当前位置:文档之家› 汽车结构设计

汽车结构设计

汽车结构设计
汽车结构设计

前言: 技术参数的确定 (2)

第一课:汽车的总体构 (5)

第二课:发动机的分类 (7)

第三课:发动机的基本名词术语 (8)

第四课:四冲程汽油机的工作原理 (9)

第五课:【空燃比】空气和燃料的混合比 (10)

第六课:涡轮增压器 (11)

第七课:汽油机与柴油机的对比 (13)

第八课:汽车传动系 (14)

第九课:汽车行驶系 (19)

第十课:汽车转向系 (24)

第十二课:汽车安全防护装置 (30)

第十三课:汽车仪表及报警装置 (34)

第十四课:汽车照明装置及信号装置 (35)

第十五课:汽车防盗装置 (37)

汽车设计

前言: 技术参数的确定

一、外形尺寸参数汽车设计中由设计师去弥定的外形尺寸包括:长、宽、高、轴距、轮距、前后悬长和离地距等。各参数的含义见下图:

二、各级汽车的尺寸标准弥定汽车尺寸所要考虑的因素主要是机械布局和使用要求,其中机械布局视乎厂家各自的设计方案有所差异;使用要求则主要由汽车所针对的目标市场级别而定。下表为我根据经验总结的各主要级别(主要乘用车)的常见尺寸范围:

对于汽车空间的要求远大于对省油性能的要求。日本则正好相反,为了改善道路拥挤情况,日本政府对汽车的税收等级是以外形尺寸(主要是占地面积长*宽)来划分的,车身越大使用费用越高。因此日本汽车造型设计所追求的是“空间利用率”,即在有限的车身尺寸下争取最大的内厢空间。

可以说日本车造得紧凑的目的是为了符合法规;欧洲人也热衷于小型车,但他们造小车的主要目的是省油和使用方便;而美国人的生活环境决定了他们用不着把汽车造得太紧凑。三、如何弥定具体尺寸确定汽车尺寸首先要服从机械布局,然后要满足各项应有的功能,如必须具备载客、载货的空间等。下面详谈各尺寸的具体确定方法:

1. 长度长度是对汽车的用途、功能、使用方便性等影响最大的参数。因此一般以长度来划分车身等级。车身长意味着纵向可利用空间大,这是显而易见的;但太长的车身会给调头、停车造成不便。4米长与5米长的汽车在驾驶感觉上会有很大的差异,一般中小型乘用车长4米左右,接近5米长的可算作大型车了。

2. 宽度宽度主要影响乘坐空间和灵活性。对于乘用轿车,如果要求横向布置的三个坐位都有宽阔的乘坐感(主要是足够的肩宽),那么车宽一般都要达到1.8M。近年由于对安全性的要求,车门壁的厚度有所增加,因此车宽也普遍增加。日本车对宽度的限制比较严,大部分在1.8M以下,欧洲车则倾向增大车宽。但是车身太宽会降低在市区行走、停泊的方便性,因此对于轿车来说车宽2M是一个公认的上限。接近2米或超过2米的车都会很难驾驶。道路用车(大货车、大客车)的车宽一般也不能超过2.5米。对于车外倒后镜不能折叠的车辆,规格表上的宽度一般把外伸倒后镜也包括在内,因而有些欧洲轿车规格表上的宽度接近甚至超过2米(例如FIAT MULTIPLA宽度为2010mm),各位明察即可。

3. 高度车身高度直接影响重心(操控性)和空间。大部分轿车高度在1.5米以下,与人体的自然坐姿高度相比低很多,主要是出于降低全车重心的考虑,以确保高速拐弯时不会翻车。MPV、面包车等为了营造宽阔的乘坐(头部空间)和载货空间,车身一般比较高(1.6米以上),但随之使整车重心升高,过弯时车身侧倾角度大;这是高车身车种的一个重大特性缺陷。此外在日本,香港等一些地区,大部分的室内停车场都有高度限制,一般为1.6米,这也是确定车高的重要考虑因素。小型车为了在有限的占地面积内扩大车厢空间,近年有向上发展的趋势,如丰田的YARIS(高1500mm)和标致206(1430mm),以及一批超过1.7M的日本K-CAR级RV(如铃木WAGON R),车身都比传统的小型车高出很多,重心升高导致的主动安全性下降是必然的。

4. 轴距在车长被确定后,轴距是影响乘坐空间最重要的因素,因为占绝大多数的2厢和3厢轿车,乘员的坐位都是布置在前后轴之间的。长轴距使乘员的纵向空间增大,直接得益的是对乘坐舒适性影响很大的脚部空间。在行驶性能方面,长轴距能提高直路巡航的稳定性,但转向灵活性下降,回旋半径增大。因此在稳定性和灵活性之间必须作出取舍,取得适当的平衡。

5. 前、后悬从图一可见:车长=前悬+后悬+轴距。所以轴距越长,前后悬便越短。最短的悬殊长可以短至只有车轮,即为车轮半径1/2。但除了一些小型车要竭力增加轴矩来扩大乘坐空间外,一般轿车的悬长都不能太短,一来轴矩太长会影响灵活性,二来要考虑机械零件的布局。例如前横置引擎前轮驱动的轿车,引擎一般会安置在前轴的前方,因此前悬必须有一定的长度(例一);但前悬也不应过长,以确保爬坡通过性,越野车为了保证爬坡、越台的能力,前悬都很短(例二);一些高性能跑车的前后悬取值主要是出于对前后重量平衡和动态重心转移的考虑(例

三)。近年为了满足严格的正面撞击测试法规,有加长前悬的趋势,目的是容纳车架的撞击缓冲结构。后悬则可以比前悬稍长一些。

6. 轮距轮距直接影响汽车的前后宽度比例。与其它尺寸相比,轮距更受机械布局(尤其是悬挂系统类型)的影响,是造型设计师需要在很早期就确定的参数。一般轿车的前轮距比后轮略大(相差约10-50MM),即车身前半部比后半部略宽,这与气流动力学有关(将在以后详述)。但一些特殊机械布局的汽车,如法拉利的512TR,由于后轴安放了大型的水平对向12缸引擎,使其后轮距远大于前轮距,这就需要以特别的造型设计来配合。在操控性方面,轮距越大,转向极限和稳定性也会提高,很多高性能跑车车身叶子板都向外抛,就是为了尽量扩大轮距。

7. 离地距离地距即车体最低点与地面的距离。后驱车的离地最低点一般在后轴中央,前驱车一般在前轴,也有些轿车的离地距最低点在前防撞杆下缘(气流动力学部件)。离地距必须确保汽车在行走崎岖道路、上下坡时的通过性,即保证不"刮底"。但离地距高也意味着重心高,影响操控性,一般轿车的最低离地距为130mm-200mm,附合正常道路状况的使用要求。越野车离地距普遍大于200mm。赛车由于安装了扰流车身部件,并且要降低重心,离地距可以低至50mm,当然前提是赛车跑道路面平坦,在普通街道上肯定是不可行的。

最后必须补充一下,汽车的长、宽、高、轴距是影响乘坐空间的四要素,但这只是基础,要在尺寸大的车身上设计出空间充裕的座舱,还必须精心设计车厢轮廓。这就是所谓的“利用率”问题,而它又与全车的整体布局息息相关,这将在后面的章节中综合介绍。

第一课:汽车的总体构

汽车通常由发动机、底盘、车身、电气设备四个部分组成。

发动机的作用是使供入其中的燃料燃烧而发出动力。大多数汽车都采用往复活塞式内燃机,它一般是由机体、曲柄连杆机构、配气机构、供给系、冷却系、润滑系、点火系(汽油发动机采用)、起动系等部分组成。

底盘接受发动机的动力,使汽车产生运动,并保证汽车按照驾驶员的操纵正常行驶。底盘由下列部分组成:

传动系——将发动机的动力传给驱动车纶。传动系包括离合器、变速器、传动轴、驱动桥等部件。

行驶系——将汽车各总成及部件连成一个整体并对全车起支承作用,以保证汽车正常行驶。行驶系包括车架、前轴、驱动桥的壳体、车轮(转向车轮和驱动车轮)、最架(前悬架和后悬架)等部件。

转向系——保证汽车能按照驾驶员选择的方向行驶,由带转向盘的转向器及转向传动装置组成。

制动装备——使汽车减速或停车,并保证驾驶员离去后汽车能可靠地停驻。每辆汽车的制动装备都包括若干个相互独立的制动系统,每个制动系统都由供能装置、控制装置、传动装置和制动器组成。

车身是驾驶员工作的场所,也是装载乘客和货物的场所。车身应为驾驶员提供方便的操作条件,以及为乘客提供舒适安全的环境或保证货物完好无损。典型的货车车身包括车前钣制作、驾驶室、车厢等部件。

电气设备由电源组、发动机起动系和点火系、汽车照明和信号装置等组成。此外,在现代汽车上愈来愈多地装用各种电子设备:微处理机、中央计算机系统及各种人工智能装置等,显著地提高了汽车的性能。

为满足不同使用要求,汽车的总体构造和布置型式可以是不同的。按发动机和各个总成相对位置的不同,现代汽车的布置型式通常有如下几种:

发动机前置后轮驱动(FR)——是传统的布置型式。国内外的大多数货车、部分轿车和部分客车都采用这种型式。

发动机前置前轮驱动(FF)——是在轿车上逐渐盛行的布置型式,具有结构紧凑、减小轿车的质量、降低地板高度、改善高速时的操纵稳定性等优点。

发动机后置后轮驱动(RR)——是目前大、中型客车盛行的布置型式,具有降低室内噪声、有利于车身内部布置等优点。少数微型或普及型轿车也采用这种型式。

发动机中置后轮驱动(MR)——是目前大多数运动型轿车和方程式赛车所采用的布置型式。由于这些车型都采用功率和尺寸很大的发动机,将发动机布置在驾驶员座椅之后和后桥之前有利于获得最佳轴荷分配和提高汽车的性能。

此外,某些大、中型客车也采用这种布置型式,把配备的卧式发动机装在地板下面。

全轮驱动(nWD)——是越野汽车特有的型式,通常发动机前置,在变速器后装有分动器以便将协力分别输送到全部车轮上。

第二课:发动机的分类

发动机按照它不同的特点有很多种分类方法:

1.按燃料分可分为柴油机、汽油机和天然气机等。

2.按实现循环的行程数分

a):四冲程发动机:活塞移动四个行程或曲轴转两圈气缸内完成一个工作循环。

b):二冲程发动机:活塞移动两个行程或曲轴转一圈气缸内完成一个工作循环。

3.按冷却方式分

a):水冷式发动机:以水为冷却介质

b):风冷式发动机:以空气作为冷却介质(适合缺水地区使用,如沙漠国家)

4.按点火方式分

a):压燃式发动机:利用气缸内空气被压缩后产生的高温,使燃油自燃。如柴油

机。

b):点燃式发动机:利用火花塞发出的电火花强制点燃燃料,使燃料强行着火燃

烧。如汽油机、煤气机。

5.按可燃混合气形成的方法分

a):外部形成混合气的发动机:燃料和空气在外先混合然后进入气缸。如使用化

油器的汽油机。

b):内部形成混合气的内燃机:燃料在临近压缩终了时才喷入气缸,在气缸内与

空气混合。如柴油机。

6.按进气方式分

a):自然吸气式发动机:空气*活塞的抽吸作用进入气缸内。

b):增压式发动机:为增大功率,在发动机上装有增压器,使进入气缸的气体预

先经过压气机压缩后再进入气缸。

7.按气缸数目分

a):单缸发动机。

b):多缸发动机。

按气缸的排列型式又可分为:

i.直列立式发动机:所有气缸中心线在同一垂直平面内。

ii.直列卧式发动机:所有气缸中心线在同一水平平面内。

iii. V型发动机:气缸中心线分别在两个平面内,且两平面相交呈V型。

iv.对置式发动机:V型夹角为180°时又称为对置式。

v.其它:还有H型,X型、星型等,但在车辆上应用很少。

第三课:发动机的基本名词术语

1.活塞止点与行程:

a):活塞在气缸内作往复运动的两个极端位置称为止点。活塞离曲轴放置中心最

远位置称为上止点,离曲轴放置中心的位置称为下止点。

b):上下止点之间的距离称为活塞的行程。曲轴转动半圈,相当于活塞移动一个

行程。

2.排量

a):活塞在气缸内作往复运动,气缸内的容积不断变化。当活塞位于上止点位置

时,活塞顶部与气缸盖内表面所形成的空间称为燃烧室。这个空间容积称为

燃烧室容积。

b):活塞从上止点移动到下止点所通过的空间容积称为气缸排量,如果发动机有

若干个气缸,所有气缸工作容积之和称为发动机排量。

c):当活塞在下止点位置时,活塞顶上部的全部气缸容积称为气缸总容积。

3.压缩比

a):气缸总容积与燃烧室容积的比值称为压缩比。压缩比表示了活塞从下止点移

动到上止点时,气体在气缸内被压缩的程度。

b):压缩比越大,气体在气缸内受压缩的程度越大,压缩终点气体的压力和温度

越高,功率越大,但压缩比太高容易出现爆震。

c):压缩比是发动机的一个重要结构参数。由于燃料性质不同,不同类型的发动

机对压缩比有不同的要求。柴油机要求较大的压缩比,一般在12-29之间,

而汽油机的压缩比较小,在6-11之间。选用高标号的汽油可以部分地提高压

缩比。

第四课:四冲程汽油机的工作原理

四冲程汽油机的工作过程是一个复杂的过程,它由进气、压缩、燃烧膨胀、排气四个行程组成。

一.进气行程

此时,活塞被曲轴带动由上止点向下上止点移动,同时,进气门开启,排气门关闭。当活塞由上止点向下止点移动时,活塞上方的容积增大,气缸内的气体压力下降,形成一定的真空度。由于进气门开启,气缸与进气管相通,混合气被吸入气缸。当活塞移动到下止点时,气缸内充满了新鲜混合气以及上一个工作循环未排出的废气。

二.压缩行程活塞由下止点移动到上止点,进排气门关闭。曲轴在飞轮等惯性力的作用下带动旋转,通过连杆推动活塞向上移动,气缸内气体容积逐渐减小,气体被压缩,气缸内的混合气压力与温度随着升高。

三.燃烧膨胀行程此时,进排气门同时关闭,火花塞点火,混合气剧烈燃烧,气缸内的温度、压力急剧上升,高温、高压气体推动活塞向下移动,通过连杆带动曲轴旋转。在发动机工作的四个行程中,只有这个在行程才实现热能转化为机械能,所以,这个行程又称为作功行程。

四.排气行程此时,排气门打开,活塞从下止点移动到上止点,废气随着活塞的上行,被排出气缸。由于排气系统有阻力,且燃烧室也占有一定的容积,所以在排气终了地,不可能将废气排净,这部分留下来的废气称为残余废气。残余废气不仅影响充气,对燃烧也有不良影响。

排气行程结束时,活塞又回到了上止点。也就完成了一个工作循环。随后,曲轴依*飞轮转动的惯性作用仍继续旋转,开始下一个循环。如此周而复始,发动机就不断地运转起来。

第五课:【空燃比】空气和燃料的混合比

空燃比A/F(A:air-空气,F:fuel-燃料)表示空气和燃料的混合比。空燃比是发动机运转时的一个重要参数,它对尾气排放、发动机的动力性和经济性都有很大的影响。

理论空燃比:即将燃料完全燃烧所需要的最少空气量和燃料量之比。燃料的组成成分对理论空燃比的影响不大,汽油的理论空燃比大体约为14.8,也就是说,燃烧1g汽油需要14.8g的空气。一般常说的汽油机混合气过浓过稀,其标准就是理论空燃比。空燃比小于理论空燃比时,混合气中的汽油含量高,称作过浓;空燃比大于理论空燃比时,混合气中的空气含量高,称为过稀。

混合气略微过浓时,即空燃比为13.5-14时汽油的燃烧最好,火焰温度也最高。因为燃料多一些可使空气中的氧气全部燃烧。

而从经济性的角度来讲,混合气稀一些时,即空燃比为16时油耗最小。因为这时空气较多,燃料可以充分燃烧。

从发动机功率上讲,混合气较浓时,火焰温度高,燃烧速度快,当空燃比界于12-13之间时,发动机功率最大。

第六课:涡轮增压器

发动机是靠燃料在气缸内燃烧作功来产生功率的,输入的燃料量受到吸入气缸内空气量的限制,所产生的功率也会受到限制,如果发动机的运行性能已处于最佳状态,再增加输出功率只能通过压缩更多的空气进入气缸来增加燃料量,提高燃烧作功能力。在目前的技术条件下,涡轮增压器是唯一能使发动机在工作效率不变的情况下增加输出功率的机械装置。

构造

涡轮增压器是由涡轮室和增压器组成的机器,涡轮室进气口与排气歧管相连,排气口接在排气管上;增压器进气口与空气滤清器管道相连,排气口接在进气歧管上。涡轮和叶轮分别装在涡轮室和增压器内,二者同轴刚性联接。

原理

涡轮增压器实际上是一种空气压缩机,通过压缩空气来增加进气量。它是利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入气缸。当发动机转速增快,废气排出速度与涡轮转速也同步增快,叶轮就压缩更多的空气进入气缸,空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量和调整一下发动机的转速,就可以增加发动机的输出功率了。

技术

涡轮增压器安装在发动机的进排气歧管上,处在高温,高压和高速运转的工作状况下,其工作环境非常恶劣,工作要求又比较苛刻,因此对制造的材料和加工技术都要求很高。其中制造难度最高的是支承涡轮轴运转的“浮式轴承”,它工作转速可达10万转/分以上,加上环境温度可达六、七百度以上,决非一般轴承所能承受,由于轴承与机体内壁间有油液做冷却,又称“全浮式轴承”。

缺点

另外涡轮增压器虽然有协助发动机增力的作用,但也有它的缺点,其中最明显的是,“滞后响应”,即由于叶轮的惯性作用对油门骤时变化反应迟缓,即使经过改良后的反应时间也要 1.7秒,使发动机延迟增加或减少输出功率。这对于要突然加速或超车的汽车而言,瞬间会有点提不上劲的感觉。

改进

但是涡轮增压器毕竟是无本生利的事情,它是利用发动机的废气工作的,这些废气的能量如果不加以利用也会白白地浪费掉。因此,自从涡轮增压器面世以来,人们就经常对它进行技术改造,例如提高加工精度,尽量减少涡轮与涡轮室内壁的间隙,以便提高废气能量利用率;采用新型材料陶瓷,利用陶瓷的耐热高,刚度强,重量轻的优点,可以将涡轮增压器做得更加紧凑,体积更少,而且能减少涡轮的“滞后响应”时间。

在最近30年时间里,涡轮增压器已经普及到许多类型的汽车上,它弥补了一些自然吸气式发动机的先天不足,会发动机在不改变气缸工作容积的情况下可以提高输出功率10%以上,因此许多汽车制造公司都采用这种增压技术来改进发动机的输出功率,藉以实现轿车的高性能化。

第七课:汽油机与柴油机的对比

发动机按所使用的燃料进行分类,可以分为汽油机和柴油机。

汽油与柴油相比较,汽油的沸点低、容易气化,而柴油的自燃温度低。

柴油机采用压缩空气的办法提高空气温度,使空气温度超过柴油的自燃测试,这时再喷入柴油、柴油喷雾和空气混合的同时自己点火燃烧。德国人狄塞尔想出了这个办法并取得了专利权,所以柴油机又叫狄塞尔发动机。

与汽油机相比,柴油机的优点是柴油价格便宜,经济性好,并且它没有点火系统,所以故障较少。

但柴油机由于工作压力大,要求各有关零件具有较高的结构强度和刚度,所以柴油机比较笨重,体积较大;柴油机的喷油泵与喷嘴制造精度要求高,所以成本较高;另外,柴油机工作粗暴,振动噪声大;柴油不易蒸发,冬季冷车时起动困难。

所以,现在的轿车中主要装备汽油机。

第八课:汽车传动系

传动系概述

传动系的基本功用是将发动机发出的动力传给汽车的驱动车轮,产生驱动力,使汽车能在一定速度上行驶。

对于前置后驱的汽车来说,发动机发出的转矩依次经过离合器、变速箱、万向节、传动轴、主减速器、差速器、半轴传给后车轮,所以后轮又称为驱动轮。驱动轮得到转矩便给地面一个向后的作用力,并因此而使地面对驱动轮产生一个向前的反作用力,这个反作用力就是汽车的驱动力。汽车的前轮与传动系一般没有动力上的直接联系,因此称为从动轮。

传动系的组成和布置形式是随发动机的类型、安装位置,以及汽车用途的不同而变化的。例如,越野车多采用四轮驱动,则在它的传动系中就增加了分动器等总成。而对于前置前驱的车辆,它的传动系中就没有传动轴等装置。

传动系的布置型式

机械式传动系常见布置型式主要与发动机的位置及汽车的驱动型式有关。可分为:

1.前置前驱—FR:即发动机前置、后轮驱动

这是一种传统的布置型式。国内外的大多数货车、部分轿车和部分客车都采用这种型式。

2.后置后驱—RR:即发动机后置、后轮驱动

在大型客车上多采用这种布置型式,少量微型、轻型轿车也采用这种型式。发动机后置,使前轴不易过载,并能更充分地利用车箱面积,还可有效地降低车身地板的高度或充分利用汽车中部地板下的空间安置行李,也有利于减轻发动机的高温和噪声对驾驶员的影响。缺点是发动机散热条件差,行驶中的某些故障不易被驾驶员察觉。远距离操纵也使操纵机构变得复杂、维修调整不便。但由于优点较为突出,在大型客车上应用越来越多。

3.前置前驱—FF:发动机前置、前轮驱动

这种型式操纵机构简单、发动机散热条件好。但上坡时汽车质量后移,使前驱动轮的附着质量减小,驱动轮易打滑;下坡制动时则由于汽车质量前移,前轮负荷过重,高速时易发生翻车现象。现在大多数轿车采取这种布置型式。

4.越野汽车的传动系

越野汽车一般为全轮驱动,发动机前置,在变速箱后装有分动器将动力传递到全部车轮上。目前,轻型越野汽车普遍采用4×4驱动型式,中型越野汽车采用4×4或6×6驱动型式;重型越野汽车一般采用6×6或8×8驱动型式。

离合器

离合器位于发动机和变速箱之间的飞轮壳内,用螺钉将离合器总成固定在飞轮的后平面上,离合器的输出轴就是变速箱的输入轴。在汽车行驶过程中,驾驶员可根据需要踩下

或松开离合器踏板,使发动机与变速箱暂时分离和逐渐接合,以切断或传递发动机向变速器输入的动力。

离合器的功用主要有:

1.保证汽车平稳起步

起步前汽车处于静止状态,如果发动机与变速箱是刚性连接的,一旦挂上档,汽车将由于突然接上动力突然前冲,不但会造成机件的损伤,而且驱动力也不足以克服汽车前冲产生的巨大惯性力,使发动机转速急剧下降而熄火。如果在起步时利用离合器暂时将发动机和变速箱分离,然后离合器逐渐接合,由于离合器的主动部分与从动部分之间存在着滑磨的现象,可以使离合器传出的扭矩由零逐渐增大,而汽车的驱动力也逐渐增大,从而让汽车平稳地起步。

2.便于换档

汽车行驶过程中,经常换用不同的变速箱档位,以适应不断变化的行驶条件。如果没有离合器将发动机与变速箱暂时分离,那么变速箱中啮合的传力齿轮会因载荷没有卸除,其啮合齿面间的压力很大而难于分开。另一对待啮合齿轮会因二者圆周速度不等而难于啮合。即使强行进入啮合也会产生很大的齿端冲击,容易损坏机件。利用离合器使发动机和变速箱暂时分离后进行换档,则原来啮合的一对齿轮因载荷卸除,啮合面间的压力大大减小,就容易分开。而待啮合的另一对齿轮,由于主动齿轮与发动机分开后转动惯量很小,采用合适的换档动作就能使待啮合的齿轮圆周速度相等或接近相等,从而避免或减轻齿轮间的冲击。

3.防止传动系过载

汽车紧急制动时,车轮突然急剧降速,而与发动机相连的传动系由于旋转的惯性,仍保持原有转速,这往往会在传动系统中产生远大于发动机转矩的惯性矩,使传动系的零件容易损坏。由于离合器是*磨擦力来传递转矩的,所以当传动系内载荷超过磨擦力所能传递的转矩时,离合器的主、从动部分就会自动打滑,因而起到了防止传动系过载的作用。

变速器变速器是汽车传动系中最主要的部件之一。

它的功用是:

1.在较大范围内改变汽车行驶速度的大小和汽车驱动轮上扭矩的大小。

由于汽车行驶条件不同,要求汽车行驶速度和驱动扭矩能在很大范围内变化。例如在高速路上车速应能达到100km/h,而在市区内,车速常在50km/h左右。空车在平直的公路上行驶时,行驶阻力很小,则当满载上坡时,行驶阻力便很大。而汽车发动机的特性是转速变化范围较小,而转矩变化范围更不能满足实际路况需要。2.实现倒车行驶汽车发动机曲轴一般都是只能向一个方向转动的,而汽车有时需要能倒退行驶,因此,往往利用变速箱中设置的倒档来实现汽车倒车行驶。

3.实现空档

当离合器接合时,变速箱可以不输出动力。例如可以保证驾驶员在发动机不熄火时松开离合器踏板离开驾驶员座位。

变速箱由变速传动机构和变速操纵机构两部分组成。变速传动机构的主要作用是改变转矩和转速的数值和方向;操纵机构的主要作用是控制传动机构,实现变速器传动比的变换,即实现换档,以达到变速变矩。

机械式变速箱主要应用了齿轮传动的降速原理。简单的说,变速箱内有多组传动比不同的齿轮副,而汽车行驶时的换档行为,也就是通过操纵机构使变速箱内不同的齿轮副工作。如在低速时,让传动比大的齿轮副工作,而在高速时,让传动比小的齿轮副工作。

分动器

越野车需要经常在坏路和无路情况下行驶,尤其是军用汽车的行驶条件更为恶劣,这就要求增加汽车驱动轮的数目,因此,越野车都采用多轴驱动。例如,如果一辆前轮驱动的汽车两前轮都陷入沟中(这种情况在坏路上经常会遇到),那汽车就无法将发动机的动力通过车轮与地面的磨擦产生驱动力而继续前进。而假如这辆车的四个轮子都能产生驱动力的话,那么,还有两个没陷入沟中的车轮能正常工作,使汽车继续行驶。

分动器的功用就是将变速器输出的动力分配到各驱动桥,并且进一步增大扭矩。分动器也是一个齿轮传动系统,它单独固定在车架上,其输入轴与变速器的输出轴用万向传动装置连接,分动器的输出轴有若干根,分别经万向传动装置与各驱动桥相连。

大多数分动器由于要起到降速增矩的作用而比变速箱的负荷大,所以分动器中的常啮齿轮均为斜齿轮,轴承也采用圆锥滚子轴承支承。

万向传动器

万向传动装置一般由万向节、传动轴和中间支承组成。其功用是在轴线相交且相对位置经常变化的两转轴之间可*地传递动力。

在现代汽车的总体布置中,发动机、离合器和变速箱连成一体固装在车架上,而驱动桥则通过弹性悬架与车架连接。由此可见,变速器输出轴轴线与驱动桥的输入轴轴线不在同一平面上。当汽车行驶时,车轮的跳动会造成驱动桥与变速器的相对位置(距离、夹角)不断变化,故变速器的输出轴与驱动桥的输入轴不可能刚性连接,必须安装有万向传动装置。此外,由于越野汽车的前轮既是转向轮又是驱动轮。作为转向轮,要求在转向时可以在规定范围内偏转一定角度;作为驱动轮,则要求半轴在车轮偏转过程中不间断地把动力从主减速器传到车轮。因此,半轴不能制成整体而必须分段,中间用等角速万向节相连。

万向节按其刚度的大小可分为刚性万向节和挠性万向节,前者的动力是靠零件的铰链式联接传递的;而后者的动力则是靠弹性零件传递的,如橡胶盘、橡胶块等,由于弹性元件的变形量有限,因而挠性万向节一般用于两轴间夹角不大以及有微量轴向位移的轴间传动。刚性万向节分为不等速万向节(如常见的十字轴式)、准等速万向节(双联式、三销轴式)和等速万向节(球*式、球笼式等)。

驱动桥--主减速器

驱动桥由主减速器、差速器、半轴和驱动桥壳等几部分组成,其功用是将万向传动装置传来的发动机转矩传给驱动车轮,实现降速以增大转矩。

主减速器是汽车传动系中减小转速、增大扭矩的主要部件。对发动机纵置的汽车来说,主减速器还利用锥齿轮传动以改变动力方向。

汽车正常行驶时,发动机的转速通常在2000至3000r/min左右,如果将这么高的转速只靠变速箱来降低下来,那么变速箱内齿轮副的传动比则需很大,而齿轮副的传动比越大,两齿轮的半径比也越大,换句话说,也就是变速箱的尺寸会越大。另外,转速下降,而扭矩必然增加,也就加大了变速箱与变速箱后一级传动机构的传动负荷。所以,在动力向左右驱动轮分流的差速器之前设置一个主减速器,可使主减速器前面的传动部件如变速箱、分动器、万向传动装置等传递的扭矩减小,也可变速箱的尺寸质量减小,操纵省力。

现代汽车的主减速器,广泛采用螺旋锥齿轮和双曲面齿轮。双曲面齿轮工作时,齿面间的压力和滑动较大,齿面油膜易被破坏,必须采用双曲面齿轮油润滑,绝不允许用普通齿轮油代替,否则将使齿面迅速擦伤和磨损,大大降低使用寿命。

驱动桥--差速器

驱动桥两侧的驱动轮若用一根整轴刚性连接,则两轮只能以相同的角速度旋转。这样,当汽车转向行驶时,由于外侧车轮要比内侧车轮移过的距离大,将使外侧车轮在滚动的同时产生滑拖,而内侧车轮在滚动的同时产生滑转。即使是汽车直线行驶,也会因路面不平或虽然路面平直但轮胎滚动半径不等(轮胎制造误差、磨损不同、受载不均或气压不等)而引起车轮的滑动。

车轮滑动时不仅加剧轮胎磨损、增加功率和燃料消耗,还会使汽车转向困难、制动性能变差。为使车轮尽可能不发生滑动,在结构上必须保证各车辆能以不同的角速度转动。通常从动车轮用轴承支承在心轴上,使之能以任何角速度旋转,而驱动车轮分别与两根半轴刚性连接,在两根半轴之间装有差速器。这种差速器又称为轮间差速器。

多轴驱动的越野汽车,为使各驱动桥能以不同角速度旋转,以消除各桥上驱动轮的滑动,有的在两驱动桥之间装有轴间差速器。

现代汽车上的差速器通常按其工作特性分为齿轮式差速器和防滑差速器两大类。齿轮式差速器当左右驱动轮存在转速差时,

差速器分配给慢转驱动轮的转矩大于快转驱动轮的转矩。这种差速器转矩均分特性能满足汽车在良好路面上正常行驶。但当汽车在坏路上行驶时,却严重影响通过能力。例如当汽车的一个驱动轮陷入泥泞路面时,虽然另一驱动轮在良好路面上,汽车却往往不能前进(俗称打滑)。此时在泥泞路面上的驱动轮原地滑转,在良好路面上的车轮却静止不动。这是因为在泥泞路面上的车轮与路面之间的附着力较小,路面只能通过此轮对半轴作用较小的反作用力矩,因此差速器分配给此轮的转矩也较小,尽管另一驱动轮与良好路面

间的附着力较大,但因平均分配转矩的特点,使这一驱动轮也只能分到与滑转驱动轮等量的转矩,以致驱动力不足以克服行驶阻力,汽车不能前进,而动力则消耗在滑转驱动轮上。此时加大油门不仅不能使汽车前进,反而浪费燃油,加速机件磨损,尤其使轮胎磨损加剧。有效的解决办法是:挖掉滑转驱动轮下的稀泥或在此轮下垫干土、碎石、树枝、干草等。

为提高汽车在坏路上的通过能力,某些越野汽车及高级轿车上装置防滑差速器。防滑差速器的特点是,当一侧驱动轮在坏路上滑转时,能使大部分甚至全部转矩传给在良好路面上的驱动轮,以充分利用这一驱动轮的附着力来产生足够的驱动力,使汽车顺利起步或继续行驶。

驱动桥--半轴

半轴是差速器与驱动轮之间传递扭矩的实心轴,其内端一般通过花键与半轴齿轮连接,外端与轮毂连接。

现代汽车常用的半轴,根据其支承型式不同,有全浮式和半浮式两种。

全浮式半轴只传递转矩,不承受任何反力和弯矩,因而广泛应用于各类汽车上。全浮式半轴易于拆装,只需拧下半轴突缘上的螺栓即可抽出半轴,而车轮与桥壳照样能支持汽车,从而给汽车维护带来方便。

半浮式半轴既传递扭矩又承受全部反力和弯矩。它的支承结构简单、成本低,因而被广泛用于反力弯矩较小的各类轿车上。但这种半轴支承拆取麻烦,且汽车行驶中若半轴折断则易造成车轮飞脱的危险。

驱动桥--桥壳

驱动桥壳是安装主减速器、差速器、半轴、轮毂和悬架的基础件,主要作用是支承并保护主减速器、差速器和半轴等。同时,它又是行驶系的主要组成件之一,故还具有如下功用:

1.和从动桥一起承受汽车质量

2.使左、右驱动车轮的轴向相对位置固定

3.汽车行驶时,承受驱动轮传来的各种反力、作用力和力矩,并通过悬架传给车架

驱动桥壳可分为整体式和分段式两类。

整体式桥壳是桥壳与主减速器壳分开制造,二者用螺栓连接在一起。它的结构优点是在检查主减速器和差速器的技术状况或拆装时,不用把整个驱动桥从车上拆下来,因而维修比较方便,普遍用于各类汽车。

分段式桥壳是桥壳与主减速器壳铸成一体,且一般分为两段由螺栓连成一体。这种桥壳易于铸造,但维护主减速器和差速器时必须把整个桥拆下来,否则无法拆检主减速器和差速器。现已很少使用,北京2020采用这种桥壳。

第九课:汽车行驶系

行驶系分为四大主要部分:车桥、车轮、车架和悬架。

车桥(也称车轴)通过悬架和车架(或承载式车身)相连,两端安装汽车车轮。其功能是传递车架(或承载式车身)与车轮之间各方向作用力。

车桥可以是整体式的,有如一个巨大的杠铃,两端通过悬架系统支撑着车身,因此整体式车桥通常与非独立悬架配合;车桥也可以是断开式的,象两把雨伞插在车身两侧,再各自通过悬架系统支撑车身,所以断开式车桥与独立悬架配用。

根据驱动方式的不同,车桥也分成转向桥、驱动桥、转向驱动桥和支持桥四种。其中转向桥和支持桥都属于从动桥。大多数汽车采用前置后驱动(FR),因此前桥作为转向桥,后桥作为驱动桥;而前置前驱动(FF)汽车则前桥成为转向驱动桥,后桥充当支持桥。

转向桥的结构基本相同,由两个转向节和一根横梁组成。如果把横梁比做身体,转向节就是他左右摇晃的脑袋,脖子就是我们常说的主销,车轮就装在转向节上,仿佛脑袋上带了个草帽。不过,行驶的时候草帽转,脑袋却不转,中间用轴承分隔开,脑袋只管左右晃动。脖子——主销是车轮转动的轴心,这个轴的轴线并非垂直于地面,车轮本身也不是垂直的,我们将在车轮定位一节具体论述。

转向驱动桥与转向桥的区别就是一切都是空心的,横梁变成了桥壳,转向节变成了转向节壳体,因为里面多了根驱动轴。这根驱动轴因被位于桥壳中间的差速器一分为二,而变成了两根半轴。两个草帽也不是简单地套在脑袋上,还要与里面的两根半轴直接相连。半轴在“脖子”的位置也多了一个关节——万向节,因此半轴也变成了两部分,内半轴和外半轴。

转向轮的定位

转向轮的转向轴心——主销并非垂直于地面,而是朝两个方向产生倾角,即主销内倾角和主销后倾角。车轮本身也有一个外倾角和前束。先说主销后倾角。站在车身左侧,观察车的左前轮,我们会发现主销是向后倾倒的。这样做的主要目的是为了让主销的延长线与地面的交点在车轮触地点的前面。

这种设计是为了使车轮在滚动的过程中保持稳定,不致左右摇摆。我们不作过多的理论解释,只举一个例子:也许有的读者小时候玩过推铁环的游戏,我们用一个头部带圈的长铁杆从后面推一个大铁环使其滚动,由于铁环很容易翻倒而使得这个游戏具有一定的挑战性。但如果我们换一种推法,让铁杆与铁环的接触点在铁环与地面接触点的前面,我们会发现这样做使得这个游戏的挑战性大大降低了,铁环不再那么容易晃动甚至翻倒了。这就是主销后倾角的妙用。

下面看看主销内倾角。站在车的后部,观察车的右前轮,我们发现主销向左倾倒,也即向内侧倾倒。这样做的目的是为了在转弯的时候让车轮产生倾斜。还是举一个生活中的例子:我们在骑自行车拐弯的时候,会自然地将车子向所转的方向倾斜,让车轮与地面有一个夹角,学过物理的人知道,这样做是为了产生足够的向心力。汽车也是一样,右侧车轮在右转弯的时候在主销内倾角和后倾角的共同作用下会向右侧倾倒,而左侧车轮虽也有主销内倾角,却不会向左侧倾倒,因

为还有主销后倾角,把它又拉了回来,甚至也能向右微微倾斜。不仅如此,两侧车轮的转动还使右侧车身降低,左侧车身抬高,整个车身也向右倾斜,于是产生了足够的向心力。

除了上述的主销后倾和内倾两个角度以保证汽车稳定直线行驶外,车轮中心平面也不是垂直于地面的,而是向外倾斜一个角度,称为车轮外倾角。因为假如空车时车轮正好垂直于地面,则满载时,车桥因受压产生变形,中间下沉,两端上翘,车轮便随之变为内倾,这样将加速轮胎的磨损。另外,内倾的车轮从两端向内挤压轮毂上的轴承,加重了它的负荷,降低了使用寿命。因此在安装车轮时要预先使车轮有一定的外倾,这也使其与拱行路面相适应。

车轮有了外倾以后,在滚动时就会导致两侧车轮向外滚开。由于转向横拉杆和车桥的约束使车轮不可能向外滚开,于是车轮在无法按照自己的预想轨迹滚动的情况下,势必产生横向滑动,从而加重了轮胎的磨损。为了消除这种不良影响,在安装车轮时,使汽车两前轮并不平行,俯视车轮,会发现两前轮就象人的内八字脚一样。这称为车轮前束。

在外倾角和前束的共同作用下车轮基本上可以沿直线滚动而没有什么横向影响了。以上就是车轮定位的四个要素:主销后倾角、主销内倾角、车轮外倾角和车轮前束。

轮胎的结构与规格

轮胎是汽车行驶系中重要的部件。

无内胎的充气轮胎近年来在轿车和一些货车上的使用日益广泛,因此这里讨论的基本上是以目前最常用的无内胎轮胎,即通常所谓的真空胎为对象。

轮胎的结构分为三部分:胎体、帘布、外胎面。

胎体较柔软,外胎面刚性较大,中间的帘线起到加强胎体强度和定型的作用,多加以金属丝提高轮胎的弹力性能。

轿车轮胎大致分为子午线轮胎和斜线轮胎。斜线轮胎的帘线按斜线交叉排列,故而得名。胎体构成了轮胎的基本骨架,从外胎面到胎侧的柔软度是一致的。虽然斜线轮胎的噪音小,外胎面柔软,低速行驶时乘坐舒适性好,且价格便宜,但其综合性能不如子午线轮胎,汽车厂家都是以子午线轮胎为前提研制新车的,随着子午线轮胎的不断改进,斜线轮胎将基本上被淘汰。

子午线轮胎的帘布层相当于轮胎的基本骨架,其排列方向与轮胎子午断面一致,由于行驶时轮胎要承受较大的切向作用力,为保证帘线的稳固,在其外部又有若干层由高强度、不易拉伸的材料制成的带束层(又称箍紧层),其帘线方向与子午断面呈较大的交角(70-75度),材料多选用玻璃纤维、聚酰胺纤维或钢丝等高强度材料,既起到固定帘线的作用,同时利用束带来提高胎面的刚性。轮胎侧面的刚性小于胎面的刚性,所以在转弯时轮胎侧面因受地面横向力作用发生变形,从而保证了外胎面的触地面积基本保持不变。

子午线轮胎与普通斜线胎相比,弹性大,耐磨性好,滚动阻力小,附着性能好,缓冲性能好,承载能力大,不易刺穿;缺点是胎侧易裂口,由于侧向变形大,导致汽车侧向稳定性稍差,制造技术要求高,成本高。

下面我们举两例来说明斜线轮胎与子午线轮胎的规格及其标识。

基于HyperMesh_OptiStruct的汽车零部件结构拓扑优化设计

Equipment Manufactring Technology No.10,2008 优化设计在现代结构设计中占有十分重要的地位,它能使工程设计者从众多的设计方案中获得较为完善的或最为合适的最优设计方案,是虚拟设计和制造的重要环节,并贯穿于设计和制造的整个过程。结构优化设计通常可根据设计变量的类型划分为尺寸优化,形状优化,和拓扑优化三类。目前,尺寸优化的理论和应用已趋于成熟,形状优化的理论已经基本建立,正在着重解决实际应用方面的问题。结构的拓扑优化由于其理论和计算上的复杂性而成为结构优化设计中最富挑战性的研究领域[1]。一方面拓扑优化大大减少了建模方面的工作量,另一方面它可以在改善或保持结构性能的基础上大大减轻结构的质量。近年来,随着汽车工业的快速发展,日益突出的能源问题和为了满足对汽车设计的新要求,对汽车零部件和机械结构开展拓扑优化设计具有重要的意义。 1连续体结构拓扑优化的方法及常用算法 1.1连续体结构拓扑优化的方法 连续体结构拓扑优化是在一定空间区域内寻求材料最合理分布的一种优化方法。在进行连续体结构拓扑优化设计时,其初始设计区域一般采用基结构法进行描述。所谓基结构法,就是把给定的初始设计区域离散成足够多的单元,形成由这些若干单元构成的基结构,再按某种优化策略和准则从这个基结构中删除某些单元,用保留下来的单元描述结构的最优拓扑。基结构法可借用有限元分析时所使用的网格单元,只需在优化初始阶段进行一次网格划分,在整个优化过程中可保持网格划分不变,这使得基结构法较易实现,称为目前结构拓扑优化中应用最为广泛的方法。连续体结构拓扑优化多采用基结构法的拓扑优化方法主要有以下三种[2~3]。 1.1.1均匀化方法 均匀化方法就是以Bendsoe、Kikuchi提出的均匀化理论为基础引入微结构,将设计区域离散成许多带有孔洞的微结构单胞,对连续体进行拓扑优化,通过优化计算确定其材料密度呈0~1分布,由此得出最优的拓扑结构。它适用连续体基于应力和位移约束或频率约束的拓扑优化分析。1.1.2变密度法 变密度法是从均匀化方法发展而来的一种方法。其基本思想就是引入一种假想的密度值在[0,1]之间的密度可变材料,将连续结构体离散为有限元模型后,以每个单元的密度为设计变量,将结构的拓扑优化问题转化为单元材料的最优分布问题。这种方法主要应用于多工况应力约束下的平面结构、三维连续结构及结构碰撞问题等方面。 1.1.3变厚度法 变厚度法是最早被采用的拓扑优化方法,属于几何(尺寸)描述方式。这种方法将薄板或薄壳可能占据的整个区域划分成有限个单元,假定所有单元的厚度是均匀的,把这一模型作为初始模型进行优化。这样优化求得的最优设计将是一个带孔洞的,厚度均匀的薄板或薄壳。 1.2结构拓扑优化设计的常用算法 合理的优化算法的选择对于结构的拓扑优化设计是非常重要的,我们应该根据我们所要优化的工程结构(如结构拓扑优化数学模型的特点,优化目标函数的性质,约束函数非线性的复杂程度,以及优化要求达到的计算精度等)来选择一个合适的优化算法。目前,工程结构中常用的拓扑优化算法主要有以下三种[3~4]。 1.2.1优化准则法 优化准则法是拓扑优化算法中的分析型算法,在拓扑优化当中应用十分很广。这种方法理解方便,数学推导简单明了,不需要对变量求导数,因此计算量小。缺点是仅仅适用于单目标,单约束问题的优化。因此不适应对复杂问题进行分析求解。常用的优化准则方法一般包括OC算法,COC(continu-um-basedoptimalitycriteria)算法和DOC(discretizedoptimalitycriteria)算法以及DCOC(discretizedcontinuumoptimalitycriteri-a)算法。 基于HyperMesh/OptiStruct的汽车 零部件结构拓扑优化设计 刘庆,侯献军 (武汉理工大学汽车工程学院,武汉430070) 摘要:基于结构拓扑优化在优化设计中的重要性,介绍了拓扑优化的方法和常用算法,建立了基于HyperMesh/OptiStruct的结构拓扑优化设计流程图,最后在考虑了三种不同载荷工况下,进行了汽车控制臂的拓扑优化,最终使得优化结构质量更轻。 关键词:拓扑优化;汽车控制臂;HyperMesh;OptiStruct 中图分类号:U463文献标识码:A文章编号:1672-545X(2008)10-0042-03 收稿日期:2008-07-10 作者简介:刘庆(1983—),男,河南新乡人,硕士研究生,研究方向:发动机排放控制与电控技术;侯献军(1973—),男,河南新乡人,副教授,研究方向:发动机排放与节能控制、车用动力新型装置。 42

《汽车车身结构与设计》基本知识点

《汽车车身结构与设计》 1、车身主要包括哪些部分?答:一般说,车身包括白车身及其附件。白车身通常是指已 经装焊好但未喷涂油漆的白皮车身,主要是车身结构件和覆盖件的焊接总成,并包括前后板制件与车门。但不包括车身附属设备及装饰等 2、车身有哪些承载形式?答:非承载式、半承载式、承载式 3、非承载式(有车架式)车身:货车、采用货车底盘改装的大客车、专用汽车以及大部 分高级轿车都采用非承载式车身,装有单独的车架,车身通过多个橡胶垫安装在车架上,橡胶垫则起到减振作用。非承载车身的优点:①除了轮胎与悬架系统对整车的缓冲吸振作用外,挠性橡胶垫还可以起到辅助缓冲、适当吸收车架的扭转变形和降低噪声的作用,既延长了车身的使用寿命,又提高了舒适性。②底盘和车身可以分开装配,然后总装在一起,这样既可简化装配工艺,又便于组织专业化协作。③由于车架作为整车的基础,这样便于汽车上各总成和部件安装,同时也易于更改车型和改装成其他用途车辆,货车和专用车以及非专业厂生产的大客车之所以保留有车架,其主要原因也基于此。④发生碰撞事故时,车架对车身起到一定的保护作用。非承载车身的缺点: ①由于计算设计时不考虑车身承载,故必须保证车架有足够的强度和刚度,从而导致 自重增加。②由于车身和底盘之间装有车架,使整车高度增加。③车架是汽车上最大而且质量最大的零件,所以必须具备有大型的压床以及焊接、工夹具和检验等一系列较复杂昂贵的制造设备。 4、什么是承载式车身(无车架式)?答:没有车架,车身直接安装在底盘上,主要是 为了减轻汽车的自重以及使车身结构合理化。承载式车身结构的缺点在于由于没有车架,传动的噪音和振动直接传给车身,降低了乘坐的舒适性,因此必须大量采用防振、隔音材料,成本和重量都会有所增加;改型比较困难。 5、汽车生产的“三化”是指什么?答:汽车生产的“三化”是指汽车产品系列化、零部件通用 化、以及零件设计标准化。 6、什么是工程设计?答:汽车工程设计一般需要 3 年以上,而从生产准备到大量投产时 间更长。其中车身的设计所需的周期最长。车身设计首先是按 1:1 的比例进行内部模型和外部模型的设计及实物制作。其次则是车身试验,包括强度试验、风洞试验、振动噪音试验和撞车试验等。 7、轿车底盘有哪三种布置形式?答:轿车底盘有三种布置形式:a:发动机前置,后轮驱 动;b:发动机前置,前轮驱动;c:发动机后置,后轮驱动。 8、什么是汽车驾驶员眼椭圆?答:汽车驾驶员眼椭圆是驾驶员以正常驾驶姿势坐在座椅 上时其眼睛位置在车身中的统计分布图形。 9、什么是 H 点答: H点是人体身躯与大腿的交接点。

罐式汽车结构与设计

《 铝合金罐体罐式汽车结构与设计 摘要:罐式汽车是指装有专用罐状容器的运货汽车。它具有运输效率高、保证运货质量、利于安全运输、减轻劳动强度、降低运输成本等优点。随着我国各行业对物流运输需求的不断增大,罐式汽车的作用愈加突出,在专用汽车中所占的比例也明显增加。 关键词:罐式汽车结构设计铝合金 1绪论: 研究表明,汽车的燃油消耗与汽车的自身质量成正比,汽车质量每减轻10%,燃油消耗将降低 6%~10%,排放降低4%[2]。在驾驶方面,汽车轻量化后,加速性提高,车辆控制稳定性、噪音、振动方面也均有改善。从安全性考虑,碰撞时惯性小,制动距离减小。节能、环保、安全、舒适是汽车发展的新技术趋势,尤其是节能和环保更是人类可持续发展的重大问题。汽车轻量化对于节约能源、减少废气排放十分重要,是汽车工业发展的方向之一,也是提高汽车的燃油经济性、减少排放的重要技术途径。汽车轻量化技术的具体内容实际上是功能完善、自重轻、性价比高的结合。 2 铝合金罐体罐式汽车 铝合金罐体的优势 a. 降低整车整备质量,减少燃油消耗,缩小运输成本。根据欧洲铝业协会相关研究报告,整车质量与单车燃油消耗成正向变化关系。以45 m3的铝合金液罐式汽车消耗柴油为例,它比碳钢或不锈钢材料罐体的质量约少5 t,从运输成本出发,单车整备质量每减轻1 t,车辆每行驶100 km可节省 L柴油。如果一辆车每年运行里程为12万km,只按该里程的一半计算(空载行驶),则一年至少可节省柴油1 800 L,折合目前市场价约为1万元。 — b. 在相同整车质量下,由于铝合金材料罐体的空载整车质量降低,承载体积变大,从而有效提高了承载经济性。按照我国道路安全法规规定,车辆总质量不得超过55 t。在规定的总质量的前提下,要想提高运输总量,只能从车辆轻量化入手,进而增加其有效承载能力获取更好的经济效益。从增加收益的角度出发,采用铝合金罐体的车辆比碳钢罐体的车辆承载量约多5 t,仍以每年12万km的里程计算,运输费用为元/(km·t),每车可额外增加收入约15万元,可以看出使用铝合金罐体的经济效益非常可观。 c. 耐氧化,化学性质较稳定,回收循环利用价值高。由于铝合金具有较强的耐腐蚀性,而且这种稳定的化学性质跟使用时间基本不存在关系。所以用户在按国家运输车辆报废有关规定将车辆报废之后,铝合金罐体整体不会出现较大损失,特别是内部不会有很大的损伤。对于按国际标准生产工艺生产的罐体,以目前国际行业出具的回收标准看,回收价值是原铝的85%以上。如一个由5 t成品

汽车零部件料架设计

汽车零部件料架设计心得 生产包装形态 生产线原则上要求纸包装不能上线,因此适用于总装车间的生产包装可分为周转箱、非标中空板箱、仓储笼、专用产品料架四种形态,在此只介绍专用产品料架的包装形态。 专用产品料架,又可分为周转用产品架和线边固定存放架。这与投料的物流路线与投料方式有关,周转用产品架可满足:对换投料,线边固定存放架一般适用填补投料,但另需要投料容器与之搭配使用。对供应商来说,我们原则要求使用周转用产品架,除非由于零件特性等原因不适用产品架进行周转投料的,可考虑设定固定存放架和投料容器(有的直接是运输包装)的搭配包装方式。 料架材料 产品架的主体材料为金属管材,材质为Q235,一般要求的规格为40*40,30*30,25*25,20*20,40*25。考虑到动态运输,以及一个产品架顺引多个产品架的实际情况,所以框体要求不使用20*20的规格,而内部结构则尽量使用20*20的管材,以减轻重量和方便操作。 产品架的辅材起缓冲、防护作用,辅材材料为帆布、橡胶(脱硫)、尼龙、珍珠棉、PE发泡材料、PVC板材等。更多内容访问汽车物流包装网。 产品架分类 产品架的分类方式有数种之多,比如按结构分类、按运输方式分类、按材料分类、按被包装物性质(是否属于危险品、易碎品等)分类等,但各种分类标准归根结底是在决定产品架的结构,所以我在此处只以产品架的结构为分类标准

产品架按结构分类,主要分为以下几种:1、层掀板结构,2、货格结构,3、固定取放结构,4、货格变形结构,5、悬臂结构,6、箱、笼结构,7、组合结构,8、通用相配结构。 层掀板结构 层掀板结构产品架由多层翻版组成,每层翻版能够绕一端掀起,掀起后用气弹簧、机械弹簧或其他支撑结构支撑起而不会轻松落下,以便取用下一层的零件。每层翻版的面层配有一些限位结构,用于摆放、限位零件;有些产品架的翻版底层(相对面层而言)会固定一些缓冲材或其他限位结构,用于紧固下一层零件(一般这样的结构,产品架还需加做一个翻版顶盖,用于紧固顶层的零件),或者是防止零件向上窜动冲击上层翻版的底层而造成零件的划伤。层掀版结构的产品架,结构紧凑,零件摆放的密度大,空间浪费小,对生产线位置紧张的**来说,是值得推广的。但是,该结构产品架一般是只能在用完上一层的零件后才能打开取用下一层的零件,所以一般用于严格排序的零件,或者是零件品种较少,每个产品架只放一个品种的零件,多个产品架又能在生产线上布开的情况。 另外,对层掀板结构进行变形,将每层一块掀板分开做成两块,每块单独操作,互不干涉,这样就可以摆放两种图号的零件进行排序。这种变形的结构满足严格的类排序零件。所谓严格类排序,是指严格按照车型信息对零件进行排序,但由于零件特性使得限位结构不能适用所有零件,而使得排序的零件分开摆放的排序投料方式。更多内容访问汽车物流包装网。翻版的支撑装置有三种,气弹簧(自由型气弹簧)、机械弹簧(线形弹簧)、机械支撑杆。使用机械弹簧只是利用其拉力,翻版在掀起时要不会落下,平躺时要有力使之不易颠起,这样弹簧的安装位置非常不易确定,并且对弹簧自身的疲劳失效、强度、防锈等方面有很高要求。机械支撑杆滑动槽的表面要求较高,喷漆或生锈以后,掀起或放下翻板不易操作,活动不畅,并且容易受到震动而脱槽致使翻版跌落。

《汽车车身结构与设计》习题与解答要点

《汽车车身结构与设计》习题与解答 第一章车身概论 1、汽车的三大总成是什么? 答:底盘、发动机、车身。 2、简述车身在汽车中的重要性。 答:整车生产能力的发展取决与车身的生产能力,汽车的更新换代在很大程度上也决定与车身,我们所看到的汽车概念大多指车身概念,汽车的改型或改装主要依赖于车身。 3、车身有什么特点? 答:a:汽车车身是运载乘客或货物的活动建筑物,由于其在运动中载人、载物的特殊性,所以汽车车身的设计与制造需要综合运用空气动力、空气调节、结构设计、造型艺术、机械制造、仪器仪表、复合材料、电子电器、防音隔振、装饰装潢、人体工程等不同领域的知识。 b:自1885年德国人卡尔·弗里德里希·本茨研制出世界上第一辆马车式三轮汽车,并成立了世界上第一家汽车制造公司——奔驰汽车公司以来,汽车车身的造型随着时代的推移和科技的进步经历了19世纪末20世纪初的马车车厢形车身;20世纪20、30年代的薄板冲压焊接箱形车身;第二次世界大战后50、60年代冷冲压技术生产的体现流线型、挺拔大方的车身。而到了20世纪70、80年代现代汽车的各种车身造型已初具雏形,新材料、新工艺的使用更使得汽车车身的设计制造得到了飞速发展。 4、简介车身材料。 答:现代汽车车身使用的材料品种很多,除金属(主要是高强度钢板)和轻合金(主要是铝合金)以外,还大量使用各种非金属材料如:塑料、橡胶、玻璃、木材、油漆、纺织品、皮革、复合材料等。随着汽车车身制造技术的发展,为了轻量化以及提高安全性、舒适性,非金属材料、复合材料在汽车车身的加工制造中得到日益广泛的应用。 5、车身主要包括哪些部分? 答:一般说,车身包括白车身及其附件。白车身通常是指已经装焊好但未喷涂油漆的白皮车身,主要是车身结构件和覆盖件的焊接总成,并包括前后板制件与车门。车身结构件和覆盖件焊(铆)接在一起即成为车身总成,该总成必须保证车身的强度与刚度,它可划分为地板、顶盖、前围板、后围板、侧围板、门立柱和仪表板总成。车身前板制件一般是指车头部分的零部件,包括水箱框架和前脸、前翼子板、挡泥板、发动机罩以及各种加强板、固定件。6、车身有哪些承载形式? 答:车身按照承载形式的不同,可以分为非承载式、半承载式、承载式三大类。

专用汽车设计试卷

山东科技大学2011-2012学年第一学期 《专用汽车设计》考试试卷 一、判断题(每小题1分,共10分) 1.一般来讲,专用汽车的比功率大于家用轿车(×) 2.滚动阻力系数与汽车的速度没有关系(×) 3.大多数集装箱采用的是后门单开式开启方式(×) 4.压缩式垃圾车都可以自动装卸,不需人工干预(×) 5.同样工况下前置直推式自卸汽车的举升油缸比后置式直径大(×) 6.自卸汽车的最大举升角度必须小于货物的安息角(×) 7.栏板起重运输车的栏板运动采用的是四杆机构(√) 8.散装粮食运输车采用的是气力运输方式(√) 9.集装箱运输车属于特种结构汽车的范畴(√) 10.在充满液化石油气时不允许装满罐体(√) 二、单向选择题(每小题2分,共20分) 1.下列不属于箱式箱式货车的是(D) A.保温车 B.冷藏车C、运钞车D、禽畜运输车 2、专用车液压系统的取力最好在(A ) A、发动机端 B、离合器部分 C、传动轴 D、变速箱 3.下列不属于蔬菜的制冷方式(A) A、水冷 B、干冰 C、冷板 D、机械制冷 4、随车起重机装卸木材时采用的结构形式(A ) A、前置 B、中置 C、后置 5、专用汽车改装最多的部分是(D ) A、驾驶室 B、底盘 C、发动机 D、车厢 6.下列不属于粉粒物运输车的结构部件是(C ) A、多孔板 B、流态化元件 C、空气压缩机 D、螺旋叶片 7、下列不属于灌装汽车常用的封头形式是(A) A、方形 B、半球形 C、椭圆形 D、螺形 8.下列专用汽车肯定不需要液压支腿的是(B ) A、高空作业车 B、半挂车 C、随车起重机 D、混凝土搅拌车 9、高空作业车作业平台调平结构不常用的是(A) A、重力式 B、平行四杆式 C、行星齿轮方式 D、等容积液压缸 10、去掉货箱的底盘类型(A) A、一类底盘 B、二类底盘 C、三类底盘 D、四类底盘 三、简答题(每小题5分,共20分) 1、简述压缩式垃圾车的基本工作原理 答:压缩式垃圾车是装备有液压举升机构和尾部填塞器,能将垃圾自行装入、转运和倾卸的专用自卸汽车,主要用于收集、转运袋装生活垃圾。 压缩式垃圾车的专用工作装置主要由车厢和装载箱两部分组成。 工作原理:车厢固联于底盘车架上,装载厢位于车厢后端,其上角与车厢铰接,并可由举升液压缸驱动其绕铰接轴转动。垃圾从装载厢后部入口处装入,再经装载厢内的压缩机构进行压缩处理,最后将垃圾向前挤压入车厢内压实。车厢设有

结构设计管理和优化服务建议书

结构设计管理及优化服务建议书 深圳市卓为建筑设计咨询有限公司 2014年1月10日

目录 一、公司介绍 (03) 二、对房地产项目设计优化的认识和理解 (04) 三、我司的服务承诺3333333333333333333035 四、我司的要求和安排333333333333333333035 五、设计优化团队的要求和安排33333333333333306 六、我司与业主的关系333333333333333333037 七、我司与设计单位的关系3333333333333333308 八、设计优化的类型和服务内容33333333333333309 九、设计优化工期33333333333333333333133 十、过程优化的优势 3333333333333333333134 结构设计管理及优化服务建议书 一、公司介绍 深圳市卓为建筑设计咨询有限公司是一家以专业化和精细化工作模式开展设计管理和设计优化的新型服务企业。公司立足于房地产公司设计管理和成本控制的延伸和补充,以国内先进的设计管理思路开展设计管理及设计优化工作,坚持做业主和设计院的桥梁。

公司成员均为业内设计管理技术骨干,具有深厚的专业功底、开阔的视野、丰富的设计优化和设计管理经验。经过多年的探索和实践,公司目前已建立完整的设计优化控制体系和成本算量控制体系,从而实现对项目设计阶段和算量对量阶段成本的双重控制。 公司秉承“专业成就价值”的精神,旨在实现业主项目利益最大化。自成立以来,先后为万科、中信、招商、佳兆业、龙光、鑫苑、蓝光、中铁、俊发、荣新、银海、广投等知名开发商提供专业设计优化和设计咨询服务,成功实现每个项目节省成本15%左右,得到甲方的高度认可。 二、对房地产项目设计优化的认识和理解 在目前房地产开发项目中,由于政府的调控和不降低地价,而建安成本中的人工等又在大幅上涨,造成房地产开发项目的利润很低,因此房地产项目的成本控制就十分重要。在房地产项目成本控制中,设计阶段成本控制决定了房地产开发项目的成本大格局,是房地产开发项目成本控制的关键与重点,其中结构和岩土在设计阶段的成本控制是最重要的。但目前房地产项目存在设计方案调整过多、设计进度很紧、设计质量比较粗糙、设计单位人员专业能力高低不同和成本意识不强、以及成本控制与设计人员利益冲突等问题,造成房地产项目在设计阶段成本难以控制。 通过对以上情况深入分析,为达到在满足结构安全、建筑功能和效果以及设计进度的前提下做到成本最低的目的,深圳市卓为建筑设计咨询有限公司综合自身设计优化工作的经验和特点总结出——设计阶段的成本控

结构设计工作总结

结构设计工作总结 结构设计工作总结 转眼间20xx年已悄然划过,回首这一年,现将20xx年一年个人工作情况总结如下: 20xx年在院领导和同事们的大力支持下,设计院全体员工同心协力,超额完成了预定的目标。总结过去这一年,主要工作内容如下: 一、工作量方面 过去的一年里,我主要参与了武威市凉州区于郭庄村公共租赁房项目、20xx古浪土门公共租赁住房项目、金沙乡小康住宅项目、古浪人民来访大厅、张掖市三益化工厂区项目、等建筑的结构设计。通过自己努力工作、迎难而上,不断解决工作中遇到的疑难问题,终于顺利完成了院里给我下达的35万的产值任务。我个人工作量方面完成54.5万产值,实收费达到38.2万,在圆满完成产值任务的同时,也提高了自己的业务水平。在此,我感谢领导、同事们对我的支持和关心。 二、其它方面 (一)、处理现场问题 处理现场施工上存在的问题的同时协调参建各单位的关系,是结构设计人员必须掌握的一门技能,也是一种义务。 (二)、图纸质量方面

作为结构设计人员此要求更为严格,因为我们设计的图纸直接影响着建筑的可靠度和结构经济合理性,所以在工作中我从不敢怠慢我们的产品质量。平时经常和专业人员和技术骨干交流探讨,在遇到技术难题时积极向前辈及领导请教,同时上网查阅、翻阅资料,努力把难题合理全面的解决掉。 (三)、以老带新方面 作为师傅认真指导徒弟的工作,督促其认真学习规范以及软件操作,认真解答在设计过程中的疑问及图纸中发现的问题,尽量将图纸中出现的问题降到最低,使顺利完成了公司下达的任务。 (四)、市场营销方面 通过朋友的关系寻求市场也是一个锻炼自己很重要的机会和任务,我一定要抓住每一个信息,争取赢得市场,为公司和所里贡献自己的一点微薄之力。 (五)、注册考试方面 由于自己的惰性,没有认真对待注册考试,一二年注册考试很不理想。今年我要端正思想,调整心态,积极的争取复习时间,珍惜单位提供的考试机会,争取在今年的考试中考取好成绩。 (六)、注重团结和谐 一个设计单位就像是一个球队,是靠团队协作工作的,一个设计项目牵涉到多个专业配合,每个专业还需要设计、制

汽车结构设计

汽车结构设计: 汽车的结构设计,是确定汽车整车、部件(总成)和零件的结构。也就是说,设计师需要考虑由哪些部件组合成整车,又由哪些零件组合成部件。零件是构成产品的最基本的、不可再分解的单元。毫无疑问,零件设计是产品设计的根基。零件设计时,首先要考虑这个零件在整个部件中的作用和要求;其次,为了满足这个要求,零件应选用什么材料和设计成什么形状;最后,零件如何与部件中其他零件相互配合和安装。 1.材料选择 按照零件所使用的材料,可分为金属材料和非金属材料两大类。金属材料又可分为钢铁(黑色金属)材料和有色金属材料两大类。汽车所采用的非金属材料种类繁多。钢铁是汽车上所使用的最重要的材料,占全车重量的大部分。钢铁的主要优点是强度、刚度和硬度高,耐冲击和耐高温,因而用于汽车上载荷大、高温、高速的重要零件。所谓强度高,就是这种材料可承受较大的力而不被破坏;所谓刚度高,就是这种材料可承受较大的力而变形很小。汽车的零件在工作时,有的零件承受拉力而有伸长的趋势;有的零件承受压力而有缩短的趋势;有的零件承受弯曲力矩而趋于弯曲变形;有的零件承受扭转力矩。事实上,许多汽车零件的受力比上述例子复杂得多。如汽车变速器的轴就同时承受了拉、压、弯、扭多种力。汽车零件不仅是承受静载荷,而且,由于汽车的行驶随路况变化,还要承受十分复杂的动载荷。作为设计师,必须充分考虑零件的受力情况,经过周密的计算,确保零件的强度和刚度的数值在允许的范围内。 2.零件的形状 确定汽车零件的形状,也要花费设计师许多心血。例如,发动机气缸体的形状就非常复杂,需要设计气缸和水套,考虑与气缸盖、油底壳的接合,安装曲轴、进气管、排气管和各种各样的附属设备,乃至气缸体内部细长的润滑油通道……,所有这些因素都应考虑周全,每个细节均不能遗漏。汽车车身零件的形状就更特别,既不是常见的平面或圆柱体,也不是简单的双曲面或抛物面,而是造型师根据审美要求而塑造的。在确定零件的形状时,还需要考虑零件的制造方法,例如零件在机床上怎样装夹定位,刀具怎样加工,半成品怎样传送、堆叠等。 3. 汽车布局 一部汽车的布局元素包括发动机、传动系统、座舱、行李舱、排气系统、悬挂系统、油

汽车车身结构与设计

第一章:车身概论 1.车身包括:白车身和附件。 白车身通常系指已经焊装好但尚未喷漆的白皮车身,此处主要用来表示车身结构和覆盖件的焊接总成,此外尚包括前、后板制件与车门,但不包括车身附属设备及装饰等。 2.按承载形式之不同,可将车身分为非承载、半承载式和承载式三大类。 非承载车身的优点:①除了轮胎与悬架系统对整车的缓冲吸振作用外,挠性橡胶垫还可以起到辅助缓冲、适当吸收车架的扭转变形和降低噪声的作用,既延长了车身的使用寿命,又提高了舒适性。②底盘和车身可以分开装配,然后总装在一起,这样既可简化装配工艺,又便于组织专业化协作。③由于车架作为整车的基础,这样便于汽车上各总成和部件安装,同时也易于更改车型和改装成其他用途车辆,货车和专用车以及非专业厂生产的大客车之所以保留有车架,其主要原

因也基于此。④发生碰撞事故时,车架对车身起到一定的保护作用。非承载车身的缺点:①由于计算设计时不考虑车身承载,故必须保证车架有足够的强度和刚度,从而导致自重增加。②由于车身和底盘之间装有车架,使整车高度增加。③车架是汽车上最大而且质量最大的零件,所以必须具备有大型的压床以及焊接、工夹具和检验等一系列较复杂昂贵的制造设备。 3.承载式车身分为基础承载式和整体承载式。 基础承载式特点:①该结构由截面尺寸相近的冷钢杆件所组成,易于建立较符合的有限元计算模型,从而可以提高计算精度。②容许设法改变杆件的数量和位置,有利于调整杆件中的应力,从而达到等强度的目的。③作为基础承载的格栅底架具有较大的抗扭刚性,可以保证安装在其上的各总成的相对位置关系及其正常工作。④提高材料利用率,简化构件的成型过程,节省部分冲压设备,同时也便于大客车的改型和系列化,为多品种创造了条件。 4.“三化”指的是产品系列化、零部件通用化以及零件设计标准化。第二章:车身设计方法

专用汽车构造与设计

专用汽车构造与设计第一章绪论 第二章专用汽车总体设计 第一节概述 第二节专用汽车的总体布置 第三节专用汽车底盘车架的改装设计 第四节专用汽车主要性能计算 第五节专用汽车整车性能试验 第三章自卸汽车构造与设计 第一节概述 第二节普通自卸汽车 第三节高位自卸汽车的结构与设计 第四节摆臂式自装卸汽车的结构与设计第四章罐式汽车构造与设计 第一节概述 第二节常压液体罐车构造与设计 第三节粉罐汽车的构造与设计” 第四节液化气罐汽车构造与设计 第五节其他罐式汽车构造与设计 第五章厢式汽车构造与设计 第一节概述 第二节冷藏保温汽车构造与设计

第三节运钞车构造与设计 第四节翼开启厢式车构造与设计 第六章起重举升汽车构造与设计 第一节概述 第二节随车起重运输车构造与设计第三节栏板起重运输车构造与设计第四节高空作业车构造与设计 第五节起重吊车构造与设计 第七章仓栅式汽车构造与设计 第一节概述 第二节散装粮食运输车结构与设计第三节散装饲料运输车结构与设计第四节栅栏式运输车结构与设计 第八章环卫车辆构造与设计 第一节概述 第二节后装压缩式垃圾车构造与设计第三节厨余垃圾车构造和设计 第四节道路清扫车构造和设计 第五节高压清洗车 第九章建筑类专用车构造与设计 第一节混凝土搅拌运输车构造与设计第二节混凝土泵车构造与设计

第十章汽车列车构造与设计 第一节概述 第二节挂车构造与设计 第三节牵引联接及支承装置 第四节汽车列车的制动系统 第五节挂车其他部件结构与设计 第十一章消防车构造与设计 第一节消防车的分类和型号编制 第二节水罐消防车的设计 第三节泡沫类消防车的设计 第四节消防车总体设计的内容、特点及其发展趋势第十二章特种结构汽车构造与设计 第一节概述 第二节集装箱运输车结构与设计 第三节除雪车的结构与设计 第四节机场特种车的结构与设计 第五节警用车辆

结构设计年终总结精选三篇

结构设计年终总结精选三篇 使自己的业务水平得到提高,具备较强的业务工作能力,能根据工作需要,服从领导的安排,在平时的工作中,积极深入生产一线,虚心向工程技术人员学习请教,秉着理论与实践相结合的原则,将 工作做到最好。 严于律已,敢于同违规违纪的行为作斗争,敢于开展批评和自我批评,团结同志,尊重领导,圆满地完成上级交给的各项工作,坚 持个人利益服从公司利益的原则,不计较个人名利得失。 工作作风严谨一丝不苟,精益求精,勤奋务实。 我在专业技术上,刻苦钻研,不断进取,不耻下问,吸取工程实践中的经验,获得了书本中所不能学到的知识,并在实践中不断积 累经验,做到理论与实践相结合,取长补短,虚心向资深专家请教。 在结构设计方面,掌握了中国建筑科学研究院的pkpm软件和迈 达斯结构分析软件及设计所需的相关软件的应用,提高设计水平; 七年来,先后主持及独立完成了隆湖房地产开发公司、石元房地产开发公司、龙源房地产开发公司、宏建房地产开发公司等多个开 发商的住宅及商业区项目的设计,参与及主持了多个办公、医疗、 公建等项目的设 计,尤为重要的是参与了2007年设计的神华宁煤集团宁东化工 基地综合办公楼的设计,现已投入使用,并在2010年3月获得自治 区颁发的建筑设计二等奖。 以上工作的经历及经验不断地充实着自己,为我在以后的工作中奠定了坚实的基础,我相信只有不断的努力,不断地提高自身的业 务素质才能更好的为公司为社会服务。 随着社会的发展日新月异,知识更新十分迅速,如果不及时补充新知识,不进行学习和交流,就不能适应本工作的需要,为此,我 利用一切机会参加各种培训班、技术交流活动。

在自身提高的同时也不忘将自己所学、所见、所想的专业知识与别人分享,教他们如何将学到的知识,更好的运用到工程设计当中。 总之,我在长期的工作实践与锻炼过程中,积累了较为丰富的工程设计、施工和技术管理经验,全面掌握了常见结构类型的设计方法,并娴熟利用自己丰富的理论知识,妥当处理设计中的技术难题,尤其在结构方案确定及后续施工图处理中积累了丰富的经验。 在今后工作中我会不断专研专业知识,虚心求教,与单位同志精诚团结,进一步全面完善自己的设计水平和专业能力,利用自己学 到的专业知识和辛勤劳动,为社会奉献更高更好的精品工程。 结构设计年终总结(二) xx年很快过去了,非常高兴能够借助这个机会以书面形式总结 回顾下自己这几个月的工作,并规划个人2012年的工作思路和打算。 希望领导通过这篇总结对我这一年来的工作提出批评和指正。 来到公司我参与的第一个工程为张北县xx年集中供热工程,在 本工程我主要负责做11个换热站的站内设备基础定位图,作为第一 个工程,暴露的问题肯定很多,这里面包括一些CAD软件的应用、 图上缺少一些应标注尺寸等,通过这个工程我吸取了相关作的经验, 在接下来的平山县城区供热三期工程金辉花园换热站站内设备基础定位及详图的设计中上述问题均未发生,设备基础尺寸定位校核 审核一次性通过,未出现问题。 通过这两座房屋的设计,确定并掌握了房屋结构中的基本构件梁板柱及基础的设计计算方法。 保定电谷新区集中供热管网工程,工程主要做了旭阳路—3号路 供热管网(变)的阀门井。 该阀门井属于7.05米的深井,虽然以前在施工中经常遇到阀门 井的施工任务,但是在做设计时,还是对各个结构的井壁国、盖板、底板的设计计算仍存在疑问。

汽车车身结构与设计期末考试试题

一、名词解释 1、车身:供驾驶员操作,以及容纳乘客和货物的场所。 2、白车身:已装焊好但尚未喷漆的白皮车身。 3、概念设计:指从产品构思到确定产品设计指标(性能指标),总布置定型和造型的确定,并下达产品设计任务书为止这一阶段的设计工作。 4、H点:H点装置上躯干与大腿的铰接点。 5、硬点:对于整车性能、造型和车内布置具有重要意义的关键点。 6、硬点尺寸:连接硬点之间、控制车身外部轮廓和内部空间,以满足使用要求的空间尺寸。 7、眼椭圆:不同身材的乘员以正常姿势坐在车内时,其眼睛位置的统计分布图形;左右各一,分别代表左右眼的分布图形。 8、驾驶员手伸及界面:指驾驶员以正常姿势入座、身系安全带、右脚踩在加速踏板上、一手握住转向盘时另一手所能伸及的最大空间廓面。 9、迎角:汽车前、后形心的连线与水平线的夹角。 10、主动安全性:汽车所具有的减少交通事故发生概率的能力。 11、被动安全性:汽车所具有的在交通事故发生时保护乘员免受伤害的能力。 12、静态密封:车身结构的各连接部分,设计要求对其间的间隙进行密封,而且在使用过程中这种密封关系是固定不动的。

13、动态密封:对车身上的门、窗、孔盖等活动部位之间的配合间隙进行密封,称为动态密封。 14、百分位:将抽取的样本实测尺寸值由小到大排列于数轴上,再将这一尺寸 段均分成100份,则将第n份点上的数值作为该百分位数。 二、简答 1、简述车身结构的发展过程。 没有车身——马车上安装挡风玻璃——木头框架+篷布——(封闭式的)框架(木头或钢)+木板——(封闭式的)框架(木头或钢)+薄钢板——全钢车身——安全车身。 2、车身外形在马车之后,经过了那几种形状的演变?各有何特点? ①厢型:马车外形的发展②甲虫型:体现空气动力学原理的流线型车身③船型:以人为本,考虑驾乘舒适性④鱼型:集流线型和船型优点于一身⑤楔型:快速、稳定、舒适。 3、车身设计的要求有哪些? 舒适、安全、美观、空气动力性。 ①结构强度足够承受所有静力和动力载荷;②布置舒适,有良好的操纵性和乘 座方便性;③具有良好的车外噪声隔声能力;④外形和布置保证驾驶员和乘员有良好的视野;⑤材料轻质,减小质量; ⑥外形具有低的空气阻力;⑦结构和装置措施必须保护乘员安全;⑧材料来源 丰富、成本低,易于制造和装配;⑨抗冷、热和腐蚀抵能力强;⑩材料具有再使用的效果;⑩制造成本低。

汽车零部件查询系统设计

交通与汽车工程学院 课程设计说明书 课程名称: 计算机应用基础课程设计 课程代码: 6011339 题目: 汽车零部件查询系统设计 年级/专业/班: 学生姓名: 学号: 开始时间: 2012 年 4 月 1 日 完成时间: 2012 年 4 月 12 日 课程设计成绩: 学习态度及平时成绩(30)技术水平与实际 能力(20) 创新(5) 说明书(计算书、图纸、分析 报告)撰写质量(45) 总分 (100) 指导教师签名:年月日

目录 摘要 (2) 1 引言 (3) 2 本程序主要功能 (3) 3 本程序结构设计 (4) 4 程序设计界面 (4) 5 程序代码 (10) 结论 (30) 致谢 (31) 参考文献 (32)

摘要 随着计算机的普及程序的应用也越来越受到重视,本次课程设计使用 Visual Basic 作为开发工具,进行了汽车零部件查询系统设计的程序设计,本系统主要完成对汽车零部件的管理,包括库存的添加、删除等。系统可以完成对各类信息的追加、浏览、修改、查询和计算等功能。 汽车零部件查询系统广泛应用于4S店汽车零部件的库存与销售管理工作中,要求其具有实用性强、使用方便、效率高和安全可靠等特点。本管理系统正是围绕以上几个方面进行开发的,在开发过程中充分考虑到本系统的应用特点,并进行了大量的检验,证明其的确达到了设计的要求,是一个已具备了实际应用能力的软件。 关键词:汽车零部件销售库存销售

1 引言 1.1 问题的提出 为适合现代企业发展的需要,汽车零部件管理已经成为困扰销售的一个难题,由于其费时和繁琐性,企业迫切需要一种专门为零部件管理而服务的工具。为此,简单的汽车零部件管理系统为此而制造出来。本简单程序是为汽车零部件管理而设计的,内容简单,使用方便。程序稍加变更可以适合对资源分配方面的杂事加以处理。 作为当代大学生,熟练的操作计算机是一种必备的素质。本次设计会让我们更加熟悉VB编程,把以前学过的一些东西又重新复习了一遍,并与实际结合起来,对我们能力的提升有了很大的帮助,还能促使我们在以后的实际应用中更好的应用VB编程来设计一些数据库管理系统。 2 本程序主要功能 汽车零部件管理系统是典型的信息管理系统,其开发主要包括后台数据库的建立和维护以及前端应用程序的开发两个方面。对于前者要求建立起数据一致性和完整性强、数据安全性好的库。而对于后者则要求应用程序功能完备,易使用等特点. 本系统主要完成对汽车零部件信息的管理,包括数据库中零件的入库和出库等。系统可以完成对各类信息的浏览、修改、查询对零件销售价格进行计算等功能。系统的核心是数据库中零件的余量,每一个零件的修改都将联动的影响其它的各项信息,当完成对数据的操作时系统会自动地完成数据库的修改。查询功能也是系统的核心之一,在系统中即有单条件查询和多条件查

组织结构设计包括什么

N航空公司的系统人力资源诊断项目纪实如何制定企业的组织结构设计?在分析N航空公司的现状后,得知该航空公司存在以下问题:岗位设置不合理,人员冗余现象严重。岗位职责不清,权责利不清。理念超前,行动滞后等问题。人力资源专家-华恒智信为了帮助该企业制定组织结构设计给出了以下方案:1、进行组织再造,减少管理层次、机构和职位。2、实施工作分析,实现员工与岗位的匹配。 3、贯彻绩效导向的企业文化,建立合理的价值评价体系。那接下来就请大家一起看看华恒智信是如何帮助该企业制定组织结构设计的具体方法吧。 【客户评价】 公司的人力资源管理问题一直都比较严重,比如人员冗余、员工工作积极性差等问题,虽然经过多次的管理尝试,存在的问题仍然没有缓解。华恒智信的老师特别专业,帮我们系统、全面的诊断了人力资源管理上存在的问题,并提出了非常有针对性的解决方案,给我们人力资源管理水平的提升指明了方向。 ——N航空公司人力资源部经理【客户行业】航空行业 【问题类型】组织结构变革 【客户背景】 N航空公司成立于1993年,拥有18家分(子)公司,在国内设有17个营业部,在国外设有38个办事处。N航空公司是国内运输飞机最多、航线网络最密集、年客运量最大的航空公司之一,截至2007年,公司经营不同型号飞机300余架,国际国内航线600余条,占有国内民航1/3的市场份额。近年,N航空公司放缓了外部扩张和联合重组的脚步,逐步向自我扩张型企业转化。 公司在历史上经历了两次大的组织变革,一次是在1995年,经过体制改革转变成立公司,机构仍然按照政府行政管理的模式设置;另一次是在1998年,为了满足上市需要,进行了大的机构调整,相关职能部门进行了合并归类,并在部门设岗进行管理。在人力资源管理方面,从1996年起,相继实施了三大人事制度改革:全员劳动合同制、管理人员聘任制、岗效工资制。但是,制度执行不到位问题比较突出,制约了N航空公司的进一步发展。【现状问题诊断及分析】 经过对N航空公司实际情况的详细了解,华恒智信专家团队认为该航空公司的人力资

汽车零部件总结(全)

汽车零部件论文必备 目录 一、汽车构造知识———————————————————1 二、汽车行业政策———————————————————4 三、专有名词解释———————————————————4 四、零部件数据(全新)————————————————6 五、数据查询—————————————————————6 六,论文检测—————————————————————6 一、汽车构造知识 汽车一般由发动机、底盘、车身、电气设备等四个基本部分组成。 1、发动机是一种由许多机构和系统组成的复杂机器。无论是汽油机,还是柴油机;无论是四行程发动机,还是二行程发动机;无论是单缸发动机,还是多缸发动机。要完成能量转换,实现工作循环,保证长时间连续正常工作,都必须具备两大机构和五大系统组成,即由曲柄连杆机构,配气机构、燃料供给系、润滑系、冷却系、点火系和起动系组成;柴油机由以上两大机构和四大系统组成,即由曲柄连杆机构、配气机构、燃料供给系、润滑系、冷却系和起动系组成,柴油机是压燃的,不需要点火系。 (1)曲柄连杆机构是发动机实现工作循环,完成 能量转换的主要运动零件。它由机体组、活塞连杆 组和曲轴飞轮组等组成。在作功行程中,活塞承受 燃气压力在气缸内作直线运动,通过连杆转换成曲 轴的旋转运动,并从曲轴对外输出动力。而在进气、 压缩和排气行程中,飞轮释放能量又把曲轴的旋转 运动转化成活塞的直线运动。 (2) 配气机构的功用是根据发动机的工作顺序 和工作过程,定时开启和关闭进气门和排气门, 使可燃混合气或空气进入气缸,并使废气从气缸 内排出,实现换气过程。 (3) 燃料供给系统汽油机燃料供给系的功 用是根据发动机的要求,配制出一定数量和浓度 的混合气,供入气缸,并将燃烧后的废气从气缸 内排出到大气中去;柴

(完整版)汽车车身结构与设计期末考试试题

一、名词解释 1、车身:供驾驶员操作,以及容纳乘客和货物的场所。 2、白车身:已装焊好但尚未喷漆的白皮车身。 3、概念设计:指从产品构思到确定产品设计指标(性能指标),总布置定型和造型的确定,并下达产品设计任务书为止这一阶段的设计工作。 4、H点:H点装置上躯干与大腿的铰接点。 5、硬点:对于整车性能、造型和车内布置具有重要意义的关键点。 6、硬点尺寸:连接硬点之间、控制车身外部轮廓和内部空间,以满足使用要求的空间尺寸。 7、眼椭圆:不同身材的乘员以正常姿势坐在车内时,其眼睛位置的统计分布图形;左右各一,分别代表左右眼的分布图形。 8、驾驶员手伸及界面:指驾驶员以正常姿势入座、身系安全带、右脚踩在加速踏板上、一手握住转向盘时另一手所能伸及的最大空间廓面。 9、迎角:汽车前、后形心的连线与水平线的夹角。 10、主动安全性:汽车所具有的减少交通事故发生概率的能力。 11、被动安全性:汽车所具有的在交通事故发生时保护乘员免受伤害的能力。 12、静态密封:车身结构的各连接部分,设计要求对其间的间隙进行密封,而且在使用过程中这种密封关系是固定不动的。 13、动态密封:对车身上的门、窗、孔盖等活动部位之间的配合间隙进行密封,称为动态密封。 14、百分位:将抽取的样本实测尺寸值由小到大排列于数轴上,再将这一尺寸段均分成100份,则将第n份点上的数值作为该百分位数。 二、简答 1、简述车身结构的发展过程。 没有车身——马车上安装挡风玻璃——木头框架+篷布——(封闭式的)框架(木头或钢)+木板——(封闭式的)框架(木头或钢)+薄钢板——全钢车身——安全车身。 2、车身外形在马车之后,经过了那几种形状的演变?各有何特点? ①厢型:马车外形的发展②甲虫型:体现空气动力学原理的流线型车身③船型:以人为本,考虑驾乘舒适性④鱼型:集流线型和船型优点于一身⑤楔型:快速、稳定、舒适。 3、车身设计的要求有哪些? 舒适、安全、美观、空气动力性。 ①结构强度足够承受所有静力和动力载荷;②布置舒适,有良好的操纵性和乘座方便性;③具有良好的车外噪声隔声能力;④外形和布置保证驾驶员和乘员有良好的视野;⑤材料轻质,减小质量; ⑥外形具有低的空气阻力;⑦结构和装置措施必须保护乘员安全;⑧材料来源丰富、成本低,易于制造和装配;⑨抗冷、热和腐蚀抵能力强;⑩材料具有再使用的效果;⑩制造成本低。 4、车身设计的原则有哪些? ①车身外形设计的美学原则和最佳空气动力特性原则。②车身内饰设计的人机工程学原则。③车身结构设计的轻量化原则。④车身设计的“通用化,系列化,标准化”原则。⑤车身设计符合有关的法规和标准。⑥车身开发设计的继承性原则。 5、什么是白车身?它的主要组成有哪些? 已装焊好但尚未喷漆的白皮车身。 组成:车身覆盖件+车身结构件+部件。①车身覆盖件:覆盖车身内部结构的表面板件。②车身结构件:支撑覆盖件的全部车身结构零件。③部件:前翼子板、车门、发动机罩和行李箱盖。 6、简述车身承载类型的特点及适用车型。 (1)、非承载式(有车架式):车架作为载体 1>特点:①装有单独的车架;②车身通过多个橡胶垫安装在车架上;③载荷主要由车架来承担。 ④车身在一定程度上仍承受车架引起的载荷。2>适用车型①货车(微型货车除外)②在货车底盘基础上改装成的大客车③专用汽车④大部分高级轿车。 (2)、承载式:去掉车架,由车身直接承载。 1>特点:①保留部分车架、车身承受部分载荷。②前后加装副车架。2>适用车型:基础承载式、整体承载式大客车。

相关主题
文本预览
相关文档 最新文档