当前位置:文档之家› 高考数学考试说明解读

高考数学考试说明解读

高考数学考试说明解读
高考数学考试说明解读

解读 2008年高考数学考试说明

与老高考相比,2008高考江苏卷(数学)从命题指导思想考试内容及要求到考试形式及试卷结构都发生了较大的变化。在命题指导思想方面的主要变化是新的考试说明明确提出了对数据处理能力的要求了,即能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题。对数据处理能力的明确要求,会使统计知识与方法的考查得到加强.

关注变化:1.考试题型的重大改变。考试说明明确指出,2008年高考江苏数学卷的必做题部分(文、理都做)只由填空题与解答题两种题型组成,其中填空题14小题,约占70分;解答题6小题,约占70分.,这表明明年高考数学试卷中将不再出现选择题.这一重大变化必将对考生的复习迎考产生很大影响.

2.考试内容和要求的变化。与老高考相比,由于新课程标准的实施, 教材的改变,新高考的考试内容因而发生了很大的变化.新教材中的传统内容,其地位也有较大改变。新高考对知识的考查要求分为了解(A)、理解(B)、掌握(C)三个层次。了解层次只要求对知识的含义有最基本的认识,能解决相关的简单问题,因此,与A层次对应的知识点的考查应以容易题为主。理解层次要求对知识有深刻的认识,并能解决有一定综合性的问题.中等题是考查、覆盖这部分知识点的主要题型,由于对综合性提出了要求,因此对这部分知识的考查也有可能出难题。掌握层次要求系统掌握知识的内在联系,并能解决综合性较强的或较为困难的问题,显而易见

对这部分知识的考查,出难题便顺里成章.由于高一级层次的要求包括低一级层次要求,因此在这些知识点上也可以出容易题或中等题.

考试说明中C级要求的知识点全在必做题部分.具体内容如下:(1).两角和与差的正弦余弦和正切(2).平面向量的数量积(3).等差数列(4).等比数列(5).基本不等式(6).一元二次不等式(7).直线方程(8).圆的标准方程和一般方程,这些知识点无疑将成为新高考的热点,可以看出一些传统考查重点的能级要求有所降低,如圆锥曲线、函数、空间几何体等等.

备考建议:

1.加大填空题的训练力度

由于没有选择支提供信息,填空题历来是学生答失分较多的题型,新高考填空题题的题量有14道之多, 容易题、中等题、难题都会出现.要加大填空题的训练量,要像训练选择题那样去训练填空题的各种解法,并应研究填空题的各种类型变化及相应解法.

2.合理安排各模块的训练难度

应严格参照考试说明的要求安排个知识点与各模块的训练难度与训练量.

对于A级要求的知识点要严格控制难度,在这些内容上不要搞综合.

对于B,C两级要求的内容,无论在复习时间上,还是在训练难度上都要有适当的安排,C要求的内容既可以出难题,也可以出中等题与容易题,作为新的高考热点,当然应成为复习的重点.

3.附加题的训练要适度

附加题由2题必做题与四题选做题(选2题)组成,容易题、中等题与难题的比例大致为5:4:1.

选做题依次考查选修4系列中4-1,4-2,4-4,4-5这4个专题的内容,这一部分出容易题的可能性较大,一般不会出难题.

必做题是考查选修系列2中有而选修系列1中没有的内容,根据难度比例的安排,必做题出中等题与难题的可能性较大.

对附加题的训练难度的控制应据考试说明作出适当的安排.

浙江省高中数学高考考纲

2019年浙江省高中数学高考考纲 一、三角函数、解三角形 1.了解角、角度制与弧度制的概念,掌握弧度与角度的换算. 2.理解正弦函数、余弦函数、正切函数的定义及其图象与性质,了解三角函数的周期性.3.理解同角三角函数的基本关系,掌握正弦、余弦、正切的诱导公式. 4.了解函数y=A sin(ωx+φ)的实际意义,掌握y=A sin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响. 5.掌握两角和与两角差的正弦、余弦、正切公式,掌握正弦、余弦、正切二倍角的公式.6.掌握简单的三角函数式的化简、求值及恒等式证明. 7.掌握正弦定理、余弦定理及其应用. 二、立体几何 1.了解多面体和旋转体的概念,理解柱、锥、台、球的结构特征. 2.了解简单组合体,了解中心投影、平行投影的含义. 3.了解三视图和直观图间的关系,掌握三视图所表示的空间几何体.会用斜二测画法画出它们的直观图. 4.会计算柱、锥、台、球的表面积和体积. 5.了解平面的含义,理解空间点、直线、平面位置关系的定义.掌握如下可以作为推理依据的公理和定理. 公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2 过不在一条直线上的三点,有且只有一个平面. 公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4 平行于同一条直线的两条直线互相平行. 定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 6.理解空间线面平行、线面垂直、面面平行、面面垂直的判定定理和性质定理. (1)判定定理: ①平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行; ②一个平面内的两条相交直线与另一个平面平行,则这两个平面平行; ③一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直; ④一个平面过另一个平面的垂线,则这两个平面垂直. (2)性质定理:

2019年高考数学考纲与考试说明解读

2019年高考数学考纲与考试说明解读 专题一:函数、极限与导数的综合问题(一)不等式、函数与导数部分考查特点分析与建议

全国课标卷考查内容分析(考什么) (一)结论: 考查的核心知识为:函数的概念、函数的性质、函数的图象、导数的应用 函数的概念:函数的定义域、值域、解析式(分段函数); 函数的性质:函数的奇偶性、单调性、对称性、周期性; 函数的图象:包含显性与隐性; 导数的应用:导数的概念及其几何意义;利用导数求单调区间、极值、最值 与零点;结合函数的单调性解不等式或证明不等式、求参数范围. (二)试题题型结构:全国卷基本上是2道选择题或填空题、1道解答题,共3道题.分值为22分. (三)试题难度定位:全国卷对函数与导数的考查难度相对稳定,选择、填空题中,有一道为中等难度,另一道作为选择、填空的“压轴题”进行考查;解答题均放置于“压轴”位置. 小题考点可总结为八类: (1)分段函数;(2)函数的性质; (3)基本函数;(4)函数图像; (5)方程的根(函数的零点);(6)函数的最值; (7)导数及其应用;(8)定积分。 解答题主要是利用导数处理函数、方程和不等式等问题,有一定的难度,往往放在解答题的后面两道题中的一个.纵观近几年全国新课标高考题,常见的考点可分为六个方面:(1)变量的取值范围问题;(2)证明不等式的问题; (3)方程的根(函数的零点)问题;(4)函数的最值与极值问题; (5)导数的几何意义问题;(6)存在性问题。

考点: 题型1 函数的概念 例1 有以下判断: ①f (x )=|x | x 与g (x )=? ?? ?? 1 x -x 表示同一函数; ②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2 -2t +1是同一函数; ④若f (x )=|x -1|-|x |,则f ? ?? ??f ? ????12=0. 其中正确判断的序号是________. 题型2 函数的概念、性质、图象和零点(2017年全国新课标Ⅰ卷理科第8题) 例 2、已知函数()() 211 2x x f x x x a e e --+=-++有唯一零点,则a = A. 12- B. 13 C. 1 2 D. 1 C 【解析】函数()f x 的零点满足() 211 2e e x x x x a --+-=-+, 设()1 1 e e x x g x --+=+,则()()211 1 1 1 1 1e 1 e e e e e x x x x x x g x ---+----=-=- = ', 当()0g x '=时, 1x =;当1x <时, ()0g x '<,函数()g x 单调递减; 当1x >时, ()0g x '>,函数()g x 单调递增,当1x =时,函数()g x 取得最小值,为 ()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->, 函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和 ()ag x -有一个交点,即21a -?=-,解得1 2 a = .故选C. 例3、 (2012理科)(10) 已知函数 1 ()ln(1)f x x x =+-;则() y f x =

最新全国新课标高考理科数学考试大纲

全国新课标高考文科数学考试大纲 I.命题指导思想 坚持“有助于高校科学公正地选拔人才,有助于推进普通高中课程改革,实施素质教育”的原则,体现普通高中课程标准的基本理念,以能力立意,将知识、能力和素质融为一体,全面检测考生的数学素养. 发挥数学作为主要基础学科的作用,考查考生对中学数学的基础知识、基本技能的掌握程度,考查考生对数学思想方法和数学本质的理解水平,以及进入高等学校继续学习的潜能. II.考试内容与要求 一.考核目标与要求 1.知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能. 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明. 对知识的要求依次是了解、理解、掌握三个层次. (1)了解 要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. (2)理解 要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力. 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想像,比较、判别,初步应用等. (3)掌握 要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决

最新全国数学高考考试大纲

全国高考考试大纲(文科数学) 本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”等3个专题。 (一) 必考内容与要求 1.集合 (1) 集合的含义与表示 ①了解集合的含义、元素与集合的属于关系。 ②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。 (2) 集合间的基本关系 ①理解集合之间包含与相等的含义,能识别给定集合的子集。 ②在具体情境中,了解全集与空集的含义。 (3) 集合的基本运算 ①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。 ②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。 ③能使用韦恩(Venn)图表达集合的关系及运算。 2.函数概念与基本初等函数I (指数函数、对数函数、幂函数) (1) 函数 ①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。 ②在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。 ③了解简单的分段函数,并能简单应用。 ④理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义。 ⑤会运用函数图像理解和研究函数的性质。 (2) 指数函数 ①了解指数函数模型的实际背景。 ②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。 ③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点。 ④知道指数函数是一类重要的函数模型。 (3) 对数函数

①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。 ②理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点。 ③知道对数函数是一类重要的函数模型。 ④了解指数函数与对数函数互为反函数(a>0,且 a≠1 )。 (4) 幂函数 ①了解幂函数的概念。 ②结合函数的图像,了解它们的变化情况。 (5) 函数与方程 ①结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数。 ②根据具体函数的图像,能够用二分法求相应方程的近似解。 (6) 函数模型及其应用 ①了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义。 ②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。 3.立体几何初步 (1)空间几何体 ①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。 ②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图。 ③会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式。 ④会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不做严格要求)。 ⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式。 (2)点、直线、平面之间的位置关系

2018年高考数学考纲与考试说明解读

2018年高考数学考纲与考试说明解读 专题一:函数、极限与导数的综合问题(一)不等式、函数与导数部分考查特点分析与建议

全国课标卷考查内容分析(考什么) (一)结论: 考查的核心知识为:函数的概念、函数的性质、函数的图象、导数的应用 函数的概念:函数的定义域、值域、解析式(分段函数); 函数的性质:函数的奇偶性、单调性、对称性、周期性; 函数的图象:包含显性与隐性; 导数的应用:导数的概念及其几何意义;利用导数求单调区间、极值、最值 与零点;结合函数的单调性解不等式或证明不等式、求参数范围. (二)试题题型结构:全国卷基本上是2道选择题或填空题、1道解答题,共3道题.分值为22分. (三)试题难度定位:全国卷对函数与导数的考查难度相对稳定,选择、填空题中,有一道为中等难度,另一道作为选择、填空的“压轴题”进行考查;解答题均放置于“压轴”位置. 小题考点可总结为八类: (1)分段函数;(2)函数的性质; (3)基本函数;(4)函数图像; (5)方程的根(函数的零点);(6)函数的最值; (7)导数及其应用;(8)定积分。 解答题主要是利用导数处理函数、方程和不等式等问题,有一定的难度,往往放在解答题的后面两道题中的一个.纵观近几年全国新课标高考题,常见的考点可分为六个方面:(1)变量的取值范围问题;(2)证明不等式的问题; (3)方程的根(函数的零点)问题;(4)函数的最值与极值问题; (5)导数的几何意义问题;(6)存在性问题。

考点: 题型1 函数的概念 例1 有以下判断: ①f (x )=|x | x 与g (x )=? ?? ?? 1 x -x 表示同一函数; ②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2 -2t +1是同一函数; ④若f (x )=|x -1|-|x |,则f ? ?? ??f ? ????12=0. 其中正确判断的序号是________. 题型2 函数的概念、性质、图象和零点(2017年全国新课标Ⅰ卷理科第8题) 例 2、已知函数()()2112x x f x x x a e e --+=-++有唯一零点,则a = 【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+, 设()1 1 e e x x g x --+=+,则 当()0g x '=时, 1x =;当1x <时, ()0g x '<,函数()g x 单调递减; 当1x >时, ()0g x '>,函数()g x 单调递增,当1x =时,函数()g x 取得最小值,为 ()12g =.设()2 2h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->, 函数()h x 与函数()a g x -没有交点;若0a -<,当()()11a g h -=时,函数()h x 和 ()a g x -有一个交点,即21a -?=-,解得故选C. 例3、 (2012理科)(10) 已知函数1()ln (1)f x x x = +-;则 () y f x =

2019年高考数学考试大纲

2018年高考数学考试大纲:出现新考点题型有变化考纲摘录 知识要求 对知识的要求由低到高分为了解、理解、掌握三个层次,分别用A,B,C 表示。(1)了解(A):要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能解决相关的简单问题;(2)理解(B):要求对所列知识内容有较深刻的理性认识,知道知识的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,并加以解决;(3)掌握(C):要求系统地掌握知识的内在联系,能够利用所学知识对具有一定综合性的问题进行分析、研究、讨论,并加以解决。 试题类型 全卷分选择题、填空题、解答题三种题型。选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算或推证过程;解答题包括计算题、证明题,解答题要写出文字说明、演算步骤或推证过程。文、理科全卷题型、题量和赋分分别如下: 试卷结构 文科卷: 1.全卷22道试题均为必做题; 2.试卷结构为选择题10道,每道5分,共50分;填空题7道,每道5分,共35分;解答题5道,每道分值不低于10分同时不高于14分,共65分。 理科卷: 1.全卷22道试题,分为必做题和选做题。其中,20道试题为必做题,在填空题中设置2道选做题(需要考生在这2道选做题中选择一道作答,若两道都选,按前一道作答结果计分),即考生共需作答21道试题; 2.试卷结构为选择题10道,每道5分,共50分;填空题6道,每道5分,考生需作答5道,共25分;解答题6道,每道分值不低于10分同时不高于14分,共75分;试题按难度(难度=实测平均分/满分)分为容易题、中等题和难题. 难度在 0.70以上的题为容易题,难度在0.40-0.70之间(包括0.40和0.70)的题为中等题,难度在0.40以下的题为难题。控制三种难度的试题的合适分值比例,试卷总体难度适中。 题型变化对文科生影响更明显

浙江高考数学考试说明

浙江省2017高考考试说明 数学 (必修+限定选修) 一、考试性质与对象 数学是普通高等学校招生全国统一考试的必考科目,数学高考是由合格的高中毕业生和 具有同等学力的考生参加的选拔性考试。高等学校根据考生的成绩,按已确定的招生计划, 考试成绩及综合素质评价,择优录取。因此,数学高考应具有较高的信度、效度,必要的区 分度和适当的难度。 二、考核要求 依据高校人才选拔要求和国家课程标准,科学设计命题内容,增强基础性、综合性,突 出能力立意。主要考查学生运用所学知识独立思考与分析问题、解决问题的能力。数学学科 的考试,要发挥数学作为主要基础学科的作用,既考查考生的基础知识、基本技能的掌握程度,又考查考生对数学思想方法、数学本质的理解水平以及进入高等学校继续学习的潜能。 (一) 知识要求 知识是指《普通高中数学课程标准(实验)》中的必修课程及限定选修课程中的数学概念、性质、法则、公式、公理、定理以及与其相关的基础知识和思想方法。 对知识的要求依次是了解、理解、掌握三个层次。 1.了解:要求对所列知识的含义有初步的、感性的认识。知道这一知识内容是什么,能在有关的问题中加以区分。按照一定的程序和步骤简单模仿。 2.理解:要求对所列知识内容有理性认识,知道知识间的逻辑关系。能用数学语言对相关问题进行描述,对比较、判别、讨论的过程作出恰当的表述。具备利用所学知识解决简单问题的能力。 3.掌握:要求对所列知识内容有深刻的理性认识,熟悉相关知识间的逻辑关系。对所列的知识内容能够推导证明,灵活运用相关知识与思想方法进行分析、研究、讨论。具备综合利用相关知识解决问题的能力。“会”或“能”相当于此层次的要求。 (二)能力要求 数学具有严密的逻辑性、结论的确定性和应用的广泛性等特点,在培养学生能力的过程中发挥重要的作用。数学学科考试既要考查基础知识、基本技能、基本思想方法、基本活动经验,又要考查考生的逻辑思维能力、空间想象能力、运算求解能力、数据处理能力、综合应用能力。 (一)逻辑思维能力 逻辑思维能力是指通过对事物观察、比较、判断、分析、综合进行归纳、概括、抽象、演绎、推理,准确有条理地表达自己思维过程的能力。

高考数学考试说明解读

解读 2008年高考数学考试说明 与老高考相比,2008高考江苏卷(数学)从命题指导思想考试内容及要求到考试形式及试卷结构都发生了较大的变化。在命题指导思想方面的主要变化是新的考试说明明确提出了对数据处理能力的要求了,即能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题。对数据处理能力的明确要求,会使统计知识与方法的考查得到加强. 关注变化:1.考试题型的重大改变。考试说明明确指出,2008年高考江苏数学卷的必做题部分(文、理都做)只由填空题与解答题两种题型组成,其中填空题14小题,约占70分;解答题6小题,约占70分.,这表明明年高考数学试卷中将不再出现选择题.这一重大变化必将对考生的复习迎考产生很大影响. 2.考试内容和要求的变化。与老高考相比,由于新课程标准的实施, 教材的改变,新高考的考试内容因而发生了很大的变化.新教材中的传统内容,其地位也有较大改变。新高考对知识的考查要求分为了解(A)、理解(B)、掌握(C)三个层次。了解层次只要求对知识的含义有最基本的认识,能解决相关的简单问题,因此,与A层次对应的知识点的考查应以容易题为主。理解层次要求对知识有深刻的认识,并能解决有一定综合性的问题.中等题是考查、覆盖这部分知识点的主要题型,由于对综合性提出了要求,因此对这部分知识的考查也有可能出难题。掌握层次要求系统掌握知识的内在联系,并能解决综合性较强的或较为困难的问题,显而易见 对这部分知识的考查,出难题便顺里成章.由于高一级层次的要求包括低一级层次要求,因此在这些知识点上也可以出容易题或中等题. 考试说明中C级要求的知识点全在必做题部分.具体内容如下:(1).两角和与差的正弦余弦和正切(2).平面向量的数量积(3).等差数列(4).等比数列(5).基本不等式(6).一元二次不等式(7).直线方程(8).圆的标准方程和一般方程,这些知识点无疑将成为新高考的热点,可以看出一些传统考查重点的能级要求有所降低,如圆锥曲线、函数、空间几何体等等. 备考建议: 1.加大填空题的训练力度 由于没有选择支提供信息,填空题历来是学生答失分较多的题型,新高考填空题题的题量有14道之多, 容易题、中等题、难题都会出现.要加大填空题的训练量,要像训练选择题那样去训练填空题的各种解法,并应研究填空题的各种类型变化及相应解法. 2.合理安排各模块的训练难度

最新浙江新高考学考考纲-考试标准数学(学考选考标准word版)

数学 一、考试性质与对象 浙江省普通高中数学学业水平考试是在教育部指导下,由省教育行政部门组织实施的全面衡量普通高中学生数学学业水平的考试。考试成绩是普通高中学生毕业的基本依据之一,也是高校招生录取和用人单位招聘的重要参考依据。 浙江省普通高中数学学业水平考试实行全省统一命题、统一施考、统一阅卷、统一评定成绩,每年开考2次。考试的对象是2014年秋季入学的高中在校学生,以及相关的往届生、社会人员和外省在我省异地高考学生。 二、考核目标、要求与等级 (一)考核目标 普通高中数学学业水平考试是全面考察和评估我省普通高中学生的数学学业水平是否达到《课程标准》所规定的基本要求和所必须具备的数学素养的检测考试。 (二)考核要求 根据浙江省普通高中学生文化素质的要求,数学学业水平考试面向全体学生,有利于促进学生全面、和谐、有个性的发展,有利于中学实施素质教育,有利于体现数学学科新课程理念,充分发挥学业水平考试对普通高中数学学科教学的正确导向作用。 突出考查数学学科基础知识、基本技能和基本思想方法,考查初步应用数学学科知识与方法分析问题、解决问题的能力。关注数学学科的主干知识和核心内容,关注数学学科与社会的联系,贴近学生的生活实际。 充分发挥数学作为主要基础学科的作用,既考查中学的基础知识、基本技能的掌握程度,又考查对数学思想方法、数学本质的理解水平.全面检测学生的数学素养。 1.知识要求 知识是指《教学指导意见》所规定的必修课程中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法。 对知识的要求从低到高分为四个层次,依次为:了解、理解、掌握、综合应用,其含义如下: (1)了解:要求对所列知识的含义有初步的、感性的认识,能记住和识别数学符号、图形、定义、定理、 公式、法则等有关内容,并能按照一定的程序和步骤模仿,进行直接应用。 这一层次所涉及的主要行为动词有:了解、知道、识别、模仿、会求、会解等。 (2)理解:要求对所列知识内容有较深刻的理性认识.知道知识间的逻辑关系,能够对所列知识作正确的描述说明,用数学语言表达,利用所学的知识内容对有关问题作比较、判别、讨论,有利用所学知识解决简单问题的能力。 这一层次所涉及的主要行为动词有:描述、说明、表达、推测、想象、比较、判别、初步应用等。 (3)掌握:在对知识理解的基础上,通过练习形成技能.在新的问题情境中.能运用所学知识按基本的模式与常规的方法解决问题。 这一层次所涉及的主要行为动词有:掌握、导出、分析、推导、证明、研究、讨论、运用、解决问题等。 (4)综合运用:掌握知识的内在联系与基本属性,能熟练运用有关知识和基本数学思想方法,综合解决较复杂的数学问题和实际问题。 这一层次所涉及的主要行为动词有:熟练掌握,综合解决问题等。

2018年高考(全国卷)文科数学考试大纲

2018年高考(全国卷)文科数学考试大纲 2018年高考(全国卷)文科数学考试大纲 Ⅰ.考核目标与要求 根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003 年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1 和系列4 的内容,确定文史类高考数学科考试内容. 一、知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1 和系列4 中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能. 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明. 对知识的要求依次是了解、理解、掌握三个层次. 1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. 2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的 逻辑关系,能够对所列 知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问

2018年高考(全国卷)文科数学考试大纲 题的能力. 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用 等. 3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学 知识对问题进行分析、 研究、讨论,并且加以解决. 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等. 二、能力要求 能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识. 1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质. 空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志. 2.抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的 属性;概括是指把仅仅 属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得

2020浙江高考数学

1 2 1 1 1 (第5题图) 侧视图 俯视图 绝密 ★ 启用前 2020年普通高等学校招生全国统一考试 数 学 本试题卷分选择题和非选择题两部分。全卷共4页,选择题部分1至2页;非选择题部分3至4页。满分150分。考试用时120分钟。 考生注意: 1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。 2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。 参考公式: 若事件,A B 互斥,则 ()()()P A B P A P B +=+ 若事件,A B 相互独立,则 ()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次 独立重复试验中事件A 恰好发生k 次的概率 ()(1)(0,1,2,,) k k n k n n P k C p p k n -=-= 台体的体积公式 11221 ()3 V S S S S h = 其中1S ,2S 分别表示台体的上、下底面积, h 表示台体的高 柱体的体积公式 V Sh = 其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式 1 3V Sh = 其中S 表示锥体的底面积,表示锥体的高 球的表面积公式 2=4S R π 球的体积公式 34 3V R π= 其中表示球的半径 选择题部分(共40分) 一、选择题:本大题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一项是符合 题目要求的。 1. 已知集合{} 14P x x =<<,{} 2Q x x =<<3,则P Q = A.{ }1x x <≤2 B.{ }2x x <<3 C.{ }3x x ≤<4 D.{} 1x x <<4 2. 已知a R ∈,若1(2)a a i -+-(i 为虚数单位)是实数,则=a A.1 B.-1 C.2 D.-2 3. 若实数,x y 满足约束条件310 3x y x y -+??+-? ≤≥0,则2Z x y =+的取值范围是 A.(] ,-∞4 B.[)4+∞, C.[)5+∞, D.()-∞+∞, 4. 函数 cos sin y x x x =+在区间[],ππ-上的图像,可能是 A B C D 5. 某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:3 cm )是 A. 73 B. 143 C.3 D.6 6. 已知空间中不过同一点的三条直线,,l m n .“,,l m n 共面”是“,,l m n ” 相交的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 7. 已知等差数列 {}n a 的前n 项和为n S ,公差0d ≠, 1 1a d ≤.记12b S =,1222n n n b S S +-=-,* n N ∈,下列等式不可能成立的是 A.4 262a a a =+ B.4 262b b b =+ C.2 428=a a a D.2 4 28b b b = 8. 已知点O (0,0),A (-2,0),B (2,0).设点P 满足 2PA PB -=,且P 为函数2 34y x =-图像上的点,则 OP = 22 410 7 109. 已知,a b R ∈且,0a b ≠,对于任意0x ≥均有()()(2)0x a x b x a b ----≥,则 A.0a < B.0a > C.0b < D.0b > 10.设集合S T ,,**S N T N ??,,S T ,中字至少有两个元素,且S T ,满足: ①对于任意的x y S ∈,,若x y ≠,则xy T ∈; ②对于任意的x y T ∈,,若x y <,则 y S x ∈.下列命题正确的是 A.若S 有4个元素,则S T 有7个元素 B.若S 有4个元素,则S T 有6个元素, C.若S 有3个元素,则S T 有5个元素 D. 若 S 有3个元素,则S T 有四个元素 h R 姓名: 准考证号:

2019年高考数学考试大纲解读

高中文科数学《考试大纲》解读 王丕勇 《考试大纲》是高考命题的规范性文件和标准,是考试评价、复习备考的依据; 《考试大纲》明确了高考的性质和功能,规定了考试内容与形式,对指导高考内容改革、规范高考命题都有重要意义. 那么2019 年高考,与往年相比,高考的考查要求有哪些变化呢? 根据普通高等学校对新生文化素质的要求, 依据中华人民共和国教育部2003 年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1 和系列4 的内容, 确定文史类高考数学科考试内容. 一、知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1 和系列4 中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法, 还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能. 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明. 对知识的要求依次是了解、理解、掌握三个层次. 1. 了解:要求对所列知识的含义有初步的、感性的认识, 知道这一知识内容是什么, 按照一定的程序和步骤照样模仿, 并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解, 知道、识别, 模仿, 会求、会解等. 2. 理解:要求对所列知识内容有较深刻的理性认识, 知道知识间的逻辑关系, 能够对所列知识做正确的描述说明并用数学语言表达, 能够利用所学的知识内容对有关问题进行比较、判别、讨论, 具备利用所学知识解决简单问题的能力. 这一层次所涉及的主要行为动词有:描述, 说明, 表达, 推测、想象, 比较、判别, 初步应用等. 3. 掌握:要求能够对所列的知识内容进行推导证明, 能够利用所学知识对问题进行分析、研究、讨论, 并且加以解决.

高考数学考试大纲新课标

2008 年普通高等学校招生全国统一考试 新课程标准数学科(理文科)考试大纲 Ⅰ 考试性质 普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试 .高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取. 因此,高考应具有较高的信度、效度,必要的区分度和适当的难度 . Ⅱ 考试内容 根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部 2003 年颁布的《普通高中课程方案(实验)》(教基[2003]6 号)和《普通高中数学课程标准(实验)》(2003 年 4 月第 1 版,人民教育出版社出版)的必修课程、选修课程系列 2(1)和系列 4 的内容,确定理工(文史)类高考数学科考试内容 . 数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养 . 数学科考试,要发挥数学作为主要基础学科的作用,要考查中学的基础知识、基本技能的掌握程度,要考查对数学思想方法和数学本质的理解水平,要考查进入高等学校继续学习的潜能 . 数学科考试要发挥数学作为基础学科的作用,既考查中学数学知识和方法,又考查考生进入高校继续学习的潜能. 一、考核目标与要求 1.知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列 2(1)和系列 4 中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能 . 各部分知识整体要求及其定位参照《课程标准》相应模块的有关说明 . 知识是指《全日制普通高级中学数学教学大纲》所规定的教学内容中的数学概

浙江省2021年单独考试招生数学考试说明_2021年浙江省单独考试招生文化

浙江省2021年单独考试招生数学考试说明_2021年浙江省单独考 试招生文化 (导语)2021年单独考试招生的考试说明发布。语文、数学这两个必考科目考些啥?快来看看相关考试说明,好好备考吧。 数学 一、考试形式及试卷结构 一考试方法和时间 考试方法为闭卷、笔试。 试卷满分为150分,考试时间为120分钟。 二试卷内容比例 代数约45% 三角约20% 立体几何约10% 平面解析几何约25% 三题型比例 选择题四选一型的单项选择题 约30% 填空题约20% 解答题含简答题、计算题和应用题约50% 四试题难易比例 容易题约60% 中等题约30% 较难题约10% 二、考试内容和要求

高等职业学校招生数学考试,以浙江大学出版社出版的《数学趣园》,高等教育出版社、人民教育出版社出版的《数学》教材为参考教材。 数学考试旨在测试中学数学基础知识、基本方法、基本技能、运算能力、逻辑思维能力、空间想像能力,以及运用所学数学知识和方法,分析问题和解决问题的能力。 本大纲对所列知识提出三个不同层次的要求,三个层次由低到高顺序排列,且高一级层次要求包含低一级层次要求。三个层次分别为: 了解:要求学生对学过的知识进行复述和辨认,对所列知识的含义有感性和初步理性的认识,知道有关内容,并能进行直接运用。 理解:要求学生对所列知识的含义有理性的认识,能在了解知识基本内容的基础上作相应的解释、举例或变形、推断,并能运用知识解决简单的数学问题。 掌握:要求学生对所列知识在理解的基础上,能综合运用有关知识,解决一些数学问题和简单实际问题。 (代数) 一集合 二不等式 1.理解实数大小的基本性质,能运用性质比较两个实数或两个代数式的大小。 3.会解一元一次不等式,一元一次不等式组和可化为一元一次不等式组的不等式;会解一元二次不等式,了解区间的概念。会在数轴上表示不等式或不等式组的解集。 三函数 1.理解函数概念,会求一些常见函数的定义域,会求简单函数的值域,会作一些简单函数的图象。 2.理解函数的单调性的概念,了解增函数、减函数的图象特征。 3.理解一元二次函数的概念,掌握它们的图象与性质,了解一元二次函数、一元二次方程、一元二次不等式之间的关系,会求一元二次函数的解析式及、最小值。 4.能初步联系实际建立一元二次函数模型,会运用一元二次函数的知识解决一些简单的实际问题。 5.理解指数、对数的概念,会用幂的运算法则和对数的运算法则进行计算,了解常用对数和自然对数的概念。 6.了解指数函数、对数函数的概念、图象与性质,会用它们解决有关问题。

18年高考数学考试大纲解读专题09数列文180108218

专题09 数列 (十二)数列 1.数列的概念和简单表示法 (1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式). (2)了解数列是自变量为正整数的一类函数. 2.等差数列、等比数列 (1)理解等差数列、等比数列的概念. (2)掌握等差数列、等比数列的通项公式与前n项和公式. (3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题. (4)了解等差数列与一次函数、等比数列与指数函数的关系. 与2017年考纲相比没什么变化,而且这部分内容作为高考的必考内容,在2018年的高考中预计仍会以“两小或一大”的格局呈现. 如果是以“两小”(选择题或填空题)的形式呈现,一般是一道较容易的题,一道中等难度的题,较易的题主要以等差数列、等比数列的定义、通项公式、性质与求和公式为主来考查;中等难度的题主要以数列的递推关系、结合数列的通项、性质以及其他相关知识为主来考查. 如果是以“一大”(解答题)的形式呈现,主要考查从数列的前n项和与第n项的关系入手,结合数列的递推关系式与等差数列或等比数列的定义展开,求解数列的通项,前n项和,有时与参数的求解,数列不等式的证明等加以综合.试题难度中等. 考向一等差数列及其前n项和

样题1 若等差数列{}n a 满足递推关系1n n a a n +=-+,则5a = A . 92 B . 94 C .114 D .134 【答案】 B 样题2 已知数列{}n a 是公差为正数的等差数列,其前n 项和为n S ,且2315a a ?=,416S =. (1)求数列{}n a 的通项公式; (2)数列{}n b 满足11b a =,111n n n n b b a a ++-=?. ①求数列{}n b 的通项公式; ②是否存在正整数m ,n (m n ≠),使得2b ,m b ,n b 成等差数列?若存在,求出m ,n 的值;若不存在,请说明理由. 【解析】(1)设数列{}n a 的公差为d ,则0d >. 由2315a a =,416S =,得()()1112154616a d a d a d +?+=+=????, 解得112a d ==???或172 a d ==-???(舍去). 所以21n a n =-. (2)①因为11b a =,111n n n n b b a a ++-=?,所以111b a ==, ()()1111111212122121n n n n b b a a n n n n ++??-===- ?-+-+??,

2020高考数学考试大纲 文

2020高考数学考试大纲文 I.考试性质 普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取.因此,高考应具有较高的信度、效度,必要的区分度和适当的难度. Ⅱ.考试内容 根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2020年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容. 数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测学生的数学素养. 数学科考试,要发挥数学作为主要基础学科的作用,要考查考生对中学的基础知识、基本技能的掌握程度,要考查考生对数学思想方法和数学本质的理解水平,要考查考生进入高等学校继续学习的潜能. 一、考核目标与要求 1.知识要求 知识是指《普通高中数学课程标准(实脸)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能. 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明 对知识的要求依次是了解、理解、掌握三个层次. (1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. (2)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力 . 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判断,初步应用等. (3)掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决. 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等. 2.能力要求 能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识. (1)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象

2018年高考理科数学浙江卷

2018年普通高等学校招生全国统一考试 数学(浙江卷) 一、选择题:本大题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 已知全集{1,2,3,4,5}U =,{1,3}A =,则C U A = A.? B.{1,3} C.{2,4,5} D.{1,2,3,4,5} 2. 双曲线2 213 x y -=的焦点坐标是 A.( B.(2,0),(2,0)- C.(0, D.(0,2),(0,2)- 3. 某几何体的三视图如图所示(单位:cm ),则该几何体的体积 (单位:cm 3)是 A.2 B.4 C.6 D.8 4. 复数 21i -(i 为虚数单位)的共轭复数是 A.1i + B.1i - C.1i -+ D.1i -- 5. 函数||2sin2x y x =的图象可能是 6. 已知平面α,直线,m n 满足m α?,n α?,则“//m n ”是“//m α”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 7. 设01p <<,随机变量ξ的分布列是 则当p 在(0,1)内增大时, A.()D ξ减小 B.()D ξ增大 C.()D ξ先减小后增大 D.()D ξ先增大后减小 (第3题图) A. B. C. D.

8. 已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点), 设 SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则 A.123θθθ≤≤ B.321θθθ≤≤ C.132θθθ≤≤ D.231θθθ≤≤ 9. 已知e b a ,,是平面向量,e 是单位向量,若非零向量a 与e 的夹角为3 π,向量b 满足0342 =+?-,则||-的最小值是 1- 1 C.2 D.2-10. 已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++,若11a >,则 A.1324,a a a a << B.1324,a a a a >< C.1324,a a a a <> D.1324,a a a a >> 二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。 11. 我国古代数学著作《张丘建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三; 鸡雏三,值钱一。凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分 别为,,x y z ,则1001531003x y z x y z ++=???++=?? ,当81z =时,x = ,y = . 12. 若,x y 满足约束条件0262x y x y x y -≥??+≤??+≥? ,则3z x y =+的最小值是 ,最大值是 . 13. 在ABC ?中,角,,A B C 所对的边分别为,,a b c , 若2,60a A ===,则s i n B = , c = . 14. 二项式81)2x +的展开式的常数项是 . 15. 已知R λ∈,函数24, ()43, x x f x x x x λλ -≥?=?-+上两点,A B 满足2AP PB =,则当m = 时,点B 横坐标的绝对值最大.

相关主题
文本预览
相关文档 最新文档