当前位置:文档之家› 酵母菌数的测定(直接计数)

酵母菌数的测定(直接计数)

酵母菌数的测定(直接计数)
酵母菌数的测定(直接计数)

实验直接计数法及酵母菌数的测定

一、目的要求

1、了解血球计数板测定微生物数量的原理。

2、了解血球计数板的结构,学习并掌握利用血球计数板进行酵母菌记数的方法,包括样品的点样、菌数计数的方法与计算。

二、实验原理

微生物常用的计数方法有两种,即直接计数法和间接计数法。前者利用血球计数板在显微镜下直接计数,能立即得到数值。后者是在平板上长成菌落后再计数,反应较真实,但费时太长。

三、实验器材

菌种:酵母菌液

仪器:显微镜,血球计数板、盖玻片(22mm×22mm)、吸水纸、计数器、滴管、擦镜纸等

四、操作方法

酵母细胞数的测定操作方法

1、血球计数板的构造

血球计数板是由一块比普通载玻片厚的特制玻片制成的。玻片中有四条下凹的槽,构成三个平台。中间的平台较宽,其中间又被一短横槽隔为两半,每半边上面个刻有一个方格网。方格网上刻有9个大方格,其中只有中间的一个大方格为计数室,供微生物计数用。

计数室通常有两种规格。一种是大方格内分为16中格,每一中格又分为25小格;另一种是大方格内分为25中格,每一中格又分为16小格。(本实验用)

2、酵母菌数量的测定

(1) 取洁净的血球计数板一块,在计数室上盖上一块盖玻片。

(2) 将酵母菌液摇匀,用滴管吸取少许,从计数板中间平台两侧的沟槽内沿盖玻片的下边缘滴入一小滴(不宜过多),使菌液沿两玻片间自行渗入计数室,勿使产生气泡,并用吸水纸吸去沟槽中流出的多余菌液。也可以将菌液直接滴加在计数室上,然后加盖盖玻片(勿使产生气泡)。

(3) 静置约5分钟,先在低倍镜下找到计数室后,再转换高倍镜观察计数。

(4) 计数时用16中格的计数板,要按对角线方位,取左上、左下、右上、右下的4个中格(即100小格)的酵母菌数。如果是25中格计数板。除数上述四格外,还需数中央1中格的酵母菌数(即80小格)。由于菌体在计数室中处于不同的空间位置,要在不同的焦距下才能看到,因而观察时必须不断调节微调螺旋,方能数到全部菌体,防止遗漏。如菌体位于中格的双线上,计数时则数上线不数下线,数左线不数右线,以减少误差。

(5) 凡酵母菌的芽体达到母细胞大小一半时,即可作为两个菌体计算。每个样品重复分数2-3次(每次数值不应招差过大,否则应重新操作),取其平均值,按下述公式计

算出每毫升菌液所含酵母菌细胞数。

每毫升菌液含菌数=每小格酵母细胞数×4000×1000×稀释倍数

(6) 血球计数板用后,在水龙头上用水柱冲洗干净,切勿用硬物洗刷或抹擦,以免损坏网格刻度。洗净后自行晾干或吹风机吹干。

四、实验报告

将实验结果填入下列表格

五、思考题

根据你的体会,说明用血细胞计数板计数的误差主要来自哪些方面?应如何尽量减少?

GB 4789.15霉菌和酵母计数

GB 4789.15-2010
食品安全国家标准 食品微生物学检验 霉菌和酵母计数
福建省疾病预防控制中心 马群飞
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.doczj.com/doc/2e13386238.html,

食品安全国家标准 食品微生物学检验 霉菌和酵母计数
National food safety standard Food microbiological examination: Enumeration of moulds and yeasts
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.doczj.com/doc/2e13386238.html,

PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.doczj.com/doc/2e13386238.html,

霉菌和酵母的基本特性
相对于低等的细菌来说,霉菌 和酵母生长缓慢,竞争能力较弱, 故霉菌和酵母常在不利于细菌生长 繁殖的环境中形成优势菌群。由于 霉菌和酵母的细胞较大,新陈代谢 能力强,故102~104个酵母即可引 起一克食物的变质,而细菌则需要 100倍于此数的细胞。
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.doczj.com/doc/2e13386238.html,

PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.doczj.com/doc/2e13386238.html,

食品安全国家标准 食品微生物学检验 霉菌和酵母计数
National food safety standard Food microbiological examination: Enumeration of moulds and yeasts
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.doczj.com/doc/2e13386238.html,

美兰染色法检测酵母活性的优化试验

美兰染色法检测酵母活性的优化试验 啤酒酵母质量的检测方法主要分为两类:一是检测酵母活性,二是检测酵母活力。酵母活性是指酵母能否成活的能力,而酵母活力是衡量活细胞活动能力或发酵性能的指标。当然酵母活性比酵母活力对酵母状态的判断要弱,只限于鉴别酵母的死活,不能明确地分辨活体酵母细胞的质量,但酵母活性的检测方法比酵母活力的检测相对要简单,检测时间短,在日常的生产检验中应用更强。 美兰(次甲基蓝)染色法对啤酒酵母活性检测简单易行,应用广泛,该染色法主要是利用细胞膜的完整性与新陈代谢的能力说明细胞活性。活酵母细胞内具有还原次甲基蓝呈无色的一种还原酶,当酵母细胞浸于美兰溶液时,色素渗入细胞内,活细胞内的还原酶能使其脱色,但死细胞内的还原酶由于失活,不发生脱色作用,故被染成蓝色。 文献中查找美兰染色法时,发现有多种美兰染色液的配制方法。我们选择了三种差异较大配制方法进行比较试验,找出一种染色易于判断,结果准确的酵母活性检测方法。还对美兰染色方法进行优化,分析操作中易引起误差,以提高检测方法的准确性。 1材料与方法 1.1 L1100系列生物显微镜 1.2 试剂及配制方法: 1.2.1方法1 :FINK和KUHLES甲基蓝缓冲液: 溶液A:次甲基蓝蒸馏水溶液0.1g/500ml, 溶液B:磷酸二氢钾蒸馏水溶液13.6g/500ml, 溶液C:磷酸氢二钠(12H2O)蒸馏水溶液 2.4g/100ml, 溶液D:498.75ML溶液B+1.25ML溶液C, 溶液E:混合500ML溶液D和500ML溶液A, 配制的次甲基蓝缓冲液PH为4.6。 1.2.2方法2:2%二水合柠檬酸钠次甲基蓝溶液(含有0.01%次甲基蓝溶液): 甲基蓝0.01g,

长度单位换算

长度、单位换算习题 1.在国际单位制(SI )中, 的主单位是米,符号为 。 2.(1)填写下列符号表示的长度单位名称: km 、m 、dm 、μm 、cm ,mm 。 (2)单位换算(用以10为底的数幂表示): 1cm= m 1dm= m 1mm= m 1km= m 1μm= m 1m= cm 1m= km 1m= mm 3.单位换算格式: 4.下列单位换算的写法中正确的是 ( ) A.14.5厘米=14.5×1/100=0.145米 B.14.5厘米=14.5厘米×1/100米=0.145米 C.14.5厘米=14.5÷(100米)=0.145米 D.14.5厘米=14.5×(1/100)米=0.145米 5.一次课堂计算比赛中,四位同学的计算过程中正确的是 〔 〕 A .2.7mm=2.7mm 310-?=3102.7-?m B .15m=6 1015?=1.5×107μm C . 5.2km=5.2km 410?cm=4105.2?cm D .6100.3?cm=2610100.3-??m=4 100.3?m 6. 用科学计数法表示:(写出单位换算过程) 7.2×10-7m= = μm 5×10-4 mm= = m 7×10-8 km= = m 3×10 8 m= = km 6×10 4 μm= = m 7.1张纸的厚度为65 μm= m= cm 。 8.地球的半径为6.4×10 4 千米,合 分米,合 毫米。 9.电脑芯片的线宽为0.13 μm= nm= km 。 10.微观世界里长度常用的单位是“埃( A )”、“飞米(fm )”,1 A =10-10 m ,1 fm=10-16 m 。已知氢原子的半径是0.53×10-10 m ,合多少埃?合多少飞米?

食品中霉菌和酵母菌测定的标准操作规程

1目的 规范食品中霉菌和酵母菌测定的标准操作规程。 2范围 本标准规定了食品中霉菌和酵母菌(moulds and yeasts)的计数方法。本标准适用于各类食品中霉菌和酵母菌的计数。 3责任 质量部组织制订、化验室负责实施。 4内容 4.1 设备和材料 除微生物实验室常规灭菌及培养设备外,其他设备和材料如下: 4.1.1 冰箱:2 ℃~5 ℃。 4.1.2 恒温培养箱:28 ℃±1 ℃。 4.1.3 均质器。 4.1.4 恒温振荡器。 4.1.5 显微镜:10×~100×。 4.1.6 电子天平:感量0.1 g。 4.1.7 无菌锥形瓶:容量500 mL、250 mL。 4.1.8 无菌广口瓶:500 mL。 4.1.9 无菌吸管:1 mL(具0.01 mL 刻度)、10 mL(具0.1 mL 刻度)。

4.1.10 无菌平皿:直径90 mm。 4.1.11 无菌试管: 10 mm×75 mm。 4.1.12 无菌牛皮纸袋、塑料袋。 4.2 培养基和试剂 4.2.1 马铃薯-葡萄糖-琼脂培养基:见附录A 中A.1。 4.2.2 孟加拉红培养基:见附录A 中A.2。 4.3检验程序 霉菌和酵母计数的检验程序见图1。

图1 霉菌和酵母计数的检验程序4.4操作步骤 4.4.1 样品的稀释

4.4.1.1 固体和半固体样品:称取25 g 样品至盛有225 mL 灭菌蒸馏水的锥形瓶中,充分振摇,即为1:10稀释液。或放入盛有225 mL 无菌蒸馏水的均质袋中,用拍击式均质器拍打2min,制成1:10 的样品匀液。 4.4.1.2 液体样品:以无菌吸管吸取25 mL 样品至盛有225 mL 无菌蒸馏水的锥形瓶(可在瓶内预置适当数量的无菌玻璃珠)中,充分混匀,制成1:10 的样品匀液。 4.4.1.3 取1 mL 1:10 稀释液注入含有9 mL 无菌水的试管中, 另换一支1 mL 无菌吸管反复吹吸,此液为1:100 稀释液。 4.4.1.4 按 5.1.3 操作程序,制备10 倍系列稀释样品匀液。每递增稀释一次,换用1 次1 mL 无菌吸管。 4.4.1.5 根据对样品污染状况的估计,选择2 个~3 个适宜稀释度的样品匀液(液体样品可包括原液),在进行10 倍递增稀释的同时,每个稀释度分别吸取1 mL 样品匀液于2 个无菌平皿内。同时分别取1 mL样品稀释液加入2 个无菌平皿作空白对照。 4.4.1.6 及时将15 mL~20 mL 冷却至46 ℃的马铃薯-葡萄糖-琼脂或孟加拉红培养基(可放置于46℃±1℃恒温水浴箱中保温)倾注平皿,并转动平皿使其混合均匀。 4.4.2 培养 待琼脂凝固后,将平板倒置,28℃±1℃培养5d,观察并记录。 4.4.3 菌落计数 肉眼观察,必要时可用放大镜,记录各稀释倍数和相应的霉菌和酵母数。以菌落形成单位(colonyforming units,CFU)表示。

(完整版)木质素酶活力的测定方法

1前言 草菇是一种著名的食用菌,营养丰富,味鲜美,深受人们的喜爱。草菇子实体含有人体必需的8种氨基酸,占其他氨基酸总量得38.2%,还含有14种维生素[1],不愧为一种比较理想的天然保健食品。草菇喜高温高湿,生长速度快,生长周期短,一糙只需25天左右,在广西每年4月至9月均可以种植,是一种很有发展前途的食用菌,生产和市 场前景广阔。 栽培草菇的生物学效率比较低(鲜菇与栽培料的比值),用稻草栽培草菇的生物学效率大都在10—15%左右。过去研究认为草菇主要利用纤维素、淀粉,不大利用半纤维素以及木质素。因为草菇的半纤维素酶活性低,又缺乏降解木质素的酶类,但是农作物秸杆中一般含有半纤维素15—30%,木质素占10—30%。为此,本试验用透明圈法、氧化圈法观 测V 展1、V 展2 、V 展3 、V 6 、V 广 、V 11 六个菌株所产的胞外酶利用分解半纤维素,木质素的能 力,看是否能够从其中初步筛选出利用半纤维素、木质素较强的菌株来。探讨更合理地配制栽培料的途径对提高草菇的生物转化率有重要意义。 2 实验原理 半纤维素是由五个碳原子为主的木糖聚合的高分子化合物,经木聚糖酶降解利用之后,基质生成透明圈[2]。木质素是以苯环为基本结构的复杂大分子的有机化合物,含碳60—66%,在多酚氧化酶、过氧化酶降解后,能与愈创木酚进行反应生成棕红色或棕褐色轮环[3]。亮兰试剂与蛋白质结合兰青色、在与过氧化酶作用则呈黄色透明圈[4]。通过相应的平板基质培养,草菇菌丝分泌的酶类降解利用后,形成的透明圈迟早、直径大小、色泽深度等初步判断是否存在半纤维素酶和木质素酶降解酶类及其活性。 3 材料与方法 3.1 材料 3.1.1 菌株 V 9购至广西大学微生物研究所,V 广、 V 11 购至广西农业科学院生物技术研究所,V 展1 、 V 展2 、V 展3 采至广西现代农业展示中心经组织培养所得。 3.1.2 试剂 可溶性淀粉、亮兰溶液自配、半纤维素自已提制、愈创木酚为国产分析纯、木聚糖为进 口。 3.2 试验方法 3.2.1 试剂配制 3.2.1.1 亮兰溶液配制

科学计数法. 长度.面积.体积单位及换算

3科学计数法. 长度.面积.体积单位及换算 课型:新授主备:刘雅琴审核:郭孝忠班级姓名 学习目标:1.学会科学中常用的科学记数法。 2.巩固长度单位及其换算;常用的面积单位及其换算;常用的体积单位及其换算。 学习重点:科学记数法;长度、面积、体积换算。 学习难点:科学记数法;长度、面积、体积换算。 一.科学计数法 1.常用的科学记数法 (1)1=100 10=101或1×101100=102 或1×102 1000= 或10000= 或 10000000= 或1000000000000= 或 (2)0.1=10-1 0.01=10-2 0.001= 0.0001= 0.0000001= 0.00000000001= (3)10×102=101+2 =103 103 ×103 = 103 ×10 -3= 103 ×106= 10-3 ×10 6= (4)102÷101 =102-1 =101 103 ÷103 = 106 ÷103 = 103 ÷106 = 103 ÷10= 103 ÷10-3= 10-6 ÷103 = (5)5400000000=5.4×1090.002=2×10-3 400000= 6870000= 0.00024= 125400000= 0. 005004= 0.000425= 0.000000000 972= 1200000000= (6)一张普通白纸的厚度是0.000068米,地球到太阳的距离是150000000千米,将纸的厚度和太阳与地球间的距离用科学记数法表示.。

二.长度 1.常用的长度单位: 千米(km).米(m).分米(dm).厘米(cm).毫米(mm).微米(μm).纳米(nm) 1千米= 米,1km= m 1 米= 分米,1m=______dm 1分米= 厘米,1dm=______cm 1厘米= 毫米,1cm=______mm 1毫米=______微米,1mm=______μm 1 微米=______纳米,1μm=______nm 1千米=______米=______分米=______厘米=______毫米=______微米=_______纳米 1km= m=___ ___dm=______cm=______mm=______μm=_____nm 1nm = μm =______mm =______cm=______dm =______m =_____km 2.长度单位换算; ○1 1.70 米 = 厘米○2 25厘米=___ ___分米=___ __米○3 1.23米= 毫米○4 0.1千米= 米 ○5 0.26千米= 分米○62100分米= 米 ○7 0.0008 米= 纳米○8 600微米= 米= 毫米○935分米= 微米○10 4米= 厘米 ○11 75微米= 毫米○12 6.3分米= 千米○13 11.01千米= 米○145.8米= 纳米○153.2千米= 米○16 0.9米= 分米; ○1710毫米= 米○18 36厘米= 米 ○19 1.22米= 微米○208.8米= 纳米 3.长度单位换算过程 ①.下列单位换算过程中正确的是()A.1.5米=1.5×1000=1500毫米B.1.5米=1.5米×1000=1500毫米C.1.5米=1.5米×1000毫米=1500毫米D.1.5米=1.5×1000毫米=1500毫米②.下列单位换算正确的是()A.120米=120米/1000=0.12厘米B.250米=250米×100厘米=25000厘米C.4000厘米=4000/100米=40米D.355微米=355/1000米=0.355米

食品微生物学检验 霉菌和酵母计数标准

GB 4789.15-2010 食品安全国家标准食品微生物学检验霉菌和酵母计数 录入时间:2010-4-28 9:02:54 来源:国家卫生部 本标准自实施之日起代替 GB/T 4789.15-2003《食品卫生微生物学检验霉菌和酵母计数》。 本标准与 GB/T 4789.15-2003 相比,主要修改如下: ——修改了范围; ——修改了检验程序和操作步骤; ——修改了培养基和试剂; ——修改了设备和材料; ——修改了附录。 本标准的附录 A为规范性附录,附录 B 为资料性附录。 本标准所代替标准的历次版本发布情况为: ——GB 4789.15-1984、GB 4789.15-1994、GB/T 4789.15-2003。 1 范围 本标准规定了食品中霉菌和酵母菌(moulds and yeasts)的计数方法。 本标准适用于各类食品中霉菌和酵母菌的计数。 2 设备和材料 除微生物实验室常规灭菌及培养设备外,其他设备和材料如下: 2.1 冰箱:2℃~5℃。 2.2 恒温培养箱:28℃±1℃。 2.3 均质器。 2.4 恒温振荡器。 2.5 显微镜:10×~100×。 2.6 电子天平:感量 0.1 g。 2.7 无菌锥形瓶:容量 500 mL、250 mL。

2.8 无菌广口瓶:500 mL。 2.9 无菌吸管:1 mL(具0.01 mL 刻度)、10 mL(具0.1 mL 刻度)。 2.10 无菌平皿:直径 90 mm。 2.11 无菌试管: 10 mm×75 mm。 2.12 无菌牛皮纸袋、塑料袋。 3 培养基和试剂 3.1 马铃薯-葡萄糖-琼脂培养基:见附录 A 中 A.1。 3.2 孟加拉红培养基:见附录 A 中 A.2。 4 检验程序 霉菌和酵母计数的检验程序见图1。

酶活力测定

华南农业大学 综合实验报告 实验项目名称:食品发酵工业中常用系列酶活力测定实验项目性质:综合性实验 计划学时:6 所属课程名称:食品与发酵工业分析 班级:09生物工程2班 姓名:叶思婕 学号:200930620124 实验课指导老师:沈玉栋

摘要 测定食品发酵工业中常用酶活力,对于选择酶种类,工艺条件的制定等有重要意义。本次实验中对工业常用系列酶——糖化酶,淀粉酶,蛋白酶进行了酶活力测定。其中,测定糖化酶采用直接滴定法,测定淀粉酶采用目测比色法,测定蛋白酶采用福林酚法。 关键词:酶活力糖化酶淀粉酶蛋白酶直接滴定法目测比色法福林酚法

1 前言 酶,从早期的酿造、发酵食品开始,至今已广泛应用到各种食品上。随着生物科技进展,不断研究、开发出新的酶制剂,已成为当今新的食品原料开发、品质改良、工艺改造的重要环节。目前已有几十种酶成功地用于食品工业。例如,葡萄糖、饴糖、果葡糖浆的生产、蛋白质制品加工、果蔬加工、食品保鲜以及改善食品的品质与风味等。应用的酶制剂主要有:淀粉酶、糖化酶、蛋白酶、葡萄糖异构酶、果胶酶、脂肪酶、纤维素酶、葡萄糖氧化酶等。 酶作为生物体内的一种具有催化活性的蛋白质,生物体内几乎所有的反应都离不开没的催化。作为生物体内的催化剂,催化效率——即酶的活力是酶的一个重要的的指标。酶活力的大小可用在一定条件下,酶催化某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高,反之活力愈低。测定酶活力实际就是测定酶促反应的速度。酶促反应速度可用单位时间内、单位体积中底物的减少量或产物的增加量来表示。在一般的酶促反应体系中,底物往往是过量的,测定初速度时,底物减少量占总量的极少部分,不易准确检测,而产物则是从无到有,只要测定方法灵敏,就可准确测定。因此一般以测定产物的增量来表示酶促反应速度较为合适。 糖化酶,又称葡萄糖淀粉酶、γ-淀粉酶。它能把淀粉从非还原性未端水介a-1,4葡萄糖苷键产生葡萄糖,也能缓慢水解a-1,6葡萄糖苷键,转化为葡萄糖。同时也能水解糊精,糖原的非还原末端释放β-D-葡萄糖。采用可溶性淀粉为底物,在一定的pH值与温度下,使之水解为葡萄糖(还原糖),以直接滴定法测定。 淀粉酶是水解淀粉和糖原的酶类总称,通常通过淀粉酶催化水解织物上的淀粉浆料。淀粉酶的种类很多,根据酶水解产物异构类型的不同可分为α-淀粉酶与β-淀粉酶。液化型淀粉酶(又称α-1,4糊精酶,俗称α-淀粉酶)能水解淀粉中α-1,4葡萄糖苷键,水解淀粉为分子量不一的糊精,淀粉迅速被液化。使淀粉与碘呈蓝紫色特征反应逐渐消,以该颜色的消失速度计算酶的活力的高低。 蛋白酶是水解蛋白质肽键的一类酶的总称,广泛存在于动物内脏、植物茎叶、果实和微生物中。微生物蛋白酶,主要由霉菌、细菌,其次由酵母、放线菌生产。福林-酚试剂在碱性条件下可被酚类化合物还原呈蓝色(钼蓝和钨蓝混合物),由

初二物理单位换算练习

长度、时间和速度单位换算习题 1.在国际单位制(SI )中, 的主单位是米,符号为 。 2.(1)填写下列符号表示的长度单位名称: km 、m 、dm 、μm 、cm ,mm 。 (2)单位换算(用以10为底的数幂表示): 1cm= m 1dm= m 1mm= m 1km= m 1μm= m 1m= cm 1m= km 1m= mm 3.单位换算格式: 4、下列单位换算的写法 中正确的是 ( ) A.14.5厘米=14.5×1/100=0.145米 B.14.5厘米=14.5厘米×1/100米=0.145米 C.14.5厘米=14.5÷(100米)=0.145米 D.14.5厘米=14.5×(1/100)米=0.145米 5.一次课堂计算比赛中,四位同学的计算过程中正确的是 〔 〕 A .2.7mm=2.7mm 310-?=3102.7-?m B .15m=61015?=1.5×107μm C 、 2.5km=2.5km ×104cm=4105.2?cm D .6100.3?cm=2610100.3-??m=4100.3?m 6. 用科学计数法表示:(写出单位换算过程) 7.2×10-7 m= = μm 5×10-4 mm= = m 7×10-8 km= = m

3×10 8 m= = km 6×10 4μm= = m 7.1张纸的厚度为65 μm= m= cm。 8.地球的半径为6.4×10 4千米,合分米,合毫米。9.电脑芯片的线宽为0.13 μm= nm= km。 10.微观世界里长度常用的单位是“埃(ο A)”、“飞米(fm)”,1 ο A=10-10 m,1 fm=10-16 m。原子核里的质子和中子的直径只有1 fm,已知氢原子的半径是0.53×10-10 m,合多少埃?合多少飞米? 11. 时间的国际单位的主单位是(),其它单位还有小时()、 (min)、(ms)、(μs)。 12.单位换算: 1h= min; 1min= s; 1s= ms; 1ms= μm。 13.“频闪摄影”是研究物体运动时常用的一种实验方法。某次频闪摄影的频闪光源每秒钟闪光50次,则它每隔 s闪亮一次;每次闪光持续的时间大约1/1000s,合 ms 。 14.速度的国际单位是,应读作,记作;生活中还常用(记为:)。 1 m/s = ㎞/h; 1㎞/h = m/s 15.完成下列单位的换算: 36km/h= m/s 5m/s= km/h 16. 由速度公式变形得:(1)求路程S=;(2)求时间t= 。应用公式时要注意:运用公式时必须注意单位匹配。 如:v用千米/时,则对应的s用、t用。若v用米/秒,则对应的s用、t用。

细菌、霉菌及酵母菌计数方法验证1份ok(内容充实)

一、目的:当建立微生物限度检查法时,应进行细菌霉菌及酵母菌计数方法的验证,以确认所采用的方法适合于该药品的细菌霉菌及酵母菌数的测定。 二、适用范围:细菌、霉菌及酵母菌计数方法的验证。 三、责任者:质量标准分析方法验证小组。 四、正文: 1、验证申请 2、验证立项申请表 3、验证方案 4、验证方案的批复 5、验证报告 6、验证报告的审批 7、验证证书

细菌、霉菌及酵母菌计数方法验证申请 细菌、霉菌及酵母菌计数方法验证申请。我公司细菌、霉菌及酵母菌计数方法严格按照《中华人民共和国兽药典》2005年版质量标准分析方法验证指导原则进行,今拟对细菌、霉菌及酵母菌计数方法进行验证。请予以批准! 附:细菌、霉菌及酵母菌计数方法验证小组成员名单 组长: 成员: 申报单位:质量标准分析方法验证小组 申报日期:年月日

验证申请批复

细菌、霉菌及酵母菌计数方法验证方案 一、概述: 1、名称:微生物限度检查法细菌霉菌及酵母菌计数方法的验证报告。 2、目的:当建立微生物限度检查法时,应进行细菌霉菌及酵母菌计数方法的验证,以确认所采用的方法适合于该药品的细菌霉菌及酵母菌数的测定。 3、验证判断标准:《中华人民共和国兽药典》2005年版附录XIJ 4、验证人员: 质保部:负责对验证结果进行评价。 化验室:负责验证情况的检测和监督。 总经理:负责对验证结果进行评价。 5、验证日期: 二、验证 1、验证依据:《中华人民共和国兽药典》2005年版附录XIJ微生物限度检查法。 按供试液的制备和细菌霉菌及酵母菌计数所规定的薄膜过滤法及其有关要求进行。 2、内容: (1)菌液所用的菌株传代次数为3 代,接种大肠埃希菌,金黄色葡萄球菌,枯草芽孢杆菌的新鲜培养物至营养琼脂培养基中,培养24小时, 接种白色念珠菌的新鲜培养物至改良马丁琼脂培养基中,培养48小时,上述培养物用0.9%无菌氯化钠溶液制成每1ml含菌数为60cfu的菌悬液。接种黑曲霉的新鲜培养物至改良马丁琼脂斜面培养基中,培养7天,加入5ml0.9%无菌氯化钠溶液,将孢子洗脱。然后吸出孢子悬液(用管口带有薄的无菌沙布能过滤菌丝的无菌毛细吸管)至无菌试管内,用0.9%无菌氯化钠溶液制成每1ml含孢子数60cfu的孢子悬液。 (2)验证方法验证试验进行了3次独立的平行试验。 A、试验组供试液(Ⅰ)纯化水1ml(Ⅱ)药品名称(1:100)10g,取供试液

蛋白酶活力测定方法

酸性蛋白酶产品概述: 蛋白质由氨基酸组成,是自然界中发现的最复杂的有机化合物之一。由盐酸和蛋白酶分解成易被高等动物的肠道和微生物有机体的细胞膜吸收的氨基酸。包括人类在内的每种动物,必须要有足够的蛋白质来维持自身生长,来生成每个细胞所必需的氨基酸,一些特种蛋白质还是某些特殊细胞、腺体分泌物、酶和激素的功能性组成元素。蛋白酶是指一些有催化功能的酶,能够水解(断裂)蛋白质,因此也被称为蛋白水解酶。蛋白水解酶在许多的生理和病理过程中发挥着重要作用,在食品和乳品加工业也有着广泛应用。工作机理 蛋白水解酶制剂本产品能在酸性条件下水解蛋白质食品中的缩氨酸键,释放氨基酸或者多肽。在酒精、葡萄酒、果汁、啤酒、黄油和酱油生产中,添加酸性蛋白酶可澄清发酵液中的雾气。酵母在发酵阶段的生长可以通过悬浮蛋白质转化的氨基酸来加以促进,从而加速发酵并提高产量。本产品是一种酸性蛋白酶制剂,在酸性条件下具有较高活性,由酸性蛋白酶高产菌株——曲霉菌深层发酵而成。它广泛应用于饲料、纺织、废水处理和果汁提纯方面。 酸性蛋白酶(Acid protease )是指蛋白酶具有较低的最适pH,而不是指酸性基团存在于酶的活性部位,酸性蛋白酶的最适PH从2左右(胃蛋白酶)到4左右。从酶的活力-PH曲线分析,在酶的活性部位中含有一个或更多的羟基。这一类蛋白酶中研究最彻底的是胃蛋白酶。(酸性蛋白酶537容易失活)

简介:酸性蛋白酶是由隆科特黑曲霉优良菌种经发酵精制提炼而成,它能在低PH条件下,有效水解蛋白质,广泛应用于酒精、白酒、啤酒、酿造、食品加工、饲料添加、皮革加工等行业。 1、产品规格:,规格有5万u/g~10万u/g 液体型为黑褐色液体,规格有50000u/ml~10000u/ml. 2、酶活力定义:一个酶活力单位是1g酶粉或1ml酶液在40℃,PH3.0条件下,1分钟水解酪素产生1ug酪氨酸为一个酶活力单位(u/g或u/ml) 特性1、温度范围为:最适温度范围为40℃-50℃2、PH为:最适PH范围为2.5~3.5 使用方法 1、白酒工业: 本品用以淀粉为原料的生产酒精及白酒行业,提高出酒率0.25%个酒分,提高发酵速度。 2、食品工业: 食品上用以淀粉改良,提高食品风味、改良品质,因能提高氨基酸含量 3、啤酒生产: 能有效阻断双乙酰生成,缩短啤酒成熟期。 4 饲料添加剂:提高饲料利用率。 5、毛皮软化: 提高上色率,手感丰满,增加毛皮光泽。

最新整理科学计数法的运算学习资料

单位的换算计算题一:科学计数法的运算练习题 1:整数的科学计数法 (1)27500= ________ (3) 65006 = __________ (5) 2012 = , 2:小数的科学计数法的表示方法(2)498000= ________ (4)450000 = _____ , (6) 198000000 = _________ 1) .0.008= __________ 2) _________________ 0 .000706= ___________ 3) ______________________ 0.00000050= 4) 0.00049 = _____________________________ , 5 )0.0000803 = 6 3:幂数的相乘 1)、2x 105x 3x 108= 2 3)0.3 x 103x 6x 105= 4 5)-7 -5 4 x 10 x 1 x 10 = 6 单位换算专题训练 二、长度单位换算专题训练 )0.0045 = _________ )、5X 10-2X 1.2 x 103= ________________________ )3X 10-2x 5X 1010= ________________________ 2 -7 )3 x 10 x 2X 10 = ________________________ 1):下列单位换算正确的是( ) A. 52km= 52km x 1000 = 5.2X 104 m B .45m= 45 x 106 =4.5 x 107 m C. 34 m=34 - 106 =3.4 x 10-7m D. 26nm=26 x 10-7 cm =2.6 x 10-6cm E. 18mm=18 x 1/100dm=0.18dm F. 75dm=75dm x 105 m=7.5 x 106 m 2):写出换算过程 45 m = __________________ = m 72 cm = _________________ = _____ m 48 m = __________________ = cm 56 mm = _________________ = _____ km

霉菌和酵母菌介绍及检测方法

霉菌和酵母菌介绍及检测方法 一、霉菌和酵母菌介绍: 霉菌和酵母菌及其检验酵母菌是真菌中的一大类,通常是单细胞,呈圆形,卵圆形、腊肠形或杆状。霉菌也是真菌,能够形成疏松的绒毛状的菌丝体的真菌称为霉菌。 霉菌和酵母广泛分布于自然界并可作为食品中正常菌相的一部分。长期以来,人们利用某些霉菌和酵母加工一些食品,如用霉菌加工干酪和肉,使其味道鲜美;还可利用霉菌和酵母酿酒、制酱;食品、化学、医药等工业都少不了霉菌和酵母。但在某些情况下,霉菌和酵母也可造成中腐败变质。由于它们生长缓慢和竞争能力不强,故常常在不适于细菌生长的食品中出现,这些食品是pH低、湿度低、含盐和含糖高的食品、低温贮藏的食品,含有抗菌素的食品等。由于霉菌和酵母能抵抗热、冷冻,以及抗菌素和辐照等贮藏及保藏技术,它们能转换某些不利于细菌的物质,而促进致病细菌的生长;有些霉菌能够合成有毒代谢产物-霉菌毒素。霉菌和酵母往往使食品表面失去色、香、味。例如,酵母在新鲜的和加工的食品中繁殖,可使食品发生难闻的异味,它还可以使液体发生混浊,产生气泡,形成薄膜,改变颜色及散发不正常的气味等。因此霉菌和酵母也作为评价食品卫生质量的指示菌,并以霉菌和酵母计数来制定食品被污染的程度。目前已有若干个国家制订了某些食品的霉菌和酵母限量标准。我国已制订了一些食品中霉菌和酵母的限量标准。 二、检验方法: 霉菌和酵母的计数方法,与菌落总数的测定方法基本相似。主要步骤为:将样品制作成10倍梯度的稀释液,选择3个合适的稀释度,吸取1mL于平皿,倾注培养基后,培养观察,计数。对霉菌的计数,还可以采用显微镜直接镜检计数的方法。 具体检测标准参见: GB4789.15-94,《中华人民共和国国家标准食品卫生微生物检验霉菌和酵母计数》三、说明: 1.样品的处理。为了准确测定霉菌和酵母数,真实反映被检食品的卫生质量,首先应注意样品的代表性。对大的固体食品样品,要用灭菌刀或镊子从不同部位采取试验材料,再混合磨碎。如样品不太大,最好把全部样品放到灭菌均质器杯内搅拌2min。液体或半固体样品可用迅速颠倒容器25次来混匀。 2.样品的稀释:为了减少榈稀释倍数的误差,在连续递增稀释时,每一稀释度应更换一根吸管。在稀释过程中,为了使霉菌的孢子充分散开,需用灭菌吸管反复吹吸50次。 3.培养基的选择:在霉菌和酵母计数中,主要使用以下几种选择性培养基。 马铃薯-葡萄糖-琼脂培养基(PDA):霉菌和酵母在PDA培养基上生长良好。用PDA作平板计数时,必项加入抗菌素以抑制细菌。 孟加拉红(虎红)培养基:该培养基中的孟加拉红和抗菌素具有抑制细菌的作用。孟加拉红还可抑制霉菌菌落的蔓延生长。在菌落背面由孟加拉红产生的红色有助于霉菌和酵母菌落的计数。 高盐察氏培养基:粮食和食品中常见的曲霉和青霉在该培养基上分离效果良好,它具有抑制细菌和减缓生长速度快的毛霉科菌种的作用。 4.倾注培养。每个样品应选择3个适宜的稀释度,每个稀释度倾注2个平皿。培养基熔化后冷却至45℃,立即倾注并旋转混匀,先向一个方向旋转,再转向相反方向,充分混合均匀。培养基凝固后,把平皿翻过来放温箱培养。大多数霉菌和酵母在25-30℃的情况下生长良好,因此培养温度25~28℃。培养3d后开始观察菌落生长情况,共培养5d观察记录结果。 5.菌落计数及报告:选取菌落数10~150之间的平板进行计数。一个稀释度使用两个平

蛋白质活性测定方法

核糖核酸酶(RNase)的活性测定 (1)溶液的配制: ①0.1 mol/L pH 5.0的乙酸缓冲溶液:称取5.78 g CH3COONa, 加入1.7 mL CH3COOH, 用蒸馏水稀释至500 mL。 ② 0.05 % RNase酵母溶液:称0.05 g RNase酵母,用0.1 mol/L pH 5.0的乙酸缓冲溶液溶解并稀释至100 mL。 测活方法: (2)用移液管移取已配制好的0.05 %的核糖核酸酵母溶液2.5 ml于比色皿中,加入一定量的样品RNase A溶液,迅速摇匀,以蒸馏水为参比,在300 nm波长下每隔30秒测一次吸光值,共读3分钟,得到一组对应于时间t(min)的At值。当样品管反应3小时后再测定300 nm处的吸光值A f, A f为最终的光吸收,分别求得一组对应于t的log(A t-A f), 以log(A t-A f)对时间t作图应得到线性关系,画出直线。求出直线斜率的数值S,将S带入标准曲线,求得活性回收率。将S带入下列公式中,可求出酶的活力。 单位/ mg = S × (-2.3) ×4 / (样品管中含酶的数量) 胰凝乳蛋白酶(α-Chy)活性测定 用胡梅尔(Hummel)法测定α-胰凝乳蛋白酶[2]: (1) 原理:α-胰凝乳蛋白酶优先催化水解结合有氨基酸(如酪氨酸、苯丙氨酸和色氨酸的L-异构体)的肽键。我们可以通过在256 nm处测定吸光度增大值的办法来测定反应的速度。苯甲酰-L-酪氨酸乙酯的水解反应引起吸光度的增大。(2) 定义:一个凝乳蛋白酶单位相当于在pH值为7.8,温度为25 ℃时,每分钟水解1 μmol苯甲酰-L-酪氨酸乙酯(BTEE)所需的酶量。 (3) 试剂配置方法: Tris缓冲液(pH: 7.8)取0.969 g三(羟甲基)氨基甲烷和1.47 mg二水氯化钙溶于 80 mL蒸馏水中,用1 N的盐酸将pH值调至7.8,并定容至100 mL。 ①盐酸(HCl): 0.001 moL/L ②酶溶液:先用盐酸溶解酶,使溶液浓度达到1 mg/mL,然后再用盐酸稀释,使最终浓度达到0.5~1.0 U/mL。 ③底物溶液:取33.5 mg苯甲酰-L-酪氨酸乙酯溶于50 %的甲醇(63 mL甲醇与50

霉菌和酵母菌检测

霉菌和酵母菌检测 1 设备和材料 除微生物实验室常规灭菌及培养设备外,其他设备和材料如下: 1.1 冰箱:2℃~5℃。 1.2 恒温培养箱:28℃±1℃。 1.3 均质器。 1.4 恒温振荡器。 1.5 显微镜:10×~100×。 1.6 电子天平:感量0.1g。 1.7 无菌锥形瓶:容量500ml、250ml。 1.8 无菌广口瓶:500ml。 1.9 无菌吸管:1ml(具0.01ml刻度)、10ml(具0.1ml刻度)。 1.10 无菌平皿:直径90mm。 1.11 无菌试管:10mm×75mm。 1.12 无菌牛皮纸袋、塑料袋。 2 培养基和试剂 2.1 马铃薯-葡萄糖-琼脂培养基:见附录A中A.1。 2.2 孟加拉红培养基:见附录A中A.2。 3 操作方法 3.1 试验前准备 3.1.1 将供试品及所有已灭菌的平皿、锥形瓶、匀浆杯、试管、量筒、吸管(1ml、10ml)、稀释剂等移至操作室内。准备好足够用量,避免操作中出入操作间。 3.1.2 开启无菌室紫外杀菌灯和洁净工作台的空气过滤装置30min。 3.1.3 操作人员用肥皂洗手,关闭紫外杀菌灯,进入缓冲间,换工作鞋,用消毒液洗手或用乙醇棉球擦手,穿戴好无菌衣、帽、口罩、手套等。 3.1.4 操作前先用乙醇棉球擦手、工作台面,再用乙醇棉球擦拭供试品瓶、盒、袋等的开口处周围,待干后用灭菌剪刀或镊子将供试品启封。 3.2 样品稀释液的制备

根据供试品的理化特性与生物学特性,采取适宜的方法制备样品稀释液。样品稀释液制备若需用水浴加温时,温度不应超过45℃。样品稀释液从制备至加入检验用培养基,不得超过1小时。 3.2.1 固体和半固体样品 称取25g样品至盛有225ml灭菌蒸馏水的锥形瓶中,充分振摇,即为1:10稀释液。或放入盛有225ml无菌蒸馏水的均质袋中,用拍击式均质器拍打2min,制成1:10的样品匀液。 3.2.2 液体样品 以无菌吸管吸取25ml样品至盛有225ml无菌蒸馏水的锥形瓶(可在瓶内预置适当数量的无菌玻璃珠)中,充分混匀,制成1:10的样品匀液。 3.3 霉菌和酵母菌计数 3.3.1 用1ml无菌吸管或微量移液器吸取1:10样品匀液1ml,沿管壁缓慢注于盛有9ml 稀释液的无菌试管中(注意吸管或吸头尖端不要触及稀释液面),振摇试管或换用1支无菌吸管反复吹打使其混合均匀,制成1:100的样品匀液。 3.3.2 按3.3.1操作程序,制备10倍系列稀释样品匀液。每递增稀释一次,换用1次1ml 无菌吸管或吸头。 3.3.3 根据对样品污染状况的估计,选择2个~3个适宜稀释度的样品匀液(液体样品可包括原液),在进行10倍递增稀释时,吸取1ml样品匀液于无菌平皿内,每个稀释度做两个平皿。同时,分别吸取1ml空白稀释液加入两个无菌平皿内作空白对照。 3.3.4 及时将15ml~20ml冷却至46℃的马铃薯-葡萄糖-琼脂培养基或孟加拉红培养基(可放置于46℃±1℃恒温水浴箱中保温)倾注平皿,并转动平皿使其混合均匀。 3.4 培养 待琼脂凝固后,将平板翻转,28℃±1℃培养5d,观察并记录。 3.5 菌落计数 肉眼观察,必要时可用放大镜,记录各稀释倍数和相应的霉菌和酵母数。以菌落形成单位(colony forming units,CFU)表示。选取菌落数在10CFU~150CFU的平板,根据菌落形态分别计数霉菌和酵母数。霉菌蔓延生长覆盖整个平板的可记录为多不可计。菌落数应采用两个平板的平均数。 3.6 结果与报告

霉菌与酵母菌计数方法(2015版药典)

霉菌与酵母菌计数方法 1试验菌液得制备与使用(以白色念珠菌为示例) 白色念珠菌(0)代 ↓ 传代培养 ↓ 实验菌液得制备:沙氏葡萄糖琼脂培养基或沙氏葡萄糖液体培养 基,培养温度20~25℃,培养时间2~3天 ↓ 计数培养基适用性检查:胰酪大豆胨琼脂培养基,培养温度30~35℃, 培养时间不超过5天,接种量不大于100cfu ↓ 计数方法适用性试验:胰酪大豆胨琼脂培养基(MPN法不适用),培养温 度30~35℃,培养时间不超过5天,接种量不大于100cfu 注:当需用玫瑰红钠琼脂培养基测定霉菌与酵母菌总数时,应进行培养基适用性检查,检查方法同沙氏葡萄糖琼脂培养基 1.1菌种 试验用菌株得传代次数不得超过5代(从菌种保藏中心获得得干燥菌种为第0代),并采用适宜得菌种保藏技术进行保存,以保证试验菌株得生物学特性。 1。2菌液制备(按表1规定程序培养各试验菌株) 取白色念珠菌得新鲜培养物 ↓ 用pH7、0无菌氯化钠—蛋白胨缓冲液或0、9%无菌氯化钠溶液制成适宜浓度得菌悬液 取黑曲霉得新鲜培养物 ↓ 加入3~5ml含0.05%聚山梨酯80得pH7.0无菌氯化钠—蛋白胨缓冲液或0、9%无 菌氯化钠溶液,将孢子洗脱 ↓ 采用适宜得方法吸出孢子悬液至无菌试管内 ↓ 用含0。05%聚山梨酯80得pH7.0无菌氯化钠—蛋白胨缓冲液或0。9%无菌氯 化钠溶液制成适宜浓度得黑曲霉孢子悬液 菌液制备后若在室温下放置,应在2小时内使用;若保存在2~8℃,可在24小时内使用、稳定得黑曲霉孢子悬液可保存在2~8℃,在验证过得贮存期内使用、

1。3阴性对照 为确认试验条件就是否符合要求,应进行阴性对照试验,阴性对照试验应无菌生长。如阴性对照有菌生长,应进行偏差调查、 2、培养基适用性检查 按表1规定,接种不大于100cfu得菌液至沙氏葡萄糖琼脂培养基平板 ↓ 置表1规定条件下培养 ↓ 每一试验菌株平行制备2管或2个平皿 ↓ 同时,用相应得对照培养基替代被检培养基进行上述试验 ↓ 被检固体培养基上得菌落平均数与对照培养基上得菌落平均数得比值应在0。5-2范围内,且菌落形态大小应与对照培养基上得菌落一致;被检液体培养基管与对照培养基管比较,试验 菌应生长良好 3计数方法适用性试验 供试液制备:水不溶性非油脂类供试品 ↓ 取供试品,用pH7.0无菌氯化钠-蛋白胨缓冲液,或pH7。2磷酸盐缓冲液,或胰酪大豆胨 液体培养基 ↓ 制备成1:10供试液。 ↓ 若需要,调节供试液pH值至6~8。必要时,用同一稀释液将供试液进一步10倍系列稀释、 ⒉接种与稀释 所加菌液得体积应不超过供试液体积得1%、为确认供试品中得微生物能被充分检出,首先应选择最低稀释级得供试液进行计数方法适用性试验。

霉菌酵母菌生活习性汇编

1. 霉菌和酵母的基本特性 霉菌和酵母这种称谓仅是为了方便起见,将小型真菌有真正菌丝的称为霉菌,没有菌丝的称酵母,并没有分类学上的依据。相对于低等的细菌来说,霉菌和酵母生长缓慢,竞争能力较弱,故霉菌和酵母常在不利于细菌生长繁殖的环境中形成优势菌群。由于霉菌和酵母的细胞较大,新陈代谢能力强,故102~104个酵母即可引起一克食物的变质,而细菌则需要100倍于此数的细胞。 通常霉菌和酵母适合在高碳低氮有机物如植物性物质上生存。适合的pH 3~8,有些霉菌可以在pH2,酵母在pH 1.5时生活。水活度要求0.99~0.61,霉菌0.85时最适宜,某些嗜渗酵母和霉菌常引起糖果类食品的变质。一般的霉菌的生长温度为20~30℃,部分霉菌可以在不低于-7℃的温度下生长。酵母一般在0~45℃时生长。耐热能力较差,酵母细胞55~56℃几分钟就被杀死。少数霉菌的孢子(如丝衣霉)则可在90℃中耐受几分钟。霉菌和酵母很多可以耐受防腐剂。如乳酸、醋酸、CO2和SO2等。有些酵母酯酶活性高并能合成B族维生素。 2. 食品中酵母的常见类群 在食品中能分离出各种酵母菌,但它们很可能没有什么意义,因为其中多数来源于外界的偶然污染。仅有非常有限的几个酵母属可使经过加工并正常生产工艺包装的食品腐败。比如抗SO2熏蒸的酵母,就是饮料、葡萄酒变质的常见因素。耐受保鲜剂的毕赤酵母,高度嗜氧,可以形成泡菜和酱油的表面膜。

当然,如果不按照标准的生产程序进行食品生产,那么许多外界污染的酵母都将在食品中大量繁殖,这种情况下,就谈不上优势菌群问题了,也不必进行酵母的分类鉴定。处理方法只有一个,恢复正常的生产程序。 2.1 乳制品:鲜奶易因细菌污染而腐败,酵母菌不是重要问题。当鲜奶被加工成奶油、乳酪、酸奶等制品后,由于细菌被抑制,酵母可相应地成为优势菌。它们使奶油、乳酪产生怪味和气体,使黄油产生有味物质,并可使酸奶和酸乳酪腐败。在实验室中,汉逊德巴利酵母、布提利假丝酵母、多孢丝孢酵母和红酵母均能导致固体和液体乳酪的腐败。 2.2 肉类与肉制品:通常情况下,这类制品适于细菌的生长,酵母不是引起变质的主要原因。某些德巴利酵母可使冷冻的猪、牛肉香肠和午餐肉表面出现令人不愉快的粘滑感觉。 2.3 水果和蔬菜:两者的差别主要是pH值。水果通常为酸性,pH值在1.8~2.2左右(味浓的水果,柠檬等)到pH 4.5~5.0(西红柿等)之间,对细菌有抵抗力。而蔬菜的pH值接近中性,对细菌侵入敏感。通常引起水果腐败的原因是霉菌而非酵母,只有柠檬型克拉克酵母可侵入破损的草莓。 2.4 果酱、蜜饯、果汁和干果:这类食物的特点是水活度低。一些接合酵母能使加热不完全的果酱败坏。鲁接合酵母和拜尔接合酵母可引起包装好的巧克力变质。即使仅沾上几个细胞,最终也将生长而产生大量气体至将外包装胀破。拜尔接合酵母同样能使果汁变质,它能在

相关主题
文本预览
相关文档 最新文档