当前位置:文档之家› 高等有机化学汇总

高等有机化学汇总

高等有机化学汇总
高等有机化学汇总

研究生课程论文

题目: 浅谈有机化学的研究进展姓名: 陶月红

学院: 理学院

专业: 化学

学号: 2014111004

2015 年1 月12 日

南京农业大学教务处制

浅谈有机化学的研究进展

理学院2014111004 陶月红

摘要:本文综述了中国大陆地区有机化学研究人员2011至2012年两年内在合成方法学领域获得的重要成果。文章中共引用参考文献50篇,其中30多篇手性金属配合物和有机小分子催化的不对称反应、金属催化的碳氢键活化等合成方法学论文。本文汇集了中国有机化学家两年中合成的30多个不同物质。

关键词:有机化学合成方法学有机合成

有机化学是化学科学中一个十分重要的二级学科,也是与人类日常生活联系最紧密的化学分支,其发展与人类社会的发展息息相关。近年来,在国家科技政策和科研经费的支持下,我国有机化学事业得到了长足发展,有机化学相关领域研究队伍不断壮大(如,全国有机化学学术研讨会的参会人员数已由十年前500多人发展到超过2000人),研究工作水平不断提高,在国际顶级学术刊物上发表研究论文数迅猛增加(几乎每期国际一流化学期刊上都有中国有机化学家的论文刊登)。同时,也有越来越多的中国有机化学家被邀请担任国际顶级学术刊物的地区主编和编委,国内的有机化学期刊也开始得到重视。从近期学术论文发表情况看,我国有机化学的各分支学科存在发展不平衡的问题,工作主要集中于有机反应和合成方法学的研究。我国有机反应和合成方法学研究始终保持强盛的发展势头,但原创性、实用性工作仍旧有限。有机合成化学得到了发展,但主流观念和思路还停留在首次合成上。在元素有机化学中我国有机氟化学一支独秀,其他元素有机化学需要加强。中国天然产物化学研究工作突飞猛进,成为发现新化合物分子的主力。通过对我国有机化学学科2011~2012年发表的研究结果进行系统检索,本文对有机反应和合成方法学、有机合成化学、元素有机化学和天然产物化学等有机化学研究领域的学术进展做一个简要总结。

1 有机反应和合成方法学

有机反应和合成方法学是有机化学的基础,历来受到有机化学家的重视。有机化学发展过程中曾经出现许多以发现者名字命名的人名反应,使这些化学家名垂青史。在我国除黄鸣龙外,尚未有其他有机化学家获此荣誉,故在近30 年来,有机反应和合成方法学在我国有机化学界受到越来越多的重视。在我国有机化学界,从事有机反应和合成方法学的化学家人数和各种资源占有半壁江山,导致我国在国际一流学术刊物上发表的论文多为有机反应和合成方法学内容,为此本文也仅能收录刊登在《J.Am.Chem.Soc.》和德国《Angew.Chem.Int.Ed.》上的成果。国际上流行的热点研究领域,如金属催化的不对称反应、交叉偶联反应、碳氢键活化反应、有机小分子催化反应等,我国有机化学家不仅几乎全部涉足,而且人数比例和发表论文的数量均占有重要地位。只要美国化学家能开辟一个新领域,我们就会使这一领域成为论文发表的热点领域。我国有机化学家在有机反应和合成方法学研究领域的影响力日新月异,如2012年10月,北京大学施章杰承办了第一届碳氢键活化国际学术研讨会,并担任大会主席。无论如何,与西方国家的有机化学家,特别是美国化学家相比,我国的研究工作思路和成果还是属于跟踪的多,自己独创的少。《J.Am.Chem.Soc.》创刊125周年列举的125篇有影响的文章中,来自我国的仅为黄鸣龙先生于20世纪40年代发表的论文,足以说明我国还是缺乏真正有影响的独创性研究成果。我国有机反应和合成方法学研究领域的特点是人数众多,仅从事金属有机化学的人员就已超过千人;另一特点是发展均衡,在国际一流刊物上发表学术论文的作者既有我国著名科研院所

和高等院校的院士、教授,也有许多普通高校名不见经传、刚涉足其间的青年学者。总之,有机反应和合成方法学是我国有机化学界最有希望从跟随者变为领跑人的领域,但道路还很长,还需要加倍努力。

1.1金属参与的反应和合成方法学

金属有机化学自20 世纪70 年代以来在国际上得到迅速发展,所发展的反应涉及有机化学的各个领域,并发展了很多新型的合成反应,该领域有机化学家多次获得诺贝尔奖化学奖。本文主要综述了2011~2012年我国在碳氢键活化、加成

活化以及金属催环合反应、偶联反应、过渡金属催化氟化反应、惰性小分子CO

2

化不对称合成反应等方面的进展。

1. 1. 1 碳氢键活化将惰性的碳氢键直接转化

为碳碳键或碳杂原子键一直是有机化学家们想要实现的目标之一,也是近年来有机方法学研究的热点领域,并且已经取得了一些可喜的成果。碳氢键活化研究中最具挑战性的工作是非活化的烷烃碳的碳氢键活化[1~5]。我国当前取得的大部分成果多属于活化的烯烃或烯丙位碳的碳氢键活化。施章杰等[6~8]报道了不同金属催化的碳氢键活化反应,通过吡啶作为导向基团在铑催化下碳氢键活化与亚胺进行加成,得到碳碳键偶联的产物(式1)[9,10]。焦宁等[11]利用钯催化碳氢键活化实现了以DMF为氰源的直接氰基化。刘国生等[12,13]报道了钯催化下活性烯烃的芳基烷基化反应,实现了苯胺与乙腈的双碳氢键断裂(式2)。张前等[14]也报道钯催化苯胺的碳氢键胺化反应,该反应可能经历高价钯中间体形成碳氮键。雷爱文等[15]利用两次钯催化碳氢键活化,在常压CO氛围下进行羰基化,高效合成了含氧杂蒽酮结构单元的分子(式3)。

关正辉等[16]应用类似的碳氢键活化策略,通过两次CO插入,实现了芳基的羰基化,合成了靛红酸酐(式4)。黄汉民等[17]在钯催化下,通过自由基活化苄位碳氢键形成苄基钯物种,对CO加成得到酯类产物(式5)。此外,刘磊等[18]通过钯催化苯酚导向的碳氢键活化合成二苯并呋喃。麻生明等[19]报道了钌催化联烯的氢芳基化反应,反应通过苯甲酰胺导向的碳氢键活化进而对联烯进行加成而实现。除了钯钌等贵金属催化的碳氢键活化外,利用相对廉价的铜、铁等金属实现碳氢键活化也受到很大关注。焦宁等[20]实现了铜催化苯胺的邻位碳氢键活化而引入叠氮基(式6),该反应可能经历的是一个单电子转移过程。

1. 1. 2 加成环合反应

麻生明等报道了用一锅法,从3-碘-烯丙基吲哚出发,在零价钯催化下与炔丙基溴发生碳碳偶联,形成的联烯中间体进一步环化得到了吲哚并八元环结构(式7)[21]。此外,他们还报道了通过钯催化碳碳键偶联合成手性联烯的方法,丰富了联烯的化学内容[22]。

刘元红等[23,24]利用金催化1,6-二炔环合得到多取代的萘环以及苯并芴,并提出了Au/Sn转金属的反应模式(式8)。施敏等发展了利用金催化1,6-二炔环合得到多取代的二氢吡咯结构[25](式9),而含炔基的联烯基环丙烷在铑催化下环合则得到多环化合物[26]。支志明等[27]利用金催化分子内酮的α-位对非活性烯烃的氢烷基化反应。

1. 1. 3 偶联反应

雷爱文等[28]在钯催化下,通过氧化酯化反应将伯醇转化成为相应的羧酸酯(式10)。在此基础上,利用苄氯作为温和氧化剂,实现了醛和醇的选择性酯化[29]。江焕峰等[30]提供了通过钯催化烯烃碳酯化反应从炔酸酯和烯烃出发合成α-甲叉基-γ-内酯的方法。田世凯等报道在钯催化的烯丙基胺与芳基硼酸[31]或亚磺酸盐[32]的偶联反应。苏伟平等[33,34]发展了钯催化羧酸的脱羧偶联反应等。

近年来,铜以及铁、钴、镍等廉价金属催化的偶联反应也得到了很大的发展。雷爱文等[35]发展了镍催化的Heck反应(式11)。刘磊等通过铜催化,实现了一级烷基卤代物与芳基硼酸酯[36]、二级烷基卤代物与格氏试剂[37](式12)以及二级烷基卤代物与硼酸酯B2pin2的偶联反应[38]。焦宁等[39~42]利用铜、铁催化剂在氧化剂DDQ的促进下,产生的正离子与叠氮等反应形成四唑、芳胺等化合物(式13)。

王剑波等[43,44]发展了铜催化磺酰腙与炔烃等的偶联反应。李金恒等[45]发展了镍催化的Kumada 偶联反应,实现了烷基磺酸与格氏试剂的偶联。蔡倩等[46]首次报道了铜催化的去不对称Ullmann反应,并用于合成手性二氢吲哚。

1.1.4过渡金属催化氟化反应

近年来,随着含氟化合物在医药、农药、材料等领域的广泛应用,如何合成含氟化合物倍受有机化学家的关注。利用过渡金属催化将氟原子或含氟片段引入到有机分子中的策略得到了很大发展。这部分工作被纳入有机氟化学研究范围,将在后面元素有机部分进行叙述。

1.1.5惰性小分子CO

2

活化如何将CO

这一惰性小分子进行活化,引入到有机分子中进行转化利用

2

是有机化学家面临的又一大挑战。麻生明等

报道了镍催化炔烃的氢酯化反应,

[47]

该反应仅需要常压的CO

,具有很好的立体选择性,反应得到反式α,β-不饱和

2

羧酸(式14)。吕小兵等[48]通过银催化直接将端炔进行羧化,有效地合成了炔基羧酸(式15)。丁奎岭等[49]通过二价铑催化氢化,高效地将环碳酸酯转化为乙二醇和甲醇这两类重要的化工原料(式16),相应的环碳酸酯可由环氧与CO

制得,

2

从而实现了CO

向甲醇的高效转化。

2

1.1.6金属催化的不对称合成反应

我国化学家在新型手性配体、新反应、新方法等研究方面也取得了显著的成绩。周其林等以螺二氢茚为配体骨架,设计了手性双噁唑啉配体[50]、手性氮膦配

体[51]等,它们与不同金属络合后催化不对称反应[52, 53]均表现了很好的催化活性,如手性双噁唑啉配体与铜络合催化卡宾对氮氢键不对称插入反应(式17)。丁对称的单齿亚膦酰胺配体,在铑催化不对称氢化反应中取得了

奎岭等发展了C

2

很好的结果[54, 55],随后发展的手性螺缩酮骨架配体[56],实现了钯催化不对称烯丙基胺化反应[57](式18)以及不对称α-羟基化反应[58]。唐勇等设计合成了具有“边臂效应”的假C

对称的双齿或三齿噁唑啉配体,在不对称碳叶立德环合[59]、

3

环丙烷开环[60](式19)以及环丙烷化反应[61,62]中表现出优异的效果。

游书力等设计合成了一系列以联萘酚为骨架的亚膦酰胺配体,在铱催化不对称苯酚、吲哚和吡咯的去芳构化烯丙基化反应(式20)[63~65]以及吲哚、苯胺烯丙基胺化等反应[66~68]中显示了很好的区域和立体选择性。余志祥等[69]通过铑催化将该类配体应用于活化烯丙位碳氢键对共轭双烯的不对称加成反应。

冯小明等发展的手性氮氧金属络合物(如式21方框内所示),在不饱和酮的氯胺化反应[70]、酮与α-重氮酯亲电加成反应[71]、不对称Baeyer-Villiger 氧化反应[72]、烷基烯醇醚对1,2-二羰基化合物的对映选择性加成[73]、2-吲哚酮的羟胺化反应[74]、吡唑啉酮对不饱和酮的Michael加成反应[75,76]以及靛红与α-烷基-α-重氮酸酯的不对称扩环反应[77]中,均体现出极优异的选择性(式21)。在芳杂环化合物不对称氢化反应方面,周永贵等[78~82]利用联苯双膦配体实现了铱、钯催化的异喹啉和吡啶等的不对称氢化。范青华等[83,84]通过特殊的双氮配位的手性阳离子铑催化剂实现了喹啉的不对称氢化。童晓峰等报道了(Z)-1-碘-1,6-二烯在醋酸钯作用下进行环异构化反应,合成了六元杂环化合物并同时实现了碘原子转移[85];他们[86]还报道了胺催化的联烯酸酯与不饱和酮的[4+2]加

成反应,生成多取代的二氢吡喃化合物。冯小明等[87]报道了FeCl

3催化的Prins

环化反应,反应中羟基而不是氯负离子进攻碳正离子,生成4-羟基-四氢吡喃类化合物,反应具有高立体选择性。张俊良等[88]使用铑氮杂卡宾催化烯基环氧与炔进行串联[5+2]环加成反应/Claisen重排,合成了双环[3.1.0]己烷结构。

胡文浩等[89]使用铑与手性Brnsted酸协同催化三组分Mannich反应,可以同时得到syn和anti两种不同构型的α-取代的α,β-二胺基酸衍生物。林国强等[90]以手性双环[3.3.0]辛二烯作为配体,在铑催化下进行了芳基硼酸与烷基亚胺的加成反应,其对映选择性极高。侯雪龙等[91]报道了在不同碱性条件下钯催化亚胺的烯丙基化反应,可以得到支链或线型产物,其中支链产物的anti/syn选择性较高。洪然等[92]利用手性膦酸银通过环异构化反应实现的α-联烯醇的不对称拆分,合成了手性α-联烯醇和二氢呋喃化合物。胡向平等[93]发展了铜与手性三齿二茂铁-P,N,N配体催化的高endo选择性和对映选择性的炔丙酯与环烯胺的[3+3]环加成反应。

2 非金属参与的反应和合成方法学

手性有机小分子催化的不对称反应在20世纪70年代已有报道,著名反应有合成Hajos-Parrish双环酮(甾体C/D环)的工作[94],Hajos-Parrish 双环酮也已有商品。本世纪初,手性有机小分子催化的不对称反应重新得到有机化学家的重视,以美国MacMillan[95]和List /Barbas[96]为代表的手性有机小分子催化的不对称反应发表后,迅速形成不对称反应研究的高潮,研究成果已有专著和特刊报道[97~101]。我国化学家迅速跟踪,不断有新结果发表,在2011 ~ 2012 年间这一势头依然不减。叶金星等[102]报道了有机催化的α,β-不饱和-γ-丁内酰胺对α,β-不饱和酮的不对称烯基Michael加成(式22),其中1,2-二苯基乙二胺类催化剂2-1与N-Boc-L-Trp是最佳催化体系,可以取得很好的对映选择性和非对映选择性。

龚流柱等报道了有机双磷酸衍生物(见式23的方框内所示)催化的一系列反应(式23),例如,催化席夫碱叶立德与不饱和烯[3+2]环加成反应[103]、邻炔基苯基硅醇与苯醌类底物的不对称Diels-Alder反应[104]、Friedlnder缩合

反应及不对称氢转移反应[105]、3-羟基吲哚与烯胺化合物的亲核取代反应[106]、新型手性双内铵盐催化的双吖内酯对脂肪亚胺的Mannich反应[107]和不对称氢转移反应[108]等。此外,他们发展的邻炔苯胺的氧化/碳氢键活化/分子内环化反应是以吡啶氮氧化合物作为氧化剂,无需任何金属[109]。叶松等[110]报道,金鸡纳碱催化的α,β-不饱和酰氯与偶氮二甲酸酯反应(式24)可以实现γ-胺化,经还原开环可以得到一系列环状或非环状的手性γ-氨基酸。他们[111]还报道了氮杂卡宾催化亚磺酰苯胺与烯酮[2+2]的环加成反应(式25),采用不同的催化剂可得到一对对映异构体,催化剂用量仅为1(mol)%。涂永强等报道了用金鸡纳生物碱催化的α-氧杂-β-卤酮结构的卤化/半频哪醇重排反应(式26)[112],反应产物构型与手性催化剂有关。他们还报道了有机催化的醚碳氢键活化/不对称Michael 加成反应/HWE反应(式27)[113]。

陈应春等以三烯胺催化模式实现了2,4-二烯醛与硝基烯的exo-选择性不对称Diels-Alder反应(式28)[114],以及金鸡纳碱衍生的伯胺催化下的2,4

-二烯酮的endo-选择性不对称Diels-Alder反应(式29)[115]。此外,他们还报道了由金鸡纳碱衍生的伯胺催化的β-取代环烯酮与丙二腈类底物的不对称[4+2]环加成反应[116]和手性Lewis碱和Brnsted酸协同催化下吲哚的不对称硅氢化硅烷基化反应[117]。王锐等先后报道了α-异硫氰酰亚胺与亚甲基吲哚酮在硫脲(式30和31的2-7)催化下进行串联Michael加成及环化反应,可用于合成含多个手性中心的螺环吲哚化合物(式30)[118]、经氮邻位碳氢键不对称活化和与α-取代-β酮酸酯进行氧化交叉偶联反应能生成α-烷基-α-氨基酸衍生物(式31)[119]、双官能团催化剂(式32和33的2-8)催化的反转电子要求的不对称Diels-Alder反应(式32)[120]以及有机催化的噁唑酮的不对称Mannich 反应(式33)[121]。

3 有机合成化学

有机合成化学是有机化学的中心研究领域。综观国际有机合成化学发展状况,早在20世纪90年代已从挑战人类合成能力的单个有机分子首次合成转变为提供高效、洁净的实用合成方法的研究。有机合成逐渐成为一种工具,其目的不再仅仅是为了展示人类挑战自然的能力,而且要求通过有机合成化学更好解决化合物资源的合理利用和人类社会所需有机分子的供给。

参考文献

[1]M S Chen,M C White.Science,2007,318: 783 ~787.

[2]M S Chen,M C White.Science 2010,327: 566 ~571.

[3]D H RBarton,L E Geller,M M Pechet.J.Am.Chem.Soc.1961,83: 4076~4083.[4]A G Constable,W S Mcdonald,L C Sawkins et al.J.Chem.Soc.Chem.Commun.,1978: 1061 ~1062.

[5]RBreslow.in “Comprehensive Organic Synthesis”,B MTrost,ed.,Oxford: Pergamon Press,1991,7: 39 ~53.

[6]B Li,Z H Wu,Y F Gu et al.Angew.Chem.Int.Ed.2011,50: 1109 ~1113.[7]B J Li,Z J Shi.Chem.Sci.2011,2: 488 ~493.

[8]B J Li,H Y Wang,Q L Zhu et al.Angew.Chem.Int.Ed.,2012,51: 3948 ~3952.[9]Y Li,B J Li,W H Wang et al.Angew.Chem.Int.Ed,2011,50: 2115 ~2119.[10]Y Li,X S Zhang,H Li et al.Chem.Sci.,2012,3: 1634~1639.

[11]S Ding,N Jiao.J.Am.Chem.Soc.,2011,133:12374~12377.

[12]T Wu,X Mu,G Liu.Angew.Chem.Int.Ed.,2011,50:12578~12581.[13]H Zhang,P Chen,G Liu.Synlett,2012,23: 2749~2752.

[14]K Sun,Y Li,T Xiong et al.J.Am.Chem.Soc.,2011,133: 1694 ~1697.[15]H Zhang,RShi,P Gan et al.Angew.Chem.Int.Ed.,2012,51: 5204 ~5207.[16]Z H Guan,M Chen,Z H Ren.J.Am.Chem.Soc.,2012,134: 17490 ~17493.[17]P Xie,Y Xie,B Qian et al.J.Am.Chem.Soc.,2012,134: 9902 ~9905.[18]B Xiao,T J Gong,Z J Liu et al.J.Am.Chem.Soc.,2011,133: 9250 ~9253.[19]RZeng,C Fu,S Ma.J.Am.Chem.Soc.,2012,134:9597 ~9600.

[20]C Tang,N Jiao.J.Am.Chem.Soc.2012,134: 18924~18927.

[21]C Zhu,X Zhang,X Lian et al.Angew.Chem.Int.Ed.,2012,51: 7817 ~7820.[22]Q Li,C Fu,S Ma.Angew.Chem.Int.Ed.,2012,51:11783 ~11786.[23]Y Chen,M Chen,Y Liu.Angew.Chem.Int.Ed.,2012,51: 6181 ~6186.[24]Y Chen,M Chen,Y Liu.Angew.Chem.Int.Ed.,2012,51: 6493 ~6497.[25]D H Zhang,L F Yao,Y Wei et al.Angew.Chem.Int.Ed.,2011,50: 2583 ~2587.[26]B L Lu,M Shi.Angew.Chem.Int.Ed.,2011,50: 12027~12031.

[27]Y P Xiao,X Y Liu,C M Che.Angew.Chem.Int.Ed.,2011,50: 4937 ~4941.[28]C Liu,J Wang,L Meng et al.Angew.Chem.Int.Ed.,2011,50: 5144 ~5148.[29]C Liu,S Tang,L Zheng et al.Angew.Chem.Int.Ed.,2012,51: 5662 ~5666.[30]L Huang,Q Wang,X Liu et al.Angew.Chem.Int.Ed.,2012,51: 5696 ~5700.[31]M B Li,Y Wang,S K Tian.Angew.Chem.Int.Ed.,2012,51: 2968 ~2971.[32]X S Wu,Y Chen,M B Li et al.J.Am.Chem.Soc.,2012,134: 14694 ~14697.[33]W Wu,W Su.J.Am.Chem.Soc.,2011,133: 11924~11927.

[34]P Hu,Y Shang,W Su.Angew.Chem.Int.Ed.,2012,51: 5945 ~5949.[35]C Liu,S Tang,D Liu et al.Angew.Chem.Int.Ed.,2012,51: 3638 ~3641.[36]C T Yang,Z Q Zhang,Y C Liu et al.Angew.Chem.Int.Ed.,2011,50: 3904 ~3907.

[37]C T Yang,Z Q Zhang,J Liang et al.J.Am.Chem.Soc.,2012,134: 11124 ~11127.[38]C T Yang,Z Q Zhang,H Tajuddin et al.Angew.Chem.Int.Ed.,2012,51: 528~532.

[39]F Chen,C Qin,Y Cui et al.Angew.Chem.Int.Ed.,2011,50: 11487~11491.

[40]C Qin,W Zhou,F Chen et al.Angew.Chem.Int.Ed.,2011,50: 12595~12599.[41]C Qin,T Shen,C Tang et al.Angew.Chem.Int.Ed.,2012,51: 6971~6975.[42]T Wang,W Zhou,H Yin et al.Angew.Chem.Int.Ed.,2012,51: 10823~10826.[43]F Ye,X Ma,Q Xiao et al.J.Am.Chem.Soc.,2012,134:5742~5745.[44]X Zhao,G Wu,Y Zhang et al.J.Am.Chem.Soc.,2011,133: 3296 ~3299.[45]J C Wu,L B Gong,Y Xia et al.Angew.Chem.Int.Ed.,2012,51: 9909 ~9913.[46]F Zhou,J Guo,J Liu et al.J.Am.Chem.Soc.,2012,134: 14326 ~14329.[47]S Li,W Yuan,S Ma.Angew.Chem.Int.Ed.,2011,50:2578~2582.

[48]X Zhang,W Z Zhang,X Ren et al.Org.Lett.,2011,13:2402~2405.

[49]Z Han,L Rong,J Wu et al.Angew.Chem.Int.Ed.,2012,51:13041~13045.[50]S F Zhu,B Xu,G P Wang et al.J.Am.Chem.Soc.,2011,134: 436~442.

高等有机化学习题及期末考试题库(二)教学文案

高等有机化学习题及期末复习 一、回答下列问题:(22小题,1-14每题1分,15-22,每题2分,共30分) 1. 亲核反应、亲电反应最主要的区别是( ) A. 反应的立体化学不同 B. 反应的动力学不同 C. 反应要进攻的活性中心的电荷不同 D. 反应的热力学不同 2. 下列四个试剂不与3-戊酮反应的是( ) A. RMgX B. NaHSO3饱和水溶液 C. PCl3 D. LiAlH4 3.指出下列哪一个化合物(不)具有旋光性? 4. 区别安息香和水杨酸可用下列哪种方法 A. NaOH(aq) B. Na2CO3(aq) C. FeCl3(aq) D. I2/OH-(aq) 5. 比较下列化合物的沸点,其中最高的是 6. 指出下列哪一个化合物的紫外吸收光谱波长最短( ) 7.下列化合物在常温平衡状态下,最不可能有芳香性特征的是( ) 8.下列含氧化合物最难被稀酸水解的是( ) 9. 二环乙基碳亚胺(DCC)在多肽合成中的作用是( ) A. 活化氨基 B. 活化羧基 C. 保护氨基 D. 保护羧基

10. 比较下列化合物在H2SO4中的溶解度( ) 11. 下列关于α-螺旋的叙述,错误的是( ) A. 分子内的氢键使α-螺旋稳定 B. 减少R 基团间的不同的互相作用使α-螺旋稳定 C. 疏水作用使α-螺旋稳定 D. 在某些蛋白质中α-螺旋是二级结构的一种类型 12. 比较苯酚(I)、环己醇(II)、碳酸(III)的酸性大小 A. II>I>III B. III>I>II C. I>II>III D. II>III>I 13.1HNMR 化学位移一般在0.5-11ppm,请归属以下氢原子的大致位置: A. -CHO B. -CH=CH C. -OCH3 D. 苯上H 14. 按沸点由高到低排列的顺序是:()>()>()>()>()。 a. 3–己醇; b. 正己烷; c. 2–甲基–2–戊醇; d. 正辛醇; e. 正己醇。 15. 指出下列化合物中标记的质子的酸性从大到小的顺序: 16. 指出小列化合物的碱性大小的顺序: 17. 下面几种酒石酸的立体异构体熔点相同的是: 18. 用箭头标出下列化合物进行硝化反应时的优先反应位置: 19. 下列化合物那些有手性?

我对学术成长的认识-徐光宪

延伸阅读 我对学术成长的认识 ■徐光宪 借中国科协的学术成长资料采集项目之机,我也梳理了一下,我究竟有哪些基本的理念和价值观?我的成长主要依靠什么? 1. 我的认识。人是有智慧的社会动物。一个人离开社会是不能生存的。因此产生“三感”:(1)社会责任感。我从出生到成年,受父母养育之恩,师长教导之德,和家乡贤达文化的培育。我吃的、穿的、住的都是前人劳动的成果。我能安全快乐地活着,是受国家和军队的保护。所以成年以后,要以同样的劳动和贡献来回报父母、师长、国家和社会。这是我,也是每一个中国人必须履行的社会责任感。(2)时代幸福感。我们中国人自鸦片战争以来,受尽帝国主义的欺凌和日本军国主义的侵略,经过无数革命先烈和共产党人的奋斗和牺牲,才于1949年成立共产党领导下的新中国,使中国人民站了起来。又经过艰难曲折,才走到改革开放的道路,逐渐迈向中华民族复兴。我们要有身处中华复兴时代的幸福感,我们要热爱我们的祖国。(3)历史使命感。中华复兴还要走很长的路,当前中国还有许多问题有待解决。这个历史的重担落在年轻人的身上,年轻人要有这个光荣的历史使命感。 2. 我的价值观。我认为人生的目的是:要使最大多数的人民共同富裕、共同幸福。 3. 成功的要素。个人的成功是指对国家和民族作出有益的贡献,当然也包括个人的成就和家庭的幸福。成功的要素5分是勤奋,2分是才华,3分是机遇。每个人在一生中,总会遇到不少机遇,但能否抓住机遇,则决定于你是否有准备。要使自己有准备,还是需要勤奋。我给自己的天赋和才华打分是中上,但勤奋是9分以上。所以优秀的大学生加上9分以上的勤奋都能达到或超过我的成就。钱学森是杰出的中国科学家,20世纪全世界20位伟大科学家中排名第18。他的天赋和才华是上上,彭桓武和黄昆等的天赋和才华也是上上。这是一般人难以企及的。但能学到他们的5%~10%,也会对国家作出非常卓越的贡献。袁隆平的勤奋和在田间工作的艰辛打10分,他的才华和对事物的观察有非常敏感的创新思维,都是我们学习的楷模。其他入选的老科学家也都有非常卓越的贡献和值得我们学习的特色。了解他们成长的过程和思维方法,对培育高水平的创新型人才,建设创新型国家有重要意义。我想这就是中国科协设立老科学家采集工程的初衷。 4. 科研方向的选择。为了适应国家的需要和安排,我曾多次改变科研方向。在改变研究方向的关键时刻,第一步要了解世界科学发展的趋势,独上高楼望尽天涯路。第二步要有“人无我有、人有我优”(温家宝总理语)的自信,不迷信洋人,不跟踪前人走过的老路,面对国家目标,立足基础研究,寻找实际问题背后的基础理论,自主探索创新的突破口。第三步要在实践中反复检验、修改理论,使之符合实验。要有不怕失败、坚持到底的毅力和决心。 5. 科学方法。(1)我从中药铺的抽屉得到启发,从中学开始,就注意分类归档,在自己头脑中建立知识框架,把学到的东西,经过消化吸收,纳入自己的框架中,后来就在计算机上建立知识框架。我在哥伦比亚大学研究生院学习过的量子化学、统计力学、高等无机化学、高等有机化学、化学物理等课程,都有经过消化整理的完整笔记,至今保存着。回国后可以

高等有机化学习题教学内容

高等有机化学习题 第一章 化学键 一、用共振轮说明下列问题 1) 联本中的C 1-C 2键长为什么比乙烷中的键长短?联苯的硝化反应为什么主要发生在2-位 和4-位? 联苯的共振结构式可表是如下: (1) 由共振结构式可以看出C 1-C 2键有双键结构的贡献,故比乙烷的C 1-C 2键短。 (2) 由共振结构式可以看出邻对位负电荷相对集中,故有利于发生硝化反应。 2) 方酸为什么是强酸?(强于硫酸) 方酸的共振结构式可表是如下:对吗? 由方酸的共振结构式可以看出方酸的电子离域效果更好。 二、试推测6,6-二苯基富烯的亲电取代发生于哪个环,哪个位置?亲核取代发生于哪个环, 哪个位置? 6,6-二苯基富烯的共振式如下: 由6,6-二苯基富烯的共振式可以看出,亲电取代发生在五元环的2位上,而亲核取代 发生在苯环的2位上。 三、计算烯丙基正离子和环丙烯正离子π分子轨道的总能量,并比较两者的稳定性。 烯丙基正离子有两个电子在成键轨道上其总能量为 E 烯丙基正离子=2E 1=2(α+1.414β)=2α+2.828β 11' O HO O O O OH O O O OH O O O HO O O O S O O HO O S O O OH O S O O O S O O OH

环丙烯正离子有两个电子在成键轨道上其总能量为 E 环丙烯正离子=2E 1=2(α+2β)=2α+2β 能量差值为 E 烯丙基正离子- E 环丙烯正离子=(2α+2.828β)- (2α+2β)=0.828β 因此,环丙烯正离子比烯丙基正离子稳定。 四、用HMO 法分别说明烯丙基负离子和环丙烯负离子的电子排布和成键情况,并比较两者 稳定性。 五、简要说明 1)吡咯和吡啶分子的极性方向相反,为什么? 吡咯分子中氮原子给出一对为共用电子参与了共轭分子的大π键,也就是电子从氮原子流向五员环,而吡啶分子中氮原子只拿出一个电子参与共轭,并且氮原子的电负性大于碳原子使电子流向氮原子的方向。因此,两个分子的极性正好相反。 2)富烯分子为什么具有极性?其极性方向与环庚富烯的相反,为什么? 富烯分子中环外双键的流向五员环形成稳定的6π体系的去向,从而环外双键中的末端碳原子带有部分正电荷,五员环接受电子后变成负电荷的中心,因此分子具有极性。 N N H 能级 烯丙基负离子 环丙基负离子 α+1.414β α+2β E=2(α+1.414β)+2α-2(α+2β)-2(α-β) = 2α+2.828β+2α-2α-4β-2α+2β =1.172β

《高等有机化学》试题(A卷)

化学专业函授本科 《高等有机化学》试卷 A 题号 一 二 总分 统分人 复核人 得分 一. 回答下列问题(每题4分,15题,共60 分): 1. 下列分子哪些能形成分子内氢键?哪些能形成分子内氢键? A 、 NO 2COOH B 、 N H C 、F OH D 、 F OH 2. 举例说明由sp 2杂化方式组成的碳—碳三键。 3. 写出下列化合物的最稳定构象: a. OH CH(CH 3)2 H 3C H H H b. FCH 2 CH 2OH 4. 利用空间效应,比较下列物质消除反应的速率大小。 得分 阅卷人 系 专业 层次 姓名 学号 ┉┉┉┉┉┉┉┉┉密┉┉┉┉┉┉┉┉┉┉封┉┉┉┉┉┉┉┉┉┉线┉┉┉┉┉┉┉┉┉┉

A、OH B、 OH C、 OH D、 OH 5. 比较下列各组化合物的酸性大小。(1) A、COOH NO2B、 COOH OCH3C、 COOH OCH3D、 COOH NO2 (2) A、OH NO2B、 OH OCH3C、 OH OCH3D、 OH NO2 (3)

A 、NH 2NO 2 B 、 NH 2 OCH 3 C 、NH 2 OCH 3D 、NH 2 NO 2 (4) A 、 CH 3 NO 2 B 、 CH 3 OCH 3 C 、CH 3 OCH 3 D 、CH 3 NO 2 6. 下列化合物酸性最弱的是? OH NO 2 OH NO 2 OH NO 2 OH A B C D 7. 下列醇与卢卡斯试剂反应活性最高的是? A CH 3CH 2CH 2CH 2OH B CH 3CH(OH)CH 2CH 3 C (CH 3)2CHCH 2OH D (CH 3)3COH 8. 下列物种中的亲电试剂是: ;亲核试剂 是 。

《高等有机化学—反应和机理》(Bernard Miller)笔记

●Woodward-Hoffmann规则一:4n电子的热电环化反应, 如果按照顺旋方式进行是允许的;4n+2电子的热电环化反应,如果按照对旋的方式进行时允许的。 ●顺旋:多烯烃的末端碳原子或环烯烃的饱和碳原子, 以相同方向(同为顺时针或同为逆时针)旋转成键或断键,这种方式称为顺旋。 顺旋:多烯烃的末端碳原子或环烯烃的饱和碳原子,以不相同方向旋转成键或断键,这种方式称为对旋。 ●最高已占分子轨道(HOMO)在4n+2的体系中是对称的; 最低未占分子轨道(LUMO)在4n+2的体系中是反对称的。 ●前线轨道理论:忽略较低的能级轨道,只考虑HOMO。 前线轨道理论能简单、形象化,但是理论上不完善,在理论上应该有更精确的处理方法。在电环化反应中,对旋是允许的,顺旋是禁阻的。

●轨道对称性守恒:反应物中的每个轨道的对称性,在 反应后对称性保持不变。 ●用相关图法处理电环化反应遵循轨道对称性守恒。 ●相关图法处理4n+2体系的热环化反应(对旋): 以1,3,5-己三烯为例: (1)形成6个分子轨道 (2)用能量最低的形成键,和的对称性相同, 都是镜面对称的。 (3)是由6个原子轨道组成,键是2个原子轨道组 成,故转化为时,可以想象其中有4个原子轨道的系数降低为0。 (4) 1,3,5-己三烯的,不能转化为1,3环己二烯的, 因为前者的的对称性是镜面反对称,后者的的对称性是镜面对称,对称性不匹配。故1,3,5-己三烯的 事转化为1,3环己二烯的,同理1,3,5-己三烯的事转化为1,3环己二烯的 (5)能量分配很合理,故反应是允许的。

用相关图法处理4n体系的热环化反应(对旋):以1,3-丁二烯为例: (1)用能量最低的形成键 (2)用1,3-丁二烯的形成环丁烯的;用1,3-丁二烯

高等有机化学汇总

研究生课程论文 题目: 浅谈有机化学的研究进展姓名: 陶月红 学院: 理学院 专业: 化学 学号: 2014111004 2015 年1 月12 日 南京农业大学教务处制

浅谈有机化学的研究进展 理学院2014111004 陶月红 摘要:本文综述了中国大陆地区有机化学研究人员2011至2012年两年内在合成方法学领域获得的重要成果。文章中共引用参考文献50篇,其中30多篇手性金属配合物和有机小分子催化的不对称反应、金属催化的碳氢键活化等合成方法学论文。本文汇集了中国有机化学家两年中合成的30多个不同物质。 关键词:有机化学合成方法学有机合成 有机化学是化学科学中一个十分重要的二级学科,也是与人类日常生活联系最紧密的化学分支,其发展与人类社会的发展息息相关。近年来,在国家科技政策和科研经费的支持下,我国有机化学事业得到了长足发展,有机化学相关领域研究队伍不断壮大(如,全国有机化学学术研讨会的参会人员数已由十年前500多人发展到超过2000人),研究工作水平不断提高,在国际顶级学术刊物上发表研究论文数迅猛增加(几乎每期国际一流化学期刊上都有中国有机化学家的论文刊登)。同时,也有越来越多的中国有机化学家被邀请担任国际顶级学术刊物的地区主编和编委,国内的有机化学期刊也开始得到重视。从近期学术论文发表情况看,我国有机化学的各分支学科存在发展不平衡的问题,工作主要集中于有机反应和合成方法学的研究。我国有机反应和合成方法学研究始终保持强盛的发展势头,但原创性、实用性工作仍旧有限。有机合成化学得到了发展,但主流观念和思路还停留在首次合成上。在元素有机化学中我国有机氟化学一支独秀,其他元素有机化学需要加强。中国天然产物化学研究工作突飞猛进,成为发现新化合物分子的主力。通过对我国有机化学学科2011~2012年发表的研究结果进行系统检索,本文对有机反应和合成方法学、有机合成化学、元素有机化学和天然产物化学等有机化学研究领域的学术进展做一个简要总结。 1 有机反应和合成方法学 有机反应和合成方法学是有机化学的基础,历来受到有机化学家的重视。有机化学发展过程中曾经出现许多以发现者名字命名的人名反应,使这些化学家名垂青史。在我国除黄鸣龙外,尚未有其他有机化学家获此荣誉,故在近30 年来,有机反应和合成方法学在我国有机化学界受到越来越多的重视。在我国有机化学界,从事有机反应和合成方法学的化学家人数和各种资源占有半壁江山,导致我国在国际一流学术刊物上发表的论文多为有机反应和合成方法学内容,为此本文也仅能收录刊登在《J.Am.Chem.Soc.》和德国《Angew.Chem.Int.Ed.》上的成果。国际上流行的热点研究领域,如金属催化的不对称反应、交叉偶联反应、碳氢键活化反应、有机小分子催化反应等,我国有机化学家不仅几乎全部涉足,而且人数比例和发表论文的数量均占有重要地位。只要美国化学家能开辟一个新领域,我们就会使这一领域成为论文发表的热点领域。我国有机化学家在有机反应和合成方法学研究领域的影响力日新月异,如2012年10月,北京大学施章杰承办了第一届碳氢键活化国际学术研讨会,并担任大会主席。无论如何,与西方国家的有机化学家,特别是美国化学家相比,我国的研究工作思路和成果还是属于跟踪的多,自己独创的少。《J.Am.Chem.Soc.》创刊125周年列举的125篇有影响的文章中,来自我国的仅为黄鸣龙先生于20世纪40年代发表的论文,足以说明我国还是缺乏真正有影响的独创性研究成果。我国有机反应和合成方法学研究领域的特点是人数众多,仅从事金属有机化学的人员就已超过千人;另一特点是发展均衡,在国际一流刊物上发表学术论文的作者既有我国著名科研院所

高等有机化学各章习题及答案 (5)

有机反应机理的研究 3.1解释下列化合物的酸碱性大侠 (1) N N N(CH 3)2 PKa 10.58 7.79 5.06 A. B. C. (2)CO 2H OH A. 酸性 CO 2H B. > 3.2 CH 2 C N 3 Ph △ H 2CPh N C O 在上式所示的Curtius 重排中。PhCH 2—基从C 上前与至N ,试设计一个实验考察P —是完全从C 上断裂形成了两个碎片,然后再结合起来,还是PhCH 2—总保持键合状态。 3.3 硝基甲烷在醋酸根离子存在时很容易与溴生成α—溴硝基甲烷,而用完全氘代的化合物CD3NO2反应时,反应速率比原来慢6.6倍,你认为该反应的速率决定步骤是哪一步?试写出反应机理。 3.4对反应:PhCH 2Cl+OH -→PhCH 2OH+Cl - 可提出下列两种机理,请至少设计两种不同的实验帮助确定实际上采用的是哪种机理。 C H PhCH 2OH Cl- + SN 2第一步: SN 1:第二步:PhCH 2慢 PhCH 2 + OH- PhCH 2OH 注意:由一个烃基或芳基取代CH 2中一个或两个H 是难以接受的,因为这样可能使机理完全改变。 3.5 X COCH 3 + Br 2 H + HBr X COCH 2Br + (1) σ=-0.45;(2)反应数与[Br 2]无关;(3)取代基X 的+I 效应加速反应 (4)反应不受光火有机过氧化物的影响。

试按以上给出的条件设计合理的反应历程。 3.6 α—醋酸—对硝基乙烯的水解是酸催化反应 OCOCH 3 NO 2 C CH 2 O NO 2 C CH 3 H 2O + CH 3CO 2H 在6%的硫酸中,动力学同位素效应k (H2O )/k (D2O )是0.75,多少69%的硫酸中,动力学同位素效应改变为3.25,试推测此反应的机理。 3.7 下列反应: H 3C SO 2OCH 3 LiX + CH 3X DMF 3C SO 3Li 相对反应速率分别为:Cl-(7.8)>Br-(3.2)>I-(1.0),若分别在上述反应中加入9%的水,在与LiCl 反应,反应速率比不加水时慢24倍,而与KI 反应,反应速率只慢2倍,试解释之。 3.8 2,2—二甲基—4—苯基—3—丁烯酸进行热脱羧反应,得到2—甲基—4—苯基—2—丁烯和二氧化碳。 CH CMe 2CO H HCPh H 2CPh CH CMe 2 + CO 2 a b c 在a 位上用D 取代H ,观察到同位素效应k H /k D =2.87,同样,在b 位上碳的同位素效应k 12/k 14=1.035(对碳而言,这是大值),这些现象如何说明脱羧反应是协同机理,试拟定一个可能的过渡态。 答案: 3.1(1)A 中氮上的孤电子对,使其具有碱性。 B 中氮上孤电子对,可与苯环共轭,碱性变小。 C 中氮上孤电子对,与苯环共轭的同时和氮相连的两个甲基使氮上孤电子对不裸露, 碱性比B 稍小。 (2) 因为A 中COOH 与OH 形成分子内氢键,酸性较大。即: O C O OH 3.2使用一个光活性的迁移基团,如在PhCH (CH 3)CON 3中,若消旋化意味着该基团完全 断裂离去。构型保持则意味着不是这样(后者是真实的结果)。 3.3重氢化合物反应更慢,因为C —D 键比C —H 键更强,这时决定速率的步骤应是硝基甲烷的电离,醋酸根负离子可以作为催化这步反应的碱,然后是硝基甲烷负离子与溴的快速反应。 CH 3NO 2+CH 3COO--CH 2NO 2+CH 3COOH -CH 2NO 2 + Br 2快 CH 2BrNO 2 + Br-

高等有机化学试卷答案

高等有机化学试卷答案 及评分标准 一、1题4分,2题5分,共9分 1、苯胺中N 上的孤对电子与苯环共轭,N 结合质子的能力下降,故碱性比脂肪族胺弱。 酰胺中N 上的孤对电子与碳氧双键形成p-π共轭,N 上的电子云密度下降, N 结合质子的能力下降,故 碱性比胺类弱。 2、 二、每题4分,说明占2分,共36分 1、A>B>C>D 苯胺中N 上的孤对电子与苯环共轭,碱性比脂肪族胺弱,A 碱性最大强。 苯环上连有供电子基,N 上的电子云密度增大, N 结合质子的能力增大,碱性增强,B>C 苯环上连有吸电子基,N 上的电子云密度下降, N 结合质子的能力下降,碱性减弱,C>D 2、A> C> E> D> B 该反应为亲电取代反应。苯环上连有供电子基,苯环上的电子云密度增大,反应活性增大;苯环上连有吸电子基,苯环上的电子云密度降低,反应活性减小。 3、D>E>B>A>C 该反应为亲电加成反应。双键碳上连有供电子基,双键上的电子云密度增大,反应活性增大;双键碳上连有吸电子基,双键上的电子云密度减小,反应活性减小。 4、A>B>D>E>C 该反应为亲核加成反应。羰基碳上连有供电子基,碳上的正电荷云密度降低,反应活性减小;羰基碳上连有吸电子基,碳上的正电荷云密度增大,反应活性增大。 或+I 效应使活性降低, 使活性降低 甲基的超共轭效应使羰基碳正电荷密度有所降低,反应活性降低,,苯环空间位阻很大,反应活性降低, -OR 具有p-π共轭效应+C,使羰基碳正电荷密度大大降低,反应活性大大降低 5、D>C>B>A 该反应为亲核加成消除反应。苯环上连有供电子基,羰基碳上的正电荷云密度降低,反应活性减小;苯环上连有吸电子基,羰基碳上的正电荷云密度增大,反应活性增大。 6、D>C>A>B E1反应为碳正离子历程,碳正离子越稳定,反应越易进行。苯环上连有供电子基,碳正离子上的正电荷云密度降低,反应活性增大;苯环上连有吸电子基,碳正离子上的正电荷云密度增大,反应活性减小。 7、E> B >A> D >C 由于p-π共轭效应,烯丙基碳正离子稳定性>3级碳正离子> 2级碳正离子> 1级碳正离子,但是C 为桥头碳正离子,有于环的束缚很不稳定。EB 尽管都是烯丙基碳正离子,E 是5个p 轨道共轭,更稳定。 8、C>D>B>A O O HO HO H +O O O -O -O O O -O -O -O O -O O O -O O -O O O -O -O O -O -

有机化学中碳链增长的反应上课讲义

有机化学中碳链增长 的反应

有机化学中碳链增长的反应 姓名:应化10(本1)汪吉伟 100712024 摘要:在对有机化学反应的研究过程中,有机合成是必不可少的一个重要环节,然而碳骨架的构建是极其关键的一步,碳链的增长是形成分子骨架的主要手段之一。在有机化学反应中碳链增长的反应有很多,不同的方法都有其不同的特点及适用范围,因此熟悉并掌握有机反应中各种增加碳链方法的机理和优缺点将有助于我们对有机合成反应的研究,以下是对几种常见的碳链增长反应的总结。 关键词:碳链增长有机金属烃基化亲核加成 正文: 一、利用有机金属化合物增长碳链 卤代烷能和某些金属发生反应,生成有机金属化合物。有机金属化合物是指金属原子直接与碳原子相连的一类化合物。有机反应中利用有机金属化合物增长碳链是重要的手段之一。 1.与格氏试剂的反应 “格氏试剂”是含卤化镁的有机金属化合物(在常温下把镁屑放在无水乙醚中,滴加卤代烷,卤代烷与镁作用生成的有机镁化合物,该化合物不需分离即可直接用于有机合成反应),是一类亲核试剂,在有机合成中应用十分广泛。 (1)格氏试剂与醛、酮、酯、环氧烷发生亲核加成反应成相应的醇: R MgX R''R'(H) O R C R'(H) OMgX R'' H3O+ R C R'(H) OH R'' 反应若生成二级醇,还可以氧化成酮,再继续与格氏试剂反应生成三级醇。

(2)格氏试剂和CO2进行亲核加成后经水解可以可制备多一个碳的羧酸,反应可以从卤代烃出发,得到碳链增长的羧酸,适合伯、仲、叔卤代烃以及烯丙基和苯基卤代烃。 2.与二烃基铜锂的反应 二分子烃基锂与一分子卤化亚铜在醚中、低温下与氮气流和氩气流中进行反应,可以形成二烃基铜锂。二烃基铜锂也是一个反应适用范围很广的试剂。 RLi+CuX→RCu+LiX RCu+RLi→R2CuLi 二烃基铜锂的烃基可以是甲基,一级烷基,二级烷基,也可以是烯丙基、苄基、乙烯基、芳基等烃基,故可称为二烃基铜锂或有机锂试剂。 二烃基铜锂可与卤代烃发生偶联反应,反应如下: 卤代烃中的烃基可以是一级、二级烷基,也可以是乙烯烃、芳烃、烯丙基和苯甲基,二烃基铜锂中的烃基可以是一级烷基,也可以是其它烃基如乙烯基、芳基和稀丙基等,因此这个偶联反应选用范围很广。 3.与炔钠的反应 缺氢具有一定的酸性,可以与活泼金属,如钠,或氨基钠反应,生成炔负离子。 炔负离子具有较强的亲核性,可以与卤代烃发生亲核取代:R'C CNa+R X R'C CR+NaX 反应所用的卤代烃必须是伯卤代烃,仲卤、叔卤与炔钠反应主要生成相应的消除产物。乙烯型卤也不与炔钠反应。该反

有机化学测试题及答案

B、乙烯 C、乙炔 B、硝酸D、硫酸 B、乙醇和 B、甲苯C、苯 B、多伦试剂C、 B、苯酚C、甘氨 B、甲酸C、丙醛 乳糖B、麦芽糖C、蔗糖D、 B、蛋白质C、蔗 B、乙醇C、苯酚 B、蛋白质是两性化合物

A、酒精B、氯化钡C、硫酸铵D、紫外线 ()13、氨基酸相互结合成肽的主要化学键是 A、肽键B、氢键C、离子键D、苷键 ()14、能区别甲酸和乙酸的试剂是A、硫酸溶液B、希夫试剂 C、碳酸钠溶液D、氯化铁溶液 ()15、油脂在碱性条件下的水解反应称为 A、油脂的氢化B、油脂的皂化C、油脂的硬化D、油脂的乳化 二、填空题(共20分) 1、芳香烃的芳香性通常 指、、。 2、同系物应具有相同的,而分子结构相似。 3、有机化合物分子中各元素的化合价一般是碳价,氢和卤素价。 4、乙醇俗称,临床上常用体积分数为的乙醇作为消毒剂。 5、最简单的醛为甲醛,质量分数为的甲醛水溶液叫,因其能使 蛋白质凝固,具有消毒和杀菌能力,常用作和。 6、医学上常指的酮体 为、、 。 7、乙酰水杨酸,俗称、常用 作。 8、多糖可以水解,淀粉、糖原、纤维素水解的最终产物都是。 9、组成蛋白质的基本单位是,其结构通式是。 三、命名下列有机化合物或写出有机化合物的结构简式(共20分) 1、乳酸乙酯 2、D-葡萄糖的 (Haworth)3、硝酸甘油 4、乙-甲基戊醇 5、顺-4-甲基-2-戊烯O ‖ 6、(CH3CH2)4C 7、 (CH3)2CH-CH2-CH2-C-CH2CH3

CH 3 ︱ 8、 CH 3-CH-CH-CH-CH 2-CH 3 9、 ︱ ︱ C 2H 5 CHO 10、 四、问答题(共10分) 1、为什么食用油有保质期?老年人宜多食植物油,少食动物油? 2、含淀粉或蛋白质丰富的食品为什么要煮熟才吃? 五、用化学方法鉴别下列各组物质(共10分) 1、甲烷、乙烯和乙炔 2、甲酸、乙酸和乙醇 六、完成下列有机化学反应式,并指出反应类型(10分) 1、 CH 3CH 2C=CH 2+HB r → ∣ CH 3 2、 3、 4、 5、 有机化学专科 参考答案 选择题 1、A 2、A 3、B 4、A 5、C 6、D 7、D 8、C 9、D 10、A 11、D 12、C 13、A 14、B 15、B 二、填空题 1、易取代 难加成 难氧化 2、分子通式 3、四 一 4、酒精 75% 5、40% 福尔马林 消毒 防腐 6、B-羟基丁酸 丙酮 B-丁酮酸 7、阿司匹林 解热镇痛 8、葡萄糖 9、a-氨基酸 R-CH-COOH NH 2 三、三、命名下列有机化合物或写出有机化合物的结构简式(共20分) 2、 乳酸乙酯 2、D-葡萄糖的(Haworth ) 3、硝酸甘油 CH3-CH-COOC 2H 3 CH 2-ONO CU CH-ONO 2 CU 2-ONO 2 4、乙-甲基戊醇 5、顺-4-甲基-2-戊烯 CH 3 CH 3 CH 3 CH3-CH2-CH2-C-CH2OH CH=CH-CH- CH 3 CH 3 6、(CH 3CH 2)4C 7、(CH 3)2CH-CH 2-CH 2-C-CH 2CH 3 3,3-=乙基成烷 6-=甲基-3-乙酮 CH 3 ︱ 8、 CH 3-CH-CH-CH-CH 2-CH 3 9、 ︱ ︱ C 2H 5 CHO 2-乙基-3-甲基-乙醛 苯异丙酸 10、 反-3-乙基-2-乙烯 四、问答题(共10分) 1、为什么食用油有保质期?老年人宜多食植物油,少食动物油? 答:因为食物油储存时间长受空气中光、氧、水分和微生物作用易被氧化,导致营养价值流 失。调查结果表明,食用植物油的贮存时间在南方最长不应超过18个月。一瓶油打开后最好能在1个月内用完。所以大包装的食用油比较适合人口多的单位食堂或是经常开伙的家庭等,而三口之家还是选择小包装为宜。采用压榨的方式精制而成。它既去除了油脂中的各种有害物质,又保留下植物油所特有的营养与芳香。油酸、亚油酸等人体必需的不饱和脂肪酸含量高达80%以上,还含有大量的维生素,是欧美发达国家普遍选择的油脂。它能降低人体胆固醇含量,是高血压、动脉粥样硬化患者和 老年人之保健食用油。 .食用调和油:食用调和油适用于所有日常的菜肴,具有调整血脂、预防心脑血管疾病、滋润肌肤、消除疲劳、改善体质、延缓衰老的作用。 2、含淀粉或蛋白质丰富的食品为什么要煮熟才吃? 答:含淀粉或蛋白质丰富的食品煮熟后发生变性,易消化。 五、用化学方法鉴别下列各组物质(共10分) 2、甲烷、乙烯和乙炔 甲烷 乙烯 乙炔 2、甲酸、乙酸和乙醇 六、完成下列有机化学反应式,并指出反应类型(10分) 2、 CH 3CH 2C=CH 2+HB r → ∣ CH 3 2、 3、 4、 CH 3CH 2CH 2CH 3CH 2CHCOOH OH CH 3COOH + CH 3CH 2CH 2OH H + CHCOOH 3C C H CH CH 2CH 2CH 3 CH 2CH 3CH 3CH 2CH 2CH 3CH 2CHCOOH OH CHCOOH CH 3C C H CH CH 2CH 2CH 3 CH 2CH 3

高等有机化学试习题及答案

欢迎共阅江西理工大学研究生考试高等有机试卷及参考答案 一单项选择题(本大题共10题,每小题3分,共30分) 1.下列结构中,所有的碳均是SP2杂化的是(A) 2.下列自由基稳定性顺序应是(D) ①(CH3)3C·②CH3CHC2H5③Ph3C·④CH3CH2· A.①>③>②>④ B.①>③>④>② C.③>①>④>② D.③>①>②>④ 3.下列化合物中酸性最强的是(B) A.CH3CH2COOH B.Cl2CHCOOH C.ClCH2COOH D.ClCH2CH2COOH 4.下列化合物最易发生S N1反应的是(A) A.(CH3)3CCl B.CH3Cl C.CH3CH2CH2Cl D.(CH3)2CHCl 5.下列羰基化合物亲核加成速度最快的是 (C) 6.下列化合物中具有手性碳原子,但无旋光性的是(B) 7.化合物:①苯酚②环己醇③碳酸④乙酸,酸性由大到小排列为(B) A、①>③>②>④ B、④>③>①>② C、④>②>①>③ D、②>①>③>④ 8.3-甲基-1-溴戊烷与KOH-H2O主要发生(C)反应 A、E1 B、S N1 C、S N2 D、E2 9.下列化合物中为内消旋体的是(D) 10.下列几种构象最稳定的是(B) 二写出下列反应的主要产物。(本大题共4题,每小题2分,共8分)1. 答案: 2 .COOC2H5 +NBS (PhCOO)2 CCL4,回流 答案: 3. 答案: 4. 答案: 三.写出下列亲核取代反应产物的构型式,反应产物有无旋光性?并标明R或S构型,它们是SN1还是SN2?(本大题共6分) 答案: R型,有旋光性.SN2历程.

无旋光性,SN1历程. 四.写出下列反应机理。(本大题共3题,每小题10分,共30分) 1. 答案: 2. 答案: 3. 答案: 五简要回答下列问题。(本大题共4题,每小题4分,共16分) 1..为什么叔卤烷易发生SN1反应,不容易发生SN2反应? 答:单分子亲核取代(SN1)反应分两步进行,第一步决定反应速度,中间体为碳正离子,由于烃基是供电子基,叔碳正离子的稳定性大于仲碳正离子和伯正离,子,因而叔卤烷易发生SN1反应。双分子亲核取代(SN2)反应一步进行,空间位阻决定反应速度,由于叔?卤烷空间位阻大,因而叔卤烷不易发生SN2反应。 2.叁键比双键更不饱和,为什么亲电加成的活性还不如双键大? 答:叁键碳原子sp杂化,双键碳原子sp2杂化。电负性Csp>Csp2。?σ键长sp-spB>C,当中心碳原子与杂原子直接相连时,反应速率明显增大,当杂原子与中心碳原子相连时,所形成的正碳离子,因共轭效应而被稳定。 六.将以下各组化合物,按照不同要求排列成序(本大题共10分) ⑴水解速率

有机化学期末考试试题及答案(三本院校)

**大学科学技术学院2007 /2008 学年第2 学期考核试卷课号:EK1G03A 课程名称:有机化学A 试卷编号:A 班级:学号:姓名: 阅卷教师:成绩: 一. 命名下列各化合物或写出结构式(每题1分,共10分) 1. C C(CH3) 3 (H3C)2HC H 2. COOH 3. O CH3 4. CHO 5. OH 6. 苯乙酰胺

7. 邻羟基苯甲醛 8. 对氨基苯磺酸 9. 3-乙基-6-溴-2-己烯-1-醇 10. 甲基叔丁基醚 二. 试填入主要原料,试剂或产物(必要时,指出立体结构),完成下列各反应式。(每空2分,共48分) 1. CH CH2Cl CHBr KCN/EtOH 2. 3. 4. +CO2CH3 5. 4 6. +C12高温高压 、 CH = C H2HBr Mg CH3COC1

CH3 OH OH 4 7. CH2Cl Cl 8. 3 +H2O OH - SN1历程 + 9. C2H5ONa O CH3 O + CH2 =CH C CH3 O 10. Br Br Zn EtOH 11. OCH3 CH2CH2OCH3 +HI(过量) 12. Fe,HCl H2SO4 3 CH3 (CH3 CO) 2 O Br NaOH 24 NaNO H PO (2) 三. 选择题。(每题2分,共14分)

1. 下列物质发生S N1反应的相对速度最快的是( ) A B C (CH 3)2CHBr (CH 3)3CI (CH 3)3CBr 2. 对CH 3Br 进行亲核取代时,以下离子亲核性最强的是:( ) (A). CH 3COO - (B). CH 3CH 2O - (C). C 6H 5O - (D). OH - 3. 下列化合物中酸性最强的是( ) (A) CH 3CCH (B) H 2O (C) CH 3CH 2OH (D) p-O 2NC 6H 4OH (E) C 6H 5OH (F) p-CH 3C 6H 4OH 4. 指出下列化合物的相对关系( ) 3 2CH 3 H 32CH 3 A ,相同, B ,对映异构, C ,非对映体, D ,没关系 5. 下列化合物不发生碘仿反应的是( ) A 、 C 6H 5COCH 3 B 、C 2H 3OH C 、 CH 3CH 2COCH 2CH 3 D 、CH 3COCH 2CH 3 6. 下列反应的转化过程经历了( ) C=CHCH 2CH 2CH 2CH=C H 3C H 3C CH 3CH 3 H + C=C H 3C H 3C C CH 2 CH 2 H 2C C H 2 H 3C CH 3 A 、亲电取代 B 、亲核加成 C 、正碳离子重排 D 、反式消除 7. 能与托伦试剂反应产生银镜的是( ) A 、CCl 3COOH B 、CH 3COOH C 、 CH 2ClCOOH D 、HCOOH 四. 鉴别下列化合物(共5分)

高等有机化学 考试试题答案

高等有机化学考试试题答案

2005级硕士研究生 高等有机化学期末考试答案 1.试推测6,6-二苯基富烯的亲电取代发生于哪个环,哪个位置?亲核取代发生于哪个位置?(4分) 2.计算烯丙基正离子和环丙烯正离子π分子轨道的总能量,并比较两者的稳定性。烯丙基的分子轨道的能量分别为:Ψ1=α+1.414β, Ψ2=α, Ψ3=α-1.414β; 环丙烯的分子轨道的能量分别为:Ψ1=α+2β, Ψ2=α-β。(5分) 烯丙基正离子有两个电子在成键轨道上其总能量为 E烯丙基正离子=2E1=2(α+1.414β)=2α+2.828β 环丙烯正离子有两个电子在成键轨道上其总能量为 E 环丙烯正离子=2E 1 =2(α+2β)=2α+2β 能量差值为 E 烯丙基正离子- E 环丙烯正离子 =(2α+2.828β)- (2α+2β)=0.828β 因此,环丙烯正离子比烯丙基正离子稳定。3.富烯分子为什么具有极性?其极性方向与环庚富烯的相反,为什么?(4分) 富烯分子中环外双键的流向五员环形成稳定的6π体系的去向,从而环外双键中的末端碳原子带有部分正电荷,五员环接受电子后变成负电荷的中心,因此分子具有极性。 另外,七员环的环上电子流向环外双键,使得环外双键的末端碳原子带有部分负电荷,而七员环给出电子后趋于6π体系。因此,极性方向相反。

4.下列基团按诱导效应方向(-I 和+I )分成两组。(4分) 答: 5.烷基苯的紫外吸收光谱数据如下: 试解释之。(3分) 答:使得波长红移的原因是σ-π超共轭效应,σ-π超共轭效应又与a-碳上的C-H 键的数目有关。因此,甲基对波长的影响最大,而叔丁基的影响最小。 6.将下列溶剂按负离子溶剂化剂和正离子溶剂化剂分成两组。(3分) 负离子溶剂化剂:水 聚乙二醇 乙酸 乙醇 正离子溶剂化剂:N,N-二甲基乙酰胺 二甲亚砜 18-冠-6 7.以下反应用甲醇座溶剂时为S N 2反应:(3分) CH 3O- + CH 3-I CH 3-O-CH 3 + I - 当加入1,4二氧六环时,该反应加速,为什么? 答:二氧六环是正离子溶剂化剂,当反应体系中加入二氧六环时,把正离子甲 醇钠中的钠离子溶剂化,使得甲氧基负离子裸露出来,增强了其亲和性,故加速反应。 8.比较下列各对异构体的稳定性。(6分,每题2分) 1.反-2-丁烯 〉 顺-2-丁烯 2. 顺-1,3-二甲基环己烷 〉反-1,3-二甲基环己烷 3.邻位交叉1,2-丙二醇 〉对位交叉1,2-丙二醇 9.写出下列化合物的立体结构表示式。(4分,每题2分) 分子式 C 6H 5-R R=H CH 3 C 2H 5 CH(CH 3)2 C(CH 3)3 光谱数据/nm 262.5 266.3 265.9 265.3 265.0(E,E)-3,7-二甲基-2,6-辛二烯-1-醇1)2) (7R,8S)-7,8-环氧-2-甲基18-烷-I 效应:-S(CH 3)2 -N=O -O(CH 3)3 -HgCl 2 +I 效应:-SeCH 3 -B(C 2H5)2 OCH 3O H 3C CH 2OH O R H

(2020年7月整理)高等有机化学模拟考试题二.doc

《高等有机化学》模拟考试题(二) 一.填空 1、几种重要的有机反应活性中间体有------、 ----------、---------、--------、--------和---------。 2、萘磺化时,得到α-萘磺酸是-------控制产物,得到β-萘磺酸是------控制产物。 3、写出下列化合物最稳定的构象式: (1) HOCH 2CH 2F 用Newman 投影式表示为:------------; (2)反式十氢化萘 用构象式表示为:--------; (3)(S)-2-丁醇 用Fischer 投影式表示为:-----------; 4、α-蒎烯1H 3C CH 32 中1和2两个甲基上的亲核化学位移δ值较小者为 --------;这是由于----------所致。 5、 下列烷氧基负离子:(a ) C 6H 5O -,(b )CH 3CH 2CH 2CH 2O -,(c )(CH 3)3CO -,其中碱性最强的是---------,亲核性最强的是---------。 6、有机光化学反应中,分子的激发态常有-------和----------两种。但大多数光化学反应是按-----------进行的。在二苯甲酮与异丙醇的光化学反应中,当加入萘时,该反应中止,反应中的二苯甲酮是---------剂,而萘是二苯甲酮激发态的一种-------剂。 二.写出写列反应的主要产物 C C Ph H 3C CH 3 Ph H + 1 N(CH 2 )OH CH 3 2. C N CH 3OH H 2SO 4 3. OH H 3CO 2SO C O H 3C 4. 3 5. COCHN 2 1)Ag 2O 2) H 2O 6. CH 3 H 3C OCH 2CH=CHCH 3 7. C C 3 OTs H 3C CH 3CH 2ONa 328.

《高等有机化学》模拟考试题 (四)

《高等有机化学》模拟考试题 (四) 一.选择题 1.下列碳正离子最稳定的是( 2 H 3 CO 2 O 22 H 3 2 A. B. C. D. 2. 下列化合物具有" 芳香性"的是( ) O A . B . C. D . 3.(Z)-2丁烯与稀冷KMnO4反应所得产物是( ) A.赤式-2,3-丁二醇 B. 苏式-2,3-丁二醇 C.(2R,3R)-2,3-丁二醇 D.(2S,3S)-2,3-丁二醇 4. 下列化合物中具有手性的是 ( ) A . B . C. D . CH 2OH H OH CH 2OH H OH CH 3 O CH 3 OH 5.化合物C 6H 5CHICH 2CH 3在丙酮-水溶液中放置时,会转变为相应的醇,则醇的构型为 ( ) A.内消旋体 B.构型翻转 C.外消旋体 D.构象保持不变 6.下列化合物中偶极距最大的是 ( ) A . B . C. D . N 7.下列RO -中碱性最强的是( ) A.CH 3CH 2O - B.(CH 3)2 CHO - C.CH 3CH 2CH 2O - D. (CH 3)3CO - 二.完成反应式. CH CH 3CH 2C B 2H 6 ( ( ) 1. ( ) ( ) 2. N H O C H H 2C CHCN 2 ( ) 3. O 2) H 2O H + ( ) () 4.O

() () 5. Ph Ph Ph Ph O C C CHO () ( ) 6.H H 3C H 3C O CH 3 ClCH CO C H C 2H 5ONa/C 2H 5OH H +H O 三.写出反应机理 O CO 2Et CH 2CO 2H CH 2CO 2Et CH 2CO 2Et 1)t_BuOK 2)H 3 O 1 . 2 . Br Br * * * * NBS hv CCl 4 25% 50% 25% 3 . O 3 OC 2H 5 O CH 3 (1)LiAlH 3 4. Br O Br CO 2Et EtONa 5.HN(CH 2CH 2CH 2CHO)2 HCl N CHO 四.立体化学问题 在许多常用药物如抗鼻炎喷雾剂,假麻黄素Pseudoephedrine (I)是其中一个有效成份.其结构如下: 3OH NHCH 3 Ph Ⅰ 1.用R/S 标记法标出化合物I 结构式中手性中心的绝对构型;

相关主题
文本预览
相关文档 最新文档