当前位置:文档之家› 数学建模论文雾霾对人体的影响

数学建模论文雾霾对人体的影响

数学建模论文

----雾霾对人类的影响

班级:信122

专业:信息与计算科学

学号:

姓名:

指导教师:

小组成员:

摘要

探究我国 13个省市大气中雾霾浓度大小对居民呼吸系统疾病死亡率的影响情况.

方法: 收集 2004-2010 年中国13个省市呼吸系统疾病死亡率、雾霾浓度、人均生产

总值数据,以呼吸系统疾病死亡率为被解释变量,雾霾浓度为解释变量,人均生产总值为

控制变量构建面板数据模型进行分析。

结果:回归方程结果表明每立方米雾霾含量增加 1%时,呼吸系统死亡率增加60.24%;不变价人均 GDP增加 1%,呼吸系统疾病死亡率增加 0.000014%。

结论:大气中雾霾浓度会影响居民呼吸系统疾病的死亡率。人均生产总值与居民呼吸

系统疾病死亡率也具有一定的相关关系。同时随各地区的差异,呼吸系统疾病死亡率还会

受到其他如气候、地理位置等未知因素的影响。

关键词雾霾呼吸系统疾病面板数据个体随机效应模型

一、问题重述

雾天由于湿度大,能见度低,容易造成交通堵塞和引发交通事故;而霾天的细粒子会

造成气溶胶污染,粒子被人体吸收将刺激支气管,加重哮喘、鼻炎等呼吸系统病症,可见

雾霾天气的人类日常活动有很大的危害性。目前国内外学者对于雾霾与呼吸系统疾病死亡率的关系还没有做出很多的探讨,尤其在中国,学者大都研究雾霾与心血管疾病的关系,

而对雾霾与呼吸系统疾病之间的关系则很少涉猎,但现有的研究基本上都肯定了雾霾与呼吸系统疾病死亡率之间是有关系的,而这也是本小组进行研究的基础。

二、模型准备

2.1雾霾组成

二氧化硫、氮氧化物和可吸入颗粒物这三项是雾霾主要组成,前两者为气态污染物,最后一项颗粒物才是加重雾霾天气污染的罪魁祸首,而PM2.5和PM10则是这些

颗粒物中的重中之重。本文主要以PM10为研究对象。

2.2研究思路

由于各省市的雾霾(主要PM10)浓度与呼吸系统疾病死亡率这两个指标缺失值较多,因此搜集了北京、辽宁、上海、浙江、福建、河南、湖北、湖南、广东、广西、四川、陕西、新疆 13个数据较齐全的省市的2004年至2010 年的四项指标得到面板数据。对数据进行调整之后,建立合适的数学模型。然后检验结果,得出模型的估计与分析结果。在所得结果的基础之上,结合各省市的实际情况,对数据进行解读,以得出各省市大气中雾霾含量、生活水平与呼吸系统疾病死亡率的关系。同时得出呼吸系统疾病还可能会受地域、气候等其他因素差异的影响。并就结论给出相应的政策建议。

三、模型构建与数据说明

3.1模型构建

我们以呼吸系统疾病死亡构成为被解释变量,大气质量即雾霾的含量为解释变量构建模型。考虑到引起呼吸系统疾病死亡的原因是复杂的,我们根据数据的可获得性,选取其中重要的生活水平和医疗水平这两个因素为控制变量,以中国13个省市地区的面板数据为基础,构建我国呼吸系统疾病死亡与大气质量关系的面板分析模型:

PGDP

各省可比价人均生产总值

随机扰动项

因此,我国呼吸系统疾病死亡与大气质量关系的数据样本模型为:

t 年份标示( PM10 人均 随机变量,表示对于与 被回归量呼吸系统疾病死亡率(标量) k

误差项(标量)3.2变量及数据说明

雾霾由一系列构成复杂的污染物组成,如 PM 、SO2 、NO2 等。流行病学研究显示,不能把观察到的人群健康效应仅仅归因于某一种污染物,因而不能把各污染物的健康效应简符号定义

单相加。但在大气污染物中,可吸入颗粒物的人群不良健康效应最强。考虑到时间序列上的数据需求,我国大气质量检测体系只涵盖了小于 10 微米的颗粒物(PM10) ,因而本研究仅采用 PM10最为大气污染指标。 研究表明,大气 PM10和成人发病率及死亡率之间存在正相关关系。

具体统计指标解释及数据说明如下

3.2.1.呼吸系统疾病死亡率(RD )(单位:%)

指标说明:呼吸系统疾病是指主要病变在气管、支气管、肺部及胸腔的一系列病症,包括哮喘病、气管炎、支气管炎、肺心病等病症。

数据来源:我国13个省市2005到2011 年统计年鉴

补充说明:其中四川2004,辽宁 2004、2010,湖南2009、2010,广东2004、

2010,新疆 2009 的呼吸系统疾病死亡率均为估算数据。估算方法Yn=?×Yn-1,?为平均发展速度,Y n 为报告期呼吸系统疾病死亡率。

3.2.2.可吸入颗粒物(PM10)(单位:毫克/立方米)

指标说明:可吸入颗粒物(PM10) ,指总悬浮颗粒物中能用鼻和嘴吸入的那部分颗粒物。已往流行病学研究已证实,在各种大气污染物中,颗粒物是危害最大、代表性最强的污染物。国家环保总局 1996 年颁布修订的《环境空气质量标准(GB3095-1996)》中将飘尘改称为可吸入颗粒物,作为正式大气环境质量标准。

数据来源:国家统计局:《2012年中国统计年鉴》(北京:中国出版社,2012 年) 补充说明:各省可吸入颗粒物PM10均用其省会数据代替整个地区的水平。

3.2.3.可比价人均生产总值(PGDP)(元/人)

指标说明:可比价人均国内生产总值,是将一个地区核算期内实现的国内生产总值与这个地区的常住人口相比进行计算,常作为发展经济学中衡量经济发展状况的指标,是衡量各国人民生活水平的一个标准。

计算公式: 可比价人均生产总值=该地区可比价生产总值/该地区总人口数 其中

人口总数采用的是户籍人口总数,可比价人均生产总值以 2005 年的价格为基期数据。

数据来源:13省2005到2011 年统计年鉴。

补充说明:辽宁省 2010 年人均可比价生产总值为估算数据,估算方法

Yn=?×Yn-1。

?为平均发展速度,Y n 为报告期可比价人均生产总值。

四、模型检验

4.1 F 检验

通过F 检验,我们要检验建立混合模型还是固定效应模型。

建立假设: 。

模型中不同个体的截距相同(真实模型为混合模

型)。

H1 :模型中不同个体的截距项不同(真实模型为固定效应模型)。

表1 F 检验结果

由表 1可知对应F检验的P值=0.000<0.05,推翻原假设(建立混合模型),两相比较,应该建立个体固定效应模型。

4.2Hausman 检验

进行 Hausman 检验是为了确定建立是个体随机效应模型还是个体固定效应模型。

建立假设:

H0: 个体效应与回归变量无关(个体随机效应模型)

H1: 个体效应与回归变量相关(个体固定效应模型)

表2 Hausman 检验结果

因为Hausman统计量对应的p值>0.05(为0.7432),所以不能拒绝原假设,应建立个体随机效应模型,即:

对于以上个体随机效应模型,是将并入误差项。中,即

五、模型估计

个体随机效应的 Panel Data 回归方程为:

P值(0.0009)(0.0000)(0.02)

其中各省的截距效应项的值如表3

表 3 各省份回归方程的截距项值(降序排列)

六.基于我国十三省的呼系统疾病的因素分析

6.1我国呼吸系统疾病与大气环境现状分析

6.1.1.各省市呼吸系统疾病死亡率分析

横向比较各省市呼吸系统疾病死亡率的变化情况(由于省市过多,分别用图 3、

图4来表示),根据图 3、图 4可以看出,从 2004-2010年,四川所占比重始终在最

高水平,始终保持在 24%以上;而北京、上海、浙江、河南、湖南、广东、广西、浙江、新疆也平均保持在 10%以上;辽宁、福建、武汉稍低一些,基本保持在 10%以下。而纵向分析各省市呼吸系统疾病死亡率的变化,通过两图可以发现各省市都在基本保

持平稳的状态下稍微有一点下降。

6.1.2.各省市PM10 浓度变化分析

横向比较各省市 PM10 浓度的变化情况(由于省市过多,分别用图 5、图 6来显示),根据图 5、图6可以看出,从 2004-2010年,北京PM10浓度值基本保持在最高水平,最高超过 0.160 毫克/立方米;广西,福建一直处于较低水平;其余省市在 7年中PM10浓度值也都有下降。

6.1.3.各省市呼吸系统疾病死亡率与 PM10 浓度的关系特点

结合所有的图来来看,各省市不论是呼吸系统疾病死亡率还是 PM10浓度值自2004—2010 年都在保持平稳的基础上呈下降趋势,且各省市的这两个指标值的差距都

在不断缩小。而且从总体来看,基本服从 PM10浓度高则呼吸系统疾病死亡率高的规律。

6.2基于面板数据回归模型的健康效应影响因素的实证分析

6.2.1.基于回归方程的分析

由回归方程可得如下结论:

其一,呼吸系统疾病死亡率与大气环境的质量(每立方米雾霾含量)有显著的回

归关系。从定量角度说,即每立方米雾霾含量增加1 个百分点时,呼吸系统死亡率增

加 60.24个百分点,表明仅仅就呼吸系统疾病来说,其死亡率在较大程度上受雾霾因子的含量的影响。与我们先前的假设相一致,大气环境对人体在呼吸系统的健康产生

影响。

其二,生活水平(人均 GDP)在在一个较小的程度上影响了呼吸系统疾病的死亡率。不变价人均 GDP的估计系数为 0.00014,即不变价人均 GDP增加 1 个百分点时,呼吸系统疾病死亡率增加 0.00014 个百分点,说明人均GDP 变动对应的呼吸系统疾病死亡率变动并不大,只是在一个很小的程度上影响了人体呼吸系统健康,这与实际情

况也相符,及生活水平的高低并对呼吸系统系统疾病的贡献是微弱的;

前文已经提到,导致呼吸系统疾病的原因的复杂的,尤其是在不同的截面上来看。导致呼吸系统疾病的死亡除了空气污染、医疗水平及生活水平以外,还有许多其他因

素影响到呼吸系统疾病死亡率,各因素对呼吸系统疾病死亡率的影响因省区的不同而

存在显著的差异。本文根据个体随机效应模型的特点,将这些差异以截距效应项表现

在模型中,即模型在不同的省区具有不同的截距(表 3)

6.2.2.基于截距效应项的分析

本例中由个体随机效应模型的截距项可得到的结论如下:

其一,截距项的值表示除雾霾因子(主要PM10)、生活水平外其他因素影响程度。其值越大,表明其受其它未考虑进模型因素的影响越大,反之,则越小,表明大气环

境质量、生活水平这两个因素的已足以解释该省呼吸系统疾病死亡率变化的原因。

其二,由表 3 可知,四川省的随机效应截距最大,说明四川省的呼吸疾病死亡率

更多地受到除大气环境质量、生活水平之外其它因素的影响,如气候条件,生活条件等。首先,在前面的分析我们发现四川省的呼吸系统疾病死亡率在 13个省市中所占比重最大,并且每年都在 24%以上。这一定程度与四川省居民的饮食习惯有关,四川喜

辣重味,这对呼吸系统伤害特别大。另外广东省呼吸系统疾病死亡率的随机效应截距

也较大,但是相较于四川省来说并没有突出性。值得注意的是,尽管广东省与广西省

在地理环境,气象条件方面相似,但是两者的截距效应项却又较大差别,相较于广东

省来说,广西省的呼吸系统疾病死亡率更多地受到空气污染,生活水平和医疗水平的

影响,由于地域性差异因素所致的呼吸系统疾病死亡率仅有0.14 个百分点。而广东省更多地受到了地域性差异因素的影响。

其三,个体随机效应较小的北京市和辽宁省,说明其呼吸系统疾病死亡率更多地

受到环境污染、生活水平的影响。北京市规模大、人口多,并且交通尾气污染,工业

废弃污染等大气污染严重。而且其生活水平相较于其它城市而言也高得多。所以其呼

吸系统疾病死亡率更多地受到这两个因素的影响。辽宁省是重化工城市集中的省份,

阜新、抚顺是产煤基地,有“煤都”之称,鞍山以煤作为燃料炼钢炼铁,有“钢都”

之称,市区环境空气质量较差。并且东北地区冬季寒冷,取暖期长,在以燃煤为主要

取暖燃料的地区增加了排入大气的有害成分。总体来说,辽宁省空气污染较为严重,

所以其呼吸系统疾病死亡率受其他因素影响较小,个体随机效应也相对较小。

七、结论

通过建立数学模型,对 2004—2010年全国13个省份的健康效应与空气质量、生

活水平的相关关系进行实证研究,根据研究结果我们可以看出:第一,各个省份的生

活水平,大气污染程度对人体健康效应的影响是显著的,经过模型的估计,可吸入颗

粒物、不变价人均 GDP这两个解释变量的 P值均小于0.05,说明这两个变量与呼吸系统疾病死亡率均显著相关。

第二、各个因素的影响程度又有很大的差别。其中大气污染对人体健康效应的影

响最大,每立方米雾霾因子含量增加 1个百分点时,呼吸系统死亡率增加 60.24个百

分点。。人民生活水平对人体健康效应的影响最小,当不变价人均GDP增加 1个百分

点时,呼吸系统疾病死亡率增加 0.00014 个百分点。

第三、各个地区由于其他因素对呼吸疾病死亡率的影响导致各个地区在截距上也

有很大的差异。其中四川省受到的截距项最大,说明其受到除空气污染、生活水平的

影响其他之外更大。而北京市、辽宁省的截距项最小,说明其呼吸系统疾病死亡率更

多地受到了空气污染、生活水平的影响。

八、建议

第一,加强大气污染检测加强大气污染监测包括两个方面,一方面是对于空气质

量检测机构及体系要进一步完善。例如说长期以来,我们的空气质量监测一直只检测

10微米以下的颗粒(PM10),未将PM2.5纳入。但在 2012年我国多地雾霾天气频发,给人们生活带来极大影响之后,才开始重视对 PM2.5的检测。另一方面是提高污染检

测标准。过去国内所用的大气污染的基准体系,是参考国外的一些基准来套用,并不

符合我国日益变化的大气污染现状的防治需求,为此,我国应该建立我们自己的基准

体系,科学制定和修改质量标准。

第二,加强大气污染防治由于环境空气质量收到多方面因素影响,有些是人为可

控制的,如污气排放、地面扬尘和建筑施工污染等;有些是人为不可控制,如自然因

素及气象条件的影响。从人为可影响的方面来说,大气污染防治的途径很多,主要有

调整能源结构、提高能源有效利用率、强化大气环境管理、进行污染物总量控制等。

我国环保部在 2012 年公布了我国第一部综合性大气污染防治规划——《重点区域大

气污染防治“十二五”规划》,其中规划的重点区域包括京津冀、长三角、珠三角等

13个重点区域,规划到 2015年重点区域二氧化硫、氮氧化物、工业烟粉尘排放量得

到有效控制,环境空气质量有所改善,区域大气环境管理能力明显提高。但是为了从

根本上解决大气污染问题,必须从改善能源结构入手,使用天然气及二次能源,重视

清洁能源的利用和发展。

第三,加强医疗服务建设医疗措施对与大气污染对人体带来的健康伤害来说相当

于事后措施,虽然没有能够避免大气污染带来的健康损失,但是有力地控制降低了健

康损失程度,避免了损失最大的死亡结局。尤其是在突发性的大气污染事故中导致了

大规模的健康伤害,医疗手段就显得由为重要。为此,我们要继续加强各地区医疗服

务建设,提高地区医疗水平,尽可能将健康损失降到最小。

参考文献

[1]李宁,彭晓武,张本延等.广州市居民呼吸系统疾病每日死亡人数与大气污染的时间

序列分析[J].华中科技大学学报(医学版),2010,39(6):863-867.

[2]陈仁杰,陈秉衡, 阚海东.我国 113 个城市大气颗粒物污染的健康经济学评价[J]。

中国环境科学,2010,30(3):410-415.

[3]常桂秋,潘小川,谢学琴,等.北京市大气污染与城区居民死亡率关系的时间序列分析.卫生研究,2003,32(6):565-568.

[4]王臻,王辰.可吸入颗粒物对呼吸系统危害的研究进展.北京呼吸疾病研究所国外医

学(呼吸系统分册).2004,24(4).

[5]姜薇,赵晓红.大气可吸入颗粒物对肺组织损伤机制的研究进展[J].生命科

学,2007(1).

[6]周燕荣, 曾庆, 徐放. 重庆地区大气污染对居民呼吸道疾病影响的研究〔J〕. 重

庆医科大学学报, 1996, 21: S118- 122

[7]邱玉瑾.邱玉珺我国西北典型大城市大气可吸入颗粒物浓度分布特征[期刊论文]-中

国环境监测 2010(3)

[8]戴海夏,宋伟民.大气PM的健康影响[J].国外医学卫生学分册,2001,28:299-303.

[9]高铁梅.计量经济分析方法与建模Eviews应用及实例(第二版) [M].清华大学

出版社,2009.

数据来源:来自国家统计局:《2012年中国统计年鉴》(北京:中国出版社,2012 年)注:各省可吸入颗粒物 PM10 均用其省会数据代替整个地区

数据来源:来自各省 2005到2011 年统计年鉴

注:辽宁省2010 年为估算数据,估算方法Yn=?×Yn-1,?为平均发展速度。

数据来源:来自各省 2005到2011 年统计年鉴

注:四川2004,辽宁 2004、2010,湖南2009、2010,广东2004、2010,新疆 2009均为估算数据为估算数据,估算方法Yn=?×Yn-1,?为平均发展速度

相关主题
文本预览
相关文档 最新文档