最优化之多目标规划
- 格式:ppt
- 大小:520.50 KB
- 文档页数:35
多目标优化方法基本概述几个概念优化方法一、多目标优化基本概述现今,多目标优化问题应用越来越广,涉及诸多领域。
在日常生活和工程中,经常要求不只一项指标达到最优,往往要求多项指标同时达到最优,大量的问题都可以归结为一类在某种约束条件下使多个目标同时达到最优的多目标优化问题。
例如:在机械加工时,在进给切削中,为选择合适的切削速度和进给量,提出目标:1)机械加工成本最低2)生产率低3)刀具寿命最长;同时还要满足进给量小于加工余量、刀具强度等约束条件。
多目标优化的数学模型可以表示为:X=[x1,x2,…,x n ]T----------n维向量min F(X)=[f1(X),f2(X),…,f n(X)]T----------向量形式的目标函数s.t. g i(X)≤0,(i=1,2,…,m)h j(X)=0,(j=1,2,…,k)--------设计变量应满足的约束条件多目标优化问题是一个比较复杂的问题,相比于单目标优化问题,在多目标优化问题中,约束要求是各自独立的,所以无法直接比较任意两个解的优劣。
二、多目标优化中几个概念:最优解,劣解,非劣解。
最优解X*:就是在X*所在的区间D中其函数值比其他任何点的函数值要小即f(X*)≤f(X),则X*为优化问题的最优解。
劣解X*:在D中存在X使其函数值小于解的函数值,即f(x)≤f(X*), 即存在比解更优的点。
非劣解X*:在区间D中不存在X使f(X)全部小于解的函数值f(X*).如图:在[0,1]中X*=1为最优解在[0,2]中X*=a为劣解在[1,2]中X*=b为非劣解多目标优化问题中绝对最优解存在可能性一般很小,而劣解没有意义,所以通常去求其非劣解来解决问题。
三、多目标优化方法多目标优化方法主要有两大类:1)直接法:直接求出非劣解,然后再选择较好的解将多目标优化问题转化为单目标优化问题。
2)间接法如:主要目标法、统一目标法、功效系数法等。
将多目标优化问题转化为一系列单目标优化问题。
多目标最优化问题全面介绍§8.1多目标最优化问题的基本原理一、多目标最优化问题的实例例1 梁的设计问题设用直径为1的圆木加工成截面积为矩形的梁,为使强度最大而成本最低,问应如何设计梁的尺寸?解:设梁的截面积宽和高分别为1x 和2x 强度最大=惯性矩最大22161x x = 成本最低=截面积最小=21x x 故数学模型为: min 1x 2xmax22161x x.s t 22121x x +=10x ≥,20x ≥ 例2 买糖问题已知食品店有1A , 2A ,3A 三种糖果单价分别为4元∕公斤,2.8元∕公斤,2.4元∕公斤,今要筹办一次茶话会,要求用于买买糖的钱不超于20元,糖的总量不少于6公斤,1A ,2A 两种糖的总和不少于3公斤,问应如何确定买糖的最佳方案?解:设购买1A , 2A ,3A 三种糖公斤数为1x ,2x ,3x1A 2A 3A重量 1x 2x3x单价 4元∕公斤 2.8元∕公斤 2.4元∕公斤min 14x +22.8x +32.4x (用钱最省)max 1x +2x +3x (糖的总量最多).st 14x +22.8x +32.4x 20≤ (用钱总数的限制)1x +2x +3x 6≥(用糖总量的要求)1x +2x3≥(糖品种的要求)1x ,2x ,3x 0≥是一个线性多目标规划。
二、多目标最优化的模型12min ()((),(),.....())T m V F x f x f x f x -=.st ()0g x ≥()0h x ≥多目标规划最优化问题实际上是一个向量函数的优化问题,当m=1,多目标优化就是前面讲的单目标优化问题三、解的概念1.序的概念12,.....()Tm a a a a = 12,.....()Tmb b b b =(1)b a =?a iib = 1,2....i m = (2)a b ≤?a i ib ≤ 1,2....i m = 称a 小于等于b(3)a b <=?a i ib ≤ 且?1≤j ≤m ,使a j j b ≠,则a 小于向量b(4)ab < 1,2....i m = 称a 严格小于b绝对最优解:设多目标最优化问题的可行域为D ,*x ∈D ,如果对x ?D ∈,都有*()()F F x x <,则称*x 为多目标最优化的绝对最优解,称绝对最优解的全体为绝对最优解集,记ab R ,absolute —绝对有效解:可行域为D ,*x ∈D ,如果不存在x D ∈,使*()()F F x x <=,则称*x 为有效解,也称pareto 最优解,称有效解的全体为有效解集,记pa R 是由1951年T.C.Koopmans 提出的。
多目标优化的求解方法多目标优化(MOP)就是数学规划的一个重要分支,就是多于一个的数值目标函数在给定区域上的最优化问题。
多目标优化问题的数学形式可以描述为如下:多目标优化方法本质就是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
目前主要有以下方法:(1)评价函数法。
常用的方法有:线性加权与法、极大极小法、理想点法。
评价函数法的实质就是通过构造评价函数式把多目标转化为单目标。
(2)交互规划法。
不直接使用评价函数的表达式,而就是使决策者参与到求解过程,控制优化的进行过程,使分析与决策交替进行,这种方法称为交互规划法。
常用的方法有:逐步宽容法、权衡比替代法,逐次线性加权与法等。
(3)分层求解法。
按目标函数的重要程度进行排序,然后按这个排序依次进行单目标的优化求解,以最终得到的解作为多目标优化的最优解。
而这些主要就是通过算法来实现的, 一直以来很多专家学者采用不同算法解决多目标优化问题, 如多目标进化算法、多目标粒子群算法与蚁群算法、模拟退火算法及人工免疫系统等。
在工程应用、生产管理以及国防建设等实际问题中很多优化问题都就是多目标优化问题, 它的应用很广泛。
1)物资调运车辆路径问题某部门要将几个仓库里的物资调拨到其她若干个销售点去, 在制定调拨计划时一般就要考虑两个目标, 即在运输过程中所要走的公里数最少与总的运输费用最低, 这就是含有两个目标的优化问题。
利用首次适配递减算法与标准蚁群算法对救灾物资运输问题求解, 求得完成运输任务的最少时间, 将所得结果进行了比较。
2)设计如工厂在设计某种新产品的生产工艺过程时, 通常都要求产量高、质量好、成本低、消耗少及利润高等, 这就就是一个含有五个目标的最优化问题; 国防部门在设计导弹时, 要考虑导弹的射程要远、精度要最高、重量要最轻以及消耗燃料要最省等,这就就是一个含有四个目标的最优化问题。
Jo等人将遗传算法与有限元模拟软件结合应用于汽车零件多工序冷挤压工艺的优化。