最优化之多目标规划
- 格式:ppt
- 大小:520.50 KB
- 文档页数:35
多目标优化方法基本概述几个概念优化方法一、多目标优化基本概述现今,多目标优化问题应用越来越广,涉及诸多领域。
在日常生活和工程中,经常要求不只一项指标达到最优,往往要求多项指标同时达到最优,大量的问题都可以归结为一类在某种约束条件下使多个目标同时达到最优的多目标优化问题。
例如:在机械加工时,在进给切削中,为选择合适的切削速度和进给量,提出目标:1)机械加工成本最低2)生产率低3)刀具寿命最长;同时还要满足进给量小于加工余量、刀具强度等约束条件。
多目标优化的数学模型可以表示为:X=[x1,x2,…,x n ]T----------n维向量min F(X)=[f1(X),f2(X),…,f n(X)]T----------向量形式的目标函数s.t. g i(X)≤0,(i=1,2,…,m)h j(X)=0,(j=1,2,…,k)--------设计变量应满足的约束条件多目标优化问题是一个比较复杂的问题,相比于单目标优化问题,在多目标优化问题中,约束要求是各自独立的,所以无法直接比较任意两个解的优劣。
二、多目标优化中几个概念:最优解,劣解,非劣解。
最优解X*:就是在X*所在的区间D中其函数值比其他任何点的函数值要小即f(X*)≤f(X),则X*为优化问题的最优解。
劣解X*:在D中存在X使其函数值小于解的函数值,即f(x)≤f(X*), 即存在比解更优的点。
非劣解X*:在区间D中不存在X使f(X)全部小于解的函数值f(X*).如图:在[0,1]中X*=1为最优解在[0,2]中X*=a为劣解在[1,2]中X*=b为非劣解多目标优化问题中绝对最优解存在可能性一般很小,而劣解没有意义,所以通常去求其非劣解来解决问题。
三、多目标优化方法多目标优化方法主要有两大类:1)直接法:直接求出非劣解,然后再选择较好的解将多目标优化问题转化为单目标优化问题。
2)间接法如:主要目标法、统一目标法、功效系数法等。
将多目标优化问题转化为一系列单目标优化问题。
多目标最优化问题全面介绍§8.1多目标最优化问题的基本原理一、多目标最优化问题的实例例1 梁的设计问题设用直径为1的圆木加工成截面积为矩形的梁,为使强度最大而成本最低,问应如何设计梁的尺寸?解:设梁的截面积宽和高分别为1x 和2x 强度最大=惯性矩最大22161x x = 成本最低=截面积最小=21x x 故数学模型为: min 1x 2xmax22161x x.s t 22121x x +=10x ≥,20x ≥ 例2 买糖问题已知食品店有1A , 2A ,3A 三种糖果单价分别为4元∕公斤,2.8元∕公斤,2.4元∕公斤,今要筹办一次茶话会,要求用于买买糖的钱不超于20元,糖的总量不少于6公斤,1A ,2A 两种糖的总和不少于3公斤,问应如何确定买糖的最佳方案?解:设购买1A , 2A ,3A 三种糖公斤数为1x ,2x ,3x1A 2A 3A重量 1x 2x3x单价 4元∕公斤 2.8元∕公斤 2.4元∕公斤min 14x +22.8x +32.4x (用钱最省)max 1x +2x +3x (糖的总量最多).st 14x +22.8x +32.4x 20≤ (用钱总数的限制)1x +2x +3x 6≥(用糖总量的要求)1x +2x3≥(糖品种的要求)1x ,2x ,3x 0≥是一个线性多目标规划。
二、多目标最优化的模型12min ()((),(),.....())T m V F x f x f x f x -=.st ()0g x ≥()0h x ≥多目标规划最优化问题实际上是一个向量函数的优化问题,当m=1,多目标优化就是前面讲的单目标优化问题三、解的概念1.序的概念12,.....()Tm a a a a = 12,.....()Tmb b b b =(1)b a =?a iib = 1,2....i m = (2)a b ≤?a i ib ≤ 1,2....i m = 称a 小于等于b(3)a b <=?a i ib ≤ 且?1≤j ≤m ,使a j j b ≠,则a 小于向量b(4)ab < 1,2....i m = 称a 严格小于b绝对最优解:设多目标最优化问题的可行域为D ,*x ∈D ,如果对x ?D ∈,都有*()()F F x x <,则称*x 为多目标最优化的绝对最优解,称绝对最优解的全体为绝对最优解集,记ab R ,absolute —绝对有效解:可行域为D ,*x ∈D ,如果不存在x D ∈,使*()()F F x x <=,则称*x 为有效解,也称pareto 最优解,称有效解的全体为有效解集,记pa R 是由1951年T.C.Koopmans 提出的。
多目标优化的求解方法多目标优化(MOP)就是数学规划的一个重要分支,就是多于一个的数值目标函数在给定区域上的最优化问题。
多目标优化问题的数学形式可以描述为如下:多目标优化方法本质就是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
目前主要有以下方法:(1)评价函数法。
常用的方法有:线性加权与法、极大极小法、理想点法。
评价函数法的实质就是通过构造评价函数式把多目标转化为单目标。
(2)交互规划法。
不直接使用评价函数的表达式,而就是使决策者参与到求解过程,控制优化的进行过程,使分析与决策交替进行,这种方法称为交互规划法。
常用的方法有:逐步宽容法、权衡比替代法,逐次线性加权与法等。
(3)分层求解法。
按目标函数的重要程度进行排序,然后按这个排序依次进行单目标的优化求解,以最终得到的解作为多目标优化的最优解。
而这些主要就是通过算法来实现的, 一直以来很多专家学者采用不同算法解决多目标优化问题, 如多目标进化算法、多目标粒子群算法与蚁群算法、模拟退火算法及人工免疫系统等。
在工程应用、生产管理以及国防建设等实际问题中很多优化问题都就是多目标优化问题, 它的应用很广泛。
1)物资调运车辆路径问题某部门要将几个仓库里的物资调拨到其她若干个销售点去, 在制定调拨计划时一般就要考虑两个目标, 即在运输过程中所要走的公里数最少与总的运输费用最低, 这就是含有两个目标的优化问题。
利用首次适配递减算法与标准蚁群算法对救灾物资运输问题求解, 求得完成运输任务的最少时间, 将所得结果进行了比较。
2)设计如工厂在设计某种新产品的生产工艺过程时, 通常都要求产量高、质量好、成本低、消耗少及利润高等, 这就就是一个含有五个目标的最优化问题; 国防部门在设计导弹时, 要考虑导弹的射程要远、精度要最高、重量要最轻以及消耗燃料要最省等,这就就是一个含有四个目标的最优化问题。
Jo等人将遗传算法与有限元模拟软件结合应用于汽车零件多工序冷挤压工艺的优化。
多目标最优化方法解决优化问题时,如果只考虑单一目标最优,称为单目标最优化问题(Single-Objective optimization problem, SOP),若考虑的最优目标不仅一个,而是多个,我们称为多目标最优化问题(Multi-objective optimization problem, MOP)。
多目标最优化是最优化方法领域中重要的研究方向之一。
多目标最优化问题起源于实际生活中复杂系统的规划设计、模型建立等。
在工程设计、工农业规划、经济规划、金融决策城、市运输、水库管理和能量分配等社会活动中,经常遇多目标最优化问题,可以说多目标优化问题是无处不有、无处不在的.正是由于这种多目标最优化问题的重要性以及普遍性才使得人们要去研究多目标最优化问题的解法。
目前,国内、外许多学者致力于这方面的研究.1.1多目标最优化问题的简史多目标最优化问题的出现,应追溯到1772年,当时Franklin提出了多目标矛盾如何协调解决的问题。
但国际上大都认为多目标最优化问题最早是由法国经济学家V. Pareto于1896年提出的。
当时,他从政治经济学的角度,把不好比较的目标归纳成多日标最优化问题。
1944年,V on.neumann和J. Morgenstern从对策论的角度,提出多个决策者彼此又互相矛盾的多目标决策问题。
1951年,T. C. Koopmans从生产和分配的活动分析中提到了多目标最优化问题,并且第一次提出了Pareto最优解的定义。
同年,H. W. Kuhn和A. W. Tucker从数学归纳的角度,给出了向量极值问题的Pareto最优解,并研究了这种解的充分必要条件。
1953年,Arron等学者对凸集提出了有效解的概念,从此多目标最优化逐渐受到人们的关注。
1963年,L. A. Zadeh从控制论角度提出多目标控制问题。
这期间Charnes, Klinger, Keeney, Geoffrion等人先后都做了有效的工作。
多目标优化方法及实例解析传统的加权法是将多个目标函数线性组合为一个综合目标函数,并通过调节权重来实现优化。
比较常用的加权法有加权规划法和加权规整法。
加权规划法将多个目标函数进行线性组合,构建一个新的综合目标函数,通过调节不同目标函数的权重来实现优化。
例如,在工程设计中,需要同时考虑成本和质量两个目标,可以通过加权规划法确定一个成本质量综合目标函数,并通过调节成本和质量的权重来得到最优解。
加权规整法是在保持各目标函数均有所改善的前提下确定最优解。
该方法首先将每个目标函数进行规整,使其取值范围都在0到1之间,然后通过加权规则将各目标函数的规整结果进行综合得到最终的解。
例如,在多目标投资组合优化中,可以将收益率和风险进行规整,然后通过加权规则得到最优的投资组合。
基于进化算法的Pareto最优解集方法是通过模拟生物进化过程来多目标优化问题的Pareto最优解集。
进化算法通过维护一个个体群体,不断进行选择、交叉和变异操作,以逐步改进个体群体的性能。
在多目标优化问题中,进化算法不追求单一的最优解,而是通过维护一个Pareto最优解集来表示多个最优解。
Pareto最优解集是指没有任何解能比其中的解在所有目标上更好。
基于进化算法的Pareto最优解集方法主要包括遗传算法和粒子群算法。
遗传算法是一种模拟自然界遗传和进化机制的优化算法。
通过遗传算法可以得到多个Pareto最优解。
遗传算法首先随机初始化一个个体群体,然后通过选择、交叉和变异操作,逐步改进个体群体的性能,最终得到一个Pareto最优解集。
粒子群算法是一种模拟鸟群觅食行为的优化算法。
通过粒子群算法可以得到多个Pareto最优解。
粒子群算法首先随机初始化一群粒子,然后通过朝向个体局部最优解和全局最优解的方向进行移动,逐步改进粒子的性能,最终得到一个Pareto最优解集。
综上所述,多目标优化方法主要包括传统的加权法和基于进化算法的Pareto最优解集方法。
每种方法都有其适用的场景和优势,可以根据实际问题的需求选择合适的方法。