当前位置:文档之家› 三角形的2倍角公式

三角形的2倍角公式

三角形的2倍角公式
三角形的2倍角公式

三角形二倍角公式

复习两角和与差的正弦、余弦、正切公式

如何求得sin 2α?

二倍角的正弦公式:

sin2A =2sinAcosA

二倍角的余弦公式:

cos2A =cos 2A -sin 2A =2cos 2A -1=1-2sin 2A 二倍角的正切公式:

tan2A =

22tan A 1tan A -

例1、求值:

(1)00sin 2230'cos2230'

(2)00sin15sin75

(3)22sin cos 88π

π

-

(4)20

01tan 75tan 75

- (5)sin cos cos cos 48482412πππ

π

(6)22cos

18π-

例2、口答:

cos__sin__24sin )1(=α

__sin __cos 2cos )2(22-=α

__

tan 1tan__23tan )3(2-=α

对公式的再认识:

(1) 适用范围:二倍角的正切公式有限制条件: A ≠kπ+2π且A ≠k 2π+4

π (k ∈Z ); (2) 公式特征:二倍角公式是两角和的正弦、余弦和正切公式之特例;二倍角关系是相对的。

(3) 公式的灵活运用:正用、逆用、变形用。

例3、设α∈(2

π,π),sin α=1213, 求2α的正弦、余弦和正切。

例4、试用完全平方式表示下列各式

(1)1sin 2α+

(2)1sin 2α-

(3)1cos 2α+

(4)1cos 2α-

例5、化简: (1)

1cos 1cos αα+-

(2)

α∈(-2π,0)

(3)

α∈(π,32π)

(4)

α∈(32

π,2π)

小结:

倍角公式:

sin2A =2sinAcosA

cos2A =cos 2A -sin 2A =2cos 2A -1=1-2sin 2A tan2A =

22tan A 1tan A

化“1”公式(升幂公式)

1+sin2A =(sinA +cosA)2,

1-sin2A =(sinA -cosA)2

1+cos2A =2cos 2A

1-cos2A =2sin 2A

降幂公式 cos 2A =

1cos 2A 2

+ sin 2A =1cos 2A 2-

例:已知等腰三角形ABC 的一个底角A 的余弦值等于

35

,求顶角C 的正弦值。

思考:C 是锐角还是钝角?

[例3] 用cos α表示cos3α;

用sin α表示sin3α。

[例5] 求证:(1)tan(4π+x)-tan(4π-x)=2tan2x

[例6]求证:

1sin 2cos 2tan 1sin 2cos 2θθθθθ-=--+-

[例7]求值:cos200 cos400 cos800

各种三角形边长的计算公式

各种三角形边长的计算公式 解三角形 解直角三角形(斜三角形特殊情况): 勾股定理 ,只适用于直角三角形(外国叫“毕达哥拉斯定理”) a^2+b^2=c^2, 其中 a 和 b 分别为直角三角形两直角边,c 为斜边 .勾股弦数是指一组能使勾股定理关系成立的三个正整数.比如:3,4,5. 他们分别是 3,4 和 5 的倍数 .常见的勾股弦数有: 3,4,5 ;6,8,10 ; 5,12,13;10,24,26; 等等 . 解斜三角形: 在三角形ABC a/SinA=b/SinB=中 , 角A,B,C c/SinC=2R 的对边分别为a,b,c. 则有 (R 为三角形外接圆半径 ) ( 1 )正弦定理 ( 2 )余弦定理 a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC注:勾股定理其实是余弦定理的一种特殊情况(.3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab 斜三角形的解法: 已知条件定理应用一般解法 一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出 b 与 c,在有解时有一解. 两边和夹角(如 a、b 、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边 所对的角 ,再由 A+B+C=180˙求出另一角,在有解时有一解. 三边 (如 a、 b、 c) 余弦定理由余弦定理求出角 A 、B,再利用 A+B+C=180˙,求出角 C 在有解时只有一解 .

两边和其中一边的对角( 如 a 、 b 、 A)正弦定理由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解. 勾股定理(毕达哥拉斯定理) 内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平 方.几何语言:若△ABC 满足∠ABC=90 °,则 AB2+BC 2=AC 2 勾股定理的逆定理也 成立 ,即两条边长的平方之和等于第三边长的平方 ,则这个三角形是直角三角形几 何语言:若△ABC 满足 ,则∠ABC=90 °. [3] 射影定理(欧几里得定理) 内容:在任何一个直角三角形中 ,作出斜边上的高 ,则斜边上的高的平方等于高所 在斜边上的点到不是两直角边垂足的另外两顶点的线段长度的乘积 .几何语言:若△ABC 满足∠ABC=90 °,作 BD ⊥AC,则 BD2 =AD ×DC 射影定理的拓展:若△ ABC满足∠ABC=90°,作BD ⊥ AC,(1)AB 2 =BD ·BC(2)AC 2 ;=CD ·BC (3)ABXAC=BCXAD 正弦定理 内容:在任何一个三角形中,每个角的正弦与对边之比等于三角形面积的两倍与 三边边长和的乘积之比几何语言:在△ABC 中,sinA/a=sinB/b=sinC/c=2S三 角形 /abc结合三角形面积公式,可以变形为a/sinA=b/sinB=c/sinC=2R(R是 外接圆半径) 余弦定理 内容:在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边 的 2 倍乘以它们夹角的余弦几何语言:在△ABC中,a2=b 2+c 2-2bc×cosA此定 理可以变形为: cosA= ( b 2+c 2-a 2 )÷2bc

三角函数诱导公式、万能公式、和差化积公式、倍角公式等公式总结及其推导

三角函数诱导公式: 诱导公式记忆口诀:“奇变偶不变,符号看象限”。 “奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n?(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。 符号判断口诀: “一全正;二正弦;三两切;四余弦”。这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。 “ASCT”反Z。意即为“all(全部)”、“sin”、“cos”、“tan”按照将字母Z反过来写所占的象限对应的三角函数为正值。 三角函数诱导公式- 其他三角函数知识 同角三角函数的基本关系式 倒数关系 tanα?cotα=1 sinα?cscα=1 cosα?secα=1 商的关系 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系 sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。 平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ )/(1-tanα ?tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα ?tanβ) 二倍角的正弦、余弦和正切公式 sin2α=2sinαcosα

三角形中的边角关系

三角形中的边角关系 1、 A+B+C=π , 2C = 2 π-( 2A + 2 B ) 2、 sinC=sin(A+B), cosC=-cos(A+B) sin 2 C =cos( 2 A +2 B ), cos 2 C =sin( 2 A + 2 B ), tan 2 C =cot( 2 A + 2 B ) sin2C=-sin2(A+B), cos2C=cos2(A+B) 3、 三角形面积公式 S ?= 12 absinC= 12 bcsinA= 12 casinB p= 12 (a+b+c ) 4、 正弦定理sin sin sin a b c A B C = = =2R sinA ?sinB ? sinC ?a = b ? c sinA= 2a R ,sinB=2b R ,sinC= 2c R a=2RsinA , b=2RsinB , c=2RsinC 适用类型:AAS →S ,SSA →A (2,1,0解) 5、余弦定理2222cos a b c bc A =+- 2 2 2 co s 2b c a A b c +-= 适用类型:SSS →A ,SAS →S ,AAS →S(2,1,0解) 5、 判定三角形是锐角直角钝角三角形 设c 为三角形的最大边 2c <2a +2b ??ABC 是锐角三角形 2 c =2 a +2 b ??ABC 是直角三角形 2 c >2 a +2 b ??ABC 是钝角三角形 6、 tanA+tanB+tanC=tanAtanBtanC cotAcotB+cotBcotC+cotCcotA=1 tan 2 A tan 2 B +tan 2 B tan 2 C +tan 2 C tan 2 A =1 7* 、若三角形三内角成等差数列,则B=3 π 三边成等差数列,则0

二倍角的正弦余弦和正切公式教学设计

二倍角的正弦、余弦和正切公式 一、教学目标 以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用. 二、教学重、难点 教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式; 教学难点:二倍角的理解及其灵活运用. 三、学法与教学用具 学法:研讨式教学 四、教学设想: (一)复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公式, ()sin sin cos cos sin αβαβαβ+=+; ()cos cos cos sin sin αβαβαβ+=-; ()tan tan tan 1tan tan αβαβαβ ++=-. 我们由此能否得到sin 2,cos 2,tan 2ααα的公式呢?(学生自己动手,把上述公式中β看成α即可), (二)公式推导: ()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=; ()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-; 思考:把上述关于cos2α的式子能否变成只含有sin α或cos α形式的式子呢?22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-; 22222cos 2cos sin cos (1cos )2cos 1αααααα=-=--=-.

()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+= =--. 注意:2,22k k π π απαπ≠+≠+ ()k z ∈ (三)例题讲解 例1、已知5sin 2,,1342ππαα= <<求sin 4,cos 4,tan 4ααα的值. 解:由,42π π α<<得22π απ<<. 又因为5sin 2,13α =12cos 213α===-. 于是512120sin 42sin 2cos 221313169 ααα??==??-=- ???; 225119cos 412sin 21213169αα??=-=-?= ???;120sin 4120169tan 4119cos 4119169ααα- ===-. 例2、已知1tan 2,3α= 求tan α的值. 解:22tan 1tan 21tan 3 ααα==-,由此得2tan 6tan 10αα+-= 解得tan 2α=- tan 2α=- (四)小结:本节我们学习了二倍角的正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用. (五)作业: 15034.P T T -

三角形边长的计算公式

解三角形 解直角三角形(斜三角形特殊情况): 勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)a^2+b^2=c^2,其中a和b 分别为直角三角形两直角边,c为斜边.勾股弦数是指一组能使勾股定理关系成立的三个正整数.比如:3,4,5.他们分别是3,4和5的倍数.常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等. 解斜三角形: 在三角形ABC中,角A,B,C的对边分别为a,b,c.则有(1)正弦定理a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径) (2)余弦定理a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其实是余弦定理的一种特殊情况.(3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab 斜三角形的解法: 已知条件定理应用一般解法 一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解. 两边和夹角(如a、b、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180˙求出另一角,在有解时有一解. 三边(如a、b、c) 余弦定理由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解. 两边和其中一边的对角(如a、b、A) 正弦定理由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解.

考研必备三角函数公式

三角函数诱导公式 常用的诱导公式有以下几组: 公式一: 设α为人意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα

tan(π/2-α)=cotα cot(π/2-α)=tanα 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆

三角形的边与角试题与答案

三角形的边与角 一、选择题 1. (2016·湖北咸宁)如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论: ①BC DE =21 ; ② S S COB DOE △△=21; ③AB AD =OB OE ; ④ S S ADE ODE △△=31. 其中正确的个数有( ) A. 1个 B. 2个 C.3个 D. 4个 (第1题) 【考点】三角形中位线定理,相似三角形的判定和性质. 【分析】①DE 是△ABC 的中位线,根据三角形的中位线等于第三边长度的一半可判断;②利用相似三角形面积的比等于相似比的平方可判定;③利用相似三角形的性质可判断;④利用相似三角面积的比等于相似比的平方可判定. 【解答】解:①∵DE 是△ABC 的中位线, ∴DE=21 BC ,即BC DE =21 ; 故①正确; ②∵DE 是△ABC 的中位线, ∴DE ∥BC ∴△DOE ∽△COB ∴ S S COB DOE △△=(BC DE )2=(21)2=41 , 故②错误; ③∵DE ∥BC ∴△ADE ∽△ABC ∴AB AD =BC DE △DOE ∽△COB ∴OB OE =BC DE ∴AB AD =OB OE ,

故③正确; ④∵△ABC 的中线BE 与CD 交于点O 。 ∴点O 是△ABC 的重心, 根据重心性质,BO=2OE ,△ABC 的高=3△BOC 的高, 且△ABC 与△BOC 同底(BC ) ∴S △ABC =3S △BOC , 由②和③知, S △ODE =41 S △COB ,S △ADE =41 S △BOC , ∴ S S ADE ODE △△=31. 故④正确. 综上,①③④正确. 故选C. 【点评】本题考查了三角形中位线定理,相似三角形的判定和性质.要熟知:三角形的中位线平行于第三边并且等于第三边长度的一半;相似三角形面积的比等于相似比的平方. 2. (2016·四川广安·3分)下列说法: ①三角形的三条高一定都在三角形内 ②有一个角是直角的四边形是矩形 ③有一组邻边相等的平行四边形是菱形 ④两边及一角对应相等的两个三角形全等 ⑤一组对边平行,另一组对边相等的四边形是平行四边形 其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个 【考点】矩形的判定;三角形的角平分线、中线和高;全等三角形的判定;平行四边形的判定与性质;菱形的判定. 【分析】根据三角形高的性质、矩形的判定方法、菱形的判定方法、全等三角形的判定方法、平行四边形的判定方法即可解决问题. 【解答】解:①错误,理由:钝角三角形有两条高在三角形外.

三角函数公式大全

三角函数公式大全 三角函数定义 锐角三角函数任意角三角函数 图形 直 任 角三角形 意角三角函数 正弦(sin) 余弦(cos) 正切(tan 或tg) 余切(cot 或ctg) 正割(sec) 余割(csc) 函数关系 倒数关系: 商数关系: 平方关系: . 诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等:

公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限: 其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变 根据教的围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限 记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终 边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数 值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得 到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终 边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的 三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负 值.这样,就得到了诱导公式四. 诱导公式的应用:运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角 的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要项数要 最少,次数要最低,函数名最少,分母能最简,易求值最好。

三角形边长公式

三角形边长公式 解三角形 解直角三角形(斜三角形特殊情况): 勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。勾股弦数是指一组能使勾股定理关系成立的三个正整数。比如:3,4,5。他们分别是3,4和5的倍数。常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等. 解斜三角形: 在三角形ABC中,角A,B,C的对边分别为a,b,c. 则有(1)正弦定理 a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径) (2)余弦定理 a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其实是余弦定理的一种特殊情况。(3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab 斜三角形的解法: 已知条件定理应用一般解法 一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解。 两边和夹角(如a、b、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180˙求出另一角,在有解时有一解。 三边(如a、b、c) 余弦定理由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解。 两边和其中一边的对角(如a、b、A) 正弦定理由正弦定理求出角B,由 A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解。 勾股定理(毕达哥拉斯定理) 内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。几何语言:若△ABC满足∠ABC=90°,则AB2+BC2=AC2勾股定理的逆定理也成立,即两条边长的平方之和等于第三边长的平方,则这个三角形是直角三角形几何语言:若△ABC满足,则∠ABC=90°。 [3]射影定理(欧几里得定理) 内容:在任何一个直角三角形中,作出斜边上的高,则斜边上的高的平方等于高所在斜边上的点到不是两直角边垂足的另外两顶点的线段长度的乘积。几何语言:若△ABC满足∠ABC=90°,作BD⊥AC,则BD2=AD×DC 射影定理的拓展:若△ABC满足∠ABC=90°,作BD⊥AC,(1)AB2=BD·BC (2)AC2;=CD·BC (3)ABXAC=BCXAD 正弦定理 内容:在任何一个三角形中,每个角的正弦与对边之比等于三角形面积的两倍与三边边长和的乘积之比几何语言:在△ABC中,sinA/a=sinB/b=sinC/c=2S

三角函数基础,两角和与差、倍角公式

练习: 一、填空题 1. α是第二象限角,则2 α 是第 象限角. 2.已知扇形的半径为R ,所对圆心角为α,该扇形的周长为定值c ,则该扇形最大面积为 . 同角三角函数的基本关系公式: αααtan cos sin = ααα cot sin cos = 1cot tan =?αα 1cos sin 22=+αα 1?“同角”的概念与角的表达形式无关,如: 13cos 3sin 2 2 =+αα 2tan 2 cos 2sin ααα = 2?上述关系(公式)都必须在定义域允许的围成立。 3?由一个角的任一三角函数值可求出这个角的其余各三角函数值,且因为利用“平方关系”公式,最终需求平方根,会出现两解,因此应尽可能少用,若使用时,要注意讨论符号. 这些关系式还可以如图样加强形象记忆: ①对角线上两个函数的乘积为1(倒数关系). ②任一角的函数等于与其相邻的两个函数的积(商数关系). ③阴影部分,顶角两个函数的平方和等于底角函数的平方(平方关系). 二、讲解例: 例1化简:ο440sin 12- 解:原式οοο ο ο 80cos 80cos 80sin 1)80360(sin 122 2 ==-=+-= 例2 已知α α αααsin 1sin 1sin 1sin 1+---+是第三象限角,化简 解:) sin 1)(sin 1() sin 1)(sin 1()sin 1)(sin 1()sin 1)(sin 1(αααααααα-+--- -+++= 原式 |cos |sin 1|cos |sin 1sin 1)sin 1(sin 1)sin 1(2 222ααααα ααα--+=----+= 0cos <∴αα是第三象限角,Θ αα α ααtan 2cos sin 1cos sin 1-=----+= ∴原式 (注意象限、符号) 例3求证: α α ααcos sin 1sin 1cos +=- 分析:思路1.把左边分子分母同乘以x cos ,再利用公式变形;思路2:把左边分子、分母同乘以(1+sinx )先满足

二倍角的正弦、余弦和正切公式

二倍角的正弦、余弦和正切公式(基础) 【学习目标】 1.能从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式,并了解它们之间的内在联系. 2.能熟练运用二倍角公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式.但不要求记忆),能灵活地将公式变形并运用. 3.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想、方程思想等在三角恒等变换中的作用. 【要点梳理】 要点一:二倍角的正弦、余弦、正切公式 1.二倍角的正弦、余弦、正切公式 2sin 22sin cos ()S αααα=? 22222cos 2cos sin () 2cos 112sin C αααααα =-=-=- 22 2tan tan 2()1tan T αα αα = - 要点诠释: (1)公式成立的条件是:在公式22,S C αα中,角α可以为任意角,但公式2T α中,只有当 2 k π απ≠ +及()4 2 k k Z π π α≠ + ∈时才成立; (2)倍角公式不仅限于2α是α的二倍形式,其它如4α是2α的二倍、 2α是4 α 的二倍、3α是 32 α 的二倍等等都是适用的.要熟悉多种形式的两个角的倍数关系,才能熟练地应用好二倍角公式,这是灵活运用公式的关键. 如:2 cos 2 sin 2sin α α α=; 1 1 sin 2sin cos ()2 2 2 n n n n Z α α α ++=∈ 2.和角公式、倍角公式之间的内在联系 在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式,它们的内在联系如下:

三角函数所有公式

倒数关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式sin^2(α)+cos^2(α)=1 tan α *cot α=1 一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a. 锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的 对边二倍角公式正弦sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2 (a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2C os^2(a)-1=1-2Sin^2(a) 正切tan2A=(2tanA)/(1-tan^2(A)) 三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导sin(3a) =sin(a+2a) =sin2acosa+cos2asina =2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos2a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sin a(3/4-sin2a) =4sina[(√3/2)2-sin2a] =4sina(sin260°-sin2a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos2a-3/4) =4cosa[cos2a-(√3/2)^2] =4cosa(cos2a-cos230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2] cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasi

三角形边角关系-第3讲的角与边学

第三讲三角形的角与边 一、基础知识 本讲重点介绍三角形的边、角不等关系,包括同一个三角形中的边、角不等关系以及不同三角形中的边、角不等关系. 1.边与边的关系 (1)在同一个三角形中两边之和大于第三边,两边之差小于第三边(三边满足什么条件时,三角形必然存在?); (2)勾股定理:即在直角三角形中两条直角边的平方和等于斜边的平方. 2.角与角的关系 (1)三角形的内角和为180?; (2)直角三角形中两锐角互余; (3)三角形的一个外角大于任何一个与它不相邻的内角; (4)三角形的一个外角等于与它不相邻的两内角之和. 3.边和角的关系 (1)在同一个三角形中,大边对大角,大角对大边; (2)在两个三角形中,如果有两条边对应相等,那么夹角大的所对的边也大;反之也成立,即在两个三角形中,如果有两条边对应相等,那么第三边大,则所对的角也大. 4.不等式变形时常用的性质 (1)若a>b,c>d,则a+c>b+d; (2)若a>b,c>d,则a-d>b-c; (3)若a>b,c>0,则ac>bc; 若a>b,c<0,则acb>0,则11 a b < ; (5)总量大于任何一个部分量. 5.三角形中的不等关系根源: (1)两点之间线段最短; (2)垂线段最短. 二、例题 第一部分边的问题 例1. (★★希望杯训练题)将三边长为a,b,c的三角形记作(a,b,c).写出周长为20,各边长为正整数的所有不同的三角形.

例2. (★★★ 2000年希望杯竞赛题)一个三角形的三条边的长分别是a,b,c(a,b,c都是质数),且a+b+c=16,则这个三角形是() A.直角三角形 B.等腰三角形 C.等边三角形 D.直角三角形或等腰三角形 例3. (★★★1998年江苏省竞赛题)在不等边三角形中,如果有一条边长等于另两条边长的平均值,那么最大边上的高与最小边上的高的比值的取值范围是( ) A.3 1 4 k << B. 1 1 3 k << C.12 k << D. 1 1 2 k << 例4. (★★★1997年北京市竞赛题)等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm 两部分,则这个等腰三角形的底边的长为( ) A.17cm B.5cm C.17cm或5cm D.无法确定 例5. (★★★)如图3-1,已知P为三角形ABC内一点, 求证: 1 () 2 AB AC BC PA PB PC AB AC BC ++<++<++. 例6. (★★★第三十二届美国邀请赛试题)不等边三角形ABC的两条高长度为4和12,若第三条高的长也是整数,试求它的长.

高中三角函数公式大全

高中三角函数公式大全 2009年07月12日 星期日 19:27 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2 A )=2cos 1A - cos(2 A )=2cos 1A + tan(2 A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a -

sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

三角形的边与角的认识

三角形三大专题 知识互联网 题型一:整数边三角形 思路导航 1、边长都是整数的三角形,称为整数边三角形. 2、若三角形三边的长为a ,b ,c 且a b c ≤≤,则 ⑴ 三角形的最小的边a 满足:03 a b c a ++<≤,当且仅当a b c ==时,等号成立; ⑵ 三角形的最大的边c 满足:32 a b c a b c c ++++< ≤,当且仅当a b c ==时,等号成立. 方程(特别是不定方程)和不等式是解决整数边三角形或内角是整数的三角形的常用工具.运用这一工具时,枚举法(树状图)则是常用的方法,但要注意对求得的结果进行检验. 例题精讲 【引例】 已知等腰三角形的周长是8,边长是整数,则腰长是多少? 典题精练 【例1】 ⑴若三角形的周长为60,求最大边的范围. ⑵设m 、n 、p 均为自然数,且m n p ≤≤,15m n p ++=,试问以m 、n 、p 为边长 的三角形共有多少个? 【例2】 ⑴三角形三边长a 、b 、c 都是整数,且a b c <<,若7b =,则有 个满足题意的 三角形. ⑵三角形三边长a 、b 、c 都是整数,且a b c <≤,若7b =,则有 个满足题意的三角形. ⑶三角形三边长a 、b 、c 都是整数,且a b c ≤≤,若7b =,则有 个满足题意的三角形.

题型二:多边形及其内、外角和 思路导航 多边形及其内、外角和 (一)多边形及其内角和 1.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. ① 多边形的顶点、边、内角、外角、对角线 内角:A ∠、ABC ∠、C ∠、CDE ∠、E ∠…… 外角:α∠ 对角线:连接不相邻两个顶点的线段是多边形的对角线.如BD . n 边形对角线条数: (3) 2 n n -条 ② 凸、凹多边形:多边形的每一边都在任何一边所在直线的同一侧,叫做凸多边形;反之叫做凹多边形.(如图) 图(a )为凸多边形 图(b )为凹多边形 ( a ) (b ) ③ 正多边形:各个角都相等,各条边都相等的多边形叫做正多边形 (如图正六边形) AB=BC=CD=DE=EF=AF A B C D E F ∠=∠=∠=∠=∠=∠ 2.多边形内角和:n 边形内角和等于(2)180n -?° ① 多边形内角和公式推理方法一: 过n 边形一个顶点,连对角线,可以得(3)n -条对角线,并且将n 边形分成 (2)n -个三角形,这(2)n -个三角形的内角和恰好是多边形的内角和. 将n 边形分成()2n -个三角形 ② 多边形内角和公式推理方法二: 在n 边形边上取一点与各顶点相连,得(1)n -个三角形,n 边形内角和等于这 (1)n -个三角形内角和减去在所取的一点处的一个平角,即 (1)180180(2)180n n -?-=-?°°° 将n 边形分成()1n -个三角形 F E D C B A

正弦 余弦 正切二倍角公式及变形升降幂公式(完全版)

§3.1.3二倍角的正弦、余弦和正切公式 一、教学目标 以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用. 二、教学重、难点 教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式; 教学难点:二倍角的理解及其灵活运用. 三、学法与教学用具 学法:研讨式教学 四、教学设想: (一)复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公式, ()sin sin cos cos sin αβαβαβ+=+; ()cos cos cos sin sin αβαβαβ+=-; ()tan tan tan 1tan tan αβ αβαβ++=-. (二)公式推导: ()sin 2sin sin cos cos sin 2sin cos ααααααααα =+=+=; ()22cos 2cos cos cos sin sin cos sin ααααααααα=+=-=-; 22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-; 22222cos 2cos sin cos (1cos )2cos 1αααααα=-=--=-. ()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+= =--. 升降幂公式 2 )cos (sin 2sin 1ααα±=±

αα2cos 22cos 1=+αα2sin 22cos 1=-2 2cos 1cos 2α α+=22cos 1sin 2α α-=}}升幂降角公式 降幂升角公式

三角形中边与角之间的不等关系

三角形中边与角之间的不等关系 《三角形中边与角之间的不等关系》教学设计教学目标: 1. 通过 实验探究发现:在一个三角形中边与角之间的不等关系; 2. 通过实验探究和推理论证,发展学生的分析问题和解决问题的能力;通过探索、总结形成利用图形的翻折等变换是解决几何问题常见的策略; 3. 提供动手操作的机会,让学生体验数学活动中充满着探索与创新,激发学生学习几何的兴趣。教学重点:三角形中边与角之间的不等关 系及其探究过程。教学难点:如何从实验操作中得到启示,写成几 何证明的表达。教具准备:三角形纸片数张、剪刀、圆规、三角板等。教学过程一、知识回顾 1. 等腰三角形具有什么性质? 2. 如何判定一个三角形是等腰三角形?从这两条结论来看,今后要在同 一个三角形中证明两个角相等,可以先证明它们所对的边相等;同样要证明两条边相等可以先证明它们所对的角相等。二、引入新课问题:在三角形中不相等的边所对的角之间又有怎样的大小关系呢?或者不相等的角所对的边之间大小关系又怎样?方法回顾:在探究 “等边对等角”时,我们采用将三角形对折的方式,发现了“在三角形中相等的边所对的角相等”,从而利用三角形的全等证明了这些性质。现在请大家拿出三角形的纸片用类似的方法探究今天的问题。三.探究新知实验与探究1:在△ABC中,如果AB>AC,那么我们可以将△ABC沿∠BAC的平分线AD折叠,使点C落在AB边上的点E处,即AE=AC,这样得到∠AED=∠C,再利用∠AED是△BDE的外角的关系得到∠AED>∠B,从而得到∠C>∠B。由上面的操作过程得到启示, 请写出证明过程。(提示:作∠BAC的平分线AD,在AB边上取点E,使AE=AC,连结DE。)形成结论1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大。思考:是否还 有不同的方法来证明这个结论? 实验与探究2:在△ABC中,如果∠C>∠B,那么我们可以将△ABC沿BC的垂直平分线MN折叠,使点B落在点C上,即∠MCN=∠B,于是MB=MC,这样AB=AM+MB=AM+MC>AC. 由上面的操作过程得到启示,请写出证明过程。 形成结论2:在一个三角形中,如果两个角不等,那么它们所对的边

直角三角形的边角关系--知识点

直角三角形的边角关系知识考点 知识讲解: 1.锐角三角函数的概念 如图,在ABC 中,∠C 为直角,则锐角A 的各三角 函数的定义如下: (1)角A 的正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA , 即sinA =a c (2)角A 的余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA , 即cosA =b c (3)角A 的正切:锐角A 的对边与邻边的比叫做∠A 的正切,记作t an A , 即t an A =a b (4)角A 的余切:锐角A 的邻边与对边的比叫做∠A 的余切,记作c ot A , 即c ot A =b a 2.直角三角形中的边角关系 (1)三边之间的关系:a 2+b 2=c 2 (2)锐角之间的关系:A +B =90° (3)边角之间的关系: sinA =cosB =a c , cosA =sinB =b c t an A =c ot B =a b , cot A =t an B =b a

3.三角函数的关系 (1)同角的三角函数的关系 1)平方关系:sinA2+cosA2=1 2)倒数关系:t an A·c ot A=1 3)商的关系:t an A=sinA cosA ,c ot A=cosA sinA (2)互为余角的函数之间的关系 sin(90°-A)=cosA,cos(90°-A)=sinA t an(90°-A)=c ot A, cot(90°-A)=t an A 4.一些特殊角的三角函数值

5.锐角α的三角函数值的符号及变化规律. (1)锐角α的三角函数值都是正值 (2)若0<α<90°则sinα,tanα随α的增大而增大,cosα,cotα随α的增大而减小. 6.解直角三角形 (1)直角三角形中的元素:除直角外,共有5个元素,即3条边和2个锐角. (2)解直角三角形:由直角三角形中除直角外的已知元素,求出所有未知的元素的过程叫做解直角三角形. 7.解直角三角形的应用, 解直角三角形的应用,主要是测量两点间的距离,测量物体的高度等,常用到下面几个概念: (1)仰角、俯角 视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角 (2)坡度=坡面的铅直高度h与水平宽度l的比叫做坡度,常用字母i表示, 即i=h l (3)坡角:坡面与水平面的夹角叫做坡角,用字母α表示,则tanα=i=h l (4)方位角:从某点的指北方向线,按顺时针方向转到目标方向线所成的角.

相关主题
文本预览
相关文档 最新文档