当前位置:文档之家› 【CN109889282A】一种射频印刷电路板材无源互调耦合馈电快测夹具及方法【专利】

【CN109889282A】一种射频印刷电路板材无源互调耦合馈电快测夹具及方法【专利】

【CN109889282A】一种射频印刷电路板材无源互调耦合馈电快测夹具及方法【专利】
【CN109889282A】一种射频印刷电路板材无源互调耦合馈电快测夹具及方法【专利】

(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 (43)申请公布日 (21)申请号 201910188996.6

(22)申请日 2019.03.13

(71)申请人 西安交通大学

地址 710049 陕西省西安市咸宁西路28号

(72)发明人 贺永宁 张可越 赵小龙 

(74)专利代理机构 西安通大专利代理有限责任

公司 61200

代理人 徐文权

(51)Int.Cl.

H04B 17/29(2015.01)

H04L 12/26(2006.01)

(54)发明名称

一种射频印刷电路板材无源互调耦合馈电

快测夹具及方法

(57)摘要

本发明公开了一种射频印刷电路板材无源

互调耦合馈电快测夹具及方法,该夹具包括同轴

法兰、同轴介质、镀银金属插针、介质支架以及具

有中空腔体且两端及顶部开口的金属屏蔽壳;其

中,介质支架上开设有两层中空结构,上层为用

来固定待测件的矩形中空结构,下层为用来固定

镀银金属插针的矩形凹槽;测试时,待测件固定

在矩形中空结构内,两个镀银金属插针的一端对

称设置在矩形凹槽内,且两个镀银金属插针之间

留有缝隙,每个镀银金属插针的另一端均由内至

外依次套装有同轴介质和同轴法兰,并通过同轴

法兰与介质支架紧固在一起。本发明在标准PIM

测试方法的基础上,提出了一种新的无源互调快

速标定方法,并结合电磁仿真结果验证了该方法

的可行性与通用性。权利要求书1页 说明书4页 附图3页CN 109889282 A 2019.06.14

C N 109889282

A

权 利 要 求 书1/1页CN 109889282 A

1.一种射频印刷电路板材无源互调耦合馈电快测夹具,其特征在于,包括同轴法兰(1)、同轴介质(2)、镀银金属插针(3)、介质支架(4)以及具有中空腔体且两端及顶部开口的金属屏蔽壳(5);其中,

介质支架(4)上开设有两层中空结构,上层为用来固定待测件(7)的矩形中空结构,下层为用来固定镀银金属插针(3)的矩形凹槽,测试时,待测件(7)固定在矩形中空结构内,两个镀银金属插针(3)的一端对称设置在矩形凹槽内,且两个镀银金属插针(3)之间留有缝隙,每个镀银金属插针(3)的另一端均由内至外依次套装有同轴介质(2)和同轴法兰(1),并通过同轴法兰(1)与介质支架(4)紧固在一起。

2.根据权利要求1所述的一种射频印刷电路板材无源互调耦合馈电快测夹具,其特征在于,金属屏蔽壳(5)的纵向截面呈U型状,使得介质支架(4)能够镶嵌在金属屏蔽壳(5)的中空腔体内。

3.根据权利要求1所述的一种射频印刷电路板材无源互调耦合馈电快测夹具,其特征在于,测试时,待测件(7)通过尼龙螺钉(6)固定在介质支架(4)的矩形中空结构内。

4.根据权利要求1所述的一种射频印刷电路板材无源互调耦合馈电快测夹具,其特征在于,同轴法兰(1)与介质支架(4)通过金属螺钉紧固在一起。

5.根据权利要求1所述的一种射频印刷电路板材无源互调耦合馈电快测夹具,其特征在于,测试时,该夹具两端的镀银金属插针(3)通过DIN头与测试系统连接。

6.一种射频印刷电路板材无源互调耦合馈电快测方法,其特征在于,该方法基于权利要求1至5中任一项所述的一种射频印刷电路板材无源互调耦合馈电快测夹具,包括以下步骤:

Step 1,通过尼龙螺钉(6)将待测件(7)固定在夹具上方的介质支架(4)上;

Step 2,用矢量网络分析仪测试包含待测件(7)的夹具S参数,如果满足测试条件则进行下一步;

Step 3,将包含待测件(7)的夹具接入PIM测试回路中;

Step 4,读出PIM指标。

2

ADS2009射频电路仿真实验实验报告

低通滤波器的设计与仿真报告 一、实验目的 (1)熟悉ADS2009的使用及操作; (2)运用此软件设计一低通录波器,通过改变C2.L1的值,使低通录波器达到预定的要求(dB值以大于—3.0以上为宜); (3)画出输出仿真曲线并标明截止频率的位置与大小。 二、低通滤波器简介 (1)定义:让某一频率以下的信号分量通过,而对该频率以上的信号分量大大抑制的电容、电感与电阻等器件的组合装置。低通滤波器是容许低于截止频率的信号通过,但高于截止频率的信号不能通过的电子滤波装置。 (2)特点与用途 特点:低损耗高抑制;分割点准确;双铜管保护;频蔽好,防水功能强。 用途:产品用途广泛,使用于很多通讯系统,如 CATV EOC 等系统。并能有效的除掉通频带以外的信号和多余的频段、频率的干扰。 低通滤波器在信号处理中的作用等同于其它领域如金融领域中移动平均数所起的作用;低通滤波器有很多种,其中,最通用的就是巴特沃斯滤波器和切比雪夫滤波器。 三、设计步骤 1,建立新项目 (1)在界面主窗口执行菜单命令【File】/【New Project...】,创建

新项目。在选择保存路径时,在“Name”栏中输入项目的名称“lab1”; (2)单击按钮“确认”,出现电路原理图设计及仿真向导对话框,按照要求进行选择选项。 2,建立一个低通录波器设计 (1)在主界面窗口,单击“New Schematic Window”图标,弹出原理图设计窗口; (2)单击“保存”图标,保存原理图,命名为“lpf1”; (3)在元件模型列表窗口中选择“Lumped-Components”集总参数元件类; (4)在左侧面板中选择电容图标,将其放置到电路图设计窗口中,并进行旋转; (5)用类似的方法将电感放置到电路图设计窗口中,并利用接地图标,把电容器的一端接地,将各个器件连接起来; (6)在元件库列表窗口选择“Simulation-S-Param”项,在该面板中选择S-parameter模拟控制器和端口Term,将其放到原理图中。双击电容“C2”并修改其参数。 低通滤波器原理图如下图1所示: 3,电路仿真 1)设置S参数控件参数 (1)双击S参数控件,打开参数设置窗口,将“Step-size”设置为0.5GHz; (2)选中【Display】选项卡,在此列出了所有可以显示在原理

射频实验报告一

电子科技大学通信射频电路实验报告 学生姓名: 学号: 指导教师:

实验一选频回路 一、实验内容: 1.测试发放的滤波器实验板的通带。记录在不同频率的输入下输出信号的 幅度,并绘出幅频响应曲线。 2.设计带宽为5MHz,中心频率为39MHz,特征阻抗为50欧姆的5阶带 通滤波器。 3.在ADS软件上对设计出的带通滤波器进行仿真。 二、实验结果: (一)低通滤波器数据记录及幅频响应曲线 频率 1.0k 500k 1M 1.5M 2.0M 2.5M 3.0M 3.5M 4..0M 4.5M 5.0M /Hz Vpp/mv 1000 1010 1020 1020 1020 1050 952 890 832 776 736 频率/Hz 5.5M 6.0M 6.2M 6.4M 6.6M 6.8M 7.0M 7.2M 7.4M 7.6M 7.8M Vpp/mv 704 672 656 640 624 592 568 544 512 480 448 频率/Hz 8.0M 8.2M 8.4M 8.6M 8.8M 9.0M 9.2M 9.4M 9.6M 9.8M 10.0M Vpp/mv 416 400 368 376 320 288 272 256 224 208 192

(二)带通滤波器数据记录及幅频响应曲线 频率 /MHz 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 Vpp/mv 0.4 0.8 0.4 0.6 0.8 0.6 0.8 0.8 1.4 1.1 6.0 4.0 23. 8 频率 /MHz 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 Vpp/mv 79. 2 72. 8 66. 4 69. 6 77. 6 90. 4 108. 8 137. 6 183. 2 260 364 442 440 频率/MHz 9.6 9.8 10. 10. 2 10. 4 10. 6 10.8 11.0 11.2 11. 4 11. 6 11. 8 12. Vpp/mv 440 403 378 378 406 468 468 548 548 484 412 356 324 频率/MHz 12. 2 12. 4 12. 6 12. 8 13. 13. 2 13.4 13.6 13.8 14.

天线无源互调检测暗室-PIM暗室-antenna PIM test Chamber-无源互调暗室-PIM Chamber-介绍

无源互调检测暗室介绍 PIM介绍: 无源互调(Passive Inter-Modulation, PIM)是由天线发射系统中各种无源器件的非线性特性引起的。在大功率、多信道系统中,由于其大功率特性,使传统的无源线性器件产生较强的非线性效应,这些无源器件的非线性会产生相对于工作频率的更高次谐波,这些谐波与工作频率混合会产生一组新的频率,其最终结果就是在空中产生一组无用的频谱(三阶互调产物, 五阶互调产物, 七阶互调产物…),如果这些互调产物落在发射或接收波段区间,并且这些互调产物的功率超过系统中有用信号的最小幅度, 就会影响正常的通信。所有无源器件由于非线性特性都会产生互调失真,其产生的原因很多,如机械接触的不可靠、虚焊和表面氧化等。 在GSM900通信系统与3G通信系统中,随着发射功率的增加,由发射频段产生的三阶互调产物会落入到他们各自的接收频段。通过以下数学计算可以来验证这个现象 1- 2G GSM上行/下行 [890,915]/[935,960] fPIM3=[910,985] fPIM5=[885,1010] fPIM7=[860,1035] 2- 3G WCDMA / CDMA2000 / TD-SCDMA 上行/下行 [1920,2060]/[2110,2170] fPIM3=[2050,2230] fPIM5=[1990,2290] fPIM7=[1930,2350] 从上述计算结果可知,GSM900与3G通信系统中,fPIM3/ fPIM5/ fPIM7均落入到上行的接收频段。如果在发射频段产生一个-110dBm的无源互调信号,也就是干扰信号,这可能会给系统带来影响,因为这个数值已经大于系统中有用信号的最小幅度。

射频测试规范

1、目的 规范WCDMA射频测试标准,使工程师在作业时有所遵循,特制订本规范。 2、适用范围 本规范适用于公司研发的WCDMA产品项目。 3、参考文件 《3rdGeneration PartnershipProject;TechnicalSpecificationGroupRadioAccessNetworkUserEquipment (UE)radiotransmissionandreception (FDD) (Release9》 《3rdGeneration PartnershipProject;TechnicalSpecificationGroupRadioAccessNetwork;Requirementsfo rsupportofradioresourcema nageme nt(FDD)(Release9》 4、缩略语和术语 ACLRAdjace ntCha nn elLeakagepowerRat 邻道泄漏抑制比 ACSAdjace ntCha nn elSelectivit邻道选择性 AWGNAdditiveWhiteGaussio nN oise加性高斯白噪声 BERBitErrorRatio误比特率 BLERBIockErrorRati误块率 CPICHCommo nPilotCha nne公共导频信道 CQICha nn elQualityI ndicator 信道质量指示 CWCo nti nuousWave(u n-modulatedsig nal连续波(未调制信号) DCHDedicatedCha nne专用信道(映射到专用物理信道) DPCCHDedicatedPhysicalC on trolCha nn专用物理控制信道 DPCHDedicatedPhysicalCha nn专用物理信道 DPDCHDedicatedPhysicalDataCha nn专用物理数据信道 DTXDisc ontinu ousTra nsmissior非 E 连续发射 EcAveragee nergyperPNchi每个伪随机码的平均能量 EVMErrorVectorMag nitude 误差矢量幅度 FDDFreque ncyDivisio nDupleX频分复用 FuwFreque ncyofiunwan tedsig nal 非有用信号频率 HARQHybridAutomaticRepeatReques 自动混合重传请求HS-DPCCHHighSpeedDedicatedPhysicalCo ntrolCha nift速专用物理控制信道HS-PDSCHHighSpeedPhysicalDow nlin kSharedCha n高速物理下行共享信道HS-SCCHHighSpeedSharedCo ntrolCha nr高速共享控制信道 Iblock in gBlocki ngsig nalpowerlevel 阻塞信号功率电平loThetotalreceivedpowerspectralde nsity 总接收功率频谱密度loacThepowerspectralde nsityoftheadjace ntfreque ncycha nnel 令B信道功率谱密度locThepowerspectralde nsityofaba ndlimitedwhite noisesource 带限白噪声功率谱密度lorThetotaltransmitpowerspectraldensityofthedownlinksignalattheNodeBantennaconnector 基站发送的总功率谱密度 orThereceivedpowerspectralde nsityofthedow nli nksig nalasmeasuredattheUEa nte nnaconn ector下行链路所接收的功率谱密度 IouwU nwan ted sig nalpowerlevel非有用信号功率电平 OCNSOrthogo nalCha nn elNoiseSimulato正交信道噪声模拟器 PCCPCHPrimaryCommo nCon trolPhysicalCha nr主公共控制物理信道 PICHPagi ngl ndicatorCha nne寻呼指示信道 PRACHPhysicalRa ndomAccessCha nr物理随机接入信道 Qqualmi nMinim umRequiredQualityLevel 小区质量最小需求 Qrxlevmi nMinim umRequiredRxLevel 小区信号电平最小需求Refere nceorl Refere ncese nsitiv 参考灵敏度

彩灯控制器电路设计报告

西安科技大学高新学院 毕业设计(论文) 题目彩灯控制器电路设计 院(系、部) 机电信息学院 专业及班级电专1202班 姓名张森 指导教师田晓萍 日期 2015年5月28日

摘要 随着微电子技术的发展,人民的生活水平不断提高,人们对周围环境的美化和照明已不仅限于单调的白炽灯,彩灯已成为时尚的潮流。彩灯控制器的实用价值在日常生产实践,日常生活中的作用也日益突出。基于各种器件的彩灯也都出现,单片机因其价格低廉、使用方便、控制简单而成为控制彩灯的主要器件。 目前市场上更多用全硬件电路实现,电路结构复杂,结构单一,一旦制成成品就只能按固定模式,不能根据不同场合,不同时段调节亮度时间,模式和闪烁频率等动态参数,而且一些电路存在芯片过多,电路复杂,功率损耗大,亮灯样式单调缺乏可操作性等缺点,设计一种新型彩灯已迫不及待。 近年来,彩灯对于美化、亮化城市有着不可轻视的重要作用。因此作为城市装饰的彩灯需求量越来越大,对于彩灯的技术和花样也越来越高。目前市场上各种式样的LED彩灯多半是采用全硬件电路实现,存在电路结构复杂、功能单一等局限性,因此有必要对现有的彩灯控制器进行改进。 关键词:LED彩灯;STC-89C52单片机;彩灯控制器。

目录 1前言 (1) 1.1设计目的 (1) 1.2设计要求 (1) 1.3总体方案设计与选择的论证 (2) 2节日彩灯控制器的设计 (4) 2.1核心芯片及主要元件功能介绍 (4) 2.1.1 AT89S52芯片 (4) 表1 (5) 2.1.2 74HC377芯片 (5) 2.1.3 74HC138芯片 (6) 2.2硬件设计 (7) 2.2.1直流电源电路 (7) 2.2.2按键电路 (8) 2.2.3时钟复位电路 (8) 2.2.4 LED显示电路 (9) 2.2.5硬件调试 (9) 2.3软件设计 (10) 3 总结 (15) 3.1实验方案设计的可行性、有效性 (15) 3.2设计内容的实用性 (15) 3.3心得 (16) 附录 (16) 参考文献 (18) 致谢 (19)

无源互调测试流程和方法_V1

无源互调测试流程和方法 罗森伯格亚太电子有限公司 2011年5月

目录 1.0 无源互调简介 (1) 2.0 PIM 测试仪 (1) 3.0 PIM的单位 (2) 4.0 PIM测试指导 (2) 4.1 RF安全 (2) 4.2 RF连接器的维护 (2) 4.3 外部PIM信号源 (3) 4.4 测试精确性 (3) 4.5 测试系统搭建以及PIM测试基准的现场核查 (3) 5.0 验收标准 (3) 6.0 器件测试 (4) 6.1 天线产品PIM测试 (4) 6.2 多端口器件的PIM测试 (5) 6.2.1 电缆组件(二端口) (5) 6.2.2 功分器和合路器(三端口或多端口) (5) 6.2.3 天线共用器和多频合路器(三端口) (6) 6.2.4 塔顶放大器(TMA)的PIM测试 (6) 6.2.4.1 Duplexing TMA (6) 6.2.4.2 Dual-Duplexing TMA (6) 6.2.5 带RRH的系统PIM测试 (7) 7.0 互调仪参数设置 (8)

1.0无源互调简介 无源互调(PIM)是两个或更多不同频率的信号混合输入到无源器件中,由于连接点或材料的非线性,而产生的失真信号。干扰的产生和本地下行频点相关,可以导致在多系统共享基础设施时,上行频段噪声上升。PIM对网络质量的影响是非常严重的,特别是UMTS或LTE这种宽频系统。PIM 干扰会导致接收机灵敏度下降,掉 话率增加,接入失败率提高,过早 切换,降低数据传输速率,并降低 系统的覆盖范围和容量。 RF路径中的任何组件都可能 产生PIM干扰,包括天线,TMAs, 天线共用器,双工器,避雷器,电 缆和连接器。此外,当天线系统大 功率辐射时,松动的机械连接和生 锈的表面,也会产生PIM干扰。2.0PIM 测试仪 PIM测试仪是将两路高功率信号输入到被测件中。如果被测件中有非线性连接,就会产生互调信号。测试信号将被负载吸收,或是被天线发射到自由空间。互调信号会在各个方向进行传输。在同轴系统中,互调信号不仅会朝着负载或天线 的方向传输,也会朝着PIM测试仪的方向传 输。落在系统Rx频段的互调信号会通过双工 器传输到接收机上。这个小信号会通过滤波器 和低噪放,然后到达测试仪的接收机。 这种互调测试方式被称为反射式测试。精 确的测试的难点在于在一个发射大功率信号 的系统里去检测一个非常小的信号。IEC 62037 [3]对互调测试给出了更为详细的定义。 当使用负载去吸收通过被测的传输器件的发 射信号时,这个负载必须是“低互调”(LOW PIM)的。如果负载含有能产生高互调信号的 因素时,即使被测件没有产生互调信号,PIM测试仪也无法分辨互调信号是负载产生的还是被测件产生的,就会造成测试失败。需要注意的是,VSWR扫频测试的负载,是不能用于互调测试的。这类精密负载的设计,没有考虑承受互调测试的高功率信号,一旦使用,将会造成永久性损坏。 PIM测试仪的自身互调信号(残留PIM)应进行现场验证,并保证在一定的电平之下。测试系统的残留PIM信号(包括测试仪表、负载、,测试线缆、转接器)应进行现场验证,以确保之前的使用没有造成损坏。

电磁波实验报告

电磁场与微波技术 实验报告 院系: 班级: 姓名: 学号: 指导老师:

实验一线驻波比波长频率的测量 一、实验目的 1、熟练认识和了解微波测试系统的基本组成和工作原理。 2、掌握微波测试系统各组件的调整和使用方法。 3、掌握用交叉读数法测波导波长的过程。 二、实验用微波元件及设备简介 1.波导管:本实验所使用的波导管型号为BJ—100,其内腔尺寸为α=22.86mm,b=10.16mm。其主模频率范围为8.20~12.50GHz,截止频率为6.557GHz。2.隔离器:位于磁场中的某些铁氧体材料对于来自不同方向的电磁波有着不同的吸收,经过适当调节,可使其对微波具有单方向传播的特性(见图1)。隔离器常用于振荡器与负载之间,起隔离和单向传输作用。 3.衰减器:把一片能吸收微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成(见图2),用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。衰减器起调节系统中微波功率以及去耦合的作用。 图 1 隔离器结构示意图图2 衰减其结构示意图 4.谐振式频率计(波长表): 图3 a 谐振式频率计结构原理图一图3 b 谐振式频率计结构原理图二 1. 谐振腔腔体 1. 螺旋测微机构 2. 耦合孔 2. 可调短路活塞 3. 矩形波导 3. 圆柱谐振腔 4. 可调短路活塞 4. 耦合孔 5. 计数器 5. 矩形波导 6. 刻度 7. 刻度套筒 电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本上不影响波导中波的传输。当电磁波的频率

满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。(图3a) 或从刻度套筒直接读出输入微波的频率(图3b)。两种结构方式都是以活塞在腔体中位移距离来确定电磁波的频率的,不同的是,图3a读取刻度的方法测试精度较高,通常可做到5×10-4,价格较低。而见图3b直读频率刻度,由于在频率刻度套筒加工受到限制,频率读取精度较低,一般只能做到3×10-3左右且价格较高。 5.驻波测量线:驻波测量线是测量微波传输系统中电场的强弱和分布的精密仪器。在波导的宽边中央开有一个狭槽,金属探针经狭槽伸入波导中。由于探针与电场平行,电场的变化在探针上感应出的电动势经过晶体检波器变成电流信号输出。 6.匹配负载:波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率。 7.微波源:提供所需微波信号,频率范围在8.6~9.6GHz内可调,工作方式有等幅、方波、外调制等,实验时根据需要加以选择。 8.选频放大器:用于测量微弱低频信号,信号经升压、放大,选出1kHz附近的信号,经整流平滑后由输出级输出直流电平,由对数放大器展宽供给指示电路检测。 三、实验内容及过程 1.微波信号源的调整: 频率表在点频工作下,显示等幅波工作频率,在扫频工作下显示扫频工作频率,在教学下,此表黑屏。电压表显示体效应管的工作电压,常态时为12.0 0.5V,教学工作下可通过“电压调节钮”来调节。电流表显示体效应管的工作电流,正常情况小于500毫安。 2.测量线探针的调谐: 我们使用的是不调谐的探头,所以在使用中不必调谐,只是通过探头座锁紧螺钉可以将不调谐探头活动2mm。 3.用波长计测频率: (1)在测量线终端接上全匹配负载。 (2)仔细微旋波长计的千分尺,边旋边观测指示器读数。由于波长计的q值非常 高,谐振曲线非常尖锐,千分尺上0.01mm的变化都可能导致失谐与谐振两种状态之间切换,因此,一定慢慢地仔细微旋千分尺。记下指示器读数为最小时(注意:如果检流指示器出现反向指示,按下其底部的按钮,读数即可)的千分尺读数并使波长计失谐。 (3)由读得的千分尺刻度可在该波长计的波长表频率刻度对照表上读得信号源的工作频率。 4.交叉读数法测量波导波长: (1)检查系统连接的平稳,工作方式选择为方波调制,使信号源工作于最佳状态。 (2)用直读式频率计测量信号频率,并配合信号源上的频率调谐旋钮调整信号源的工作频率,使信号源的工作频率为9370MHz。

射频可测试性设计规范

Q/SY 深圳市远望谷信息技术股份有限公司企业标准 Q/SY XXXX–2009 射频可测试性设计规范 2010-XX-X发布 2010-XX-XX实施 深圳市远望谷信息技术股份有限公司发布

目录

前言 本标准的其它系列标准: 与对应的国际标准或其它文件的一致性程度: 本标准参考内容,结合我司实际制定/修订。 本标准由深圳市远望谷信息技术股份有限公司中试部提出。本标准由深圳市远望谷信息技术股份有限公司技术部归口。本标准起草部门:中试部。 本标准主要起草人:彭辉、王文财。 本标准于2010年8月首次发布。

射频可测试性设计规范 1范围和简介 1.1范围 本规范主要规范RF单板ICT DFT 设计和FT DFT 设计,适用于产品设计中的所有成员,特别包括硬件方案设计人员,原理图项目人,RF硬件设计人员,RF 互连设计工程师、ICT 装备工程师。 本规范适用于RF单板ICT 和FT DFT 的设计。 1.2简介 本规范规定了RF单板ICT DFT 设计方法和FT DFT 设计方法,适用在RF单板方案设计阶段、PCB 布局阶段和ICT 软件编程阶段。要求开发工程师和RF CAD 设计工程师在单板方案设计、PCB 布局时遵守此规范进行ICT 测试点和FT可测试性设计,ICT 装备工程师遵守此规范进行ICT 软件编程。 制定本规范的目的之一是收集整理产品设计过程中好的射频FT DFT 设计方法并加以总结、推广,旨在从设计源头加强射频FT DFT 设计的有效性和规范性,帮助DFT 设计人员和产品开发人员更好的实现产品的射频FT DFT 特性。 1.3关键词 RF,DFT,ICT,FT,ICT 测试点。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 序号编号名称 1 3术语和定义

无源互调测量及解决方案

1概述 无源器件会产生非线性互调失真吗?答案是肯定的!尽管还没有系统的理论分析,但是在工程中已经发现在一定条件下无源器件存在互调失真,并且会对通信系统(尤其是蜂窝系统)产生严重干扰。 无源互调(Passive Inter-Modulation,PIM)是由发射系统中各种无源器件的非线性特性引起的。在大功率、多信道系统中,这些无源器件的非线性会产生相对于工作频率的更高次谐波,这些谐波与工作频率混合会产生一组新的频率,其最终结果就是在空中产生一组无用的频谱从而影响正常的通信。 所有的无源器件都会产生互调失真。无源互调产生的原因很多,如机械接触的不可靠、虚焊和表面氧化等。 5年前,大部分射频工程师很少提及无源器件互调问题。但是,随着移动通信系统新频率的不断规划、更大功率发射机的应用和接收机灵敏度的不断提高,无源互调产生的系统干扰日益严重,因 无源互调测量及 解决方案 朱 辉 上海创远信息技术股份有限公司 此越来越被运营商、系统制造商和器件制造商所关注。 长期以来,无源器件的互调失真测量技术一直被国外公司所掌握,并垄断了测量产品市场。今天这种局面发生了变化,无源互调测量技术难关已经被中国本土的射频工程师们攻克,而且低成本的商用无源互调测量系统也已诞生。 2无源互调的表达方式 无源互调有绝对值和相对值两种表达方式。绝对值表达方式是指以dBm为单位的无源互调的绝对值大小;相对值表达方式是指无源互调值与其中一个载频的比值(这是因为无源器件的互调失真与载频功率的大小有关),用dBc来表示。 典型的无源互调指标是在两个43 dBm的载频功率同时作用到被测器件DUT时,DUT产生-110 dBm(绝对值)的无源互调失真,其相对值为-153 dBc。 3无源互调测量方法 由于无源互调值非常小,因此无源

无源互调PIM

无源互调测量及解决方案 1、概述 无源器件会产生非线性互调失真吗?答案是肯定的!尽管还没有系统的理论分析,但是在工程中已经发现在一定条件下无源器件存在互 调失真,并且会对通信系统(尤其是蜂窝系统)产生严重干扰。 无源互调(PassiveInter-Modulation,PIM)是由发射系统中各种无源器件的非线性特性引起的。在大功率、多信道系统中,这些无源器件的非线性会产生相对于工作频率的更高次谐波,这些谐波与工作频率混合会产生一组新的频率,其最终结果就是在空中产生一组无用的频谱从而影响正常的通信。 所有的无源器件都会产生互调失真。无源互调产生的原因很多,如机械接触的不可靠、虚焊和表面氧化等。 5年前,大部分射频工程师很少提及无源器件互调问题。但是,随着移动通信系统新频率的不断规划、更大功率发射机的应用和接收机灵敏度的不断提高,无源互调产生的系统干扰日益严重,因此越来越被运营商、系统制造商和器件制造商所关注。 长期以来,无源器件的互调失真测量技术一直被国外公司所掌握,并垄断了测量产品市场。今天这种局面发生了变化,无源互调测量技术难关已经被中国本土的射频工程师们攻克,而且低成本的商用无源互调测量系统也已诞生。 2、无源互调的表达方式 无源互调有绝对值和相对值两种表达方式。绝对值表达方式是指以dBm为单位的无源互调的绝对值大小;相对值表达方式是指无源互调值与其中一个载频的比值(这是因为无源器件的互调失真与载频功率的大小有关),用dBc来表示。 典型的无源互调指标是在两个43dBm的载频功率同时作用到被测器件DUT时,DUT产生-110dBm(绝对值)的无源互调失真,其相对值为-153dBc。 3、无源互调测量方法 由于无源互调值非常小,因此无源互调的测量非常困难。到目前为止,无源互调的测量项目和测量方法尚无相应的国际标准,通常都是采用IE C推荐的测量方法。IEC推荐

射频可测试性设计规范

DKBA 华为技术有限公司内部技术规范 DKBA4247-2005.8 射频可测试性设计规范 2005年9月10日发布2005年9月10日实施 华为技术有限公司 Huawei Technologies Co., Ltd. 版权所有侵权必究 All rights reserved

修订声明Revision declaration 本规范拟制与解释部门: 本规范的相关系列规范或文件:《ICT可测试性设计规范》 相关国际规范或文件一致性: 替代或作废的其它规范或文件: 相关规范或文件的相互关系:《射频可测试性设计规范》包括了《ICT可测试性设计规范》中的《射频ICT可测试性设计规范》,并增加了《FT可测试性设计规范》内容,最后合并为统一的《射频可测试性设计规范》,以后《射频ICT可测试性设计规范》将随本规范升级。 本规范版本升级更改主要内容: 本规范为最初版本。 本规范主要起草专家:部门:无线装备部 无线基站开发管理部 本规范主要评审专家:部门:无线装备部 总体技术部 工艺测试研究部 无线基站开发管理部 本规范历次修订情况: 规范号 主要起草专家主要评审专家Doc No. DKBA4247-2005.08

目录Table of Contents 1射频单板ICT DFT设计 (6) 1.1射频单板ICT测试点设计规则 (6) 1.2射频器件ICT DFT设计规则 (8) 1.2.1射频放大器和场效应管放大器 (8) 1.2.2MMIC射频开关 (9) 1.2.3MMIC射频衰减器 (10) 1.2.4射频VCO (11) 1.2.5射频锁相环 (11) 1.2.6集成频率综合器 (12) 1.2.7滤波器 (12) 1.2.8射频调制器 (12) 1.2.9隔离器 (12) 1.2.10环行器 (12) 1.2.11阻抗变换器 (12) 1.2.12射频混频器 (13) 1.2.13功分器 (13) 1.2.14耦合器 (13) 1.2.15功放过流告警电路测试 (13) 2射频单板、模块FT DFT设计 (14) 2.1射频单板连接器归一化 (14) 2.2射频单板外接电源插座归一化 (14) 2.3基站天馈系统驻波检测设计 (14) 2.4基站射频模块对外接口设计 (14) 2.5基站双工器可测试性设计 (15) 2.6基站功放模块可测试性设计 (15) 2.7基站低噪放可测试性设计 (15) 2.8基站TRX单板或模块可测试性设计 (16) 3参考文献Reference Document (16) 表目录List of Tables 表1 XX表Table 1 XX......................................................................................错误!未定义书签。

RLC串联谐振电路(Multisim仿真实训)

新疆大学 实习(实训)报告 实习(实训)名称: __________ 电工电子实习(EDA __________ 学院: __________________ 专业班级_________________________________ 指导教师______________________ 报告人____________________________ 学号 ______ 时间: 实习主要内容: 1. 运用Multisim仿真软件自行设计一个RLC串联电路,并自选合适的参数。 2. 用调节频率法测量RLC串联谐振电路的谐振频率f 0 ,观测谐振现象。 3. 用波特图示仪观察幅频特性。 4?得出结论并思考本次实验的收获与体会。 主要收获体会与存在的问题: 本次实验用Multisim 仿真软件对RLC串联谐振电路进行分析,设计出了准确的电路模型,也仿真出了正确的结果。通过本次实验加深了自己对RLC振荡电路的理解与应用,更学习熟悉了Multisim 仿真软件,达到了实验的目

的。存在的问题主要表现在一些测量仪器不熟悉,连接时会出现一些错误,但最终都实验成功了。 指导教师意见: 指导教师签字: 年月日 备注: 绪论 Multisim仿真软件的简要介绍 Multisim是In terctive Image Tech no logies公司推出的一个专门用于电子电 路仿真和设计的软件,目前在电路分析、仿真与设计等应用中较为广泛。该软件以图形界面为主,采用菜单栏、工具栏和热键相结合的方式,具有一般Windows 应用软件的界面风格,用户可以根据自己的习惯和熟练程度自如使用。尤其是多种可放置到设计电路中的虚拟仪表,使电路的仿真分析操作更符合工程技术人员的工作习惯。下面主要针对Multisim11.0软件中基本的仿真与分析方法做简单介绍。 EDA就是“ Electronic Design Automation ”的缩写技术已经在电子设计领 域得到广泛应用。发达国家目前已经基本上不存在电子产品的手工设计。一台电子产品的设计过程,从概念的确立,到包括电路原理、PCB版图、单片 机程序、机内结构、FPGA的构建及仿真、外观界面、热稳定分析、电磁兼容分析在内的物理级设计再到PCB钻孔图、自动贴片、焊膏漏印、元器件清 单、总装配图等生产所需资料等等全部在计算机上完成。EDA已经成为集成 电路、印制电路板、电子整机系统设计的主要技术手段。 功能: 1. 直观的图形界面 整个操作界面就像一个电子实验工作台,绘制电路所需的元器件和仿真所需的测试仪器均可直接拖放到屏幕上,轻点鼠标可用导线将它们连接起来,软件仪器的控制面板和操作方式都与实物相似,测量数据、波形和特性曲线如同在真实仪器上看到的;

哈工大 微波技术实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 微波技术 实验报告 院系:电子与信息工程学院班级: 姓名: 学号: 同组成员: 指导老师: 实验时间:2014年12月18日 哈尔滨工业大学

目录 实验一短路线、开路线、匹配负载S参量的测量------------------------------3 实验二定向耦合器特性的测量------------------------------------------------------6 实验三功率衰减器特性的测量-----------------------------------------------------11 实验四功率分配器特性的测量-----------------------------------------------------14 附录一RF2000操作指南-------------------------------------------------------------19 附录二射频电路基本常用单位------------------------------------------------------23 实验总结------------------------------------------------------------------------------------24

实验一 短路线、开路线、匹配负载S 参量的测量 一、实验目的 1、通过对短路线、开路线的S 参量S11的测量,了解传输线开路、短路的特性。 2、通过对匹配负载的S 参量S11及S21的测量,了解微带线的特性。 二、实验原理 S 参量 网络参量有多种,如阻抗参量[Z],导纳参量[Y],散射参量[S]等。微波频段 通常采用[S]参量,因为它不仅容易测量,而且通过计算可以转换成其他参量, 例如[Y]、[Z] 图1-1 一个二端口微波元件用二端口网络来表示,如图1-1所示。图中,a1,a2分 别为网络端口“1”和端口“2”的向内的入射波;b1,b2分别为端口“1”和端口 “2”向外的反射波。对于线性网络,可用线性代数方程表示: b1=S11a1+S12a2 b2=S21a1+S22a2 (1-1) 写成矩阵形式: ?? ??????????????=????? ???a a S S S S b b 212212211121 (1-2) 式中S11,S12,S21,S22组成[S]参量,它们的物理意义分别为 S11=11 a b 02=a “2”端口外接匹配负载时, “1”端口的反射系数 S21=12 a b 02=a “2”端口外接匹配负载时, “1”端口至“2”端口的传输系数 S12=21 a b 01=a “1”端口外接匹配负载时, “2”端口至“1”端口的传输系数

经典4G-TD-FDD-LTE射频测试规范报告

Tested by Checked by Date Model SN B41 运行商选择: Value(Flow)Value(Fmid)Value(Fhigh)Lowlimt Uplimt 40290 40740 41190 Mod=QPSK,Num-RB=12Start_NB=0,NS_Val=NS_01BW=10MHz 23.5-1.523.5+1.5dBm Pass Mod=QPSK,Num-RB=18Start_NB=0,NS_Val=NS_01BW=20MHz 23.5-1.523.5+1.5dBm 23.5-1.523.5+1.5dBm 23.5-1.523.5+1.5dBm Mod=QPSK,Num-RB=50Start_RB=0,NS_Val=NS_011dB backoff,BW=10MHz 23-2.523.5+1.5dB Mod=16QAM,Num-RB=50Start_RB=0,NS_Val=NS_012dB backoff,BW=10MHz 23-3.523.5+1.5dB -10 dBm ± 6.7dBm 10 dBm ± 5.7dBm 15 dBm ±4.7dBm 最小输出功率Min.Output Power Mod=QPSK,Num-RB=50Start_RB=0,NS_Val=NS_01BW=10MHz -40dBm 发射关功率Transmit Off Power -50.0 dBm 常规开关时间模板 General ON/OFF Time Mask Mod=QPSK,Num-RB=50Start_NB=0,NS_Val=NS_01Genernal BW=10MHz P/F P/F Absolute Power Tolerance Test Point 1 Mod=QPSK,BW=10MHz -5.6-10-5.6+10dBm Absolute Power Tolerance Test Point 2 Mod=QPSK,BW=10MHz 6.4-10 6.4+10dBm 相对功率控制容限 Power Control Relative power tolerance Relative Power Tolerance Pattern:A/B/CMod=QPSK,BW=10MHz P/F P/F /Aggregate Power ToleranceTPC=0 dB,PUCCH,RB=16,Mod=QPSK,BW=10MHz -3.2 3.2dB /Aggregate Power ToleranceTPC=0 dB,PUSCH,RB=12,Mod=QPSK,BW=10MHz -4.2 4.2dB / 频率误差 Frequency Error Mod=QPSK,Num-RB=50BW=10MHz Max. Output Power -200 200 Hz MaxPower Mod=QPSK,BW=10MHz RB=12/50; TPC=-36.8dBm Mod=QPSK,BW=10MHz RB=12/50; MaxPower Mod=QPSK,BW=5MHz RB=8/25; TPC=-36.8dBm Mod=QPSK,BW=5MHz RB=8/25;MaxPower Mod=16QAM,BW=10MHz RB=12/50; TPC=-36.8dBm Mod=16QAM,BW=10MHz RB=12/50; MaxPower Mod=16QAM ,BW=5MHz RB=8/25; TPC=-36.8dBm Mod=16QAM,BW=5MHz RB=8/25; 误差矢量幅度Error Vector Magnitude (EVM)17.5 % Error Vector Magnitude (EVM)误差矢量幅度 (EVM ) 12.5 NA 绝对功率控制容限Power Control Absolute power tolerance NA NA 集合功率控制容限 Aggregate power control tolerance NA 最大输出功率Max.Output Power 最大输出功率Maximum Output Power @ (Mod=QPSK,Num-RB=12Start_NB=0,NS_Val=NS_01 BW=10MHz )(软件或物料对比前的测试) 最大功率降低Maximum Power Reduction (MPR) 配置终端输出功率Configured UE transmitted Output Power Mod=QPSK,Num-RB=12Start_RB=0,NS_Val=NS_01BW=10MHz(open)最大输出功率Maximum Output Power @ (Mod=QPSK,Num-RB=18Start_NB=0,NS_Val=NS_01 BW=20MHz )(软件或物料对比前的测试) 中国移动+联通+电信(窄带20+20+60=100MHz) Test Items Tolerance Unit 备注Hardware Version:Software Version:Instruments : Input Offset : dB Output Offset: dB TDD-LTE 2600(B41) Test Report Document No. V5.1 Conducti Radiatio

收音机实验报告..

《高频电子线路》课程设计报告 题目SD-105 七管半导体收音机 学院(部)信息学院 专业通信工程 班级2011240401 学生姓名张静 学号33 指导教师宋蓓蓓,利骏

目录 一、概括……………………………………页码 二、收音机工作原理……………………………………页码 三、各部分设计及原理分析……………………页码 四、实验仿真及结果……………………………页码 五、结论…………………………………………页码 六、心得体会……………………………………页码 七、参考文献……………………………………页码

调幅半导体收音机原理及其调试 一概述:收音机的发明人类自从发现能利用电波传递信息以来,就不断研究出不同的方法来增加通信的可靠性、通信的距离、设备的微形化、省电化、轻巧化等。接收信息所用的接收机,俗称为收音机。目前的无线电接收机不单只能收音,且还有可以接收影像的电视机、数字信息的电报机等。 随着广播技术的发展,收音机也在不断更新换代。自1920年开发了无线电广播的半个多世纪中,收音机经历了电子管收音机、晶体管收音机、集成电路收音机的三代变化,功能日趋增多,质量日益提高。20世纪80年代开始,收音机又朝着电路集成化、显示数字化、声音立体化、功能电脑化、结构小型化等方向发展。 1947年、美国贝尔实验室发明了世界上第一个晶体管,从此以后.开始了收音机的晶体管时代.并且逐步结束了以矿石收音机、电子管收音机为代表的收音机的初级阶段。 调幅收音机:由输入回路、本振回路、混频电路、检波电路、自动增益控制电路(AGC)及音频功率放大电路组成输入回路由天线线圈和可变电容构成,本振回路由本振线圈和可变电容构成,本振信号经内部混频器,与输入信号相混合。混频信号经中周和455kHz陶瓷滤波器构成的中频选择回路得到中频信号。至此,电台的信号就变成了以

微波技术实验报告

微波技术实验指导书目录 实验一微波测量仪器认识及功率测量 实验二测量线的调整与晶体检波器校准 实验三微波驻波、阻抗特性测量 实验一微波测量仪器认识及功率测量 实验目的 (1)熟悉基本微波测量仪器; (2)了解各种常用微波元器件; (3)学会功率的测量。 实验内容 一、基本微波测量仪器 微波测量技术是通信系统测试的重要分支,也是射频工程中必备的测试技术。它主要包括微波信号特性测量和微波网络参数测量。 微波信号特性参量主要包括:微波信号的频率与波长、电平与功率、波形与频谱等。微波网络参数包括反射参量(如反射系数、驻波比)和传输参量(如[S]参数)。 测量的方法有:点频测量、扫频测量和时域测量三大类。所谓点频测量是信号只能工作在单一频点逐一进行测量;扫频测量是在较宽的频带内测得被测量的频响特性,如加上自动网络分析仪,则可实现微波参数的自动测量与分析;时域测量是利用超高速脉冲发生器、采样示波器、时域自动网络分析仪等在时域进行测量,从而得到瞬态电磁特性。 图1-1 是典型的微波测量系统。它由微波信号源、隔离器或衰减器、定向耦合器、波长/频率计、测量线、终端负载、选频放大器及小功率计等组成。 图 1-1 微波测量系统 二、常用微波元器件简介 微波元器件的种类很多,下面主要介绍实验室里常见的几种元器件: (1)检波器(2)E-T接头(3)H-T接头(4)双T接头 (5)波导弯曲(6)波导开关(7)可变短路器(8)匹配负载 (9)吸收式衰减器(10)定向耦合器(11)隔离器 三、功率测量 在终端处接上微波小功率计探头,调整衰减器,观察微波功率计指示并作相应记录。 微波元器件的认识 螺钉调配器 E-T分支与匹配双T 波导扭转 匹配负载 波导扭转 实验总结:在实验中我们认识了各种的微波元器件,让我们更好的理解课本上的知识,更是为了以后的实验做了准备。 实验二测量线的调整与晶体检波器校准 实验目的 (1)学会微波测量线的调整; (2)学会校准晶体检波器特性的方法; (3)学会测量微波波导波长和信号源频率。 实验原理

相关主题
文本预览
相关文档 最新文档