粒

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验 (FB510A型霍尔效应组合实验仪)(亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?

软胶囊生产工艺技术及设备

软胶囊生产工艺技术及设备 软胶囊是继片、针剂后发展起来的一种新剂型,系将油状药物、 药物溶液或药物混悬液、糊状物甚至药物粉末定量压注并包封于胶膜 内,形成大小、形状各异的密封胶囊,可用滴制法或压制法制备。软 胶囊囊材是用明胶、甘油、增塑剂、防腐剂、遮光剂、色素和其它适 宜的药用材料制成。其大小与形态有多种,有球形(0.15?0.3ml )、椭圆形 (0.10?0.5ml )、长方形(0.3?0.8ml )及筒形(0.4?4.5ml )等,可根据临床 需要制成内服或外用的不同品种,胶囊壳的弹性大, 故又称弹性胶囊剂或称胶丸剂。 软胶囊的主要特点: 确,溶液装量精度可达 ?1 %,尤适合装药效强、过 量后副作用大的药物,如甾体激素口服避孕药等。 3、软胶囊完全密封,其 厚度可防氧进入,故对挥发性药物或遇空 气容易变质的药物可以提高其稳定性,并使药物具有更长的存 储期。 适合难以压片或贮存中会变形的低熔点固体药物。 5、可提高药物的 生物利用度。 6、可做成肠溶性软胶囊及缓释制剂。 若是油状药物,还可省去吸收、固化等技术处理,可有效避免 油状药物从吸收辅料中渗出,故软胶囊是油性药物最适宜的剂 型。 此外,低熔点药物、生物利用度差的疏水性药物、不良苦味及 整洁美观、容易吞服、可掩盖药物的不适恶臭气味。 2、 装量均匀准 4、

臭味的药物、微量活性药物及遇光、湿、热不稳定及易氧化的 药物也适合制成软胶囊。 (1)药物本身是油类的,只需加入适量抑菌剂,或再添加一定 数量的玉米油(或PEG400)混匀即得。 (2)药物若是固态,首先将其粉碎过100?200目筛,再与玉米油混合,经胶体磨研匀,或用低速搅拌加玻璃砂研匀,使药物以极 细腻的质点形式均匀的悬浮于玉米油中。 (3)软胶囊大多填充药物的非水溶液,若要添加与水相混溶的 液体如聚乙二醇、吐温-80 等时,因注意其吸水性,因胶囊壳水分会 迅速向内容物转移,而使胶壳的弹性降低。 (4)在长期储存中,酸性内容物也会对明胶水解造成泄漏,碱 性液体液体能使胶壳溶解度降低,因而内容物的PH值应控制在2.5 7.0 为宜。醛类药物会使明胶固化而影响溶出;遇水不稳定的药物应 采用何种保护措施等,均应在内容物的配方时考虑。 软胶囊壳与硬胶囊壳相似,主要含明胶、阿拉伯胶、增塑剂、防 腐剂(如山梨酸钾、尼泊金等)、遮光剂和色素等成分,其中明胶: 甘油:水为1:0.3?0.4:0.7?1 .4 的比例为宜,根据生产需要,按 上述比例,将以上物料加入夹层罐中搅拌,蒸汽夹层加热,使其溶化, 保温1?2小时,静置待泡沫上浮后,保温过滤,成为胶浆备用。 软胶囊的制法有两种:滴制法和压制法。 采用滴制机生产软胶囊剂,将油料加入料斗中;明胶浆加入胶浆 斗中,并保持一定温度;盛软胶囊器中放入冷却液(必须安全无害, 和明胶不相混溶,一般为液体石蜡、植物油、硅油等),根据每一胶 丸内含药量多少,调节好出料口和出胶口,胶浆、油料先后以不同的

霍尔元件及其应用

霍尔元件及其应用 霍尔元件及其应用 摘要: 霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。本文简要介绍其 工作原理,产品特性及其典型应用。 1 引言 霍尔器件是一种磁传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔器件以霍尔效应为其工作基础。 霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。 霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。取用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~150℃。 按照霍尔器件的功能可将它们分为: 霍尔线性器件和霍尔开关器件。前者输出模拟量,后者输出数字量。 按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。 2 霍尔效应和霍尔元件 2.1 霍尔效应 如图1所示,在一块通电的半导体薄片上,加上和片子表面垂直的磁场B,在薄片的横向两侧会出现一个电压,如图1中的VH,这种现象就是霍尔效应,是由科学家爱德文·霍尔在1879年发现的。VH称为霍尔电压。

(a)霍尔效应和霍尔元件 这种现象的产生,是因为通电半导体片中的载流子在磁场产生的洛仑兹力的作用下,分别向片子横向两侧偏转和积聚,因而形成一个电场,称作霍尔电场。霍尔电场产生的电场力和洛仑兹力相反,它阻碍载流子继续堆积,直到霍尔电场力和洛仑兹力相等。这时,片子两侧建立起一个稳定的电压,这就是霍尔电压。 在片子上作四个电极,其中C1、C2间通以工作电流I,C1、C2称为电流电极,C3、C4间取出霍尔电压VH,C3、C4称为敏感电极。将各个电极焊上引线,并将片子用塑料封装起来,就形成了一个完整的霍尔元件(又称霍尔片)。 (1) 或(2) 或(3) 在上述(1)、(2)、(3)式中VH是霍尔电压,ρ是用来制作霍尔元件的材料的电阻率,μn是材料的电子迁移率,RH 是霍尔系数,l、W、t分别是霍尔元件的长、宽和厚度,f(I/W)是几何修正因子,是由元件的几何形状和尺寸决定的,I是工作电流,V是两电流电极间的电压,P是元件耗散的功率。由(1)~(3)式可见,在霍尔元件中,ρ、RH、μn决定于元件所用的材料,I、W、t和f(I/W)决定于元件的设计和工艺,霍尔元件一旦制成,这些参数均为常数。因此,式(1)~(3)就代表了霍尔元件的三种工作方式所得的结果。(1)式表示电流驱动,(2)式表示电压驱动,(3)式可用来评估霍尔片能承受的最大功率。 为了精确地测量磁场,常用恒流源供电,令工作电流恒定,因而,被测磁场的磁感应强度B可用霍尔电压来量度。 在一些精密的测量仪表中,还采用恒温箱,将霍尔元件置于其中,令RH保持恒定。 若使用环境的温度变化,常采用恒压驱动,因和RH比较起来,μn随温度的变化比较平缓,因而VH受温度变化的影响较小。 为获得尽可能高的输出霍尔电压VH,可加大工作电流,同时元件的功耗也将增加。(3)式表达了VH能达到的极限——元件能承受的最大功耗。

霍尔元件简介及应用

霍尔元件简介及应用 霍尔元件之作用原理也就是霍尔效应,所谓霍耳效应如图1所示,系指将电流I 通至一物质,并对与电流成正角之方向施加磁场B 时,在电流与磁场两者之直角方向所产生的电位差V 之现象。此电压是在下列情况下所产生的,有磁场B 时,由于弗莱铭(Fleming)左手定则,使洛仁子力(即可使流过物质中之电子或正孔向箭头符号所示之方向弯曲的力量:(Lorentz force)发生作用,而将电子或正孔挤向固定输出端子之一面时所产生。电位差V 之大小通常决定于洛仁子力与藉所发生之电位差而将电子或正孔推回之力(亦即前者之力等于后者之力),而且与电流I 乘以磁场B 之积成比例。比例常数为决定于物质之霍耳常数除以物质在磁场方向之厚度所得之值。 图1 霍尔组件之原理

在平板半导体介质中,电子移动(有电场)的方向,将因磁力的作用(有磁场),而改变电子行进的方向。若电场与磁场互相垂直时,其传导的载子(电子或电洞),将集中于平板的上下两边,因而形成电位差存在的现象。该电位差即霍尔电压(霍尔电压)在实际的霍尔组件中,一般使用物质中之电流载子为电子的N 型半导体材料。将一定之输入施加至霍尔组件时之输出电压,利用上述之关系予以分析时,可以获致下列的结论: (1) 材料性质与霍尔系数乘以电子移动度之积之平方根成正比。 (2) 材料之形状与厚度之平方根之倒数成正比。 由于上述关系,实际的霍尔组件中,可将霍尔系数及电子移动度大的材料加工成薄的十字形予以制成。 图2系表示3~5 端子之霍尔组件的使用方法,在三端子霍尔元件之输出可以产生输入端子电压之大致一半与输出信号电压之和的电压,而在四端子及五端子霍尔组件中,在原理上虽然可以免除输入端子电压的影响,但实际上即使在无磁场时,也有起因于组件形状之不平衡等因素之不平衡电压存在。

用霍尔效应测量螺线管磁场 物理实验报告

华南师范大学实验报告 学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 用霍尔效应测量螺线管磁场 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 07 实验指导老师 实验评分 一、 实验目的: 1.了解霍尔效应现象,掌握其测量磁场的原理。 2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。 二、 实验原理: 根据电磁学毕奥-萨伐尔定律,通电长直螺线管线上中心点的磁感应强度为: 2 2 M D L I N B +??μ= 中心 (1) 理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁 感应强度的1/2: 2 2M D L I N 21B 21B +??μ? ==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7 (T ·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。 三、 实验仪器: 1.FB510型霍尔效应实验仪 2.FB510型霍尔效应组合实验仪(螺线管) 四、 实验内容和步骤: 1. 把FB510型霍尔效应实验仪与FB510型霍尔效应组合实验仪(螺线管)正确连接。把励磁电流接到螺线 管I M 输入端。把测量探头调节到螺线管轴线中心,即刻度尺读数为13.0cm 处,调节恒流源2,使I s =4.00mA ,按下(V H /V s )(即测V H ),依次调节励磁电流为I M =0~±500mA ,每次改变±50mA, 依此测量相应的霍尔电压,并通过作图证明霍尔电势差与螺线管内磁感应强度成正比。 2. 放置测量探头于螺线管轴线中心,即1 3.0cm 刻度处,固定励磁电流±500mA ,调节霍尔工作电流为:I s =0~ ±4.00mA ,每次改变±0.50mA ,测量对应的霍尔电压V H ,通过作图证明霍尔电势差与霍尔电流成正比。 3. 调节励磁电流为500mA ,调节霍尔电流为 4.00mA ,测量螺线管轴线上刻度为X =0.0cm~13.0cm ,每次移动 1cm ,测各位置对应的霍尔电势差。(注意,根据仪器设计,这时候对应的二维尺水平移动刻度读数为:13.0cm 处为螺线管轴线中心,0.0cm 处为螺线管轴线的端面,找出霍尔电势差为螺线管中央一半的数值的刻度位置。与理论值比较,计算相对误差。按给出的霍尔灵敏度作磁场分布B ~X 图。) 五、 注意事项: 图1

碳纤维制备工艺简介资料

碳纤维制备工艺简介资料. 碳纤维制备工艺简介 碳纤维(Carbon Fibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。

一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。

虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30% 以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC 沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。 3,聚丙烯腈(PAN)基碳纤维 PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能,尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前应用领域最广,产量也最大的一种碳纤维。PAN基碳纤维生产的流程图如图1所示。

大物实验报告霍尔效应【霍尔效应及其应用】

大物实验报告霍尔效应【霍尔效应及其应用】 霍尔效应是1879年美国物理学家霍尔读研究生期间在做研究 载流子导体在磁场中受力作用实验时发现的。阐述了霍尔效应的原理,霍尔元件的特点和分类以及在各个领域中的应用。霍尔效应霍尔元件应用 一、霍尔效应原理 霍尔效应是1879年美国物理学家霍尔读研究生期间在做研究 载流子导体在磁场中受力作用实验时发现的。霍尔效应是载流试样在与之垂直的磁场中由于载流子受洛仑兹力作用发生偏转而在垂直于 电流和磁场方向的试样的两个端面上出现等量异号电荷而产生横向 电势差UH的现象。电势差UH称为霍尔电压,EH称为霍尔电场强度。此时的载流子既受到洛伦兹力作用又受到与洛伦兹力方向相反的霍 尔电场力作用,当载流子所受的洛伦兹力与霍尔电场力相等时,霍尔电压保持相对稳定。 二、霍尔元件的特点和分类 1.霍尔元件的特点。霍尔元件的结构牢固,体积小,重量轻, 寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕 灰尘、油污、水汽及盐雾等的污染或腐蚀,调试方便等。霍尔元件和

永久磁体都能在很宽的温度范围(-40℃~1 50℃)、很强的振动冲击 条件下工作,且磁场不受一般介质的阻隔。另外它的变换器组件能够和相关的信号处理电路集成到同一片硅片上,体积小,成本低,且具有较好的抗电磁干扰性能。 2.霍尔元件的分类。按照霍尔元件的结构可分为:一维霍尔元件、二维霍尔元件和三维霍尔元件。一维霍尔元件又被称为单轴霍尔元件,它的主要参数是灵敏度、工作温度和频率响应。运用此类器件时,就可将与适当的小磁钢一起运动的物体的位置、位移、速度、角度等信息以电信号的形式传感出来,达到了自动测量与控制的目的。二维霍尔元件的结构是二维平面,也被称为平面霍尔元件;三维霍尔元件通常被称为非平面霍尔元件。霍尔元件按功能可分为:线形元件、开关、锁存器和专用传感器。 三、霍尔效应的应用 人们在利用霍尔效应原理开发的各种霍尔元件已广泛应用于精 密测磁、自动化控制、通信、计算机、航天航空等工业部门及国防领域。按被检测的对象的性质可将它们的应用分为直接应用和间接应用。直接应用是直接检测出受检测对象本身的磁场或磁特性,间接应用是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它将许多非电、非磁的物理量,如力、力矩、压力、应力、

霍尔效应法测量磁场

霍尔效应测磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效 应。1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。 【实验目的】 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H—Is,了解霍尔电势差V H与霍尔元件工作电流Is、磁感应强度B之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 【实验原理】

霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作 用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。如图13-1所示,磁场B位于Z的正向,与之垂直的半导体薄片上沿X正向通以电流Is(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流Is相反的X负向运动 。 由于洛仑兹力f L作用,电子即向图中虚线箭头所指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时, f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按均一速度,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为: 式中:e 为电子电量,为电子的漂移平均速度,B为磁场的磁感应强度。 同时,电场作用于电子所受电场力为: 式中:E H为霍尔电场强度,V H为霍尔电势,l为霍尔元件宽度当达到动态平衡时:  (13-1) 设霍尔元件宽度为l,厚度为d ,载流子浓度为 n ,则霍尔元件的工作电流为

软胶囊生产技术

软胶囊生产技术 一、概述 软胶囊是继片、针剂后发展起来的新剂型,系将油状药物、药物溶液或药物混悬液、糊状物甚至药物粉末定量压注并包封于胶膜内,形成大小、形状各异的密封胶囊,可用滴制法或压制法制备。软胶囊囊材是用明胶、甘油、增塑剂、防腐剂、遮光剂、色素和其它适宜的药用材料制成。其大小与形态有多种,有球形(0.15~0.3ml)、椭圆形(0.10~0.5ml)、长方形(0.3~0.8ml)及筒形(0.4~4.5ml)等,可根据临床需要制成内服或外用的不同品种,胶囊壳的弹性大,故又称弹性胶囊剂或称胶丸剂。 软胶囊的主要特点: 1、整洁美观、容易吞服、可掩盖药物的不适恶臭气味。 2、装量均匀准确,溶液装量精度可达±1%,尤适合装药效强、过量后副作用大的药物, 如甾体激素口服避孕药等。 3、软胶囊完全密封,其厚度可防氧进入,故对挥发性药物或遇空气容易变质的药物可 以提高其稳定性,并使药物具有长的存储期。 4、适合难以压片或贮存中会变形的低熔点固体药物。 5、可提高药物的生物利用度。 6、可做成肠溶性软胶囊及缓释制剂。 7、若是油状药物,还可省去吸收、固化等技术处理,可有效避免油状药物从吸收辅料 中渗出,故软胶囊是油性药物最适宜的剂型。 8、此外,低熔点药物、生物利用度差的疏水性药物、不良苦味及臭味的药物、微量活 性药物及遇光、湿、热不稳定及易氧化的药物也适合制成软胶囊。 二、软胶囊的制法 1、配料 (1)药物本身是油类的,只需加入适量抑菌剂,或再添加一定数量的玉米油(或PEG400), 混匀即得。 (2)药物若是固态,首先将其粉碎过100~200目筛,再与玉米油混合,经胶体磨研匀,或用低速搅拌加玻璃砂研匀,使药物以极细腻的质点形式均匀的悬浮于玉米油中。 (3)软胶囊填充药物的非水溶液,若要添加与水相混溶的液体如聚乙二醇、吐温-80等时,因注意其吸水性,因胶囊壳水分会迅速向内容物转移,而使胶壳的弹性降低。 (4)在长期储存中,酸性内容物也会对明胶水解造成泄漏,碱性液体液体能使胶壳溶解度降低,因而内容物的PH值应控制在2.5~7.0为宜。醛类药物会使明胶固化而影响溶出; 遇水不稳定的药物应采用何种保护措施等,均应在内容物的配方时考虑。

大学物理实验讲义实验 用霍尔效应法测量磁场

实验16用霍尔效应法测量磁场 在工业生产和科学研究中,经常需要对一些磁性系统或磁性材料进行测量,被测磁场的范 围可从~10 15-3 10T (特斯拉),测量所用的原理涉及到电磁感应、磁光效应、热磁效应等。常用的磁场测量方法有核磁共振法、电磁感应法、霍尔效应法、磁光效应法、超导量子干涉器件法等近十种。 一般地,霍尔效应法用于测量10~104 -T 的磁场。此法结构较简单,灵敏度高,探头体积小、测量方便、在霍尔器件的温度范围内有较好的稳定性。但霍尔电压和内阻存在一定的温度系数,并受输入电流的影响,所以测量精度较低。 用半导体材料制成的霍尔器件,在磁场作用下会出现显着的霍尔效应,可用来测量磁场、霍尔系数、判断半导体材料的导电类型(N 型或P 型)、确定载流子(作定向运动的带电粒子)浓度和迁移率等参数。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量电测、自动控制和信息处理等方面,如测量强电流、压力、转速等,在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更为广阔的应用前景。了解这一富有实用性的实验,对于日后的工作将有益处。 【实验目的】 1. 了解霍尔效应产生的机理。 2. 掌握用霍尔器件测量磁场的原理和基本方法。 3. 学习消除伴随霍尔效应的几种副效应对测量结果影响的方法。 4. 研究通电长直螺线管内轴向磁场的分布。 【仪器用具】 TH-H/S 型霍尔效应/螺线管磁场测试仪、TH-S 型螺线管磁场实验仪。 【实验原理】 1. 霍尔效应产生的机理 置于磁场中的载流体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,载流体的两侧会产生一电位差,这个现象是美国霍普斯金大学二年级研究生霍尔于1879年发现的,后被称为霍尔效应,所产生的电位差称为霍尔电压。特别是在半导体样品中,霍尔效应更加明显。 霍尔电压从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。对于图1-1(a )所示的N 型半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,试样中载流子(电子)将受到洛仑兹力大小为: evB F g =(1-1) 则在Y 方向,在试样A 、A '电极两侧就开始聚积异号电荷而产生相应的附加电场——霍尔电场。电场的指向取决于试样的导电类型,对N 型半导体试样,霍尔电场逆Y 方向,P 型半导体试样,霍尔电场则沿Y 方向,即有: 当S I 沿X 轴正向、B 沿Z 轴正向、H E 逆Y 正方向的试样是N 型半导体。

霍尔传感元器件及其常见指导应用举例

课程设计 题目:霍尔器件及其应用 分院名称:环境与能源工程学院课程名称:传感器 学号: : 指导老师:

摘要 霍尔器件是一种磁传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔器件以霍尔效应为其工作基础。霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。取用了各种补偿和保护措施的霍尔器件的工作温度围宽,可达-55℃~150℃。按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件。前者输出模拟量,后者输出数字量。 按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。 关键词:霍尔线性器件;霍尔开关器件

summary Holzer device is a magnetic sensor. They can detect the magnetic field and its changes, and can be used in all kinds of situations related to magnetic field. Holzer device based on Holzer effect.Holzer devices have many advantages, they have a strong structure, small size, light weight, long life, easy installation, small power consumption, high frequency (up to 1MHZ), resistance to vibration, not afraid of dust, oil, water vapor and salt fog, etc..Holzer linear device of high precision, good linearity; Holzer switch device with no contact, no wear, no jitter, the output waveform is clear, no rebound, position of high repetition accuracy (up to m level). The operating temperature range of the Holzer device with various compensation and protection measures is 150, 55,.According to the functions of the Holzer device can be divided into: Holzer linear devices and Holzer switch device. The former output analog quantity, the latter output digital quantity.According to the nature of the detected objects can be divided into their applications: direct and indirect application. The former is directly detected by the detection of the object itself or the magnetic properties of magnetic field, the latter is artificially set and detected the object on the magnetic field, the magnetic field vector, to the detected information through it, many non electricity and non physical quantity such as magnetic force, torque, pressure, stress, and position the displacement, velocity, acceleration, angle, speed, speed, speed and working state change time, converted into electricity to detect and control. Key words: Holzer linear device; Holzer switch devic

相关主题
文本预览
相关文档 最新文档